anv/pipeline: Add skeleton support for spilling to bindless
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/u_string.h"
41 #include "git_sha1.h"
42 #include "vk_util.h"
43 #include "common/gen_defines.h"
44 #include "compiler/glsl_types.h"
45
46 #include "genxml/gen7_pack.h"
47
48 /* This is probably far to big but it reflects the max size used for messages
49 * in OpenGLs KHR_debug.
50 */
51 #define MAX_DEBUG_MESSAGE_LENGTH 4096
52
53 static void
54 compiler_debug_log(void *data, const char *fmt, ...)
55 {
56 char str[MAX_DEBUG_MESSAGE_LENGTH];
57 struct anv_device *device = (struct anv_device *)data;
58
59 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
60 return;
61
62 va_list args;
63 va_start(args, fmt);
64 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
65 va_end(args);
66
67 vk_debug_report(&device->instance->debug_report_callbacks,
68 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
69 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
70 0, 0, 0, "anv", str);
71 }
72
73 static void
74 compiler_perf_log(void *data, const char *fmt, ...)
75 {
76 va_list args;
77 va_start(args, fmt);
78
79 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
80 intel_logd_v(fmt, args);
81
82 va_end(args);
83 }
84
85 static uint64_t
86 anv_compute_heap_size(int fd, uint64_t gtt_size)
87 {
88 /* Query the total ram from the system */
89 struct sysinfo info;
90 sysinfo(&info);
91
92 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
93
94 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
95 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
96 */
97 uint64_t available_ram;
98 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
99 available_ram = total_ram / 2;
100 else
101 available_ram = total_ram * 3 / 4;
102
103 /* We also want to leave some padding for things we allocate in the driver,
104 * so don't go over 3/4 of the GTT either.
105 */
106 uint64_t available_gtt = gtt_size * 3 / 4;
107
108 return MIN2(available_ram, available_gtt);
109 }
110
111 static VkResult
112 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
113 {
114 uint64_t gtt_size;
115 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
116 &gtt_size) == -1) {
117 /* If, for whatever reason, we can't actually get the GTT size from the
118 * kernel (too old?) fall back to the aperture size.
119 */
120 anv_perf_warn(NULL, NULL,
121 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
122
123 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
124 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
125 "failed to get aperture size: %m");
126 }
127 }
128
129 device->supports_48bit_addresses = (device->info.gen >= 8) &&
130 gtt_size > (4ULL << 30 /* GiB */);
131
132 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
133
134 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
135 /* When running with an overridden PCI ID, we may get a GTT size from
136 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
137 * address support can still fail. Just clamp the address space size to
138 * 2 GiB if we don't have 48-bit support.
139 */
140 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
141 "not support for 48-bit addresses",
142 __FILE__, __LINE__);
143 heap_size = 2ull << 30;
144 }
145
146 if (heap_size <= 3ull * (1ull << 30)) {
147 /* In this case, everything fits nicely into the 32-bit address space,
148 * so there's no need for supporting 48bit addresses on client-allocated
149 * memory objects.
150 */
151 device->memory.heap_count = 1;
152 device->memory.heaps[0] = (struct anv_memory_heap) {
153 .vma_start = LOW_HEAP_MIN_ADDRESS,
154 .vma_size = LOW_HEAP_SIZE,
155 .size = heap_size,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = false,
158 };
159 } else {
160 /* Not everything will fit nicely into a 32-bit address space. In this
161 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
162 * larger 48-bit heap. If we're in this case, then we have a total heap
163 * size larger than 3GiB which most likely means they have 8 GiB of
164 * video memory and so carving off 1 GiB for the 32-bit heap should be
165 * reasonable.
166 */
167 const uint64_t heap_size_32bit = 1ull << 30;
168 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
169
170 assert(device->supports_48bit_addresses);
171
172 device->memory.heap_count = 2;
173 device->memory.heaps[0] = (struct anv_memory_heap) {
174 .vma_start = HIGH_HEAP_MIN_ADDRESS,
175 /* Leave the last 4GiB out of the high vma range, so that no state
176 * base address + size can overflow 48 bits. For more information see
177 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
178 */
179 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
180 .size = heap_size_48bit,
181 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
182 .supports_48bit_addresses = true,
183 };
184 device->memory.heaps[1] = (struct anv_memory_heap) {
185 .vma_start = LOW_HEAP_MIN_ADDRESS,
186 .vma_size = LOW_HEAP_SIZE,
187 .size = heap_size_32bit,
188 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
189 .supports_48bit_addresses = false,
190 };
191 }
192
193 uint32_t type_count = 0;
194 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
195 uint32_t valid_buffer_usage = ~0;
196
197 /* There appears to be a hardware issue in the VF cache where it only
198 * considers the bottom 32 bits of memory addresses. If you happen to
199 * have two vertex buffers which get placed exactly 4 GiB apart and use
200 * them in back-to-back draw calls, you can get collisions. In order to
201 * solve this problem, we require vertex and index buffers be bound to
202 * memory allocated out of the 32-bit heap.
203 */
204 if (device->memory.heaps[heap].supports_48bit_addresses) {
205 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
206 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
207 }
208
209 if (device->info.has_llc) {
210 /* Big core GPUs share LLC with the CPU and thus one memory type can be
211 * both cached and coherent at the same time.
212 */
213 device->memory.types[type_count++] = (struct anv_memory_type) {
214 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
215 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
216 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
217 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
218 .heapIndex = heap,
219 .valid_buffer_usage = valid_buffer_usage,
220 };
221 } else {
222 /* The spec requires that we expose a host-visible, coherent memory
223 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
224 * to give the application a choice between cached, but not coherent and
225 * coherent but uncached (WC though).
226 */
227 device->memory.types[type_count++] = (struct anv_memory_type) {
228 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
229 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
230 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
231 .heapIndex = heap,
232 .valid_buffer_usage = valid_buffer_usage,
233 };
234 device->memory.types[type_count++] = (struct anv_memory_type) {
235 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
236 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
237 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
238 .heapIndex = heap,
239 .valid_buffer_usage = valid_buffer_usage,
240 };
241 }
242 }
243 device->memory.type_count = type_count;
244
245 return VK_SUCCESS;
246 }
247
248 static VkResult
249 anv_physical_device_init_uuids(struct anv_physical_device *device)
250 {
251 const struct build_id_note *note =
252 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
253 if (!note) {
254 return vk_errorf(device->instance, device,
255 VK_ERROR_INITIALIZATION_FAILED,
256 "Failed to find build-id");
257 }
258
259 unsigned build_id_len = build_id_length(note);
260 if (build_id_len < 20) {
261 return vk_errorf(device->instance, device,
262 VK_ERROR_INITIALIZATION_FAILED,
263 "build-id too short. It needs to be a SHA");
264 }
265
266 memcpy(device->driver_build_sha1, build_id_data(note), 20);
267
268 struct mesa_sha1 sha1_ctx;
269 uint8_t sha1[20];
270 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
271
272 /* The pipeline cache UUID is used for determining when a pipeline cache is
273 * invalid. It needs both a driver build and the PCI ID of the device.
274 */
275 _mesa_sha1_init(&sha1_ctx);
276 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
277 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
278 sizeof(device->chipset_id));
279 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
280 sizeof(device->always_use_bindless));
281 _mesa_sha1_final(&sha1_ctx, sha1);
282 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
283
284 /* The driver UUID is used for determining sharability of images and memory
285 * between two Vulkan instances in separate processes. People who want to
286 * share memory need to also check the device UUID (below) so all this
287 * needs to be is the build-id.
288 */
289 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
290
291 /* The device UUID uniquely identifies the given device within the machine.
292 * Since we never have more than one device, this doesn't need to be a real
293 * UUID. However, on the off-chance that someone tries to use this to
294 * cache pre-tiled images or something of the like, we use the PCI ID and
295 * some bits of ISL info to ensure that this is safe.
296 */
297 _mesa_sha1_init(&sha1_ctx);
298 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
299 sizeof(device->chipset_id));
300 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
301 sizeof(device->isl_dev.has_bit6_swizzling));
302 _mesa_sha1_final(&sha1_ctx, sha1);
303 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
304
305 return VK_SUCCESS;
306 }
307
308 static void
309 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
310 {
311 #ifdef ENABLE_SHADER_CACHE
312 char renderer[10];
313 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
314 device->chipset_id);
315 assert(len == sizeof(renderer) - 2);
316
317 char timestamp[41];
318 _mesa_sha1_format(timestamp, device->driver_build_sha1);
319
320 const uint64_t driver_flags =
321 brw_get_compiler_config_value(device->compiler);
322 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
323 #else
324 device->disk_cache = NULL;
325 #endif
326 }
327
328 static void
329 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
330 {
331 #ifdef ENABLE_SHADER_CACHE
332 if (device->disk_cache)
333 disk_cache_destroy(device->disk_cache);
334 #else
335 assert(device->disk_cache == NULL);
336 #endif
337 }
338
339 static VkResult
340 anv_physical_device_init(struct anv_physical_device *device,
341 struct anv_instance *instance,
342 drmDevicePtr drm_device)
343 {
344 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
345 const char *path = drm_device->nodes[DRM_NODE_RENDER];
346 VkResult result;
347 int fd;
348 int master_fd = -1;
349
350 brw_process_intel_debug_variable();
351
352 fd = open(path, O_RDWR | O_CLOEXEC);
353 if (fd < 0)
354 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
355
356 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
357 device->instance = instance;
358
359 assert(strlen(path) < ARRAY_SIZE(device->path));
360 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
361
362 device->no_hw = getenv("INTEL_NO_HW") != NULL;
363
364 const int pci_id_override = gen_get_pci_device_id_override();
365 if (pci_id_override < 0) {
366 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
367 if (!device->chipset_id) {
368 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
369 goto fail;
370 }
371 } else {
372 device->chipset_id = pci_id_override;
373 device->no_hw = true;
374 }
375
376 device->pci_info.domain = drm_device->businfo.pci->domain;
377 device->pci_info.bus = drm_device->businfo.pci->bus;
378 device->pci_info.device = drm_device->businfo.pci->dev;
379 device->pci_info.function = drm_device->businfo.pci->func;
380
381 device->name = gen_get_device_name(device->chipset_id);
382 if (!gen_get_device_info(device->chipset_id, &device->info)) {
383 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
384 goto fail;
385 }
386
387 if (device->info.is_haswell) {
388 intel_logw("Haswell Vulkan support is incomplete");
389 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
390 intel_logw("Ivy Bridge Vulkan support is incomplete");
391 } else if (device->info.gen == 7 && device->info.is_baytrail) {
392 intel_logw("Bay Trail Vulkan support is incomplete");
393 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
394 /* Gen8-10 fully supported */
395 } else if (device->info.gen == 11) {
396 intel_logw("Vulkan is not yet fully supported on gen11.");
397 } else {
398 result = vk_errorf(device->instance, device,
399 VK_ERROR_INCOMPATIBLE_DRIVER,
400 "Vulkan not yet supported on %s", device->name);
401 goto fail;
402 }
403
404 device->cmd_parser_version = -1;
405 if (device->info.gen == 7) {
406 device->cmd_parser_version =
407 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
408 if (device->cmd_parser_version == -1) {
409 result = vk_errorf(device->instance, device,
410 VK_ERROR_INITIALIZATION_FAILED,
411 "failed to get command parser version");
412 goto fail;
413 }
414 }
415
416 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
417 result = vk_errorf(device->instance, device,
418 VK_ERROR_INITIALIZATION_FAILED,
419 "kernel missing gem wait");
420 goto fail;
421 }
422
423 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
424 result = vk_errorf(device->instance, device,
425 VK_ERROR_INITIALIZATION_FAILED,
426 "kernel missing execbuf2");
427 goto fail;
428 }
429
430 if (!device->info.has_llc &&
431 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
432 result = vk_errorf(device->instance, device,
433 VK_ERROR_INITIALIZATION_FAILED,
434 "kernel missing wc mmap");
435 goto fail;
436 }
437
438 result = anv_physical_device_init_heaps(device, fd);
439 if (result != VK_SUCCESS)
440 goto fail;
441
442 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
443 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
444 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
445 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
446 device->has_syncobj_wait = device->has_syncobj &&
447 anv_gem_supports_syncobj_wait(fd);
448 device->has_context_priority = anv_gem_has_context_priority(fd);
449
450 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
451 && device->supports_48bit_addresses;
452
453 device->has_context_isolation =
454 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
455
456 device->always_use_bindless =
457 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
458
459
460 /* Starting with Gen10, the timestamp frequency of the command streamer may
461 * vary from one part to another. We can query the value from the kernel.
462 */
463 if (device->info.gen >= 10) {
464 int timestamp_frequency =
465 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
466
467 if (timestamp_frequency < 0)
468 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
469 else
470 device->info.timestamp_frequency = timestamp_frequency;
471 }
472
473 /* GENs prior to 8 do not support EU/Subslice info */
474 if (device->info.gen >= 8) {
475 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
476 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
477
478 /* Without this information, we cannot get the right Braswell
479 * brandstrings, and we have to use conservative numbers for GPGPU on
480 * many platforms, but otherwise, things will just work.
481 */
482 if (device->subslice_total < 1 || device->eu_total < 1) {
483 intel_logw("Kernel 4.1 required to properly query GPU properties");
484 }
485 } else if (device->info.gen == 7) {
486 device->subslice_total = 1 << (device->info.gt - 1);
487 }
488
489 if (device->info.is_cherryview &&
490 device->subslice_total > 0 && device->eu_total > 0) {
491 /* Logical CS threads = EUs per subslice * num threads per EU */
492 uint32_t max_cs_threads =
493 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
494
495 /* Fuse configurations may give more threads than expected, never less. */
496 if (max_cs_threads > device->info.max_cs_threads)
497 device->info.max_cs_threads = max_cs_threads;
498 }
499
500 device->compiler = brw_compiler_create(NULL, &device->info);
501 if (device->compiler == NULL) {
502 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
503 goto fail;
504 }
505 device->compiler->shader_debug_log = compiler_debug_log;
506 device->compiler->shader_perf_log = compiler_perf_log;
507 device->compiler->supports_pull_constants = false;
508 device->compiler->constant_buffer_0_is_relative =
509 device->info.gen < 8 || !device->has_context_isolation;
510 device->compiler->supports_shader_constants = true;
511
512 /* Broadwell PRM says:
513 *
514 * "Before Gen8, there was a historical configuration control field to
515 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
516 * different places: TILECTL[1:0], ARB_MODE[5:4], and
517 * DISP_ARB_CTL[14:13].
518 *
519 * For Gen8 and subsequent generations, the swizzle fields are all
520 * reserved, and the CPU's memory controller performs all address
521 * swizzling modifications."
522 */
523 bool swizzled =
524 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
525
526 isl_device_init(&device->isl_dev, &device->info, swizzled);
527
528 result = anv_physical_device_init_uuids(device);
529 if (result != VK_SUCCESS)
530 goto fail;
531
532 anv_physical_device_init_disk_cache(device);
533
534 if (instance->enabled_extensions.KHR_display) {
535 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
536 if (master_fd >= 0) {
537 /* prod the device with a GETPARAM call which will fail if
538 * we don't have permission to even render on this device
539 */
540 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
541 close(master_fd);
542 master_fd = -1;
543 }
544 }
545 }
546 device->master_fd = master_fd;
547
548 result = anv_init_wsi(device);
549 if (result != VK_SUCCESS) {
550 ralloc_free(device->compiler);
551 anv_physical_device_free_disk_cache(device);
552 goto fail;
553 }
554
555 anv_physical_device_get_supported_extensions(device,
556 &device->supported_extensions);
557
558
559 device->local_fd = fd;
560
561 return VK_SUCCESS;
562
563 fail:
564 close(fd);
565 if (master_fd != -1)
566 close(master_fd);
567 return result;
568 }
569
570 static void
571 anv_physical_device_finish(struct anv_physical_device *device)
572 {
573 anv_finish_wsi(device);
574 anv_physical_device_free_disk_cache(device);
575 ralloc_free(device->compiler);
576 close(device->local_fd);
577 if (device->master_fd >= 0)
578 close(device->master_fd);
579 }
580
581 static void *
582 default_alloc_func(void *pUserData, size_t size, size_t align,
583 VkSystemAllocationScope allocationScope)
584 {
585 return malloc(size);
586 }
587
588 static void *
589 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
590 size_t align, VkSystemAllocationScope allocationScope)
591 {
592 return realloc(pOriginal, size);
593 }
594
595 static void
596 default_free_func(void *pUserData, void *pMemory)
597 {
598 free(pMemory);
599 }
600
601 static const VkAllocationCallbacks default_alloc = {
602 .pUserData = NULL,
603 .pfnAllocation = default_alloc_func,
604 .pfnReallocation = default_realloc_func,
605 .pfnFree = default_free_func,
606 };
607
608 VkResult anv_EnumerateInstanceExtensionProperties(
609 const char* pLayerName,
610 uint32_t* pPropertyCount,
611 VkExtensionProperties* pProperties)
612 {
613 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
614
615 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
616 if (anv_instance_extensions_supported.extensions[i]) {
617 vk_outarray_append(&out, prop) {
618 *prop = anv_instance_extensions[i];
619 }
620 }
621 }
622
623 return vk_outarray_status(&out);
624 }
625
626 VkResult anv_CreateInstance(
627 const VkInstanceCreateInfo* pCreateInfo,
628 const VkAllocationCallbacks* pAllocator,
629 VkInstance* pInstance)
630 {
631 struct anv_instance *instance;
632 VkResult result;
633
634 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
635
636 struct anv_instance_extension_table enabled_extensions = {};
637 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
638 int idx;
639 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
640 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
641 anv_instance_extensions[idx].extensionName) == 0)
642 break;
643 }
644
645 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
646 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
647
648 if (!anv_instance_extensions_supported.extensions[idx])
649 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
650
651 enabled_extensions.extensions[idx] = true;
652 }
653
654 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
655 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
656 if (!instance)
657 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
658
659 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
660
661 if (pAllocator)
662 instance->alloc = *pAllocator;
663 else
664 instance->alloc = default_alloc;
665
666 instance->app_info = (struct anv_app_info) { .api_version = 0 };
667 if (pCreateInfo->pApplicationInfo) {
668 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
669
670 instance->app_info.app_name =
671 vk_strdup(&instance->alloc, app->pApplicationName,
672 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
673 instance->app_info.app_version = app->applicationVersion;
674
675 instance->app_info.engine_name =
676 vk_strdup(&instance->alloc, app->pEngineName,
677 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
678 instance->app_info.engine_version = app->engineVersion;
679
680 instance->app_info.api_version = app->apiVersion;
681 }
682
683 if (instance->app_info.api_version == 0)
684 instance->app_info.api_version = VK_API_VERSION_1_0;
685
686 instance->enabled_extensions = enabled_extensions;
687
688 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
689 /* Vulkan requires that entrypoints for extensions which have not been
690 * enabled must not be advertised.
691 */
692 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
693 &instance->enabled_extensions)) {
694 instance->dispatch.entrypoints[i] = NULL;
695 } else {
696 instance->dispatch.entrypoints[i] =
697 anv_instance_dispatch_table.entrypoints[i];
698 }
699 }
700
701 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
702 /* Vulkan requires that entrypoints for extensions which have not been
703 * enabled must not be advertised.
704 */
705 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
706 &instance->enabled_extensions, NULL)) {
707 instance->device_dispatch.entrypoints[i] = NULL;
708 } else {
709 instance->device_dispatch.entrypoints[i] =
710 anv_device_dispatch_table.entrypoints[i];
711 }
712 }
713
714 instance->physicalDeviceCount = -1;
715
716 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
717 if (result != VK_SUCCESS) {
718 vk_free2(&default_alloc, pAllocator, instance);
719 return vk_error(result);
720 }
721
722 instance->pipeline_cache_enabled =
723 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
724
725 _mesa_locale_init();
726 glsl_type_singleton_init_or_ref();
727
728 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
729
730 *pInstance = anv_instance_to_handle(instance);
731
732 return VK_SUCCESS;
733 }
734
735 void anv_DestroyInstance(
736 VkInstance _instance,
737 const VkAllocationCallbacks* pAllocator)
738 {
739 ANV_FROM_HANDLE(anv_instance, instance, _instance);
740
741 if (!instance)
742 return;
743
744 if (instance->physicalDeviceCount > 0) {
745 /* We support at most one physical device. */
746 assert(instance->physicalDeviceCount == 1);
747 anv_physical_device_finish(&instance->physicalDevice);
748 }
749
750 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
751 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
752
753 VG(VALGRIND_DESTROY_MEMPOOL(instance));
754
755 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
756
757 glsl_type_singleton_decref();
758 _mesa_locale_fini();
759
760 vk_free(&instance->alloc, instance);
761 }
762
763 static VkResult
764 anv_enumerate_devices(struct anv_instance *instance)
765 {
766 /* TODO: Check for more devices ? */
767 drmDevicePtr devices[8];
768 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
769 int max_devices;
770
771 instance->physicalDeviceCount = 0;
772
773 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
774 if (max_devices < 1)
775 return VK_ERROR_INCOMPATIBLE_DRIVER;
776
777 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
778 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
779 devices[i]->bustype == DRM_BUS_PCI &&
780 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
781
782 result = anv_physical_device_init(&instance->physicalDevice,
783 instance, devices[i]);
784 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
785 break;
786 }
787 }
788 drmFreeDevices(devices, max_devices);
789
790 if (result == VK_SUCCESS)
791 instance->physicalDeviceCount = 1;
792
793 return result;
794 }
795
796 static VkResult
797 anv_instance_ensure_physical_device(struct anv_instance *instance)
798 {
799 if (instance->physicalDeviceCount < 0) {
800 VkResult result = anv_enumerate_devices(instance);
801 if (result != VK_SUCCESS &&
802 result != VK_ERROR_INCOMPATIBLE_DRIVER)
803 return result;
804 }
805
806 return VK_SUCCESS;
807 }
808
809 VkResult anv_EnumeratePhysicalDevices(
810 VkInstance _instance,
811 uint32_t* pPhysicalDeviceCount,
812 VkPhysicalDevice* pPhysicalDevices)
813 {
814 ANV_FROM_HANDLE(anv_instance, instance, _instance);
815 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
816
817 VkResult result = anv_instance_ensure_physical_device(instance);
818 if (result != VK_SUCCESS)
819 return result;
820
821 if (instance->physicalDeviceCount == 0)
822 return VK_SUCCESS;
823
824 assert(instance->physicalDeviceCount == 1);
825 vk_outarray_append(&out, i) {
826 *i = anv_physical_device_to_handle(&instance->physicalDevice);
827 }
828
829 return vk_outarray_status(&out);
830 }
831
832 VkResult anv_EnumeratePhysicalDeviceGroups(
833 VkInstance _instance,
834 uint32_t* pPhysicalDeviceGroupCount,
835 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
836 {
837 ANV_FROM_HANDLE(anv_instance, instance, _instance);
838 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
839 pPhysicalDeviceGroupCount);
840
841 VkResult result = anv_instance_ensure_physical_device(instance);
842 if (result != VK_SUCCESS)
843 return result;
844
845 if (instance->physicalDeviceCount == 0)
846 return VK_SUCCESS;
847
848 assert(instance->physicalDeviceCount == 1);
849
850 vk_outarray_append(&out, p) {
851 p->physicalDeviceCount = 1;
852 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
853 p->physicalDevices[0] =
854 anv_physical_device_to_handle(&instance->physicalDevice);
855 p->subsetAllocation = false;
856
857 vk_foreach_struct(ext, p->pNext)
858 anv_debug_ignored_stype(ext->sType);
859 }
860
861 return vk_outarray_status(&out);
862 }
863
864 void anv_GetPhysicalDeviceFeatures(
865 VkPhysicalDevice physicalDevice,
866 VkPhysicalDeviceFeatures* pFeatures)
867 {
868 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
869
870 *pFeatures = (VkPhysicalDeviceFeatures) {
871 .robustBufferAccess = true,
872 .fullDrawIndexUint32 = true,
873 .imageCubeArray = true,
874 .independentBlend = true,
875 .geometryShader = true,
876 .tessellationShader = true,
877 .sampleRateShading = true,
878 .dualSrcBlend = true,
879 .logicOp = true,
880 .multiDrawIndirect = true,
881 .drawIndirectFirstInstance = true,
882 .depthClamp = true,
883 .depthBiasClamp = true,
884 .fillModeNonSolid = true,
885 .depthBounds = false,
886 .wideLines = true,
887 .largePoints = true,
888 .alphaToOne = true,
889 .multiViewport = true,
890 .samplerAnisotropy = true,
891 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
892 pdevice->info.is_baytrail,
893 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
894 .textureCompressionBC = true,
895 .occlusionQueryPrecise = true,
896 .pipelineStatisticsQuery = true,
897 .fragmentStoresAndAtomics = true,
898 .shaderTessellationAndGeometryPointSize = true,
899 .shaderImageGatherExtended = true,
900 .shaderStorageImageExtendedFormats = true,
901 .shaderStorageImageMultisample = false,
902 .shaderStorageImageReadWithoutFormat = false,
903 .shaderStorageImageWriteWithoutFormat = true,
904 .shaderUniformBufferArrayDynamicIndexing = true,
905 .shaderSampledImageArrayDynamicIndexing = true,
906 .shaderStorageBufferArrayDynamicIndexing = true,
907 .shaderStorageImageArrayDynamicIndexing = true,
908 .shaderClipDistance = true,
909 .shaderCullDistance = true,
910 .shaderFloat64 = pdevice->info.gen >= 8 &&
911 pdevice->info.has_64bit_types,
912 .shaderInt64 = pdevice->info.gen >= 8 &&
913 pdevice->info.has_64bit_types,
914 .shaderInt16 = pdevice->info.gen >= 8,
915 .shaderResourceMinLod = pdevice->info.gen >= 9,
916 .variableMultisampleRate = true,
917 .inheritedQueries = true,
918 };
919
920 /* We can't do image stores in vec4 shaders */
921 pFeatures->vertexPipelineStoresAndAtomics =
922 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
923 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
924
925 struct anv_app_info *app_info = &pdevice->instance->app_info;
926
927 /* The new DOOM and Wolfenstein games require depthBounds without
928 * checking for it. They seem to run fine without it so just claim it's
929 * there and accept the consequences.
930 */
931 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
932 pFeatures->depthBounds = true;
933 }
934
935 void anv_GetPhysicalDeviceFeatures2(
936 VkPhysicalDevice physicalDevice,
937 VkPhysicalDeviceFeatures2* pFeatures)
938 {
939 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
940 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
941
942 vk_foreach_struct(ext, pFeatures->pNext) {
943 switch (ext->sType) {
944 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
945 VkPhysicalDevice8BitStorageFeaturesKHR *features =
946 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
947 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
948 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
949 features->storagePushConstant8 = pdevice->info.gen >= 8;
950 break;
951 }
952
953 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
954 VkPhysicalDevice16BitStorageFeatures *features =
955 (VkPhysicalDevice16BitStorageFeatures *)ext;
956 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
957 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
958 features->storagePushConstant16 = pdevice->info.gen >= 8;
959 features->storageInputOutput16 = false;
960 break;
961 }
962
963 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
964 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
965 features->bufferDeviceAddress = pdevice->use_softpin &&
966 pdevice->info.gen >= 8;
967 features->bufferDeviceAddressCaptureReplay = false;
968 features->bufferDeviceAddressMultiDevice = false;
969 break;
970 }
971
972 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
973 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
974 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
975 features->computeDerivativeGroupQuads = true;
976 features->computeDerivativeGroupLinear = true;
977 break;
978 }
979
980 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
981 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
982 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
983 features->conditionalRendering = pdevice->info.gen >= 8 ||
984 pdevice->info.is_haswell;
985 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
986 pdevice->info.is_haswell;
987 break;
988 }
989
990 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
991 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
992 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
993 features->depthClipEnable = true;
994 break;
995 }
996
997 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
998 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
999 features->shaderFloat16 = pdevice->info.gen >= 8;
1000 features->shaderInt8 = pdevice->info.gen >= 8;
1001 break;
1002 }
1003
1004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1005 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1006 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1007 features->hostQueryReset = true;
1008 break;
1009 }
1010
1011 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1012 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1013 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1014 features->inlineUniformBlock = true;
1015 features->descriptorBindingInlineUniformBlockUpdateAfterBind = false;
1016 break;
1017 }
1018
1019 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1020 VkPhysicalDeviceMultiviewFeatures *features =
1021 (VkPhysicalDeviceMultiviewFeatures *)ext;
1022 features->multiview = true;
1023 features->multiviewGeometryShader = true;
1024 features->multiviewTessellationShader = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1029 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1030 features->protectedMemory = false;
1031 break;
1032 }
1033
1034 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1035 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1036 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1037 features->samplerYcbcrConversion = true;
1038 break;
1039 }
1040
1041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1042 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1043 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1044 features->scalarBlockLayout = true;
1045 break;
1046 }
1047
1048 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1049 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1050 features->shaderDrawParameters = true;
1051 break;
1052 }
1053
1054 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1055 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1056 features->variablePointersStorageBuffer = true;
1057 features->variablePointers = true;
1058 break;
1059 }
1060
1061 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1062 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1063 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1064 features->transformFeedback = true;
1065 features->geometryStreams = true;
1066 break;
1067 }
1068
1069 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1070 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1071 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1072 features->vertexAttributeInstanceRateDivisor = true;
1073 features->vertexAttributeInstanceRateZeroDivisor = true;
1074 break;
1075 }
1076
1077 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1078 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1079 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1080 features->ycbcrImageArrays = true;
1081 break;
1082 }
1083
1084 default:
1085 anv_debug_ignored_stype(ext->sType);
1086 break;
1087 }
1088 }
1089 }
1090
1091 void anv_GetPhysicalDeviceProperties(
1092 VkPhysicalDevice physicalDevice,
1093 VkPhysicalDeviceProperties* pProperties)
1094 {
1095 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1096 const struct gen_device_info *devinfo = &pdevice->info;
1097
1098 /* See assertions made when programming the buffer surface state. */
1099 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1100 (1ul << 30) : (1ul << 27);
1101
1102 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
1103 128 : 16;
1104
1105 VkSampleCountFlags sample_counts =
1106 isl_device_get_sample_counts(&pdevice->isl_dev);
1107
1108
1109 VkPhysicalDeviceLimits limits = {
1110 .maxImageDimension1D = (1 << 14),
1111 .maxImageDimension2D = (1 << 14),
1112 .maxImageDimension3D = (1 << 11),
1113 .maxImageDimensionCube = (1 << 14),
1114 .maxImageArrayLayers = (1 << 11),
1115 .maxTexelBufferElements = 128 * 1024 * 1024,
1116 .maxUniformBufferRange = (1ul << 27),
1117 .maxStorageBufferRange = max_raw_buffer_sz,
1118 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1119 .maxMemoryAllocationCount = UINT32_MAX,
1120 .maxSamplerAllocationCount = 64 * 1024,
1121 .bufferImageGranularity = 64, /* A cache line */
1122 .sparseAddressSpaceSize = 0,
1123 .maxBoundDescriptorSets = MAX_SETS,
1124 .maxPerStageDescriptorSamplers = max_samplers,
1125 .maxPerStageDescriptorUniformBuffers = 64,
1126 .maxPerStageDescriptorStorageBuffers = 64,
1127 .maxPerStageDescriptorSampledImages = max_samplers,
1128 .maxPerStageDescriptorStorageImages = MAX_IMAGES,
1129 .maxPerStageDescriptorInputAttachments = 64,
1130 .maxPerStageResources = MAX_BINDING_TABLE_SIZE - MAX_RTS,
1131 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1132 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1133 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1134 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
1135 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1136 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
1137 .maxDescriptorSetStorageImages = 6 * MAX_IMAGES, /* number of stages * maxPerStageDescriptorStorageImages */
1138 .maxDescriptorSetInputAttachments = 256,
1139 .maxVertexInputAttributes = MAX_VBS,
1140 .maxVertexInputBindings = MAX_VBS,
1141 .maxVertexInputAttributeOffset = 2047,
1142 .maxVertexInputBindingStride = 2048,
1143 .maxVertexOutputComponents = 128,
1144 .maxTessellationGenerationLevel = 64,
1145 .maxTessellationPatchSize = 32,
1146 .maxTessellationControlPerVertexInputComponents = 128,
1147 .maxTessellationControlPerVertexOutputComponents = 128,
1148 .maxTessellationControlPerPatchOutputComponents = 128,
1149 .maxTessellationControlTotalOutputComponents = 2048,
1150 .maxTessellationEvaluationInputComponents = 128,
1151 .maxTessellationEvaluationOutputComponents = 128,
1152 .maxGeometryShaderInvocations = 32,
1153 .maxGeometryInputComponents = 64,
1154 .maxGeometryOutputComponents = 128,
1155 .maxGeometryOutputVertices = 256,
1156 .maxGeometryTotalOutputComponents = 1024,
1157 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
1158 .maxFragmentOutputAttachments = 8,
1159 .maxFragmentDualSrcAttachments = 1,
1160 .maxFragmentCombinedOutputResources = 8,
1161 .maxComputeSharedMemorySize = 32768,
1162 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1163 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1164 .maxComputeWorkGroupSize = {
1165 16 * devinfo->max_cs_threads,
1166 16 * devinfo->max_cs_threads,
1167 16 * devinfo->max_cs_threads,
1168 },
1169 .subPixelPrecisionBits = 8,
1170 .subTexelPrecisionBits = 8,
1171 .mipmapPrecisionBits = 8,
1172 .maxDrawIndexedIndexValue = UINT32_MAX,
1173 .maxDrawIndirectCount = UINT32_MAX,
1174 .maxSamplerLodBias = 16,
1175 .maxSamplerAnisotropy = 16,
1176 .maxViewports = MAX_VIEWPORTS,
1177 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1178 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1179 .viewportSubPixelBits = 13, /* We take a float? */
1180 .minMemoryMapAlignment = 4096, /* A page */
1181 .minTexelBufferOffsetAlignment = 1,
1182 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1183 .minUniformBufferOffsetAlignment = 32,
1184 .minStorageBufferOffsetAlignment = 4,
1185 .minTexelOffset = -8,
1186 .maxTexelOffset = 7,
1187 .minTexelGatherOffset = -32,
1188 .maxTexelGatherOffset = 31,
1189 .minInterpolationOffset = -0.5,
1190 .maxInterpolationOffset = 0.4375,
1191 .subPixelInterpolationOffsetBits = 4,
1192 .maxFramebufferWidth = (1 << 14),
1193 .maxFramebufferHeight = (1 << 14),
1194 .maxFramebufferLayers = (1 << 11),
1195 .framebufferColorSampleCounts = sample_counts,
1196 .framebufferDepthSampleCounts = sample_counts,
1197 .framebufferStencilSampleCounts = sample_counts,
1198 .framebufferNoAttachmentsSampleCounts = sample_counts,
1199 .maxColorAttachments = MAX_RTS,
1200 .sampledImageColorSampleCounts = sample_counts,
1201 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1202 .sampledImageDepthSampleCounts = sample_counts,
1203 .sampledImageStencilSampleCounts = sample_counts,
1204 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1205 .maxSampleMaskWords = 1,
1206 .timestampComputeAndGraphics = false,
1207 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1208 .maxClipDistances = 8,
1209 .maxCullDistances = 8,
1210 .maxCombinedClipAndCullDistances = 8,
1211 .discreteQueuePriorities = 2,
1212 .pointSizeRange = { 0.125, 255.875 },
1213 .lineWidthRange = { 0.0, 7.9921875 },
1214 .pointSizeGranularity = (1.0 / 8.0),
1215 .lineWidthGranularity = (1.0 / 128.0),
1216 .strictLines = false, /* FINISHME */
1217 .standardSampleLocations = true,
1218 .optimalBufferCopyOffsetAlignment = 128,
1219 .optimalBufferCopyRowPitchAlignment = 128,
1220 .nonCoherentAtomSize = 64,
1221 };
1222
1223 *pProperties = (VkPhysicalDeviceProperties) {
1224 .apiVersion = anv_physical_device_api_version(pdevice),
1225 .driverVersion = vk_get_driver_version(),
1226 .vendorID = 0x8086,
1227 .deviceID = pdevice->chipset_id,
1228 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1229 .limits = limits,
1230 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1231 };
1232
1233 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1234 "%s", pdevice->name);
1235 memcpy(pProperties->pipelineCacheUUID,
1236 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1237 }
1238
1239 void anv_GetPhysicalDeviceProperties2(
1240 VkPhysicalDevice physicalDevice,
1241 VkPhysicalDeviceProperties2* pProperties)
1242 {
1243 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1244
1245 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1246
1247 vk_foreach_struct(ext, pProperties->pNext) {
1248 switch (ext->sType) {
1249 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1250 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1251 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1252
1253 /* We support all of the depth resolve modes */
1254 props->supportedDepthResolveModes =
1255 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1256 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1257 VK_RESOLVE_MODE_MIN_BIT_KHR |
1258 VK_RESOLVE_MODE_MAX_BIT_KHR;
1259
1260 /* Average doesn't make sense for stencil so we don't support that */
1261 props->supportedStencilResolveModes =
1262 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1263 if (pdevice->info.gen >= 8) {
1264 /* The advanced stencil resolve modes currently require stencil
1265 * sampling be supported by the hardware.
1266 */
1267 props->supportedStencilResolveModes |=
1268 VK_RESOLVE_MODE_MIN_BIT_KHR |
1269 VK_RESOLVE_MODE_MAX_BIT_KHR;
1270 }
1271
1272 props->independentResolveNone = true;
1273 props->independentResolve = true;
1274 break;
1275 }
1276
1277 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1278 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1279 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1280
1281 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1282 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1283 "Intel open-source Mesa driver");
1284
1285 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1286 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1287
1288 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1289 .major = 1,
1290 .minor = 1,
1291 .subminor = 2,
1292 .patch = 0,
1293 };
1294 break;
1295 }
1296
1297 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1298 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1299 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1300 /* Userptr needs page aligned memory. */
1301 props->minImportedHostPointerAlignment = 4096;
1302 break;
1303 }
1304
1305 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1306 VkPhysicalDeviceIDProperties *id_props =
1307 (VkPhysicalDeviceIDProperties *)ext;
1308 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1309 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1310 /* The LUID is for Windows. */
1311 id_props->deviceLUIDValid = false;
1312 break;
1313 }
1314
1315 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1316 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1317 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1318 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1319 props->maxPerStageDescriptorInlineUniformBlocks =
1320 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1321 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1322 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1323 props->maxDescriptorSetInlineUniformBlocks =
1324 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1325 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1326 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1327 break;
1328 }
1329
1330 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1331 VkPhysicalDeviceMaintenance3Properties *props =
1332 (VkPhysicalDeviceMaintenance3Properties *)ext;
1333 /* This value doesn't matter for us today as our per-stage
1334 * descriptors are the real limit.
1335 */
1336 props->maxPerSetDescriptors = 1024;
1337 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1338 break;
1339 }
1340
1341 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1342 VkPhysicalDeviceMultiviewProperties *properties =
1343 (VkPhysicalDeviceMultiviewProperties *)ext;
1344 properties->maxMultiviewViewCount = 16;
1345 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1346 break;
1347 }
1348
1349 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1350 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1351 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1352 properties->pciDomain = pdevice->pci_info.domain;
1353 properties->pciBus = pdevice->pci_info.bus;
1354 properties->pciDevice = pdevice->pci_info.device;
1355 properties->pciFunction = pdevice->pci_info.function;
1356 break;
1357 }
1358
1359 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1360 VkPhysicalDevicePointClippingProperties *properties =
1361 (VkPhysicalDevicePointClippingProperties *) ext;
1362 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1363 anv_finishme("Implement pop-free point clipping");
1364 break;
1365 }
1366
1367 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1368 VkPhysicalDeviceProtectedMemoryProperties *props =
1369 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1370 props->protectedNoFault = false;
1371 break;
1372 }
1373
1374 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1375 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1376 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1377
1378 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1379 break;
1380 }
1381
1382 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1383 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1384 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1385 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1386 properties->filterMinmaxSingleComponentFormats = true;
1387 break;
1388 }
1389
1390 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1391 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1392
1393 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1394
1395 VkShaderStageFlags scalar_stages = 0;
1396 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1397 if (pdevice->compiler->scalar_stage[stage])
1398 scalar_stages |= mesa_to_vk_shader_stage(stage);
1399 }
1400 properties->supportedStages = scalar_stages;
1401
1402 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1403 VK_SUBGROUP_FEATURE_VOTE_BIT |
1404 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1405 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1406 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1407 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1408 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1409 VK_SUBGROUP_FEATURE_QUAD_BIT;
1410 properties->quadOperationsInAllStages = true;
1411 break;
1412 }
1413
1414 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1415 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1416 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1417
1418 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1419 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1420 props->maxTransformFeedbackBufferSize = (1ull << 32);
1421 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1422 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1423 props->maxTransformFeedbackBufferDataStride = 2048;
1424 props->transformFeedbackQueries = true;
1425 props->transformFeedbackStreamsLinesTriangles = false;
1426 props->transformFeedbackRasterizationStreamSelect = false;
1427 props->transformFeedbackDraw = true;
1428 break;
1429 }
1430
1431 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1432 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1433 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1434 /* We have to restrict this a bit for multiview */
1435 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1436 break;
1437 }
1438
1439 default:
1440 anv_debug_ignored_stype(ext->sType);
1441 break;
1442 }
1443 }
1444 }
1445
1446 /* We support exactly one queue family. */
1447 static const VkQueueFamilyProperties
1448 anv_queue_family_properties = {
1449 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1450 VK_QUEUE_COMPUTE_BIT |
1451 VK_QUEUE_TRANSFER_BIT,
1452 .queueCount = 1,
1453 .timestampValidBits = 36, /* XXX: Real value here */
1454 .minImageTransferGranularity = { 1, 1, 1 },
1455 };
1456
1457 void anv_GetPhysicalDeviceQueueFamilyProperties(
1458 VkPhysicalDevice physicalDevice,
1459 uint32_t* pCount,
1460 VkQueueFamilyProperties* pQueueFamilyProperties)
1461 {
1462 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1463
1464 vk_outarray_append(&out, p) {
1465 *p = anv_queue_family_properties;
1466 }
1467 }
1468
1469 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1470 VkPhysicalDevice physicalDevice,
1471 uint32_t* pQueueFamilyPropertyCount,
1472 VkQueueFamilyProperties2* pQueueFamilyProperties)
1473 {
1474
1475 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1476
1477 vk_outarray_append(&out, p) {
1478 p->queueFamilyProperties = anv_queue_family_properties;
1479
1480 vk_foreach_struct(s, p->pNext) {
1481 anv_debug_ignored_stype(s->sType);
1482 }
1483 }
1484 }
1485
1486 void anv_GetPhysicalDeviceMemoryProperties(
1487 VkPhysicalDevice physicalDevice,
1488 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1489 {
1490 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1491
1492 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1493 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1494 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1495 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1496 .heapIndex = physical_device->memory.types[i].heapIndex,
1497 };
1498 }
1499
1500 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1501 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1502 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1503 .size = physical_device->memory.heaps[i].size,
1504 .flags = physical_device->memory.heaps[i].flags,
1505 };
1506 }
1507 }
1508
1509 void anv_GetPhysicalDeviceMemoryProperties2(
1510 VkPhysicalDevice physicalDevice,
1511 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1512 {
1513 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1514 &pMemoryProperties->memoryProperties);
1515
1516 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1517 switch (ext->sType) {
1518 default:
1519 anv_debug_ignored_stype(ext->sType);
1520 break;
1521 }
1522 }
1523 }
1524
1525 void
1526 anv_GetDeviceGroupPeerMemoryFeatures(
1527 VkDevice device,
1528 uint32_t heapIndex,
1529 uint32_t localDeviceIndex,
1530 uint32_t remoteDeviceIndex,
1531 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1532 {
1533 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1534 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1535 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1536 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1537 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1538 }
1539
1540 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1541 VkInstance _instance,
1542 const char* pName)
1543 {
1544 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1545
1546 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1547 * when we have to return valid function pointers, NULL, or it's left
1548 * undefined. See the table for exact details.
1549 */
1550 if (pName == NULL)
1551 return NULL;
1552
1553 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1554 if (strcmp(pName, "vk" #entrypoint) == 0) \
1555 return (PFN_vkVoidFunction)anv_##entrypoint
1556
1557 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1558 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1559 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1560 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1561
1562 #undef LOOKUP_ANV_ENTRYPOINT
1563
1564 if (instance == NULL)
1565 return NULL;
1566
1567 int idx = anv_get_instance_entrypoint_index(pName);
1568 if (idx >= 0)
1569 return instance->dispatch.entrypoints[idx];
1570
1571 idx = anv_get_device_entrypoint_index(pName);
1572 if (idx >= 0)
1573 return instance->device_dispatch.entrypoints[idx];
1574
1575 return NULL;
1576 }
1577
1578 /* With version 1+ of the loader interface the ICD should expose
1579 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1580 */
1581 PUBLIC
1582 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1583 VkInstance instance,
1584 const char* pName);
1585
1586 PUBLIC
1587 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1588 VkInstance instance,
1589 const char* pName)
1590 {
1591 return anv_GetInstanceProcAddr(instance, pName);
1592 }
1593
1594 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1595 VkDevice _device,
1596 const char* pName)
1597 {
1598 ANV_FROM_HANDLE(anv_device, device, _device);
1599
1600 if (!device || !pName)
1601 return NULL;
1602
1603 int idx = anv_get_device_entrypoint_index(pName);
1604 if (idx < 0)
1605 return NULL;
1606
1607 return device->dispatch.entrypoints[idx];
1608 }
1609
1610 VkResult
1611 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1612 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1613 const VkAllocationCallbacks* pAllocator,
1614 VkDebugReportCallbackEXT* pCallback)
1615 {
1616 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1617 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1618 pCreateInfo, pAllocator, &instance->alloc,
1619 pCallback);
1620 }
1621
1622 void
1623 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1624 VkDebugReportCallbackEXT _callback,
1625 const VkAllocationCallbacks* pAllocator)
1626 {
1627 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1628 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1629 _callback, pAllocator, &instance->alloc);
1630 }
1631
1632 void
1633 anv_DebugReportMessageEXT(VkInstance _instance,
1634 VkDebugReportFlagsEXT flags,
1635 VkDebugReportObjectTypeEXT objectType,
1636 uint64_t object,
1637 size_t location,
1638 int32_t messageCode,
1639 const char* pLayerPrefix,
1640 const char* pMessage)
1641 {
1642 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1643 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1644 object, location, messageCode, pLayerPrefix, pMessage);
1645 }
1646
1647 static void
1648 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1649 {
1650 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1651 queue->device = device;
1652 queue->flags = 0;
1653 }
1654
1655 static void
1656 anv_queue_finish(struct anv_queue *queue)
1657 {
1658 }
1659
1660 static struct anv_state
1661 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1662 {
1663 struct anv_state state;
1664
1665 state = anv_state_pool_alloc(pool, size, align);
1666 memcpy(state.map, p, size);
1667
1668 return state;
1669 }
1670
1671 struct gen8_border_color {
1672 union {
1673 float float32[4];
1674 uint32_t uint32[4];
1675 };
1676 /* Pad out to 64 bytes */
1677 uint32_t _pad[12];
1678 };
1679
1680 static void
1681 anv_device_init_border_colors(struct anv_device *device)
1682 {
1683 static const struct gen8_border_color border_colors[] = {
1684 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1685 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1686 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1687 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1688 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1689 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1690 };
1691
1692 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1693 sizeof(border_colors), 64,
1694 border_colors);
1695 }
1696
1697 static void
1698 anv_device_init_trivial_batch(struct anv_device *device)
1699 {
1700 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1701
1702 if (device->instance->physicalDevice.has_exec_async)
1703 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1704
1705 if (device->instance->physicalDevice.use_softpin)
1706 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1707
1708 anv_vma_alloc(device, &device->trivial_batch_bo);
1709
1710 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1711 0, 4096, 0);
1712
1713 struct anv_batch batch = {
1714 .start = map,
1715 .next = map,
1716 .end = map + 4096,
1717 };
1718
1719 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1720 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1721
1722 if (!device->info.has_llc)
1723 gen_clflush_range(map, batch.next - map);
1724
1725 anv_gem_munmap(map, device->trivial_batch_bo.size);
1726 }
1727
1728 VkResult anv_EnumerateDeviceExtensionProperties(
1729 VkPhysicalDevice physicalDevice,
1730 const char* pLayerName,
1731 uint32_t* pPropertyCount,
1732 VkExtensionProperties* pProperties)
1733 {
1734 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1735 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1736
1737 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1738 if (device->supported_extensions.extensions[i]) {
1739 vk_outarray_append(&out, prop) {
1740 *prop = anv_device_extensions[i];
1741 }
1742 }
1743 }
1744
1745 return vk_outarray_status(&out);
1746 }
1747
1748 static void
1749 anv_device_init_dispatch(struct anv_device *device)
1750 {
1751 const struct anv_device_dispatch_table *genX_table;
1752 switch (device->info.gen) {
1753 case 11:
1754 genX_table = &gen11_device_dispatch_table;
1755 break;
1756 case 10:
1757 genX_table = &gen10_device_dispatch_table;
1758 break;
1759 case 9:
1760 genX_table = &gen9_device_dispatch_table;
1761 break;
1762 case 8:
1763 genX_table = &gen8_device_dispatch_table;
1764 break;
1765 case 7:
1766 if (device->info.is_haswell)
1767 genX_table = &gen75_device_dispatch_table;
1768 else
1769 genX_table = &gen7_device_dispatch_table;
1770 break;
1771 default:
1772 unreachable("unsupported gen\n");
1773 }
1774
1775 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1776 /* Vulkan requires that entrypoints for extensions which have not been
1777 * enabled must not be advertised.
1778 */
1779 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1780 &device->instance->enabled_extensions,
1781 &device->enabled_extensions)) {
1782 device->dispatch.entrypoints[i] = NULL;
1783 } else if (genX_table->entrypoints[i]) {
1784 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1785 } else {
1786 device->dispatch.entrypoints[i] =
1787 anv_device_dispatch_table.entrypoints[i];
1788 }
1789 }
1790 }
1791
1792 static int
1793 vk_priority_to_gen(int priority)
1794 {
1795 switch (priority) {
1796 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1797 return GEN_CONTEXT_LOW_PRIORITY;
1798 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1799 return GEN_CONTEXT_MEDIUM_PRIORITY;
1800 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1801 return GEN_CONTEXT_HIGH_PRIORITY;
1802 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1803 return GEN_CONTEXT_REALTIME_PRIORITY;
1804 default:
1805 unreachable("Invalid priority");
1806 }
1807 }
1808
1809 static void
1810 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
1811 {
1812 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1813
1814 if (device->instance->physicalDevice.has_exec_async)
1815 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
1816
1817 if (device->instance->physicalDevice.use_softpin)
1818 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
1819
1820 anv_vma_alloc(device, &device->hiz_clear_bo);
1821
1822 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1823 0, 4096, 0);
1824
1825 union isl_color_value hiz_clear = { .u32 = { 0, } };
1826 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1827
1828 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1829 anv_gem_munmap(map, device->hiz_clear_bo.size);
1830 }
1831
1832 static bool
1833 get_bo_from_pool(struct gen_batch_decode_bo *ret,
1834 struct anv_block_pool *pool,
1835 uint64_t address)
1836 {
1837 for (uint32_t i = 0; i < pool->nbos; i++) {
1838 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
1839 uint32_t bo_size = pool->bos[i].size;
1840 if (address >= bo_address && address < (bo_address + bo_size)) {
1841 *ret = (struct gen_batch_decode_bo) {
1842 .addr = bo_address,
1843 .size = bo_size,
1844 .map = pool->bos[i].map,
1845 };
1846 return true;
1847 }
1848 }
1849 return false;
1850 }
1851
1852 /* Finding a buffer for batch decoding */
1853 static struct gen_batch_decode_bo
1854 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
1855 {
1856 struct anv_device *device = v_batch;
1857 struct gen_batch_decode_bo ret_bo = {};
1858
1859 assert(ppgtt);
1860
1861 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
1862 return ret_bo;
1863 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
1864 return ret_bo;
1865 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
1866 return ret_bo;
1867 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
1868 return ret_bo;
1869
1870 if (!device->cmd_buffer_being_decoded)
1871 return (struct gen_batch_decode_bo) { };
1872
1873 struct anv_batch_bo **bo;
1874
1875 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
1876 /* The decoder zeroes out the top 16 bits, so we need to as well */
1877 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
1878
1879 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
1880 return (struct gen_batch_decode_bo) {
1881 .addr = bo_address,
1882 .size = (*bo)->bo.size,
1883 .map = (*bo)->bo.map,
1884 };
1885 }
1886 }
1887
1888 return (struct gen_batch_decode_bo) { };
1889 }
1890
1891 VkResult anv_CreateDevice(
1892 VkPhysicalDevice physicalDevice,
1893 const VkDeviceCreateInfo* pCreateInfo,
1894 const VkAllocationCallbacks* pAllocator,
1895 VkDevice* pDevice)
1896 {
1897 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1898 VkResult result;
1899 struct anv_device *device;
1900
1901 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1902
1903 struct anv_device_extension_table enabled_extensions = { };
1904 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1905 int idx;
1906 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1907 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1908 anv_device_extensions[idx].extensionName) == 0)
1909 break;
1910 }
1911
1912 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1913 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1914
1915 if (!physical_device->supported_extensions.extensions[idx])
1916 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1917
1918 enabled_extensions.extensions[idx] = true;
1919 }
1920
1921 /* Check enabled features */
1922 if (pCreateInfo->pEnabledFeatures) {
1923 VkPhysicalDeviceFeatures supported_features;
1924 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1925 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1926 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1927 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1928 for (uint32_t i = 0; i < num_features; i++) {
1929 if (enabled_feature[i] && !supported_feature[i])
1930 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1931 }
1932 }
1933
1934 /* Check requested queues and fail if we are requested to create any
1935 * queues with flags we don't support.
1936 */
1937 assert(pCreateInfo->queueCreateInfoCount > 0);
1938 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1939 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1940 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1941 }
1942
1943 /* Check if client specified queue priority. */
1944 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1945 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1946 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1947
1948 VkQueueGlobalPriorityEXT priority =
1949 queue_priority ? queue_priority->globalPriority :
1950 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1951
1952 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1953 sizeof(*device), 8,
1954 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1955 if (!device)
1956 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1957
1958 const unsigned decode_flags =
1959 GEN_BATCH_DECODE_FULL |
1960 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
1961 GEN_BATCH_DECODE_OFFSETS |
1962 GEN_BATCH_DECODE_FLOATS;
1963
1964 gen_batch_decode_ctx_init(&device->decoder_ctx,
1965 &physical_device->info,
1966 stderr, decode_flags, NULL,
1967 decode_get_bo, NULL, device);
1968
1969 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1970 device->instance = physical_device->instance;
1971 device->chipset_id = physical_device->chipset_id;
1972 device->no_hw = physical_device->no_hw;
1973 device->_lost = false;
1974
1975 if (pAllocator)
1976 device->alloc = *pAllocator;
1977 else
1978 device->alloc = physical_device->instance->alloc;
1979
1980 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1981 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1982 if (device->fd == -1) {
1983 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1984 goto fail_device;
1985 }
1986
1987 device->context_id = anv_gem_create_context(device);
1988 if (device->context_id == -1) {
1989 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1990 goto fail_fd;
1991 }
1992
1993 if (physical_device->use_softpin) {
1994 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1995 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1996 goto fail_fd;
1997 }
1998
1999 /* keep the page with address zero out of the allocator */
2000 struct anv_memory_heap *low_heap =
2001 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2002 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2003 device->vma_lo_available = low_heap->size;
2004
2005 struct anv_memory_heap *high_heap =
2006 &physical_device->memory.heaps[0];
2007 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2008 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2009 high_heap->size;
2010 }
2011
2012 list_inithead(&device->memory_objects);
2013
2014 /* As per spec, the driver implementation may deny requests to acquire
2015 * a priority above the default priority (MEDIUM) if the caller does not
2016 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2017 * is returned.
2018 */
2019 if (physical_device->has_context_priority) {
2020 int err = anv_gem_set_context_param(device->fd, device->context_id,
2021 I915_CONTEXT_PARAM_PRIORITY,
2022 vk_priority_to_gen(priority));
2023 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2024 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2025 goto fail_fd;
2026 }
2027 }
2028
2029 device->info = physical_device->info;
2030 device->isl_dev = physical_device->isl_dev;
2031
2032 /* On Broadwell and later, we can use batch chaining to more efficiently
2033 * implement growing command buffers. Prior to Haswell, the kernel
2034 * command parser gets in the way and we have to fall back to growing
2035 * the batch.
2036 */
2037 device->can_chain_batches = device->info.gen >= 8;
2038
2039 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2040 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2041 device->enabled_extensions = enabled_extensions;
2042
2043 anv_device_init_dispatch(device);
2044
2045 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2046 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2047 goto fail_context_id;
2048 }
2049
2050 pthread_condattr_t condattr;
2051 if (pthread_condattr_init(&condattr) != 0) {
2052 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2053 goto fail_mutex;
2054 }
2055 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2056 pthread_condattr_destroy(&condattr);
2057 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2058 goto fail_mutex;
2059 }
2060 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2061 pthread_condattr_destroy(&condattr);
2062 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2063 goto fail_mutex;
2064 }
2065 pthread_condattr_destroy(&condattr);
2066
2067 uint64_t bo_flags =
2068 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2069 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2070 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2071 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2072
2073 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2074
2075 result = anv_bo_cache_init(&device->bo_cache);
2076 if (result != VK_SUCCESS)
2077 goto fail_batch_bo_pool;
2078
2079 if (!physical_device->use_softpin)
2080 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2081
2082 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2083 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2084 16384,
2085 bo_flags);
2086 if (result != VK_SUCCESS)
2087 goto fail_bo_cache;
2088
2089 result = anv_state_pool_init(&device->instruction_state_pool, device,
2090 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2091 16384,
2092 bo_flags);
2093 if (result != VK_SUCCESS)
2094 goto fail_dynamic_state_pool;
2095
2096 result = anv_state_pool_init(&device->surface_state_pool, device,
2097 SURFACE_STATE_POOL_MIN_ADDRESS,
2098 4096,
2099 bo_flags);
2100 if (result != VK_SUCCESS)
2101 goto fail_instruction_state_pool;
2102
2103 if (physical_device->use_softpin) {
2104 result = anv_state_pool_init(&device->binding_table_pool, device,
2105 BINDING_TABLE_POOL_MIN_ADDRESS,
2106 4096,
2107 bo_flags);
2108 if (result != VK_SUCCESS)
2109 goto fail_surface_state_pool;
2110 }
2111
2112 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2113 if (result != VK_SUCCESS)
2114 goto fail_binding_table_pool;
2115
2116 if (physical_device->use_softpin)
2117 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2118
2119 if (!anv_vma_alloc(device, &device->workaround_bo))
2120 goto fail_workaround_bo;
2121
2122 anv_device_init_trivial_batch(device);
2123
2124 if (device->info.gen >= 10)
2125 anv_device_init_hiz_clear_value_bo(device);
2126
2127 anv_scratch_pool_init(device, &device->scratch_pool);
2128
2129 anv_queue_init(device, &device->queue);
2130
2131 switch (device->info.gen) {
2132 case 7:
2133 if (!device->info.is_haswell)
2134 result = gen7_init_device_state(device);
2135 else
2136 result = gen75_init_device_state(device);
2137 break;
2138 case 8:
2139 result = gen8_init_device_state(device);
2140 break;
2141 case 9:
2142 result = gen9_init_device_state(device);
2143 break;
2144 case 10:
2145 result = gen10_init_device_state(device);
2146 break;
2147 case 11:
2148 result = gen11_init_device_state(device);
2149 break;
2150 default:
2151 /* Shouldn't get here as we don't create physical devices for any other
2152 * gens. */
2153 unreachable("unhandled gen");
2154 }
2155 if (result != VK_SUCCESS)
2156 goto fail_workaround_bo;
2157
2158 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2159
2160 anv_device_init_blorp(device);
2161
2162 anv_device_init_border_colors(device);
2163
2164 *pDevice = anv_device_to_handle(device);
2165
2166 return VK_SUCCESS;
2167
2168 fail_workaround_bo:
2169 anv_queue_finish(&device->queue);
2170 anv_scratch_pool_finish(device, &device->scratch_pool);
2171 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2172 anv_gem_close(device, device->workaround_bo.gem_handle);
2173 fail_binding_table_pool:
2174 if (physical_device->use_softpin)
2175 anv_state_pool_finish(&device->binding_table_pool);
2176 fail_surface_state_pool:
2177 anv_state_pool_finish(&device->surface_state_pool);
2178 fail_instruction_state_pool:
2179 anv_state_pool_finish(&device->instruction_state_pool);
2180 fail_dynamic_state_pool:
2181 anv_state_pool_finish(&device->dynamic_state_pool);
2182 fail_bo_cache:
2183 anv_bo_cache_finish(&device->bo_cache);
2184 fail_batch_bo_pool:
2185 anv_bo_pool_finish(&device->batch_bo_pool);
2186 pthread_cond_destroy(&device->queue_submit);
2187 fail_mutex:
2188 pthread_mutex_destroy(&device->mutex);
2189 fail_context_id:
2190 anv_gem_destroy_context(device, device->context_id);
2191 fail_fd:
2192 close(device->fd);
2193 fail_device:
2194 vk_free(&device->alloc, device);
2195
2196 return result;
2197 }
2198
2199 void anv_DestroyDevice(
2200 VkDevice _device,
2201 const VkAllocationCallbacks* pAllocator)
2202 {
2203 ANV_FROM_HANDLE(anv_device, device, _device);
2204 struct anv_physical_device *physical_device;
2205
2206 if (!device)
2207 return;
2208
2209 physical_device = &device->instance->physicalDevice;
2210
2211 anv_device_finish_blorp(device);
2212
2213 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2214
2215 anv_queue_finish(&device->queue);
2216
2217 #ifdef HAVE_VALGRIND
2218 /* We only need to free these to prevent valgrind errors. The backing
2219 * BO will go away in a couple of lines so we don't actually leak.
2220 */
2221 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2222 #endif
2223
2224 anv_scratch_pool_finish(device, &device->scratch_pool);
2225
2226 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2227 anv_vma_free(device, &device->workaround_bo);
2228 anv_gem_close(device, device->workaround_bo.gem_handle);
2229
2230 anv_vma_free(device, &device->trivial_batch_bo);
2231 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2232 if (device->info.gen >= 10)
2233 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2234
2235 if (physical_device->use_softpin)
2236 anv_state_pool_finish(&device->binding_table_pool);
2237 anv_state_pool_finish(&device->surface_state_pool);
2238 anv_state_pool_finish(&device->instruction_state_pool);
2239 anv_state_pool_finish(&device->dynamic_state_pool);
2240
2241 anv_bo_cache_finish(&device->bo_cache);
2242
2243 anv_bo_pool_finish(&device->batch_bo_pool);
2244
2245 pthread_cond_destroy(&device->queue_submit);
2246 pthread_mutex_destroy(&device->mutex);
2247
2248 anv_gem_destroy_context(device, device->context_id);
2249
2250 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2251
2252 close(device->fd);
2253
2254 vk_free(&device->alloc, device);
2255 }
2256
2257 VkResult anv_EnumerateInstanceLayerProperties(
2258 uint32_t* pPropertyCount,
2259 VkLayerProperties* pProperties)
2260 {
2261 if (pProperties == NULL) {
2262 *pPropertyCount = 0;
2263 return VK_SUCCESS;
2264 }
2265
2266 /* None supported at this time */
2267 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2268 }
2269
2270 VkResult anv_EnumerateDeviceLayerProperties(
2271 VkPhysicalDevice physicalDevice,
2272 uint32_t* pPropertyCount,
2273 VkLayerProperties* pProperties)
2274 {
2275 if (pProperties == NULL) {
2276 *pPropertyCount = 0;
2277 return VK_SUCCESS;
2278 }
2279
2280 /* None supported at this time */
2281 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2282 }
2283
2284 void anv_GetDeviceQueue(
2285 VkDevice _device,
2286 uint32_t queueNodeIndex,
2287 uint32_t queueIndex,
2288 VkQueue* pQueue)
2289 {
2290 ANV_FROM_HANDLE(anv_device, device, _device);
2291
2292 assert(queueIndex == 0);
2293
2294 *pQueue = anv_queue_to_handle(&device->queue);
2295 }
2296
2297 void anv_GetDeviceQueue2(
2298 VkDevice _device,
2299 const VkDeviceQueueInfo2* pQueueInfo,
2300 VkQueue* pQueue)
2301 {
2302 ANV_FROM_HANDLE(anv_device, device, _device);
2303
2304 assert(pQueueInfo->queueIndex == 0);
2305
2306 if (pQueueInfo->flags == device->queue.flags)
2307 *pQueue = anv_queue_to_handle(&device->queue);
2308 else
2309 *pQueue = NULL;
2310 }
2311
2312 VkResult
2313 _anv_device_set_lost(struct anv_device *device,
2314 const char *file, int line,
2315 const char *msg, ...)
2316 {
2317 VkResult err;
2318 va_list ap;
2319
2320 device->_lost = true;
2321
2322 va_start(ap, msg);
2323 err = __vk_errorv(device->instance, device,
2324 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2325 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2326 va_end(ap);
2327
2328 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2329 abort();
2330
2331 return err;
2332 }
2333
2334 VkResult
2335 anv_device_query_status(struct anv_device *device)
2336 {
2337 /* This isn't likely as most of the callers of this function already check
2338 * for it. However, it doesn't hurt to check and it potentially lets us
2339 * avoid an ioctl.
2340 */
2341 if (anv_device_is_lost(device))
2342 return VK_ERROR_DEVICE_LOST;
2343
2344 uint32_t active, pending;
2345 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2346 if (ret == -1) {
2347 /* We don't know the real error. */
2348 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2349 }
2350
2351 if (active) {
2352 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2353 } else if (pending) {
2354 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2355 }
2356
2357 return VK_SUCCESS;
2358 }
2359
2360 VkResult
2361 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2362 {
2363 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2364 * Other usages of the BO (such as on different hardware) will not be
2365 * flagged as "busy" by this ioctl. Use with care.
2366 */
2367 int ret = anv_gem_busy(device, bo->gem_handle);
2368 if (ret == 1) {
2369 return VK_NOT_READY;
2370 } else if (ret == -1) {
2371 /* We don't know the real error. */
2372 return anv_device_set_lost(device, "gem wait failed: %m");
2373 }
2374
2375 /* Query for device status after the busy call. If the BO we're checking
2376 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2377 * client because it clearly doesn't have valid data. Yes, this most
2378 * likely means an ioctl, but we just did an ioctl to query the busy status
2379 * so it's no great loss.
2380 */
2381 return anv_device_query_status(device);
2382 }
2383
2384 VkResult
2385 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2386 int64_t timeout)
2387 {
2388 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2389 if (ret == -1 && errno == ETIME) {
2390 return VK_TIMEOUT;
2391 } else if (ret == -1) {
2392 /* We don't know the real error. */
2393 return anv_device_set_lost(device, "gem wait failed: %m");
2394 }
2395
2396 /* Query for device status after the wait. If the BO we're waiting on got
2397 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2398 * because it clearly doesn't have valid data. Yes, this most likely means
2399 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2400 */
2401 return anv_device_query_status(device);
2402 }
2403
2404 VkResult anv_DeviceWaitIdle(
2405 VkDevice _device)
2406 {
2407 ANV_FROM_HANDLE(anv_device, device, _device);
2408 if (anv_device_is_lost(device))
2409 return VK_ERROR_DEVICE_LOST;
2410
2411 struct anv_batch batch;
2412
2413 uint32_t cmds[8];
2414 batch.start = batch.next = cmds;
2415 batch.end = (void *) cmds + sizeof(cmds);
2416
2417 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2418 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2419
2420 return anv_device_submit_simple_batch(device, &batch);
2421 }
2422
2423 bool
2424 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2425 {
2426 if (!(bo->flags & EXEC_OBJECT_PINNED))
2427 return true;
2428
2429 pthread_mutex_lock(&device->vma_mutex);
2430
2431 bo->offset = 0;
2432
2433 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2434 device->vma_hi_available >= bo->size) {
2435 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2436 if (addr) {
2437 bo->offset = gen_canonical_address(addr);
2438 assert(addr == gen_48b_address(bo->offset));
2439 device->vma_hi_available -= bo->size;
2440 }
2441 }
2442
2443 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2444 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2445 if (addr) {
2446 bo->offset = gen_canonical_address(addr);
2447 assert(addr == gen_48b_address(bo->offset));
2448 device->vma_lo_available -= bo->size;
2449 }
2450 }
2451
2452 pthread_mutex_unlock(&device->vma_mutex);
2453
2454 return bo->offset != 0;
2455 }
2456
2457 void
2458 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2459 {
2460 if (!(bo->flags & EXEC_OBJECT_PINNED))
2461 return;
2462
2463 const uint64_t addr_48b = gen_48b_address(bo->offset);
2464
2465 pthread_mutex_lock(&device->vma_mutex);
2466
2467 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2468 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2469 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2470 device->vma_lo_available += bo->size;
2471 } else {
2472 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2473 &device->instance->physicalDevice;
2474 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2475 addr_48b < (physical_device->memory.heaps[0].vma_start +
2476 physical_device->memory.heaps[0].vma_size));
2477 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2478 device->vma_hi_available += bo->size;
2479 }
2480
2481 pthread_mutex_unlock(&device->vma_mutex);
2482
2483 bo->offset = 0;
2484 }
2485
2486 VkResult
2487 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2488 {
2489 uint32_t gem_handle = anv_gem_create(device, size);
2490 if (!gem_handle)
2491 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2492
2493 anv_bo_init(bo, gem_handle, size);
2494
2495 return VK_SUCCESS;
2496 }
2497
2498 VkResult anv_AllocateMemory(
2499 VkDevice _device,
2500 const VkMemoryAllocateInfo* pAllocateInfo,
2501 const VkAllocationCallbacks* pAllocator,
2502 VkDeviceMemory* pMem)
2503 {
2504 ANV_FROM_HANDLE(anv_device, device, _device);
2505 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2506 struct anv_device_memory *mem;
2507 VkResult result = VK_SUCCESS;
2508
2509 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2510
2511 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2512 assert(pAllocateInfo->allocationSize > 0);
2513
2514 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2515 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2516
2517 /* FINISHME: Fail if allocation request exceeds heap size. */
2518
2519 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2520 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2521 if (mem == NULL)
2522 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2523
2524 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2525 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2526 mem->map = NULL;
2527 mem->map_size = 0;
2528 mem->ahw = NULL;
2529 mem->host_ptr = NULL;
2530
2531 uint64_t bo_flags = 0;
2532
2533 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2534 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2535 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2536
2537 const struct wsi_memory_allocate_info *wsi_info =
2538 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2539 if (wsi_info && wsi_info->implicit_sync) {
2540 /* We need to set the WRITE flag on window system buffers so that GEM
2541 * will know we're writing to them and synchronize uses on other rings
2542 * (eg if the display server uses the blitter ring).
2543 */
2544 bo_flags |= EXEC_OBJECT_WRITE;
2545 } else if (pdevice->has_exec_async) {
2546 bo_flags |= EXEC_OBJECT_ASYNC;
2547 }
2548
2549 if (pdevice->use_softpin)
2550 bo_flags |= EXEC_OBJECT_PINNED;
2551
2552 const VkExportMemoryAllocateInfo *export_info =
2553 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2554
2555 /* Check if we need to support Android HW buffer export. If so,
2556 * create AHardwareBuffer and import memory from it.
2557 */
2558 bool android_export = false;
2559 if (export_info && export_info->handleTypes &
2560 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2561 android_export = true;
2562
2563 /* Android memory import. */
2564 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2565 vk_find_struct_const(pAllocateInfo->pNext,
2566 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2567
2568 if (ahw_import_info) {
2569 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2570 if (result != VK_SUCCESS)
2571 goto fail;
2572
2573 goto success;
2574 } else if (android_export) {
2575 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2576 if (result != VK_SUCCESS)
2577 goto fail;
2578
2579 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2580 .buffer = mem->ahw,
2581 };
2582 result = anv_import_ahw_memory(_device, mem, &import_info);
2583 if (result != VK_SUCCESS)
2584 goto fail;
2585
2586 goto success;
2587 }
2588
2589 const VkImportMemoryFdInfoKHR *fd_info =
2590 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2591
2592 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2593 * ignored.
2594 */
2595 if (fd_info && fd_info->handleType) {
2596 /* At the moment, we support only the below handle types. */
2597 assert(fd_info->handleType ==
2598 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2599 fd_info->handleType ==
2600 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2601
2602 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2603 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2604 if (result != VK_SUCCESS)
2605 goto fail;
2606
2607 VkDeviceSize aligned_alloc_size =
2608 align_u64(pAllocateInfo->allocationSize, 4096);
2609
2610 /* For security purposes, we reject importing the bo if it's smaller
2611 * than the requested allocation size. This prevents a malicious client
2612 * from passing a buffer to a trusted client, lying about the size, and
2613 * telling the trusted client to try and texture from an image that goes
2614 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2615 * in the trusted client. The trusted client can protect itself against
2616 * this sort of attack but only if it can trust the buffer size.
2617 */
2618 if (mem->bo->size < aligned_alloc_size) {
2619 result = vk_errorf(device->instance, device,
2620 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2621 "aligned allocationSize too large for "
2622 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2623 "%"PRIu64"B > %"PRIu64"B",
2624 aligned_alloc_size, mem->bo->size);
2625 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2626 goto fail;
2627 }
2628
2629 /* From the Vulkan spec:
2630 *
2631 * "Importing memory from a file descriptor transfers ownership of
2632 * the file descriptor from the application to the Vulkan
2633 * implementation. The application must not perform any operations on
2634 * the file descriptor after a successful import."
2635 *
2636 * If the import fails, we leave the file descriptor open.
2637 */
2638 close(fd_info->fd);
2639 goto success;
2640 }
2641
2642 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2643 vk_find_struct_const(pAllocateInfo->pNext,
2644 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2645 if (host_ptr_info && host_ptr_info->handleType) {
2646 if (host_ptr_info->handleType ==
2647 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2648 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2649 goto fail;
2650 }
2651
2652 assert(host_ptr_info->handleType ==
2653 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2654
2655 result = anv_bo_cache_import_host_ptr(
2656 device, &device->bo_cache, host_ptr_info->pHostPointer,
2657 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2658
2659 if (result != VK_SUCCESS)
2660 goto fail;
2661
2662 mem->host_ptr = host_ptr_info->pHostPointer;
2663 goto success;
2664 }
2665
2666 /* Regular allocate (not importing memory). */
2667
2668 if (export_info && export_info->handleTypes)
2669 bo_flags |= ANV_BO_EXTERNAL;
2670
2671 result = anv_bo_cache_alloc(device, &device->bo_cache,
2672 pAllocateInfo->allocationSize, bo_flags,
2673 &mem->bo);
2674 if (result != VK_SUCCESS)
2675 goto fail;
2676
2677 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2678 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2679 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2680 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2681
2682 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2683 * the BO. In this case, we have a dedicated allocation.
2684 */
2685 if (image->needs_set_tiling) {
2686 const uint32_t i915_tiling =
2687 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2688 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2689 image->planes[0].surface.isl.row_pitch_B,
2690 i915_tiling);
2691 if (ret) {
2692 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2693 return vk_errorf(device->instance, NULL,
2694 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2695 "failed to set BO tiling: %m");
2696 }
2697 }
2698 }
2699
2700 success:
2701 pthread_mutex_lock(&device->mutex);
2702 list_addtail(&mem->link, &device->memory_objects);
2703 pthread_mutex_unlock(&device->mutex);
2704
2705 *pMem = anv_device_memory_to_handle(mem);
2706
2707 return VK_SUCCESS;
2708
2709 fail:
2710 vk_free2(&device->alloc, pAllocator, mem);
2711
2712 return result;
2713 }
2714
2715 VkResult anv_GetMemoryFdKHR(
2716 VkDevice device_h,
2717 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2718 int* pFd)
2719 {
2720 ANV_FROM_HANDLE(anv_device, dev, device_h);
2721 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2722
2723 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2724
2725 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2726 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2727
2728 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2729 }
2730
2731 VkResult anv_GetMemoryFdPropertiesKHR(
2732 VkDevice _device,
2733 VkExternalMemoryHandleTypeFlagBits handleType,
2734 int fd,
2735 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2736 {
2737 ANV_FROM_HANDLE(anv_device, device, _device);
2738 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2739
2740 switch (handleType) {
2741 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2742 /* dma-buf can be imported as any memory type */
2743 pMemoryFdProperties->memoryTypeBits =
2744 (1 << pdevice->memory.type_count) - 1;
2745 return VK_SUCCESS;
2746
2747 default:
2748 /* The valid usage section for this function says:
2749 *
2750 * "handleType must not be one of the handle types defined as
2751 * opaque."
2752 *
2753 * So opaque handle types fall into the default "unsupported" case.
2754 */
2755 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2756 }
2757 }
2758
2759 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2760 VkDevice _device,
2761 VkExternalMemoryHandleTypeFlagBits handleType,
2762 const void* pHostPointer,
2763 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2764 {
2765 ANV_FROM_HANDLE(anv_device, device, _device);
2766
2767 assert(pMemoryHostPointerProperties->sType ==
2768 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2769
2770 switch (handleType) {
2771 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2772 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2773
2774 /* Host memory can be imported as any memory type. */
2775 pMemoryHostPointerProperties->memoryTypeBits =
2776 (1ull << pdevice->memory.type_count) - 1;
2777
2778 return VK_SUCCESS;
2779 }
2780 default:
2781 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2782 }
2783 }
2784
2785 void anv_FreeMemory(
2786 VkDevice _device,
2787 VkDeviceMemory _mem,
2788 const VkAllocationCallbacks* pAllocator)
2789 {
2790 ANV_FROM_HANDLE(anv_device, device, _device);
2791 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2792
2793 if (mem == NULL)
2794 return;
2795
2796 pthread_mutex_lock(&device->mutex);
2797 list_del(&mem->link);
2798 pthread_mutex_unlock(&device->mutex);
2799
2800 if (mem->map)
2801 anv_UnmapMemory(_device, _mem);
2802
2803 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2804
2805 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
2806 if (mem->ahw)
2807 AHardwareBuffer_release(mem->ahw);
2808 #endif
2809
2810 vk_free2(&device->alloc, pAllocator, mem);
2811 }
2812
2813 VkResult anv_MapMemory(
2814 VkDevice _device,
2815 VkDeviceMemory _memory,
2816 VkDeviceSize offset,
2817 VkDeviceSize size,
2818 VkMemoryMapFlags flags,
2819 void** ppData)
2820 {
2821 ANV_FROM_HANDLE(anv_device, device, _device);
2822 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2823
2824 if (mem == NULL) {
2825 *ppData = NULL;
2826 return VK_SUCCESS;
2827 }
2828
2829 if (mem->host_ptr) {
2830 *ppData = mem->host_ptr + offset;
2831 return VK_SUCCESS;
2832 }
2833
2834 if (size == VK_WHOLE_SIZE)
2835 size = mem->bo->size - offset;
2836
2837 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2838 *
2839 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2840 * assert(size != 0);
2841 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2842 * equal to the size of the memory minus offset
2843 */
2844 assert(size > 0);
2845 assert(offset + size <= mem->bo->size);
2846
2847 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2848 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2849 * at a time is valid. We could just mmap up front and return an offset
2850 * pointer here, but that may exhaust virtual memory on 32 bit
2851 * userspace. */
2852
2853 uint32_t gem_flags = 0;
2854
2855 if (!device->info.has_llc &&
2856 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2857 gem_flags |= I915_MMAP_WC;
2858
2859 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2860 uint64_t map_offset = offset & ~4095ull;
2861 assert(offset >= map_offset);
2862 uint64_t map_size = (offset + size) - map_offset;
2863
2864 /* Let's map whole pages */
2865 map_size = align_u64(map_size, 4096);
2866
2867 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2868 map_offset, map_size, gem_flags);
2869 if (map == MAP_FAILED)
2870 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2871
2872 mem->map = map;
2873 mem->map_size = map_size;
2874
2875 *ppData = mem->map + (offset - map_offset);
2876
2877 return VK_SUCCESS;
2878 }
2879
2880 void anv_UnmapMemory(
2881 VkDevice _device,
2882 VkDeviceMemory _memory)
2883 {
2884 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2885
2886 if (mem == NULL || mem->host_ptr)
2887 return;
2888
2889 anv_gem_munmap(mem->map, mem->map_size);
2890
2891 mem->map = NULL;
2892 mem->map_size = 0;
2893 }
2894
2895 static void
2896 clflush_mapped_ranges(struct anv_device *device,
2897 uint32_t count,
2898 const VkMappedMemoryRange *ranges)
2899 {
2900 for (uint32_t i = 0; i < count; i++) {
2901 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2902 if (ranges[i].offset >= mem->map_size)
2903 continue;
2904
2905 gen_clflush_range(mem->map + ranges[i].offset,
2906 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2907 }
2908 }
2909
2910 VkResult anv_FlushMappedMemoryRanges(
2911 VkDevice _device,
2912 uint32_t memoryRangeCount,
2913 const VkMappedMemoryRange* pMemoryRanges)
2914 {
2915 ANV_FROM_HANDLE(anv_device, device, _device);
2916
2917 if (device->info.has_llc)
2918 return VK_SUCCESS;
2919
2920 /* Make sure the writes we're flushing have landed. */
2921 __builtin_ia32_mfence();
2922
2923 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2924
2925 return VK_SUCCESS;
2926 }
2927
2928 VkResult anv_InvalidateMappedMemoryRanges(
2929 VkDevice _device,
2930 uint32_t memoryRangeCount,
2931 const VkMappedMemoryRange* pMemoryRanges)
2932 {
2933 ANV_FROM_HANDLE(anv_device, device, _device);
2934
2935 if (device->info.has_llc)
2936 return VK_SUCCESS;
2937
2938 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2939
2940 /* Make sure no reads get moved up above the invalidate. */
2941 __builtin_ia32_mfence();
2942
2943 return VK_SUCCESS;
2944 }
2945
2946 void anv_GetBufferMemoryRequirements(
2947 VkDevice _device,
2948 VkBuffer _buffer,
2949 VkMemoryRequirements* pMemoryRequirements)
2950 {
2951 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2952 ANV_FROM_HANDLE(anv_device, device, _device);
2953 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2954
2955 /* The Vulkan spec (git aaed022) says:
2956 *
2957 * memoryTypeBits is a bitfield and contains one bit set for every
2958 * supported memory type for the resource. The bit `1<<i` is set if and
2959 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2960 * structure for the physical device is supported.
2961 */
2962 uint32_t memory_types = 0;
2963 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2964 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2965 if ((valid_usage & buffer->usage) == buffer->usage)
2966 memory_types |= (1u << i);
2967 }
2968
2969 /* Base alignment requirement of a cache line */
2970 uint32_t alignment = 16;
2971
2972 /* We need an alignment of 32 for pushing UBOs */
2973 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2974 alignment = MAX2(alignment, 32);
2975
2976 pMemoryRequirements->size = buffer->size;
2977 pMemoryRequirements->alignment = alignment;
2978
2979 /* Storage and Uniform buffers should have their size aligned to
2980 * 32-bits to avoid boundary checks when last DWord is not complete.
2981 * This would ensure that not internal padding would be needed for
2982 * 16-bit types.
2983 */
2984 if (device->robust_buffer_access &&
2985 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2986 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2987 pMemoryRequirements->size = align_u64(buffer->size, 4);
2988
2989 pMemoryRequirements->memoryTypeBits = memory_types;
2990 }
2991
2992 void anv_GetBufferMemoryRequirements2(
2993 VkDevice _device,
2994 const VkBufferMemoryRequirementsInfo2* pInfo,
2995 VkMemoryRequirements2* pMemoryRequirements)
2996 {
2997 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2998 &pMemoryRequirements->memoryRequirements);
2999
3000 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3001 switch (ext->sType) {
3002 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3003 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3004 requirements->prefersDedicatedAllocation = false;
3005 requirements->requiresDedicatedAllocation = false;
3006 break;
3007 }
3008
3009 default:
3010 anv_debug_ignored_stype(ext->sType);
3011 break;
3012 }
3013 }
3014 }
3015
3016 void anv_GetImageMemoryRequirements(
3017 VkDevice _device,
3018 VkImage _image,
3019 VkMemoryRequirements* pMemoryRequirements)
3020 {
3021 ANV_FROM_HANDLE(anv_image, image, _image);
3022 ANV_FROM_HANDLE(anv_device, device, _device);
3023 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3024
3025 /* The Vulkan spec (git aaed022) says:
3026 *
3027 * memoryTypeBits is a bitfield and contains one bit set for every
3028 * supported memory type for the resource. The bit `1<<i` is set if and
3029 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3030 * structure for the physical device is supported.
3031 *
3032 * All types are currently supported for images.
3033 */
3034 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3035
3036 /* We must have image allocated or imported at this point. According to the
3037 * specification, external images must have been bound to memory before
3038 * calling GetImageMemoryRequirements.
3039 */
3040 assert(image->size > 0);
3041
3042 pMemoryRequirements->size = image->size;
3043 pMemoryRequirements->alignment = image->alignment;
3044 pMemoryRequirements->memoryTypeBits = memory_types;
3045 }
3046
3047 void anv_GetImageMemoryRequirements2(
3048 VkDevice _device,
3049 const VkImageMemoryRequirementsInfo2* pInfo,
3050 VkMemoryRequirements2* pMemoryRequirements)
3051 {
3052 ANV_FROM_HANDLE(anv_device, device, _device);
3053 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3054
3055 anv_GetImageMemoryRequirements(_device, pInfo->image,
3056 &pMemoryRequirements->memoryRequirements);
3057
3058 vk_foreach_struct_const(ext, pInfo->pNext) {
3059 switch (ext->sType) {
3060 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3061 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3062 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3063 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3064 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3065 plane_reqs->planeAspect);
3066
3067 assert(image->planes[plane].offset == 0);
3068
3069 /* The Vulkan spec (git aaed022) says:
3070 *
3071 * memoryTypeBits is a bitfield and contains one bit set for every
3072 * supported memory type for the resource. The bit `1<<i` is set
3073 * if and only if the memory type `i` in the
3074 * VkPhysicalDeviceMemoryProperties structure for the physical
3075 * device is supported.
3076 *
3077 * All types are currently supported for images.
3078 */
3079 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3080 (1ull << pdevice->memory.type_count) - 1;
3081
3082 /* We must have image allocated or imported at this point. According to the
3083 * specification, external images must have been bound to memory before
3084 * calling GetImageMemoryRequirements.
3085 */
3086 assert(image->planes[plane].size > 0);
3087
3088 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3089 pMemoryRequirements->memoryRequirements.alignment =
3090 image->planes[plane].alignment;
3091 break;
3092 }
3093
3094 default:
3095 anv_debug_ignored_stype(ext->sType);
3096 break;
3097 }
3098 }
3099
3100 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3101 switch (ext->sType) {
3102 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3103 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3104 if (image->needs_set_tiling || image->external_format) {
3105 /* If we need to set the tiling for external consumers, we need a
3106 * dedicated allocation.
3107 *
3108 * See also anv_AllocateMemory.
3109 */
3110 requirements->prefersDedicatedAllocation = true;
3111 requirements->requiresDedicatedAllocation = true;
3112 } else {
3113 requirements->prefersDedicatedAllocation = false;
3114 requirements->requiresDedicatedAllocation = false;
3115 }
3116 break;
3117 }
3118
3119 default:
3120 anv_debug_ignored_stype(ext->sType);
3121 break;
3122 }
3123 }
3124 }
3125
3126 void anv_GetImageSparseMemoryRequirements(
3127 VkDevice device,
3128 VkImage image,
3129 uint32_t* pSparseMemoryRequirementCount,
3130 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3131 {
3132 *pSparseMemoryRequirementCount = 0;
3133 }
3134
3135 void anv_GetImageSparseMemoryRequirements2(
3136 VkDevice device,
3137 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3138 uint32_t* pSparseMemoryRequirementCount,
3139 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3140 {
3141 *pSparseMemoryRequirementCount = 0;
3142 }
3143
3144 void anv_GetDeviceMemoryCommitment(
3145 VkDevice device,
3146 VkDeviceMemory memory,
3147 VkDeviceSize* pCommittedMemoryInBytes)
3148 {
3149 *pCommittedMemoryInBytes = 0;
3150 }
3151
3152 static void
3153 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3154 {
3155 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3156 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3157
3158 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3159
3160 if (mem) {
3161 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3162 buffer->address = (struct anv_address) {
3163 .bo = mem->bo,
3164 .offset = pBindInfo->memoryOffset,
3165 };
3166 } else {
3167 buffer->address = ANV_NULL_ADDRESS;
3168 }
3169 }
3170
3171 VkResult anv_BindBufferMemory(
3172 VkDevice device,
3173 VkBuffer buffer,
3174 VkDeviceMemory memory,
3175 VkDeviceSize memoryOffset)
3176 {
3177 anv_bind_buffer_memory(
3178 &(VkBindBufferMemoryInfo) {
3179 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3180 .buffer = buffer,
3181 .memory = memory,
3182 .memoryOffset = memoryOffset,
3183 });
3184
3185 return VK_SUCCESS;
3186 }
3187
3188 VkResult anv_BindBufferMemory2(
3189 VkDevice device,
3190 uint32_t bindInfoCount,
3191 const VkBindBufferMemoryInfo* pBindInfos)
3192 {
3193 for (uint32_t i = 0; i < bindInfoCount; i++)
3194 anv_bind_buffer_memory(&pBindInfos[i]);
3195
3196 return VK_SUCCESS;
3197 }
3198
3199 VkResult anv_QueueBindSparse(
3200 VkQueue _queue,
3201 uint32_t bindInfoCount,
3202 const VkBindSparseInfo* pBindInfo,
3203 VkFence fence)
3204 {
3205 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3206 if (anv_device_is_lost(queue->device))
3207 return VK_ERROR_DEVICE_LOST;
3208
3209 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3210 }
3211
3212 // Event functions
3213
3214 VkResult anv_CreateEvent(
3215 VkDevice _device,
3216 const VkEventCreateInfo* pCreateInfo,
3217 const VkAllocationCallbacks* pAllocator,
3218 VkEvent* pEvent)
3219 {
3220 ANV_FROM_HANDLE(anv_device, device, _device);
3221 struct anv_state state;
3222 struct anv_event *event;
3223
3224 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3225
3226 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3227 sizeof(*event), 8);
3228 event = state.map;
3229 event->state = state;
3230 event->semaphore = VK_EVENT_RESET;
3231
3232 if (!device->info.has_llc) {
3233 /* Make sure the writes we're flushing have landed. */
3234 __builtin_ia32_mfence();
3235 __builtin_ia32_clflush(event);
3236 }
3237
3238 *pEvent = anv_event_to_handle(event);
3239
3240 return VK_SUCCESS;
3241 }
3242
3243 void anv_DestroyEvent(
3244 VkDevice _device,
3245 VkEvent _event,
3246 const VkAllocationCallbacks* pAllocator)
3247 {
3248 ANV_FROM_HANDLE(anv_device, device, _device);
3249 ANV_FROM_HANDLE(anv_event, event, _event);
3250
3251 if (!event)
3252 return;
3253
3254 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3255 }
3256
3257 VkResult anv_GetEventStatus(
3258 VkDevice _device,
3259 VkEvent _event)
3260 {
3261 ANV_FROM_HANDLE(anv_device, device, _device);
3262 ANV_FROM_HANDLE(anv_event, event, _event);
3263
3264 if (anv_device_is_lost(device))
3265 return VK_ERROR_DEVICE_LOST;
3266
3267 if (!device->info.has_llc) {
3268 /* Invalidate read cache before reading event written by GPU. */
3269 __builtin_ia32_clflush(event);
3270 __builtin_ia32_mfence();
3271
3272 }
3273
3274 return event->semaphore;
3275 }
3276
3277 VkResult anv_SetEvent(
3278 VkDevice _device,
3279 VkEvent _event)
3280 {
3281 ANV_FROM_HANDLE(anv_device, device, _device);
3282 ANV_FROM_HANDLE(anv_event, event, _event);
3283
3284 event->semaphore = VK_EVENT_SET;
3285
3286 if (!device->info.has_llc) {
3287 /* Make sure the writes we're flushing have landed. */
3288 __builtin_ia32_mfence();
3289 __builtin_ia32_clflush(event);
3290 }
3291
3292 return VK_SUCCESS;
3293 }
3294
3295 VkResult anv_ResetEvent(
3296 VkDevice _device,
3297 VkEvent _event)
3298 {
3299 ANV_FROM_HANDLE(anv_device, device, _device);
3300 ANV_FROM_HANDLE(anv_event, event, _event);
3301
3302 event->semaphore = VK_EVENT_RESET;
3303
3304 if (!device->info.has_llc) {
3305 /* Make sure the writes we're flushing have landed. */
3306 __builtin_ia32_mfence();
3307 __builtin_ia32_clflush(event);
3308 }
3309
3310 return VK_SUCCESS;
3311 }
3312
3313 // Buffer functions
3314
3315 VkResult anv_CreateBuffer(
3316 VkDevice _device,
3317 const VkBufferCreateInfo* pCreateInfo,
3318 const VkAllocationCallbacks* pAllocator,
3319 VkBuffer* pBuffer)
3320 {
3321 ANV_FROM_HANDLE(anv_device, device, _device);
3322 struct anv_buffer *buffer;
3323
3324 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3325
3326 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3327 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3328 if (buffer == NULL)
3329 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3330
3331 buffer->size = pCreateInfo->size;
3332 buffer->usage = pCreateInfo->usage;
3333 buffer->address = ANV_NULL_ADDRESS;
3334
3335 *pBuffer = anv_buffer_to_handle(buffer);
3336
3337 return VK_SUCCESS;
3338 }
3339
3340 void anv_DestroyBuffer(
3341 VkDevice _device,
3342 VkBuffer _buffer,
3343 const VkAllocationCallbacks* pAllocator)
3344 {
3345 ANV_FROM_HANDLE(anv_device, device, _device);
3346 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3347
3348 if (!buffer)
3349 return;
3350
3351 vk_free2(&device->alloc, pAllocator, buffer);
3352 }
3353
3354 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3355 VkDevice device,
3356 const VkBufferDeviceAddressInfoEXT* pInfo)
3357 {
3358 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3359
3360 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3361
3362 return anv_address_physical(buffer->address);
3363 }
3364
3365 void
3366 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3367 enum isl_format format,
3368 struct anv_address address,
3369 uint32_t range, uint32_t stride)
3370 {
3371 isl_buffer_fill_state(&device->isl_dev, state.map,
3372 .address = anv_address_physical(address),
3373 .mocs = device->default_mocs,
3374 .size_B = range,
3375 .format = format,
3376 .swizzle = ISL_SWIZZLE_IDENTITY,
3377 .stride_B = stride);
3378 }
3379
3380 void anv_DestroySampler(
3381 VkDevice _device,
3382 VkSampler _sampler,
3383 const VkAllocationCallbacks* pAllocator)
3384 {
3385 ANV_FROM_HANDLE(anv_device, device, _device);
3386 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3387
3388 if (!sampler)
3389 return;
3390
3391 vk_free2(&device->alloc, pAllocator, sampler);
3392 }
3393
3394 VkResult anv_CreateFramebuffer(
3395 VkDevice _device,
3396 const VkFramebufferCreateInfo* pCreateInfo,
3397 const VkAllocationCallbacks* pAllocator,
3398 VkFramebuffer* pFramebuffer)
3399 {
3400 ANV_FROM_HANDLE(anv_device, device, _device);
3401 struct anv_framebuffer *framebuffer;
3402
3403 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3404
3405 size_t size = sizeof(*framebuffer) +
3406 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3407 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3408 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3409 if (framebuffer == NULL)
3410 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3411
3412 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3413 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3414 VkImageView _iview = pCreateInfo->pAttachments[i];
3415 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3416 }
3417
3418 framebuffer->width = pCreateInfo->width;
3419 framebuffer->height = pCreateInfo->height;
3420 framebuffer->layers = pCreateInfo->layers;
3421
3422 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3423
3424 return VK_SUCCESS;
3425 }
3426
3427 void anv_DestroyFramebuffer(
3428 VkDevice _device,
3429 VkFramebuffer _fb,
3430 const VkAllocationCallbacks* pAllocator)
3431 {
3432 ANV_FROM_HANDLE(anv_device, device, _device);
3433 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3434
3435 if (!fb)
3436 return;
3437
3438 vk_free2(&device->alloc, pAllocator, fb);
3439 }
3440
3441 static const VkTimeDomainEXT anv_time_domains[] = {
3442 VK_TIME_DOMAIN_DEVICE_EXT,
3443 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3444 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3445 };
3446
3447 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3448 VkPhysicalDevice physicalDevice,
3449 uint32_t *pTimeDomainCount,
3450 VkTimeDomainEXT *pTimeDomains)
3451 {
3452 int d;
3453 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3454
3455 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3456 vk_outarray_append(&out, i) {
3457 *i = anv_time_domains[d];
3458 }
3459 }
3460
3461 return vk_outarray_status(&out);
3462 }
3463
3464 static uint64_t
3465 anv_clock_gettime(clockid_t clock_id)
3466 {
3467 struct timespec current;
3468 int ret;
3469
3470 ret = clock_gettime(clock_id, &current);
3471 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3472 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3473 if (ret < 0)
3474 return 0;
3475
3476 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3477 }
3478
3479 #define TIMESTAMP 0x2358
3480
3481 VkResult anv_GetCalibratedTimestampsEXT(
3482 VkDevice _device,
3483 uint32_t timestampCount,
3484 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3485 uint64_t *pTimestamps,
3486 uint64_t *pMaxDeviation)
3487 {
3488 ANV_FROM_HANDLE(anv_device, device, _device);
3489 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3490 int ret;
3491 int d;
3492 uint64_t begin, end;
3493 uint64_t max_clock_period = 0;
3494
3495 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3496
3497 for (d = 0; d < timestampCount; d++) {
3498 switch (pTimestampInfos[d].timeDomain) {
3499 case VK_TIME_DOMAIN_DEVICE_EXT:
3500 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3501 &pTimestamps[d]);
3502
3503 if (ret != 0) {
3504 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3505 "register: %m");
3506 }
3507 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3508 max_clock_period = MAX2(max_clock_period, device_period);
3509 break;
3510 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3511 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3512 max_clock_period = MAX2(max_clock_period, 1);
3513 break;
3514
3515 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3516 pTimestamps[d] = begin;
3517 break;
3518 default:
3519 pTimestamps[d] = 0;
3520 break;
3521 }
3522 }
3523
3524 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3525
3526 /*
3527 * The maximum deviation is the sum of the interval over which we
3528 * perform the sampling and the maximum period of any sampled
3529 * clock. That's because the maximum skew between any two sampled
3530 * clock edges is when the sampled clock with the largest period is
3531 * sampled at the end of that period but right at the beginning of the
3532 * sampling interval and some other clock is sampled right at the
3533 * begining of its sampling period and right at the end of the
3534 * sampling interval. Let's assume the GPU has the longest clock
3535 * period and that the application is sampling GPU and monotonic:
3536 *
3537 * s e
3538 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3539 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3540 *
3541 * g
3542 * 0 1 2 3
3543 * GPU -----_____-----_____-----_____-----_____
3544 *
3545 * m
3546 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3547 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3548 *
3549 * Interval <----------------->
3550 * Deviation <-------------------------->
3551 *
3552 * s = read(raw) 2
3553 * g = read(GPU) 1
3554 * m = read(monotonic) 2
3555 * e = read(raw) b
3556 *
3557 * We round the sample interval up by one tick to cover sampling error
3558 * in the interval clock
3559 */
3560
3561 uint64_t sample_interval = end - begin + 1;
3562
3563 *pMaxDeviation = sample_interval + max_clock_period;
3564
3565 return VK_SUCCESS;
3566 }
3567
3568 /* vk_icd.h does not declare this function, so we declare it here to
3569 * suppress Wmissing-prototypes.
3570 */
3571 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3572 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3573
3574 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3575 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3576 {
3577 /* For the full details on loader interface versioning, see
3578 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3579 * What follows is a condensed summary, to help you navigate the large and
3580 * confusing official doc.
3581 *
3582 * - Loader interface v0 is incompatible with later versions. We don't
3583 * support it.
3584 *
3585 * - In loader interface v1:
3586 * - The first ICD entrypoint called by the loader is
3587 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3588 * entrypoint.
3589 * - The ICD must statically expose no other Vulkan symbol unless it is
3590 * linked with -Bsymbolic.
3591 * - Each dispatchable Vulkan handle created by the ICD must be
3592 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3593 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3594 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3595 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3596 * such loader-managed surfaces.
3597 *
3598 * - Loader interface v2 differs from v1 in:
3599 * - The first ICD entrypoint called by the loader is
3600 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3601 * statically expose this entrypoint.
3602 *
3603 * - Loader interface v3 differs from v2 in:
3604 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3605 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3606 * because the loader no longer does so.
3607 */
3608 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3609 return VK_SUCCESS;
3610 }