anv: Fix limits when VK_EXT_descriptor_indexing is used
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 device->no_hw = getenv("INTEL_NO_HW") != NULL;
394
395 const int pci_id_override = gen_get_pci_device_id_override();
396 if (pci_id_override < 0) {
397 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
398 if (!device->chipset_id) {
399 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
400 goto fail;
401 }
402 } else {
403 device->chipset_id = pci_id_override;
404 device->no_hw = true;
405 }
406
407 device->pci_info.domain = drm_device->businfo.pci->domain;
408 device->pci_info.bus = drm_device->businfo.pci->bus;
409 device->pci_info.device = drm_device->businfo.pci->dev;
410 device->pci_info.function = drm_device->businfo.pci->func;
411
412 device->name = gen_get_device_name(device->chipset_id);
413 if (!gen_get_device_info(device->chipset_id, &device->info)) {
414 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
415 goto fail;
416 }
417
418 if (device->info.is_haswell) {
419 intel_logw("Haswell Vulkan support is incomplete");
420 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
421 intel_logw("Ivy Bridge Vulkan support is incomplete");
422 } else if (device->info.gen == 7 && device->info.is_baytrail) {
423 intel_logw("Bay Trail Vulkan support is incomplete");
424 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
425 /* Gen8-11 fully supported */
426 } else {
427 result = vk_errorf(device->instance, device,
428 VK_ERROR_INCOMPATIBLE_DRIVER,
429 "Vulkan not yet supported on %s", device->name);
430 goto fail;
431 }
432
433 device->cmd_parser_version = -1;
434 if (device->info.gen == 7) {
435 device->cmd_parser_version =
436 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
437 if (device->cmd_parser_version == -1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "failed to get command parser version");
441 goto fail;
442 }
443 }
444
445 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
446 result = vk_errorf(device->instance, device,
447 VK_ERROR_INITIALIZATION_FAILED,
448 "kernel missing gem wait");
449 goto fail;
450 }
451
452 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing execbuf2");
456 goto fail;
457 }
458
459 if (!device->info.has_llc &&
460 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
461 result = vk_errorf(device->instance, device,
462 VK_ERROR_INITIALIZATION_FAILED,
463 "kernel missing wc mmap");
464 goto fail;
465 }
466
467 result = anv_physical_device_init_heaps(device, fd);
468 if (result != VK_SUCCESS)
469 goto fail;
470
471 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
472 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
473 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
474 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
475 device->has_syncobj_wait = device->has_syncobj &&
476 anv_gem_supports_syncobj_wait(fd);
477 device->has_context_priority = anv_gem_has_context_priority(fd);
478
479 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
480 && device->supports_48bit_addresses;
481
482 device->has_context_isolation =
483 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
484
485 device->always_use_bindless =
486 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
487
488 /* We first got the A64 messages on broadwell and we can only use them if
489 * we can pass addresses directly into the shader which requires softpin.
490 */
491 device->has_a64_buffer_access = device->info.gen >= 8 &&
492 device->use_softpin;
493
494 /* We first get bindless image access on Skylake and we can only really do
495 * it if we don't have any relocations so we need softpin.
496 */
497 device->has_bindless_images = device->info.gen >= 9 &&
498 device->use_softpin;
499
500 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
501 * because it's just a matter of setting the sampler address in the sample
502 * message header. However, we've not bothered to wire it up for vec4 so
503 * we leave it disabled on gen7.
504 */
505 device->has_bindless_samplers = device->info.gen >= 8;
506
507 device->has_mem_available = get_available_system_memory() != 0;
508
509 /* Starting with Gen10, the timestamp frequency of the command streamer may
510 * vary from one part to another. We can query the value from the kernel.
511 */
512 if (device->info.gen >= 10) {
513 int timestamp_frequency =
514 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
515
516 if (timestamp_frequency < 0)
517 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
518 else
519 device->info.timestamp_frequency = timestamp_frequency;
520 }
521
522 /* GENs prior to 8 do not support EU/Subslice info */
523 if (device->info.gen >= 8) {
524 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
525 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
526
527 /* Without this information, we cannot get the right Braswell
528 * brandstrings, and we have to use conservative numbers for GPGPU on
529 * many platforms, but otherwise, things will just work.
530 */
531 if (device->subslice_total < 1 || device->eu_total < 1) {
532 intel_logw("Kernel 4.1 required to properly query GPU properties");
533 }
534 } else if (device->info.gen == 7) {
535 device->subslice_total = 1 << (device->info.gt - 1);
536 }
537
538 if (device->info.is_cherryview &&
539 device->subslice_total > 0 && device->eu_total > 0) {
540 /* Logical CS threads = EUs per subslice * num threads per EU */
541 uint32_t max_cs_threads =
542 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
543
544 /* Fuse configurations may give more threads than expected, never less. */
545 if (max_cs_threads > device->info.max_cs_threads)
546 device->info.max_cs_threads = max_cs_threads;
547 }
548
549 device->compiler = brw_compiler_create(NULL, &device->info);
550 if (device->compiler == NULL) {
551 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
552 goto fail;
553 }
554 device->compiler->shader_debug_log = compiler_debug_log;
555 device->compiler->shader_perf_log = compiler_perf_log;
556 device->compiler->supports_pull_constants = false;
557 device->compiler->constant_buffer_0_is_relative =
558 device->info.gen < 8 || !device->has_context_isolation;
559 device->compiler->supports_shader_constants = true;
560
561 /* Broadwell PRM says:
562 *
563 * "Before Gen8, there was a historical configuration control field to
564 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
565 * different places: TILECTL[1:0], ARB_MODE[5:4], and
566 * DISP_ARB_CTL[14:13].
567 *
568 * For Gen8 and subsequent generations, the swizzle fields are all
569 * reserved, and the CPU's memory controller performs all address
570 * swizzling modifications."
571 */
572 bool swizzled =
573 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
574
575 isl_device_init(&device->isl_dev, &device->info, swizzled);
576
577 result = anv_physical_device_init_uuids(device);
578 if (result != VK_SUCCESS)
579 goto fail;
580
581 anv_physical_device_init_disk_cache(device);
582
583 if (instance->enabled_extensions.KHR_display) {
584 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
585 if (master_fd >= 0) {
586 /* prod the device with a GETPARAM call which will fail if
587 * we don't have permission to even render on this device
588 */
589 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
590 close(master_fd);
591 master_fd = -1;
592 }
593 }
594 }
595 device->master_fd = master_fd;
596
597 result = anv_init_wsi(device);
598 if (result != VK_SUCCESS) {
599 ralloc_free(device->compiler);
600 anv_physical_device_free_disk_cache(device);
601 goto fail;
602 }
603
604 anv_physical_device_get_supported_extensions(device,
605 &device->supported_extensions);
606
607
608 device->local_fd = fd;
609
610 return VK_SUCCESS;
611
612 fail:
613 close(fd);
614 if (master_fd != -1)
615 close(master_fd);
616 return result;
617 }
618
619 static void
620 anv_physical_device_finish(struct anv_physical_device *device)
621 {
622 anv_finish_wsi(device);
623 anv_physical_device_free_disk_cache(device);
624 ralloc_free(device->compiler);
625 close(device->local_fd);
626 if (device->master_fd >= 0)
627 close(device->master_fd);
628 }
629
630 static void *
631 default_alloc_func(void *pUserData, size_t size, size_t align,
632 VkSystemAllocationScope allocationScope)
633 {
634 return malloc(size);
635 }
636
637 static void *
638 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
639 size_t align, VkSystemAllocationScope allocationScope)
640 {
641 return realloc(pOriginal, size);
642 }
643
644 static void
645 default_free_func(void *pUserData, void *pMemory)
646 {
647 free(pMemory);
648 }
649
650 static const VkAllocationCallbacks default_alloc = {
651 .pUserData = NULL,
652 .pfnAllocation = default_alloc_func,
653 .pfnReallocation = default_realloc_func,
654 .pfnFree = default_free_func,
655 };
656
657 VkResult anv_EnumerateInstanceExtensionProperties(
658 const char* pLayerName,
659 uint32_t* pPropertyCount,
660 VkExtensionProperties* pProperties)
661 {
662 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
663
664 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
665 if (anv_instance_extensions_supported.extensions[i]) {
666 vk_outarray_append(&out, prop) {
667 *prop = anv_instance_extensions[i];
668 }
669 }
670 }
671
672 return vk_outarray_status(&out);
673 }
674
675 VkResult anv_CreateInstance(
676 const VkInstanceCreateInfo* pCreateInfo,
677 const VkAllocationCallbacks* pAllocator,
678 VkInstance* pInstance)
679 {
680 struct anv_instance *instance;
681 VkResult result;
682
683 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
684
685 struct anv_instance_extension_table enabled_extensions = {};
686 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
687 int idx;
688 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
689 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
690 anv_instance_extensions[idx].extensionName) == 0)
691 break;
692 }
693
694 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
695 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
696
697 if (!anv_instance_extensions_supported.extensions[idx])
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 enabled_extensions.extensions[idx] = true;
701 }
702
703 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
704 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
705 if (!instance)
706 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
707
708 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
709
710 if (pAllocator)
711 instance->alloc = *pAllocator;
712 else
713 instance->alloc = default_alloc;
714
715 instance->app_info = (struct anv_app_info) { .api_version = 0 };
716 if (pCreateInfo->pApplicationInfo) {
717 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
718
719 instance->app_info.app_name =
720 vk_strdup(&instance->alloc, app->pApplicationName,
721 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
722 instance->app_info.app_version = app->applicationVersion;
723
724 instance->app_info.engine_name =
725 vk_strdup(&instance->alloc, app->pEngineName,
726 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
727 instance->app_info.engine_version = app->engineVersion;
728
729 instance->app_info.api_version = app->apiVersion;
730 }
731
732 if (instance->app_info.api_version == 0)
733 instance->app_info.api_version = VK_API_VERSION_1_0;
734
735 instance->enabled_extensions = enabled_extensions;
736
737 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
738 /* Vulkan requires that entrypoints for extensions which have not been
739 * enabled must not be advertised.
740 */
741 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
742 &instance->enabled_extensions)) {
743 instance->dispatch.entrypoints[i] = NULL;
744 } else {
745 instance->dispatch.entrypoints[i] =
746 anv_instance_dispatch_table.entrypoints[i];
747 }
748 }
749
750 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
751 /* Vulkan requires that entrypoints for extensions which have not been
752 * enabled must not be advertised.
753 */
754 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
755 &instance->enabled_extensions, NULL)) {
756 instance->device_dispatch.entrypoints[i] = NULL;
757 } else {
758 instance->device_dispatch.entrypoints[i] =
759 anv_device_dispatch_table.entrypoints[i];
760 }
761 }
762
763 instance->physicalDeviceCount = -1;
764
765 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
766 if (result != VK_SUCCESS) {
767 vk_free2(&default_alloc, pAllocator, instance);
768 return vk_error(result);
769 }
770
771 instance->pipeline_cache_enabled =
772 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
773
774 _mesa_locale_init();
775 glsl_type_singleton_init_or_ref();
776
777 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
778
779 *pInstance = anv_instance_to_handle(instance);
780
781 return VK_SUCCESS;
782 }
783
784 void anv_DestroyInstance(
785 VkInstance _instance,
786 const VkAllocationCallbacks* pAllocator)
787 {
788 ANV_FROM_HANDLE(anv_instance, instance, _instance);
789
790 if (!instance)
791 return;
792
793 if (instance->physicalDeviceCount > 0) {
794 /* We support at most one physical device. */
795 assert(instance->physicalDeviceCount == 1);
796 anv_physical_device_finish(&instance->physicalDevice);
797 }
798
799 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
800 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
801
802 VG(VALGRIND_DESTROY_MEMPOOL(instance));
803
804 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
805
806 glsl_type_singleton_decref();
807 _mesa_locale_fini();
808
809 vk_free(&instance->alloc, instance);
810 }
811
812 static VkResult
813 anv_enumerate_devices(struct anv_instance *instance)
814 {
815 /* TODO: Check for more devices ? */
816 drmDevicePtr devices[8];
817 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
818 int max_devices;
819
820 instance->physicalDeviceCount = 0;
821
822 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
823 if (max_devices < 1)
824 return VK_ERROR_INCOMPATIBLE_DRIVER;
825
826 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
827 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
828 devices[i]->bustype == DRM_BUS_PCI &&
829 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
830
831 result = anv_physical_device_init(&instance->physicalDevice,
832 instance, devices[i]);
833 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
834 break;
835 }
836 }
837 drmFreeDevices(devices, max_devices);
838
839 if (result == VK_SUCCESS)
840 instance->physicalDeviceCount = 1;
841
842 return result;
843 }
844
845 static VkResult
846 anv_instance_ensure_physical_device(struct anv_instance *instance)
847 {
848 if (instance->physicalDeviceCount < 0) {
849 VkResult result = anv_enumerate_devices(instance);
850 if (result != VK_SUCCESS &&
851 result != VK_ERROR_INCOMPATIBLE_DRIVER)
852 return result;
853 }
854
855 return VK_SUCCESS;
856 }
857
858 VkResult anv_EnumeratePhysicalDevices(
859 VkInstance _instance,
860 uint32_t* pPhysicalDeviceCount,
861 VkPhysicalDevice* pPhysicalDevices)
862 {
863 ANV_FROM_HANDLE(anv_instance, instance, _instance);
864 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
865
866 VkResult result = anv_instance_ensure_physical_device(instance);
867 if (result != VK_SUCCESS)
868 return result;
869
870 if (instance->physicalDeviceCount == 0)
871 return VK_SUCCESS;
872
873 assert(instance->physicalDeviceCount == 1);
874 vk_outarray_append(&out, i) {
875 *i = anv_physical_device_to_handle(&instance->physicalDevice);
876 }
877
878 return vk_outarray_status(&out);
879 }
880
881 VkResult anv_EnumeratePhysicalDeviceGroups(
882 VkInstance _instance,
883 uint32_t* pPhysicalDeviceGroupCount,
884 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
885 {
886 ANV_FROM_HANDLE(anv_instance, instance, _instance);
887 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
888 pPhysicalDeviceGroupCount);
889
890 VkResult result = anv_instance_ensure_physical_device(instance);
891 if (result != VK_SUCCESS)
892 return result;
893
894 if (instance->physicalDeviceCount == 0)
895 return VK_SUCCESS;
896
897 assert(instance->physicalDeviceCount == 1);
898
899 vk_outarray_append(&out, p) {
900 p->physicalDeviceCount = 1;
901 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
902 p->physicalDevices[0] =
903 anv_physical_device_to_handle(&instance->physicalDevice);
904 p->subsetAllocation = false;
905
906 vk_foreach_struct(ext, p->pNext)
907 anv_debug_ignored_stype(ext->sType);
908 }
909
910 return vk_outarray_status(&out);
911 }
912
913 void anv_GetPhysicalDeviceFeatures(
914 VkPhysicalDevice physicalDevice,
915 VkPhysicalDeviceFeatures* pFeatures)
916 {
917 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
918
919 *pFeatures = (VkPhysicalDeviceFeatures) {
920 .robustBufferAccess = true,
921 .fullDrawIndexUint32 = true,
922 .imageCubeArray = true,
923 .independentBlend = true,
924 .geometryShader = true,
925 .tessellationShader = true,
926 .sampleRateShading = true,
927 .dualSrcBlend = true,
928 .logicOp = true,
929 .multiDrawIndirect = true,
930 .drawIndirectFirstInstance = true,
931 .depthClamp = true,
932 .depthBiasClamp = true,
933 .fillModeNonSolid = true,
934 .depthBounds = false,
935 .wideLines = true,
936 .largePoints = true,
937 .alphaToOne = true,
938 .multiViewport = true,
939 .samplerAnisotropy = true,
940 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
941 pdevice->info.is_baytrail,
942 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
943 .textureCompressionBC = true,
944 .occlusionQueryPrecise = true,
945 .pipelineStatisticsQuery = true,
946 .fragmentStoresAndAtomics = true,
947 .shaderTessellationAndGeometryPointSize = true,
948 .shaderImageGatherExtended = true,
949 .shaderStorageImageExtendedFormats = true,
950 .shaderStorageImageMultisample = false,
951 .shaderStorageImageReadWithoutFormat = false,
952 .shaderStorageImageWriteWithoutFormat = true,
953 .shaderUniformBufferArrayDynamicIndexing = true,
954 .shaderSampledImageArrayDynamicIndexing = true,
955 .shaderStorageBufferArrayDynamicIndexing = true,
956 .shaderStorageImageArrayDynamicIndexing = true,
957 .shaderClipDistance = true,
958 .shaderCullDistance = true,
959 .shaderFloat64 = pdevice->info.gen >= 8 &&
960 pdevice->info.has_64bit_types,
961 .shaderInt64 = pdevice->info.gen >= 8 &&
962 pdevice->info.has_64bit_types,
963 .shaderInt16 = pdevice->info.gen >= 8,
964 .shaderResourceMinLod = pdevice->info.gen >= 9,
965 .variableMultisampleRate = true,
966 .inheritedQueries = true,
967 };
968
969 /* We can't do image stores in vec4 shaders */
970 pFeatures->vertexPipelineStoresAndAtomics =
971 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
972 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
973
974 struct anv_app_info *app_info = &pdevice->instance->app_info;
975
976 /* The new DOOM and Wolfenstein games require depthBounds without
977 * checking for it. They seem to run fine without it so just claim it's
978 * there and accept the consequences.
979 */
980 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
981 pFeatures->depthBounds = true;
982 }
983
984 void anv_GetPhysicalDeviceFeatures2(
985 VkPhysicalDevice physicalDevice,
986 VkPhysicalDeviceFeatures2* pFeatures)
987 {
988 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
989 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
990
991 vk_foreach_struct(ext, pFeatures->pNext) {
992 switch (ext->sType) {
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
994 VkPhysicalDevice8BitStorageFeaturesKHR *features =
995 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
996 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
997 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
998 features->storagePushConstant8 = pdevice->info.gen >= 8;
999 break;
1000 }
1001
1002 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1003 VkPhysicalDevice16BitStorageFeatures *features =
1004 (VkPhysicalDevice16BitStorageFeatures *)ext;
1005 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1006 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1007 features->storagePushConstant16 = pdevice->info.gen >= 8;
1008 features->storageInputOutput16 = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1013 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1014 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1015 features->bufferDeviceAddressCaptureReplay = false;
1016 features->bufferDeviceAddressMultiDevice = false;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1021 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1022 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1023 features->computeDerivativeGroupQuads = true;
1024 features->computeDerivativeGroupLinear = true;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1029 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1030 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1031 features->conditionalRendering = pdevice->info.gen >= 8 ||
1032 pdevice->info.is_haswell;
1033 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1034 pdevice->info.is_haswell;
1035 break;
1036 }
1037
1038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1039 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1040 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1041 features->depthClipEnable = true;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1046 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1047 features->shaderFloat16 = pdevice->info.gen >= 8;
1048 features->shaderInt8 = pdevice->info.gen >= 8;
1049 break;
1050 }
1051
1052 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1053 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1054 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1055 features->hostQueryReset = true;
1056 break;
1057 }
1058
1059 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1060 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1061 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1062 features->shaderInputAttachmentArrayDynamicIndexing = false;
1063 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1064 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1065 features->shaderUniformBufferArrayNonUniformIndexing = false;
1066 features->shaderSampledImageArrayNonUniformIndexing = true;
1067 features->shaderStorageBufferArrayNonUniformIndexing = true;
1068 features->shaderStorageImageArrayNonUniformIndexing = true;
1069 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1070 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1071 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1072 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1073 features->descriptorBindingSampledImageUpdateAfterBind = true;
1074 features->descriptorBindingStorageImageUpdateAfterBind = true;
1075 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1076 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1077 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1078 features->descriptorBindingUpdateUnusedWhilePending = true;
1079 features->descriptorBindingPartiallyBound = true;
1080 features->descriptorBindingVariableDescriptorCount = false;
1081 features->runtimeDescriptorArray = true;
1082 break;
1083 }
1084
1085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1086 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1087 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1088 features->inlineUniformBlock = true;
1089 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1094 VkPhysicalDeviceMultiviewFeatures *features =
1095 (VkPhysicalDeviceMultiviewFeatures *)ext;
1096 features->multiview = true;
1097 features->multiviewGeometryShader = true;
1098 features->multiviewTessellationShader = true;
1099 break;
1100 }
1101
1102 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1103 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1104 features->protectedMemory = false;
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1109 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1110 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1111 features->samplerYcbcrConversion = true;
1112 break;
1113 }
1114
1115 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1116 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1117 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1118 features->scalarBlockLayout = true;
1119 break;
1120 }
1121
1122 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1123 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1124 features->shaderBufferInt64Atomics =
1125 pdevice->info.gen >= 9 && pdevice->use_softpin;
1126 features->shaderSharedInt64Atomics = VK_FALSE;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1131 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1132 features->shaderDrawParameters = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1137 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1138 features->variablePointersStorageBuffer = true;
1139 features->variablePointers = true;
1140 break;
1141 }
1142
1143 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1144 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1145 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1146 features->transformFeedback = true;
1147 features->geometryStreams = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1152 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1153 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1154 features->vertexAttributeInstanceRateDivisor = true;
1155 features->vertexAttributeInstanceRateZeroDivisor = true;
1156 break;
1157 }
1158
1159 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1160 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1161 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1162 features->ycbcrImageArrays = true;
1163 break;
1164 }
1165
1166 default:
1167 anv_debug_ignored_stype(ext->sType);
1168 break;
1169 }
1170 }
1171 }
1172
1173 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1174
1175 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1176 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1177
1178 void anv_GetPhysicalDeviceProperties(
1179 VkPhysicalDevice physicalDevice,
1180 VkPhysicalDeviceProperties* pProperties)
1181 {
1182 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1183 const struct gen_device_info *devinfo = &pdevice->info;
1184
1185 /* See assertions made when programming the buffer surface state. */
1186 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1187 (1ul << 30) : (1ul << 27);
1188
1189 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1190 const uint32_t max_textures =
1191 pdevice->has_bindless_images ? UINT16_MAX : 128;
1192 const uint32_t max_samplers =
1193 pdevice->has_bindless_samplers ? UINT16_MAX :
1194 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1195 const uint32_t max_images =
1196 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1197
1198 /* The moment we have anything bindless, claim a high per-stage limit */
1199 const uint32_t max_per_stage =
1200 pdevice->has_a64_buffer_access ? UINT32_MAX :
1201 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1202
1203 VkSampleCountFlags sample_counts =
1204 isl_device_get_sample_counts(&pdevice->isl_dev);
1205
1206
1207 VkPhysicalDeviceLimits limits = {
1208 .maxImageDimension1D = (1 << 14),
1209 .maxImageDimension2D = (1 << 14),
1210 .maxImageDimension3D = (1 << 11),
1211 .maxImageDimensionCube = (1 << 14),
1212 .maxImageArrayLayers = (1 << 11),
1213 .maxTexelBufferElements = 128 * 1024 * 1024,
1214 .maxUniformBufferRange = (1ul << 27),
1215 .maxStorageBufferRange = max_raw_buffer_sz,
1216 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1217 .maxMemoryAllocationCount = UINT32_MAX,
1218 .maxSamplerAllocationCount = 64 * 1024,
1219 .bufferImageGranularity = 64, /* A cache line */
1220 .sparseAddressSpaceSize = 0,
1221 .maxBoundDescriptorSets = MAX_SETS,
1222 .maxPerStageDescriptorSamplers = max_samplers,
1223 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1224 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1225 .maxPerStageDescriptorSampledImages = max_textures,
1226 .maxPerStageDescriptorStorageImages = max_images,
1227 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1228 .maxPerStageResources = max_per_stage,
1229 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1230 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1231 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1232 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1233 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1234 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1235 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1236 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1237 .maxVertexInputAttributes = MAX_VBS,
1238 .maxVertexInputBindings = MAX_VBS,
1239 .maxVertexInputAttributeOffset = 2047,
1240 .maxVertexInputBindingStride = 2048,
1241 .maxVertexOutputComponents = 128,
1242 .maxTessellationGenerationLevel = 64,
1243 .maxTessellationPatchSize = 32,
1244 .maxTessellationControlPerVertexInputComponents = 128,
1245 .maxTessellationControlPerVertexOutputComponents = 128,
1246 .maxTessellationControlPerPatchOutputComponents = 128,
1247 .maxTessellationControlTotalOutputComponents = 2048,
1248 .maxTessellationEvaluationInputComponents = 128,
1249 .maxTessellationEvaluationOutputComponents = 128,
1250 .maxGeometryShaderInvocations = 32,
1251 .maxGeometryInputComponents = 64,
1252 .maxGeometryOutputComponents = 128,
1253 .maxGeometryOutputVertices = 256,
1254 .maxGeometryTotalOutputComponents = 1024,
1255 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1256 .maxFragmentOutputAttachments = 8,
1257 .maxFragmentDualSrcAttachments = 1,
1258 .maxFragmentCombinedOutputResources = 8,
1259 .maxComputeSharedMemorySize = 32768,
1260 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1261 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1262 .maxComputeWorkGroupSize = {
1263 16 * devinfo->max_cs_threads,
1264 16 * devinfo->max_cs_threads,
1265 16 * devinfo->max_cs_threads,
1266 },
1267 .subPixelPrecisionBits = 8,
1268 .subTexelPrecisionBits = 8,
1269 .mipmapPrecisionBits = 8,
1270 .maxDrawIndexedIndexValue = UINT32_MAX,
1271 .maxDrawIndirectCount = UINT32_MAX,
1272 .maxSamplerLodBias = 16,
1273 .maxSamplerAnisotropy = 16,
1274 .maxViewports = MAX_VIEWPORTS,
1275 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1276 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1277 .viewportSubPixelBits = 13, /* We take a float? */
1278 .minMemoryMapAlignment = 4096, /* A page */
1279 .minTexelBufferOffsetAlignment = 1,
1280 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1281 .minUniformBufferOffsetAlignment = 32,
1282 .minStorageBufferOffsetAlignment = 4,
1283 .minTexelOffset = -8,
1284 .maxTexelOffset = 7,
1285 .minTexelGatherOffset = -32,
1286 .maxTexelGatherOffset = 31,
1287 .minInterpolationOffset = -0.5,
1288 .maxInterpolationOffset = 0.4375,
1289 .subPixelInterpolationOffsetBits = 4,
1290 .maxFramebufferWidth = (1 << 14),
1291 .maxFramebufferHeight = (1 << 14),
1292 .maxFramebufferLayers = (1 << 11),
1293 .framebufferColorSampleCounts = sample_counts,
1294 .framebufferDepthSampleCounts = sample_counts,
1295 .framebufferStencilSampleCounts = sample_counts,
1296 .framebufferNoAttachmentsSampleCounts = sample_counts,
1297 .maxColorAttachments = MAX_RTS,
1298 .sampledImageColorSampleCounts = sample_counts,
1299 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1300 .sampledImageDepthSampleCounts = sample_counts,
1301 .sampledImageStencilSampleCounts = sample_counts,
1302 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1303 .maxSampleMaskWords = 1,
1304 .timestampComputeAndGraphics = false,
1305 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1306 .maxClipDistances = 8,
1307 .maxCullDistances = 8,
1308 .maxCombinedClipAndCullDistances = 8,
1309 .discreteQueuePriorities = 2,
1310 .pointSizeRange = { 0.125, 255.875 },
1311 .lineWidthRange = { 0.0, 7.9921875 },
1312 .pointSizeGranularity = (1.0 / 8.0),
1313 .lineWidthGranularity = (1.0 / 128.0),
1314 .strictLines = false, /* FINISHME */
1315 .standardSampleLocations = true,
1316 .optimalBufferCopyOffsetAlignment = 128,
1317 .optimalBufferCopyRowPitchAlignment = 128,
1318 .nonCoherentAtomSize = 64,
1319 };
1320
1321 *pProperties = (VkPhysicalDeviceProperties) {
1322 .apiVersion = anv_physical_device_api_version(pdevice),
1323 .driverVersion = vk_get_driver_version(),
1324 .vendorID = 0x8086,
1325 .deviceID = pdevice->chipset_id,
1326 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1327 .limits = limits,
1328 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1329 };
1330
1331 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1332 "%s", pdevice->name);
1333 memcpy(pProperties->pipelineCacheUUID,
1334 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1335 }
1336
1337 void anv_GetPhysicalDeviceProperties2(
1338 VkPhysicalDevice physicalDevice,
1339 VkPhysicalDeviceProperties2* pProperties)
1340 {
1341 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1342
1343 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1344
1345 vk_foreach_struct(ext, pProperties->pNext) {
1346 switch (ext->sType) {
1347 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1348 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1349 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1350
1351 /* We support all of the depth resolve modes */
1352 props->supportedDepthResolveModes =
1353 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1354 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1355 VK_RESOLVE_MODE_MIN_BIT_KHR |
1356 VK_RESOLVE_MODE_MAX_BIT_KHR;
1357
1358 /* Average doesn't make sense for stencil so we don't support that */
1359 props->supportedStencilResolveModes =
1360 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1361 if (pdevice->info.gen >= 8) {
1362 /* The advanced stencil resolve modes currently require stencil
1363 * sampling be supported by the hardware.
1364 */
1365 props->supportedStencilResolveModes |=
1366 VK_RESOLVE_MODE_MIN_BIT_KHR |
1367 VK_RESOLVE_MODE_MAX_BIT_KHR;
1368 }
1369
1370 props->independentResolveNone = true;
1371 props->independentResolve = true;
1372 break;
1373 }
1374
1375 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1376 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1377 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1378
1379 /* It's a bit hard to exactly map our implementation to the limits
1380 * described here. The bindless surface handle in the extended
1381 * message descriptors is 20 bits and it's an index into the table of
1382 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1383 * address. Given that most things consume two surface states per
1384 * view (general/sampled for textures and write-only/read-write for
1385 * images), we claim 2^19 things.
1386 *
1387 * For SSBOs, we just use A64 messages so there is no real limit
1388 * there beyond the limit on the total size of a descriptor set.
1389 */
1390 const unsigned max_bindless_views = 1 << 19;
1391
1392 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1393 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1394 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1395 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1396 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1397 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1398 props->robustBufferAccessUpdateAfterBind = true;
1399 props->quadDivergentImplicitLod = false;
1400 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1401 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1402 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1403 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1404 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1405 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1406 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1407 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1408 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1409 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1410 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1411 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1412 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1413 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1414 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1415 break;
1416 }
1417
1418 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1419 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1420 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1421
1422 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1423 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1424 "Intel open-source Mesa driver");
1425
1426 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1427 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1428
1429 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1430 .major = 1,
1431 .minor = 1,
1432 .subminor = 2,
1433 .patch = 0,
1434 };
1435 break;
1436 }
1437
1438 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1439 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1440 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1441 /* Userptr needs page aligned memory. */
1442 props->minImportedHostPointerAlignment = 4096;
1443 break;
1444 }
1445
1446 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1447 VkPhysicalDeviceIDProperties *id_props =
1448 (VkPhysicalDeviceIDProperties *)ext;
1449 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1450 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1451 /* The LUID is for Windows. */
1452 id_props->deviceLUIDValid = false;
1453 break;
1454 }
1455
1456 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1457 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1458 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1459 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1460 props->maxPerStageDescriptorInlineUniformBlocks =
1461 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1462 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1463 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1464 props->maxDescriptorSetInlineUniformBlocks =
1465 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1466 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1467 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1468 break;
1469 }
1470
1471 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1472 VkPhysicalDeviceMaintenance3Properties *props =
1473 (VkPhysicalDeviceMaintenance3Properties *)ext;
1474 /* This value doesn't matter for us today as our per-stage
1475 * descriptors are the real limit.
1476 */
1477 props->maxPerSetDescriptors = 1024;
1478 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1479 break;
1480 }
1481
1482 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1483 VkPhysicalDeviceMultiviewProperties *properties =
1484 (VkPhysicalDeviceMultiviewProperties *)ext;
1485 properties->maxMultiviewViewCount = 16;
1486 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1487 break;
1488 }
1489
1490 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1491 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1492 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1493 properties->pciDomain = pdevice->pci_info.domain;
1494 properties->pciBus = pdevice->pci_info.bus;
1495 properties->pciDevice = pdevice->pci_info.device;
1496 properties->pciFunction = pdevice->pci_info.function;
1497 break;
1498 }
1499
1500 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1501 VkPhysicalDevicePointClippingProperties *properties =
1502 (VkPhysicalDevicePointClippingProperties *) ext;
1503 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1504 anv_finishme("Implement pop-free point clipping");
1505 break;
1506 }
1507
1508 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1509 VkPhysicalDeviceProtectedMemoryProperties *props =
1510 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1511 props->protectedNoFault = false;
1512 break;
1513 }
1514
1515 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1516 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1517 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1518
1519 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1520 break;
1521 }
1522
1523 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1524 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1525 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1526 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1527 properties->filterMinmaxSingleComponentFormats = true;
1528 break;
1529 }
1530
1531 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1532 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1533
1534 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1535
1536 VkShaderStageFlags scalar_stages = 0;
1537 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1538 if (pdevice->compiler->scalar_stage[stage])
1539 scalar_stages |= mesa_to_vk_shader_stage(stage);
1540 }
1541 properties->supportedStages = scalar_stages;
1542
1543 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1544 VK_SUBGROUP_FEATURE_VOTE_BIT |
1545 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1546 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1547 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1548 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1549 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1550 VK_SUBGROUP_FEATURE_QUAD_BIT;
1551 properties->quadOperationsInAllStages = true;
1552 break;
1553 }
1554
1555 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1556 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1557 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1558
1559 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1560 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1561 props->maxTransformFeedbackBufferSize = (1ull << 32);
1562 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1563 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1564 props->maxTransformFeedbackBufferDataStride = 2048;
1565 props->transformFeedbackQueries = true;
1566 props->transformFeedbackStreamsLinesTriangles = false;
1567 props->transformFeedbackRasterizationStreamSelect = false;
1568 props->transformFeedbackDraw = true;
1569 break;
1570 }
1571
1572 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1573 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1574 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1575 /* We have to restrict this a bit for multiview */
1576 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1577 break;
1578 }
1579
1580 default:
1581 anv_debug_ignored_stype(ext->sType);
1582 break;
1583 }
1584 }
1585 }
1586
1587 /* We support exactly one queue family. */
1588 static const VkQueueFamilyProperties
1589 anv_queue_family_properties = {
1590 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1591 VK_QUEUE_COMPUTE_BIT |
1592 VK_QUEUE_TRANSFER_BIT,
1593 .queueCount = 1,
1594 .timestampValidBits = 36, /* XXX: Real value here */
1595 .minImageTransferGranularity = { 1, 1, 1 },
1596 };
1597
1598 void anv_GetPhysicalDeviceQueueFamilyProperties(
1599 VkPhysicalDevice physicalDevice,
1600 uint32_t* pCount,
1601 VkQueueFamilyProperties* pQueueFamilyProperties)
1602 {
1603 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1604
1605 vk_outarray_append(&out, p) {
1606 *p = anv_queue_family_properties;
1607 }
1608 }
1609
1610 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1611 VkPhysicalDevice physicalDevice,
1612 uint32_t* pQueueFamilyPropertyCount,
1613 VkQueueFamilyProperties2* pQueueFamilyProperties)
1614 {
1615
1616 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1617
1618 vk_outarray_append(&out, p) {
1619 p->queueFamilyProperties = anv_queue_family_properties;
1620
1621 vk_foreach_struct(s, p->pNext) {
1622 anv_debug_ignored_stype(s->sType);
1623 }
1624 }
1625 }
1626
1627 void anv_GetPhysicalDeviceMemoryProperties(
1628 VkPhysicalDevice physicalDevice,
1629 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1630 {
1631 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1632
1633 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1634 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1635 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1636 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1637 .heapIndex = physical_device->memory.types[i].heapIndex,
1638 };
1639 }
1640
1641 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1642 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1643 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1644 .size = physical_device->memory.heaps[i].size,
1645 .flags = physical_device->memory.heaps[i].flags,
1646 };
1647 }
1648 }
1649
1650 static void
1651 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1652 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1653 {
1654 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1655 uint64_t sys_available = get_available_system_memory();
1656 assert(sys_available > 0);
1657
1658 VkDeviceSize total_heaps_size = 0;
1659 for (size_t i = 0; i < device->memory.heap_count; i++)
1660 total_heaps_size += device->memory.heaps[i].size;
1661
1662 for (size_t i = 0; i < device->memory.heap_count; i++) {
1663 VkDeviceSize heap_size = device->memory.heaps[i].size;
1664 VkDeviceSize heap_used = device->memory.heaps[i].used;
1665 VkDeviceSize heap_budget;
1666
1667 double heap_proportion = (double) heap_size / total_heaps_size;
1668 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1669
1670 /*
1671 * Let's not incite the app to starve the system: report at most 90% of
1672 * available system memory.
1673 */
1674 uint64_t heap_available = sys_available_prop * 9 / 10;
1675 heap_budget = MIN2(heap_size, heap_used + heap_available);
1676
1677 /*
1678 * Round down to the nearest MB
1679 */
1680 heap_budget &= ~((1ull << 20) - 1);
1681
1682 /*
1683 * The heapBudget value must be non-zero for array elements less than
1684 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1685 * value must be less than or equal to VkMemoryHeap::size for each heap.
1686 */
1687 assert(0 < heap_budget && heap_budget <= heap_size);
1688
1689 memoryBudget->heapUsage[i] = heap_used;
1690 memoryBudget->heapBudget[i] = heap_budget;
1691 }
1692
1693 /* The heapBudget and heapUsage values must be zero for array elements
1694 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1695 */
1696 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1697 memoryBudget->heapBudget[i] = 0;
1698 memoryBudget->heapUsage[i] = 0;
1699 }
1700 }
1701
1702 void anv_GetPhysicalDeviceMemoryProperties2(
1703 VkPhysicalDevice physicalDevice,
1704 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1705 {
1706 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1707 &pMemoryProperties->memoryProperties);
1708
1709 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1710 switch (ext->sType) {
1711 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1712 anv_get_memory_budget(physicalDevice, (void*)ext);
1713 break;
1714 default:
1715 anv_debug_ignored_stype(ext->sType);
1716 break;
1717 }
1718 }
1719 }
1720
1721 void
1722 anv_GetDeviceGroupPeerMemoryFeatures(
1723 VkDevice device,
1724 uint32_t heapIndex,
1725 uint32_t localDeviceIndex,
1726 uint32_t remoteDeviceIndex,
1727 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1728 {
1729 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1730 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1731 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1732 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1733 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1734 }
1735
1736 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1737 VkInstance _instance,
1738 const char* pName)
1739 {
1740 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1741
1742 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1743 * when we have to return valid function pointers, NULL, or it's left
1744 * undefined. See the table for exact details.
1745 */
1746 if (pName == NULL)
1747 return NULL;
1748
1749 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1750 if (strcmp(pName, "vk" #entrypoint) == 0) \
1751 return (PFN_vkVoidFunction)anv_##entrypoint
1752
1753 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1754 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1755 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1756 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1757
1758 #undef LOOKUP_ANV_ENTRYPOINT
1759
1760 if (instance == NULL)
1761 return NULL;
1762
1763 int idx = anv_get_instance_entrypoint_index(pName);
1764 if (idx >= 0)
1765 return instance->dispatch.entrypoints[idx];
1766
1767 idx = anv_get_device_entrypoint_index(pName);
1768 if (idx >= 0)
1769 return instance->device_dispatch.entrypoints[idx];
1770
1771 return NULL;
1772 }
1773
1774 /* With version 1+ of the loader interface the ICD should expose
1775 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1776 */
1777 PUBLIC
1778 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1779 VkInstance instance,
1780 const char* pName);
1781
1782 PUBLIC
1783 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1784 VkInstance instance,
1785 const char* pName)
1786 {
1787 return anv_GetInstanceProcAddr(instance, pName);
1788 }
1789
1790 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1791 VkDevice _device,
1792 const char* pName)
1793 {
1794 ANV_FROM_HANDLE(anv_device, device, _device);
1795
1796 if (!device || !pName)
1797 return NULL;
1798
1799 int idx = anv_get_device_entrypoint_index(pName);
1800 if (idx < 0)
1801 return NULL;
1802
1803 return device->dispatch.entrypoints[idx];
1804 }
1805
1806 VkResult
1807 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1808 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1809 const VkAllocationCallbacks* pAllocator,
1810 VkDebugReportCallbackEXT* pCallback)
1811 {
1812 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1813 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1814 pCreateInfo, pAllocator, &instance->alloc,
1815 pCallback);
1816 }
1817
1818 void
1819 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1820 VkDebugReportCallbackEXT _callback,
1821 const VkAllocationCallbacks* pAllocator)
1822 {
1823 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1824 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1825 _callback, pAllocator, &instance->alloc);
1826 }
1827
1828 void
1829 anv_DebugReportMessageEXT(VkInstance _instance,
1830 VkDebugReportFlagsEXT flags,
1831 VkDebugReportObjectTypeEXT objectType,
1832 uint64_t object,
1833 size_t location,
1834 int32_t messageCode,
1835 const char* pLayerPrefix,
1836 const char* pMessage)
1837 {
1838 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1839 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1840 object, location, messageCode, pLayerPrefix, pMessage);
1841 }
1842
1843 static void
1844 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1845 {
1846 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1847 queue->device = device;
1848 queue->flags = 0;
1849 }
1850
1851 static void
1852 anv_queue_finish(struct anv_queue *queue)
1853 {
1854 }
1855
1856 static struct anv_state
1857 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1858 {
1859 struct anv_state state;
1860
1861 state = anv_state_pool_alloc(pool, size, align);
1862 memcpy(state.map, p, size);
1863
1864 return state;
1865 }
1866
1867 struct gen8_border_color {
1868 union {
1869 float float32[4];
1870 uint32_t uint32[4];
1871 };
1872 /* Pad out to 64 bytes */
1873 uint32_t _pad[12];
1874 };
1875
1876 static void
1877 anv_device_init_border_colors(struct anv_device *device)
1878 {
1879 static const struct gen8_border_color border_colors[] = {
1880 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1881 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1882 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1883 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1884 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1885 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1886 };
1887
1888 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1889 sizeof(border_colors), 64,
1890 border_colors);
1891 }
1892
1893 static void
1894 anv_device_init_trivial_batch(struct anv_device *device)
1895 {
1896 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1897
1898 if (device->instance->physicalDevice.has_exec_async)
1899 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1900
1901 if (device->instance->physicalDevice.use_softpin)
1902 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1903
1904 anv_vma_alloc(device, &device->trivial_batch_bo);
1905
1906 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1907 0, 4096, 0);
1908
1909 struct anv_batch batch = {
1910 .start = map,
1911 .next = map,
1912 .end = map + 4096,
1913 };
1914
1915 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1916 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1917
1918 if (!device->info.has_llc)
1919 gen_clflush_range(map, batch.next - map);
1920
1921 anv_gem_munmap(map, device->trivial_batch_bo.size);
1922 }
1923
1924 VkResult anv_EnumerateDeviceExtensionProperties(
1925 VkPhysicalDevice physicalDevice,
1926 const char* pLayerName,
1927 uint32_t* pPropertyCount,
1928 VkExtensionProperties* pProperties)
1929 {
1930 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1931 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1932
1933 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1934 if (device->supported_extensions.extensions[i]) {
1935 vk_outarray_append(&out, prop) {
1936 *prop = anv_device_extensions[i];
1937 }
1938 }
1939 }
1940
1941 return vk_outarray_status(&out);
1942 }
1943
1944 static void
1945 anv_device_init_dispatch(struct anv_device *device)
1946 {
1947 const struct anv_device_dispatch_table *genX_table;
1948 switch (device->info.gen) {
1949 case 11:
1950 genX_table = &gen11_device_dispatch_table;
1951 break;
1952 case 10:
1953 genX_table = &gen10_device_dispatch_table;
1954 break;
1955 case 9:
1956 genX_table = &gen9_device_dispatch_table;
1957 break;
1958 case 8:
1959 genX_table = &gen8_device_dispatch_table;
1960 break;
1961 case 7:
1962 if (device->info.is_haswell)
1963 genX_table = &gen75_device_dispatch_table;
1964 else
1965 genX_table = &gen7_device_dispatch_table;
1966 break;
1967 default:
1968 unreachable("unsupported gen\n");
1969 }
1970
1971 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1972 /* Vulkan requires that entrypoints for extensions which have not been
1973 * enabled must not be advertised.
1974 */
1975 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1976 &device->instance->enabled_extensions,
1977 &device->enabled_extensions)) {
1978 device->dispatch.entrypoints[i] = NULL;
1979 } else if (genX_table->entrypoints[i]) {
1980 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1981 } else {
1982 device->dispatch.entrypoints[i] =
1983 anv_device_dispatch_table.entrypoints[i];
1984 }
1985 }
1986 }
1987
1988 static int
1989 vk_priority_to_gen(int priority)
1990 {
1991 switch (priority) {
1992 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1993 return GEN_CONTEXT_LOW_PRIORITY;
1994 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1995 return GEN_CONTEXT_MEDIUM_PRIORITY;
1996 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1997 return GEN_CONTEXT_HIGH_PRIORITY;
1998 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1999 return GEN_CONTEXT_REALTIME_PRIORITY;
2000 default:
2001 unreachable("Invalid priority");
2002 }
2003 }
2004
2005 static void
2006 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2007 {
2008 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2009
2010 if (device->instance->physicalDevice.has_exec_async)
2011 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2012
2013 if (device->instance->physicalDevice.use_softpin)
2014 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2015
2016 anv_vma_alloc(device, &device->hiz_clear_bo);
2017
2018 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2019 0, 4096, 0);
2020
2021 union isl_color_value hiz_clear = { .u32 = { 0, } };
2022 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2023
2024 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2025 anv_gem_munmap(map, device->hiz_clear_bo.size);
2026 }
2027
2028 static bool
2029 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2030 struct anv_block_pool *pool,
2031 uint64_t address)
2032 {
2033 for (uint32_t i = 0; i < pool->nbos; i++) {
2034 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2035 uint32_t bo_size = pool->bos[i].size;
2036 if (address >= bo_address && address < (bo_address + bo_size)) {
2037 *ret = (struct gen_batch_decode_bo) {
2038 .addr = bo_address,
2039 .size = bo_size,
2040 .map = pool->bos[i].map,
2041 };
2042 return true;
2043 }
2044 }
2045 return false;
2046 }
2047
2048 /* Finding a buffer for batch decoding */
2049 static struct gen_batch_decode_bo
2050 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2051 {
2052 struct anv_device *device = v_batch;
2053 struct gen_batch_decode_bo ret_bo = {};
2054
2055 assert(ppgtt);
2056
2057 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2058 return ret_bo;
2059 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2060 return ret_bo;
2061 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2062 return ret_bo;
2063 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2064 return ret_bo;
2065
2066 if (!device->cmd_buffer_being_decoded)
2067 return (struct gen_batch_decode_bo) { };
2068
2069 struct anv_batch_bo **bo;
2070
2071 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2072 /* The decoder zeroes out the top 16 bits, so we need to as well */
2073 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2074
2075 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2076 return (struct gen_batch_decode_bo) {
2077 .addr = bo_address,
2078 .size = (*bo)->bo.size,
2079 .map = (*bo)->bo.map,
2080 };
2081 }
2082 }
2083
2084 return (struct gen_batch_decode_bo) { };
2085 }
2086
2087 VkResult anv_CreateDevice(
2088 VkPhysicalDevice physicalDevice,
2089 const VkDeviceCreateInfo* pCreateInfo,
2090 const VkAllocationCallbacks* pAllocator,
2091 VkDevice* pDevice)
2092 {
2093 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2094 VkResult result;
2095 struct anv_device *device;
2096
2097 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2098
2099 struct anv_device_extension_table enabled_extensions = { };
2100 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2101 int idx;
2102 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2103 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2104 anv_device_extensions[idx].extensionName) == 0)
2105 break;
2106 }
2107
2108 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2109 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2110
2111 if (!physical_device->supported_extensions.extensions[idx])
2112 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2113
2114 enabled_extensions.extensions[idx] = true;
2115 }
2116
2117 /* Check enabled features */
2118 if (pCreateInfo->pEnabledFeatures) {
2119 VkPhysicalDeviceFeatures supported_features;
2120 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2121 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2122 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2123 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2124 for (uint32_t i = 0; i < num_features; i++) {
2125 if (enabled_feature[i] && !supported_feature[i])
2126 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2127 }
2128 }
2129
2130 /* Check requested queues and fail if we are requested to create any
2131 * queues with flags we don't support.
2132 */
2133 assert(pCreateInfo->queueCreateInfoCount > 0);
2134 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2135 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2136 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2137 }
2138
2139 /* Check if client specified queue priority. */
2140 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2141 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2142 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2143
2144 VkQueueGlobalPriorityEXT priority =
2145 queue_priority ? queue_priority->globalPriority :
2146 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2147
2148 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2149 sizeof(*device), 8,
2150 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2151 if (!device)
2152 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2153
2154 const unsigned decode_flags =
2155 GEN_BATCH_DECODE_FULL |
2156 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2157 GEN_BATCH_DECODE_OFFSETS |
2158 GEN_BATCH_DECODE_FLOATS;
2159
2160 gen_batch_decode_ctx_init(&device->decoder_ctx,
2161 &physical_device->info,
2162 stderr, decode_flags, NULL,
2163 decode_get_bo, NULL, device);
2164
2165 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2166 device->instance = physical_device->instance;
2167 device->chipset_id = physical_device->chipset_id;
2168 device->no_hw = physical_device->no_hw;
2169 device->_lost = false;
2170
2171 if (pAllocator)
2172 device->alloc = *pAllocator;
2173 else
2174 device->alloc = physical_device->instance->alloc;
2175
2176 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2177 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2178 if (device->fd == -1) {
2179 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2180 goto fail_device;
2181 }
2182
2183 device->context_id = anv_gem_create_context(device);
2184 if (device->context_id == -1) {
2185 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2186 goto fail_fd;
2187 }
2188
2189 if (physical_device->use_softpin) {
2190 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2191 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2192 goto fail_fd;
2193 }
2194
2195 /* keep the page with address zero out of the allocator */
2196 struct anv_memory_heap *low_heap =
2197 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2198 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2199 device->vma_lo_available = low_heap->size;
2200
2201 struct anv_memory_heap *high_heap =
2202 &physical_device->memory.heaps[0];
2203 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2204 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2205 high_heap->size;
2206 }
2207
2208 list_inithead(&device->memory_objects);
2209
2210 /* As per spec, the driver implementation may deny requests to acquire
2211 * a priority above the default priority (MEDIUM) if the caller does not
2212 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2213 * is returned.
2214 */
2215 if (physical_device->has_context_priority) {
2216 int err = anv_gem_set_context_param(device->fd, device->context_id,
2217 I915_CONTEXT_PARAM_PRIORITY,
2218 vk_priority_to_gen(priority));
2219 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2220 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2221 goto fail_fd;
2222 }
2223 }
2224
2225 device->info = physical_device->info;
2226 device->isl_dev = physical_device->isl_dev;
2227
2228 /* On Broadwell and later, we can use batch chaining to more efficiently
2229 * implement growing command buffers. Prior to Haswell, the kernel
2230 * command parser gets in the way and we have to fall back to growing
2231 * the batch.
2232 */
2233 device->can_chain_batches = device->info.gen >= 8;
2234
2235 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2236 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2237 device->enabled_extensions = enabled_extensions;
2238
2239 anv_device_init_dispatch(device);
2240
2241 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2242 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2243 goto fail_context_id;
2244 }
2245
2246 pthread_condattr_t condattr;
2247 if (pthread_condattr_init(&condattr) != 0) {
2248 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2249 goto fail_mutex;
2250 }
2251 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2252 pthread_condattr_destroy(&condattr);
2253 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2254 goto fail_mutex;
2255 }
2256 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2257 pthread_condattr_destroy(&condattr);
2258 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2259 goto fail_mutex;
2260 }
2261 pthread_condattr_destroy(&condattr);
2262
2263 uint64_t bo_flags =
2264 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2265 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2266 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2267 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2268
2269 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2270
2271 result = anv_bo_cache_init(&device->bo_cache);
2272 if (result != VK_SUCCESS)
2273 goto fail_batch_bo_pool;
2274
2275 if (!physical_device->use_softpin)
2276 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2277
2278 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2279 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2280 16384,
2281 bo_flags);
2282 if (result != VK_SUCCESS)
2283 goto fail_bo_cache;
2284
2285 result = anv_state_pool_init(&device->instruction_state_pool, device,
2286 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2287 16384,
2288 bo_flags);
2289 if (result != VK_SUCCESS)
2290 goto fail_dynamic_state_pool;
2291
2292 result = anv_state_pool_init(&device->surface_state_pool, device,
2293 SURFACE_STATE_POOL_MIN_ADDRESS,
2294 4096,
2295 bo_flags);
2296 if (result != VK_SUCCESS)
2297 goto fail_instruction_state_pool;
2298
2299 if (physical_device->use_softpin) {
2300 result = anv_state_pool_init(&device->binding_table_pool, device,
2301 BINDING_TABLE_POOL_MIN_ADDRESS,
2302 4096,
2303 bo_flags);
2304 if (result != VK_SUCCESS)
2305 goto fail_surface_state_pool;
2306 }
2307
2308 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2309 if (result != VK_SUCCESS)
2310 goto fail_binding_table_pool;
2311
2312 if (physical_device->use_softpin)
2313 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2314
2315 if (!anv_vma_alloc(device, &device->workaround_bo))
2316 goto fail_workaround_bo;
2317
2318 anv_device_init_trivial_batch(device);
2319
2320 if (device->info.gen >= 10)
2321 anv_device_init_hiz_clear_value_bo(device);
2322
2323 anv_scratch_pool_init(device, &device->scratch_pool);
2324
2325 anv_queue_init(device, &device->queue);
2326
2327 switch (device->info.gen) {
2328 case 7:
2329 if (!device->info.is_haswell)
2330 result = gen7_init_device_state(device);
2331 else
2332 result = gen75_init_device_state(device);
2333 break;
2334 case 8:
2335 result = gen8_init_device_state(device);
2336 break;
2337 case 9:
2338 result = gen9_init_device_state(device);
2339 break;
2340 case 10:
2341 result = gen10_init_device_state(device);
2342 break;
2343 case 11:
2344 result = gen11_init_device_state(device);
2345 break;
2346 default:
2347 /* Shouldn't get here as we don't create physical devices for any other
2348 * gens. */
2349 unreachable("unhandled gen");
2350 }
2351 if (result != VK_SUCCESS)
2352 goto fail_workaround_bo;
2353
2354 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2355
2356 anv_device_init_blorp(device);
2357
2358 anv_device_init_border_colors(device);
2359
2360 *pDevice = anv_device_to_handle(device);
2361
2362 return VK_SUCCESS;
2363
2364 fail_workaround_bo:
2365 anv_queue_finish(&device->queue);
2366 anv_scratch_pool_finish(device, &device->scratch_pool);
2367 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2368 anv_gem_close(device, device->workaround_bo.gem_handle);
2369 fail_binding_table_pool:
2370 if (physical_device->use_softpin)
2371 anv_state_pool_finish(&device->binding_table_pool);
2372 fail_surface_state_pool:
2373 anv_state_pool_finish(&device->surface_state_pool);
2374 fail_instruction_state_pool:
2375 anv_state_pool_finish(&device->instruction_state_pool);
2376 fail_dynamic_state_pool:
2377 anv_state_pool_finish(&device->dynamic_state_pool);
2378 fail_bo_cache:
2379 anv_bo_cache_finish(&device->bo_cache);
2380 fail_batch_bo_pool:
2381 anv_bo_pool_finish(&device->batch_bo_pool);
2382 pthread_cond_destroy(&device->queue_submit);
2383 fail_mutex:
2384 pthread_mutex_destroy(&device->mutex);
2385 fail_context_id:
2386 anv_gem_destroy_context(device, device->context_id);
2387 fail_fd:
2388 close(device->fd);
2389 fail_device:
2390 vk_free(&device->alloc, device);
2391
2392 return result;
2393 }
2394
2395 void anv_DestroyDevice(
2396 VkDevice _device,
2397 const VkAllocationCallbacks* pAllocator)
2398 {
2399 ANV_FROM_HANDLE(anv_device, device, _device);
2400 struct anv_physical_device *physical_device;
2401
2402 if (!device)
2403 return;
2404
2405 physical_device = &device->instance->physicalDevice;
2406
2407 anv_device_finish_blorp(device);
2408
2409 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2410
2411 anv_queue_finish(&device->queue);
2412
2413 #ifdef HAVE_VALGRIND
2414 /* We only need to free these to prevent valgrind errors. The backing
2415 * BO will go away in a couple of lines so we don't actually leak.
2416 */
2417 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2418 #endif
2419
2420 anv_scratch_pool_finish(device, &device->scratch_pool);
2421
2422 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2423 anv_vma_free(device, &device->workaround_bo);
2424 anv_gem_close(device, device->workaround_bo.gem_handle);
2425
2426 anv_vma_free(device, &device->trivial_batch_bo);
2427 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2428 if (device->info.gen >= 10)
2429 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2430
2431 if (physical_device->use_softpin)
2432 anv_state_pool_finish(&device->binding_table_pool);
2433 anv_state_pool_finish(&device->surface_state_pool);
2434 anv_state_pool_finish(&device->instruction_state_pool);
2435 anv_state_pool_finish(&device->dynamic_state_pool);
2436
2437 anv_bo_cache_finish(&device->bo_cache);
2438
2439 anv_bo_pool_finish(&device->batch_bo_pool);
2440
2441 pthread_cond_destroy(&device->queue_submit);
2442 pthread_mutex_destroy(&device->mutex);
2443
2444 anv_gem_destroy_context(device, device->context_id);
2445
2446 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2447
2448 close(device->fd);
2449
2450 vk_free(&device->alloc, device);
2451 }
2452
2453 VkResult anv_EnumerateInstanceLayerProperties(
2454 uint32_t* pPropertyCount,
2455 VkLayerProperties* pProperties)
2456 {
2457 if (pProperties == NULL) {
2458 *pPropertyCount = 0;
2459 return VK_SUCCESS;
2460 }
2461
2462 /* None supported at this time */
2463 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2464 }
2465
2466 VkResult anv_EnumerateDeviceLayerProperties(
2467 VkPhysicalDevice physicalDevice,
2468 uint32_t* pPropertyCount,
2469 VkLayerProperties* pProperties)
2470 {
2471 if (pProperties == NULL) {
2472 *pPropertyCount = 0;
2473 return VK_SUCCESS;
2474 }
2475
2476 /* None supported at this time */
2477 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2478 }
2479
2480 void anv_GetDeviceQueue(
2481 VkDevice _device,
2482 uint32_t queueNodeIndex,
2483 uint32_t queueIndex,
2484 VkQueue* pQueue)
2485 {
2486 ANV_FROM_HANDLE(anv_device, device, _device);
2487
2488 assert(queueIndex == 0);
2489
2490 *pQueue = anv_queue_to_handle(&device->queue);
2491 }
2492
2493 void anv_GetDeviceQueue2(
2494 VkDevice _device,
2495 const VkDeviceQueueInfo2* pQueueInfo,
2496 VkQueue* pQueue)
2497 {
2498 ANV_FROM_HANDLE(anv_device, device, _device);
2499
2500 assert(pQueueInfo->queueIndex == 0);
2501
2502 if (pQueueInfo->flags == device->queue.flags)
2503 *pQueue = anv_queue_to_handle(&device->queue);
2504 else
2505 *pQueue = NULL;
2506 }
2507
2508 VkResult
2509 _anv_device_set_lost(struct anv_device *device,
2510 const char *file, int line,
2511 const char *msg, ...)
2512 {
2513 VkResult err;
2514 va_list ap;
2515
2516 device->_lost = true;
2517
2518 va_start(ap, msg);
2519 err = __vk_errorv(device->instance, device,
2520 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2521 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2522 va_end(ap);
2523
2524 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2525 abort();
2526
2527 return err;
2528 }
2529
2530 VkResult
2531 anv_device_query_status(struct anv_device *device)
2532 {
2533 /* This isn't likely as most of the callers of this function already check
2534 * for it. However, it doesn't hurt to check and it potentially lets us
2535 * avoid an ioctl.
2536 */
2537 if (anv_device_is_lost(device))
2538 return VK_ERROR_DEVICE_LOST;
2539
2540 uint32_t active, pending;
2541 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2542 if (ret == -1) {
2543 /* We don't know the real error. */
2544 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2545 }
2546
2547 if (active) {
2548 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2549 } else if (pending) {
2550 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2551 }
2552
2553 return VK_SUCCESS;
2554 }
2555
2556 VkResult
2557 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2558 {
2559 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2560 * Other usages of the BO (such as on different hardware) will not be
2561 * flagged as "busy" by this ioctl. Use with care.
2562 */
2563 int ret = anv_gem_busy(device, bo->gem_handle);
2564 if (ret == 1) {
2565 return VK_NOT_READY;
2566 } else if (ret == -1) {
2567 /* We don't know the real error. */
2568 return anv_device_set_lost(device, "gem wait failed: %m");
2569 }
2570
2571 /* Query for device status after the busy call. If the BO we're checking
2572 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2573 * client because it clearly doesn't have valid data. Yes, this most
2574 * likely means an ioctl, but we just did an ioctl to query the busy status
2575 * so it's no great loss.
2576 */
2577 return anv_device_query_status(device);
2578 }
2579
2580 VkResult
2581 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2582 int64_t timeout)
2583 {
2584 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2585 if (ret == -1 && errno == ETIME) {
2586 return VK_TIMEOUT;
2587 } else if (ret == -1) {
2588 /* We don't know the real error. */
2589 return anv_device_set_lost(device, "gem wait failed: %m");
2590 }
2591
2592 /* Query for device status after the wait. If the BO we're waiting on got
2593 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2594 * because it clearly doesn't have valid data. Yes, this most likely means
2595 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2596 */
2597 return anv_device_query_status(device);
2598 }
2599
2600 VkResult anv_DeviceWaitIdle(
2601 VkDevice _device)
2602 {
2603 ANV_FROM_HANDLE(anv_device, device, _device);
2604 if (anv_device_is_lost(device))
2605 return VK_ERROR_DEVICE_LOST;
2606
2607 struct anv_batch batch;
2608
2609 uint32_t cmds[8];
2610 batch.start = batch.next = cmds;
2611 batch.end = (void *) cmds + sizeof(cmds);
2612
2613 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2614 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2615
2616 return anv_device_submit_simple_batch(device, &batch);
2617 }
2618
2619 bool
2620 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2621 {
2622 if (!(bo->flags & EXEC_OBJECT_PINNED))
2623 return true;
2624
2625 pthread_mutex_lock(&device->vma_mutex);
2626
2627 bo->offset = 0;
2628
2629 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2630 device->vma_hi_available >= bo->size) {
2631 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2632 if (addr) {
2633 bo->offset = gen_canonical_address(addr);
2634 assert(addr == gen_48b_address(bo->offset));
2635 device->vma_hi_available -= bo->size;
2636 }
2637 }
2638
2639 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2640 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2641 if (addr) {
2642 bo->offset = gen_canonical_address(addr);
2643 assert(addr == gen_48b_address(bo->offset));
2644 device->vma_lo_available -= bo->size;
2645 }
2646 }
2647
2648 pthread_mutex_unlock(&device->vma_mutex);
2649
2650 return bo->offset != 0;
2651 }
2652
2653 void
2654 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2655 {
2656 if (!(bo->flags & EXEC_OBJECT_PINNED))
2657 return;
2658
2659 const uint64_t addr_48b = gen_48b_address(bo->offset);
2660
2661 pthread_mutex_lock(&device->vma_mutex);
2662
2663 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2664 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2665 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2666 device->vma_lo_available += bo->size;
2667 } else {
2668 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2669 &device->instance->physicalDevice;
2670 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2671 addr_48b < (physical_device->memory.heaps[0].vma_start +
2672 physical_device->memory.heaps[0].vma_size));
2673 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2674 device->vma_hi_available += bo->size;
2675 }
2676
2677 pthread_mutex_unlock(&device->vma_mutex);
2678
2679 bo->offset = 0;
2680 }
2681
2682 VkResult
2683 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2684 {
2685 uint32_t gem_handle = anv_gem_create(device, size);
2686 if (!gem_handle)
2687 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2688
2689 anv_bo_init(bo, gem_handle, size);
2690
2691 return VK_SUCCESS;
2692 }
2693
2694 VkResult anv_AllocateMemory(
2695 VkDevice _device,
2696 const VkMemoryAllocateInfo* pAllocateInfo,
2697 const VkAllocationCallbacks* pAllocator,
2698 VkDeviceMemory* pMem)
2699 {
2700 ANV_FROM_HANDLE(anv_device, device, _device);
2701 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2702 struct anv_device_memory *mem;
2703 VkResult result = VK_SUCCESS;
2704
2705 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2706
2707 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2708 assert(pAllocateInfo->allocationSize > 0);
2709
2710 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2711 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2712
2713 /* FINISHME: Fail if allocation request exceeds heap size. */
2714
2715 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2716 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2717 if (mem == NULL)
2718 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2719
2720 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2721 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2722 mem->map = NULL;
2723 mem->map_size = 0;
2724 mem->ahw = NULL;
2725 mem->host_ptr = NULL;
2726
2727 uint64_t bo_flags = 0;
2728
2729 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2730 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2731 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2732
2733 const struct wsi_memory_allocate_info *wsi_info =
2734 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2735 if (wsi_info && wsi_info->implicit_sync) {
2736 /* We need to set the WRITE flag on window system buffers so that GEM
2737 * will know we're writing to them and synchronize uses on other rings
2738 * (eg if the display server uses the blitter ring).
2739 */
2740 bo_flags |= EXEC_OBJECT_WRITE;
2741 } else if (pdevice->has_exec_async) {
2742 bo_flags |= EXEC_OBJECT_ASYNC;
2743 }
2744
2745 if (pdevice->use_softpin)
2746 bo_flags |= EXEC_OBJECT_PINNED;
2747
2748 const VkExportMemoryAllocateInfo *export_info =
2749 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2750
2751 /* Check if we need to support Android HW buffer export. If so,
2752 * create AHardwareBuffer and import memory from it.
2753 */
2754 bool android_export = false;
2755 if (export_info && export_info->handleTypes &
2756 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2757 android_export = true;
2758
2759 /* Android memory import. */
2760 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2761 vk_find_struct_const(pAllocateInfo->pNext,
2762 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2763
2764 if (ahw_import_info) {
2765 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2766 if (result != VK_SUCCESS)
2767 goto fail;
2768
2769 goto success;
2770 } else if (android_export) {
2771 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2772 if (result != VK_SUCCESS)
2773 goto fail;
2774
2775 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2776 .buffer = mem->ahw,
2777 };
2778 result = anv_import_ahw_memory(_device, mem, &import_info);
2779 if (result != VK_SUCCESS)
2780 goto fail;
2781
2782 goto success;
2783 }
2784
2785 const VkImportMemoryFdInfoKHR *fd_info =
2786 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2787
2788 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2789 * ignored.
2790 */
2791 if (fd_info && fd_info->handleType) {
2792 /* At the moment, we support only the below handle types. */
2793 assert(fd_info->handleType ==
2794 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2795 fd_info->handleType ==
2796 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2797
2798 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2799 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2800 if (result != VK_SUCCESS)
2801 goto fail;
2802
2803 VkDeviceSize aligned_alloc_size =
2804 align_u64(pAllocateInfo->allocationSize, 4096);
2805
2806 /* For security purposes, we reject importing the bo if it's smaller
2807 * than the requested allocation size. This prevents a malicious client
2808 * from passing a buffer to a trusted client, lying about the size, and
2809 * telling the trusted client to try and texture from an image that goes
2810 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2811 * in the trusted client. The trusted client can protect itself against
2812 * this sort of attack but only if it can trust the buffer size.
2813 */
2814 if (mem->bo->size < aligned_alloc_size) {
2815 result = vk_errorf(device->instance, device,
2816 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2817 "aligned allocationSize too large for "
2818 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2819 "%"PRIu64"B > %"PRIu64"B",
2820 aligned_alloc_size, mem->bo->size);
2821 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2822 goto fail;
2823 }
2824
2825 /* From the Vulkan spec:
2826 *
2827 * "Importing memory from a file descriptor transfers ownership of
2828 * the file descriptor from the application to the Vulkan
2829 * implementation. The application must not perform any operations on
2830 * the file descriptor after a successful import."
2831 *
2832 * If the import fails, we leave the file descriptor open.
2833 */
2834 close(fd_info->fd);
2835 goto success;
2836 }
2837
2838 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2839 vk_find_struct_const(pAllocateInfo->pNext,
2840 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2841 if (host_ptr_info && host_ptr_info->handleType) {
2842 if (host_ptr_info->handleType ==
2843 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2844 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2845 goto fail;
2846 }
2847
2848 assert(host_ptr_info->handleType ==
2849 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2850
2851 result = anv_bo_cache_import_host_ptr(
2852 device, &device->bo_cache, host_ptr_info->pHostPointer,
2853 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2854
2855 if (result != VK_SUCCESS)
2856 goto fail;
2857
2858 mem->host_ptr = host_ptr_info->pHostPointer;
2859 goto success;
2860 }
2861
2862 /* Regular allocate (not importing memory). */
2863
2864 if (export_info && export_info->handleTypes)
2865 bo_flags |= ANV_BO_EXTERNAL;
2866
2867 result = anv_bo_cache_alloc(device, &device->bo_cache,
2868 pAllocateInfo->allocationSize, bo_flags,
2869 &mem->bo);
2870 if (result != VK_SUCCESS)
2871 goto fail;
2872
2873 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2874 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2875 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2876 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2877
2878 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2879 * the BO. In this case, we have a dedicated allocation.
2880 */
2881 if (image->needs_set_tiling) {
2882 const uint32_t i915_tiling =
2883 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2884 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2885 image->planes[0].surface.isl.row_pitch_B,
2886 i915_tiling);
2887 if (ret) {
2888 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2889 return vk_errorf(device->instance, NULL,
2890 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2891 "failed to set BO tiling: %m");
2892 }
2893 }
2894 }
2895
2896 success:
2897 pthread_mutex_lock(&device->mutex);
2898 list_addtail(&mem->link, &device->memory_objects);
2899 pthread_mutex_unlock(&device->mutex);
2900
2901 *pMem = anv_device_memory_to_handle(mem);
2902
2903 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
2904 mem->bo->size);
2905
2906 return VK_SUCCESS;
2907
2908 fail:
2909 vk_free2(&device->alloc, pAllocator, mem);
2910
2911 return result;
2912 }
2913
2914 VkResult anv_GetMemoryFdKHR(
2915 VkDevice device_h,
2916 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2917 int* pFd)
2918 {
2919 ANV_FROM_HANDLE(anv_device, dev, device_h);
2920 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2921
2922 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2923
2924 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2925 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2926
2927 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2928 }
2929
2930 VkResult anv_GetMemoryFdPropertiesKHR(
2931 VkDevice _device,
2932 VkExternalMemoryHandleTypeFlagBits handleType,
2933 int fd,
2934 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2935 {
2936 ANV_FROM_HANDLE(anv_device, device, _device);
2937 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2938
2939 switch (handleType) {
2940 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2941 /* dma-buf can be imported as any memory type */
2942 pMemoryFdProperties->memoryTypeBits =
2943 (1 << pdevice->memory.type_count) - 1;
2944 return VK_SUCCESS;
2945
2946 default:
2947 /* The valid usage section for this function says:
2948 *
2949 * "handleType must not be one of the handle types defined as
2950 * opaque."
2951 *
2952 * So opaque handle types fall into the default "unsupported" case.
2953 */
2954 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2955 }
2956 }
2957
2958 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2959 VkDevice _device,
2960 VkExternalMemoryHandleTypeFlagBits handleType,
2961 const void* pHostPointer,
2962 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2963 {
2964 ANV_FROM_HANDLE(anv_device, device, _device);
2965
2966 assert(pMemoryHostPointerProperties->sType ==
2967 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2968
2969 switch (handleType) {
2970 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2971 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2972
2973 /* Host memory can be imported as any memory type. */
2974 pMemoryHostPointerProperties->memoryTypeBits =
2975 (1ull << pdevice->memory.type_count) - 1;
2976
2977 return VK_SUCCESS;
2978 }
2979 default:
2980 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2981 }
2982 }
2983
2984 void anv_FreeMemory(
2985 VkDevice _device,
2986 VkDeviceMemory _mem,
2987 const VkAllocationCallbacks* pAllocator)
2988 {
2989 ANV_FROM_HANDLE(anv_device, device, _device);
2990 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2991 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2992
2993 if (mem == NULL)
2994 return;
2995
2996 pthread_mutex_lock(&device->mutex);
2997 list_del(&mem->link);
2998 pthread_mutex_unlock(&device->mutex);
2999
3000 if (mem->map)
3001 anv_UnmapMemory(_device, _mem);
3002
3003 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3004 -mem->bo->size);
3005
3006 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3007
3008 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3009 if (mem->ahw)
3010 AHardwareBuffer_release(mem->ahw);
3011 #endif
3012
3013 vk_free2(&device->alloc, pAllocator, mem);
3014 }
3015
3016 VkResult anv_MapMemory(
3017 VkDevice _device,
3018 VkDeviceMemory _memory,
3019 VkDeviceSize offset,
3020 VkDeviceSize size,
3021 VkMemoryMapFlags flags,
3022 void** ppData)
3023 {
3024 ANV_FROM_HANDLE(anv_device, device, _device);
3025 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3026
3027 if (mem == NULL) {
3028 *ppData = NULL;
3029 return VK_SUCCESS;
3030 }
3031
3032 if (mem->host_ptr) {
3033 *ppData = mem->host_ptr + offset;
3034 return VK_SUCCESS;
3035 }
3036
3037 if (size == VK_WHOLE_SIZE)
3038 size = mem->bo->size - offset;
3039
3040 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3041 *
3042 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3043 * assert(size != 0);
3044 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3045 * equal to the size of the memory minus offset
3046 */
3047 assert(size > 0);
3048 assert(offset + size <= mem->bo->size);
3049
3050 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3051 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3052 * at a time is valid. We could just mmap up front and return an offset
3053 * pointer here, but that may exhaust virtual memory on 32 bit
3054 * userspace. */
3055
3056 uint32_t gem_flags = 0;
3057
3058 if (!device->info.has_llc &&
3059 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3060 gem_flags |= I915_MMAP_WC;
3061
3062 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3063 uint64_t map_offset = offset & ~4095ull;
3064 assert(offset >= map_offset);
3065 uint64_t map_size = (offset + size) - map_offset;
3066
3067 /* Let's map whole pages */
3068 map_size = align_u64(map_size, 4096);
3069
3070 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3071 map_offset, map_size, gem_flags);
3072 if (map == MAP_FAILED)
3073 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3074
3075 mem->map = map;
3076 mem->map_size = map_size;
3077
3078 *ppData = mem->map + (offset - map_offset);
3079
3080 return VK_SUCCESS;
3081 }
3082
3083 void anv_UnmapMemory(
3084 VkDevice _device,
3085 VkDeviceMemory _memory)
3086 {
3087 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3088
3089 if (mem == NULL || mem->host_ptr)
3090 return;
3091
3092 anv_gem_munmap(mem->map, mem->map_size);
3093
3094 mem->map = NULL;
3095 mem->map_size = 0;
3096 }
3097
3098 static void
3099 clflush_mapped_ranges(struct anv_device *device,
3100 uint32_t count,
3101 const VkMappedMemoryRange *ranges)
3102 {
3103 for (uint32_t i = 0; i < count; i++) {
3104 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3105 if (ranges[i].offset >= mem->map_size)
3106 continue;
3107
3108 gen_clflush_range(mem->map + ranges[i].offset,
3109 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3110 }
3111 }
3112
3113 VkResult anv_FlushMappedMemoryRanges(
3114 VkDevice _device,
3115 uint32_t memoryRangeCount,
3116 const VkMappedMemoryRange* pMemoryRanges)
3117 {
3118 ANV_FROM_HANDLE(anv_device, device, _device);
3119
3120 if (device->info.has_llc)
3121 return VK_SUCCESS;
3122
3123 /* Make sure the writes we're flushing have landed. */
3124 __builtin_ia32_mfence();
3125
3126 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3127
3128 return VK_SUCCESS;
3129 }
3130
3131 VkResult anv_InvalidateMappedMemoryRanges(
3132 VkDevice _device,
3133 uint32_t memoryRangeCount,
3134 const VkMappedMemoryRange* pMemoryRanges)
3135 {
3136 ANV_FROM_HANDLE(anv_device, device, _device);
3137
3138 if (device->info.has_llc)
3139 return VK_SUCCESS;
3140
3141 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3142
3143 /* Make sure no reads get moved up above the invalidate. */
3144 __builtin_ia32_mfence();
3145
3146 return VK_SUCCESS;
3147 }
3148
3149 void anv_GetBufferMemoryRequirements(
3150 VkDevice _device,
3151 VkBuffer _buffer,
3152 VkMemoryRequirements* pMemoryRequirements)
3153 {
3154 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3155 ANV_FROM_HANDLE(anv_device, device, _device);
3156 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3157
3158 /* The Vulkan spec (git aaed022) says:
3159 *
3160 * memoryTypeBits is a bitfield and contains one bit set for every
3161 * supported memory type for the resource. The bit `1<<i` is set if and
3162 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3163 * structure for the physical device is supported.
3164 */
3165 uint32_t memory_types = 0;
3166 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3167 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3168 if ((valid_usage & buffer->usage) == buffer->usage)
3169 memory_types |= (1u << i);
3170 }
3171
3172 /* Base alignment requirement of a cache line */
3173 uint32_t alignment = 16;
3174
3175 /* We need an alignment of 32 for pushing UBOs */
3176 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3177 alignment = MAX2(alignment, 32);
3178
3179 pMemoryRequirements->size = buffer->size;
3180 pMemoryRequirements->alignment = alignment;
3181
3182 /* Storage and Uniform buffers should have their size aligned to
3183 * 32-bits to avoid boundary checks when last DWord is not complete.
3184 * This would ensure that not internal padding would be needed for
3185 * 16-bit types.
3186 */
3187 if (device->robust_buffer_access &&
3188 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3189 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3190 pMemoryRequirements->size = align_u64(buffer->size, 4);
3191
3192 pMemoryRequirements->memoryTypeBits = memory_types;
3193 }
3194
3195 void anv_GetBufferMemoryRequirements2(
3196 VkDevice _device,
3197 const VkBufferMemoryRequirementsInfo2* pInfo,
3198 VkMemoryRequirements2* pMemoryRequirements)
3199 {
3200 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3201 &pMemoryRequirements->memoryRequirements);
3202
3203 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3204 switch (ext->sType) {
3205 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3206 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3207 requirements->prefersDedicatedAllocation = false;
3208 requirements->requiresDedicatedAllocation = false;
3209 break;
3210 }
3211
3212 default:
3213 anv_debug_ignored_stype(ext->sType);
3214 break;
3215 }
3216 }
3217 }
3218
3219 void anv_GetImageMemoryRequirements(
3220 VkDevice _device,
3221 VkImage _image,
3222 VkMemoryRequirements* pMemoryRequirements)
3223 {
3224 ANV_FROM_HANDLE(anv_image, image, _image);
3225 ANV_FROM_HANDLE(anv_device, device, _device);
3226 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3227
3228 /* The Vulkan spec (git aaed022) says:
3229 *
3230 * memoryTypeBits is a bitfield and contains one bit set for every
3231 * supported memory type for the resource. The bit `1<<i` is set if and
3232 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3233 * structure for the physical device is supported.
3234 *
3235 * All types are currently supported for images.
3236 */
3237 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3238
3239 /* We must have image allocated or imported at this point. According to the
3240 * specification, external images must have been bound to memory before
3241 * calling GetImageMemoryRequirements.
3242 */
3243 assert(image->size > 0);
3244
3245 pMemoryRequirements->size = image->size;
3246 pMemoryRequirements->alignment = image->alignment;
3247 pMemoryRequirements->memoryTypeBits = memory_types;
3248 }
3249
3250 void anv_GetImageMemoryRequirements2(
3251 VkDevice _device,
3252 const VkImageMemoryRequirementsInfo2* pInfo,
3253 VkMemoryRequirements2* pMemoryRequirements)
3254 {
3255 ANV_FROM_HANDLE(anv_device, device, _device);
3256 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3257
3258 anv_GetImageMemoryRequirements(_device, pInfo->image,
3259 &pMemoryRequirements->memoryRequirements);
3260
3261 vk_foreach_struct_const(ext, pInfo->pNext) {
3262 switch (ext->sType) {
3263 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3264 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3265 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3266 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3267 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3268 plane_reqs->planeAspect);
3269
3270 assert(image->planes[plane].offset == 0);
3271
3272 /* The Vulkan spec (git aaed022) says:
3273 *
3274 * memoryTypeBits is a bitfield and contains one bit set for every
3275 * supported memory type for the resource. The bit `1<<i` is set
3276 * if and only if the memory type `i` in the
3277 * VkPhysicalDeviceMemoryProperties structure for the physical
3278 * device is supported.
3279 *
3280 * All types are currently supported for images.
3281 */
3282 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3283 (1ull << pdevice->memory.type_count) - 1;
3284
3285 /* We must have image allocated or imported at this point. According to the
3286 * specification, external images must have been bound to memory before
3287 * calling GetImageMemoryRequirements.
3288 */
3289 assert(image->planes[plane].size > 0);
3290
3291 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3292 pMemoryRequirements->memoryRequirements.alignment =
3293 image->planes[plane].alignment;
3294 break;
3295 }
3296
3297 default:
3298 anv_debug_ignored_stype(ext->sType);
3299 break;
3300 }
3301 }
3302
3303 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3304 switch (ext->sType) {
3305 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3306 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3307 if (image->needs_set_tiling || image->external_format) {
3308 /* If we need to set the tiling for external consumers, we need a
3309 * dedicated allocation.
3310 *
3311 * See also anv_AllocateMemory.
3312 */
3313 requirements->prefersDedicatedAllocation = true;
3314 requirements->requiresDedicatedAllocation = true;
3315 } else {
3316 requirements->prefersDedicatedAllocation = false;
3317 requirements->requiresDedicatedAllocation = false;
3318 }
3319 break;
3320 }
3321
3322 default:
3323 anv_debug_ignored_stype(ext->sType);
3324 break;
3325 }
3326 }
3327 }
3328
3329 void anv_GetImageSparseMemoryRequirements(
3330 VkDevice device,
3331 VkImage image,
3332 uint32_t* pSparseMemoryRequirementCount,
3333 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3334 {
3335 *pSparseMemoryRequirementCount = 0;
3336 }
3337
3338 void anv_GetImageSparseMemoryRequirements2(
3339 VkDevice device,
3340 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3341 uint32_t* pSparseMemoryRequirementCount,
3342 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3343 {
3344 *pSparseMemoryRequirementCount = 0;
3345 }
3346
3347 void anv_GetDeviceMemoryCommitment(
3348 VkDevice device,
3349 VkDeviceMemory memory,
3350 VkDeviceSize* pCommittedMemoryInBytes)
3351 {
3352 *pCommittedMemoryInBytes = 0;
3353 }
3354
3355 static void
3356 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3357 {
3358 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3359 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3360
3361 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3362
3363 if (mem) {
3364 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3365 buffer->address = (struct anv_address) {
3366 .bo = mem->bo,
3367 .offset = pBindInfo->memoryOffset,
3368 };
3369 } else {
3370 buffer->address = ANV_NULL_ADDRESS;
3371 }
3372 }
3373
3374 VkResult anv_BindBufferMemory(
3375 VkDevice device,
3376 VkBuffer buffer,
3377 VkDeviceMemory memory,
3378 VkDeviceSize memoryOffset)
3379 {
3380 anv_bind_buffer_memory(
3381 &(VkBindBufferMemoryInfo) {
3382 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3383 .buffer = buffer,
3384 .memory = memory,
3385 .memoryOffset = memoryOffset,
3386 });
3387
3388 return VK_SUCCESS;
3389 }
3390
3391 VkResult anv_BindBufferMemory2(
3392 VkDevice device,
3393 uint32_t bindInfoCount,
3394 const VkBindBufferMemoryInfo* pBindInfos)
3395 {
3396 for (uint32_t i = 0; i < bindInfoCount; i++)
3397 anv_bind_buffer_memory(&pBindInfos[i]);
3398
3399 return VK_SUCCESS;
3400 }
3401
3402 VkResult anv_QueueBindSparse(
3403 VkQueue _queue,
3404 uint32_t bindInfoCount,
3405 const VkBindSparseInfo* pBindInfo,
3406 VkFence fence)
3407 {
3408 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3409 if (anv_device_is_lost(queue->device))
3410 return VK_ERROR_DEVICE_LOST;
3411
3412 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3413 }
3414
3415 // Event functions
3416
3417 VkResult anv_CreateEvent(
3418 VkDevice _device,
3419 const VkEventCreateInfo* pCreateInfo,
3420 const VkAllocationCallbacks* pAllocator,
3421 VkEvent* pEvent)
3422 {
3423 ANV_FROM_HANDLE(anv_device, device, _device);
3424 struct anv_state state;
3425 struct anv_event *event;
3426
3427 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3428
3429 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3430 sizeof(*event), 8);
3431 event = state.map;
3432 event->state = state;
3433 event->semaphore = VK_EVENT_RESET;
3434
3435 if (!device->info.has_llc) {
3436 /* Make sure the writes we're flushing have landed. */
3437 __builtin_ia32_mfence();
3438 __builtin_ia32_clflush(event);
3439 }
3440
3441 *pEvent = anv_event_to_handle(event);
3442
3443 return VK_SUCCESS;
3444 }
3445
3446 void anv_DestroyEvent(
3447 VkDevice _device,
3448 VkEvent _event,
3449 const VkAllocationCallbacks* pAllocator)
3450 {
3451 ANV_FROM_HANDLE(anv_device, device, _device);
3452 ANV_FROM_HANDLE(anv_event, event, _event);
3453
3454 if (!event)
3455 return;
3456
3457 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3458 }
3459
3460 VkResult anv_GetEventStatus(
3461 VkDevice _device,
3462 VkEvent _event)
3463 {
3464 ANV_FROM_HANDLE(anv_device, device, _device);
3465 ANV_FROM_HANDLE(anv_event, event, _event);
3466
3467 if (anv_device_is_lost(device))
3468 return VK_ERROR_DEVICE_LOST;
3469
3470 if (!device->info.has_llc) {
3471 /* Invalidate read cache before reading event written by GPU. */
3472 __builtin_ia32_clflush(event);
3473 __builtin_ia32_mfence();
3474
3475 }
3476
3477 return event->semaphore;
3478 }
3479
3480 VkResult anv_SetEvent(
3481 VkDevice _device,
3482 VkEvent _event)
3483 {
3484 ANV_FROM_HANDLE(anv_device, device, _device);
3485 ANV_FROM_HANDLE(anv_event, event, _event);
3486
3487 event->semaphore = VK_EVENT_SET;
3488
3489 if (!device->info.has_llc) {
3490 /* Make sure the writes we're flushing have landed. */
3491 __builtin_ia32_mfence();
3492 __builtin_ia32_clflush(event);
3493 }
3494
3495 return VK_SUCCESS;
3496 }
3497
3498 VkResult anv_ResetEvent(
3499 VkDevice _device,
3500 VkEvent _event)
3501 {
3502 ANV_FROM_HANDLE(anv_device, device, _device);
3503 ANV_FROM_HANDLE(anv_event, event, _event);
3504
3505 event->semaphore = VK_EVENT_RESET;
3506
3507 if (!device->info.has_llc) {
3508 /* Make sure the writes we're flushing have landed. */
3509 __builtin_ia32_mfence();
3510 __builtin_ia32_clflush(event);
3511 }
3512
3513 return VK_SUCCESS;
3514 }
3515
3516 // Buffer functions
3517
3518 VkResult anv_CreateBuffer(
3519 VkDevice _device,
3520 const VkBufferCreateInfo* pCreateInfo,
3521 const VkAllocationCallbacks* pAllocator,
3522 VkBuffer* pBuffer)
3523 {
3524 ANV_FROM_HANDLE(anv_device, device, _device);
3525 struct anv_buffer *buffer;
3526
3527 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3528
3529 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3530 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3531 if (buffer == NULL)
3532 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3533
3534 buffer->size = pCreateInfo->size;
3535 buffer->usage = pCreateInfo->usage;
3536 buffer->address = ANV_NULL_ADDRESS;
3537
3538 *pBuffer = anv_buffer_to_handle(buffer);
3539
3540 return VK_SUCCESS;
3541 }
3542
3543 void anv_DestroyBuffer(
3544 VkDevice _device,
3545 VkBuffer _buffer,
3546 const VkAllocationCallbacks* pAllocator)
3547 {
3548 ANV_FROM_HANDLE(anv_device, device, _device);
3549 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3550
3551 if (!buffer)
3552 return;
3553
3554 vk_free2(&device->alloc, pAllocator, buffer);
3555 }
3556
3557 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3558 VkDevice device,
3559 const VkBufferDeviceAddressInfoEXT* pInfo)
3560 {
3561 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3562
3563 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3564
3565 return anv_address_physical(buffer->address);
3566 }
3567
3568 void
3569 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3570 enum isl_format format,
3571 struct anv_address address,
3572 uint32_t range, uint32_t stride)
3573 {
3574 isl_buffer_fill_state(&device->isl_dev, state.map,
3575 .address = anv_address_physical(address),
3576 .mocs = device->default_mocs,
3577 .size_B = range,
3578 .format = format,
3579 .swizzle = ISL_SWIZZLE_IDENTITY,
3580 .stride_B = stride);
3581 }
3582
3583 void anv_DestroySampler(
3584 VkDevice _device,
3585 VkSampler _sampler,
3586 const VkAllocationCallbacks* pAllocator)
3587 {
3588 ANV_FROM_HANDLE(anv_device, device, _device);
3589 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3590
3591 if (!sampler)
3592 return;
3593
3594 if (sampler->bindless_state.map) {
3595 anv_state_pool_free(&device->dynamic_state_pool,
3596 sampler->bindless_state);
3597 }
3598
3599 vk_free2(&device->alloc, pAllocator, sampler);
3600 }
3601
3602 VkResult anv_CreateFramebuffer(
3603 VkDevice _device,
3604 const VkFramebufferCreateInfo* pCreateInfo,
3605 const VkAllocationCallbacks* pAllocator,
3606 VkFramebuffer* pFramebuffer)
3607 {
3608 ANV_FROM_HANDLE(anv_device, device, _device);
3609 struct anv_framebuffer *framebuffer;
3610
3611 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3612
3613 size_t size = sizeof(*framebuffer) +
3614 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3615 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3616 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3617 if (framebuffer == NULL)
3618 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3619
3620 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3621 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3622 VkImageView _iview = pCreateInfo->pAttachments[i];
3623 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3624 }
3625
3626 framebuffer->width = pCreateInfo->width;
3627 framebuffer->height = pCreateInfo->height;
3628 framebuffer->layers = pCreateInfo->layers;
3629
3630 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3631
3632 return VK_SUCCESS;
3633 }
3634
3635 void anv_DestroyFramebuffer(
3636 VkDevice _device,
3637 VkFramebuffer _fb,
3638 const VkAllocationCallbacks* pAllocator)
3639 {
3640 ANV_FROM_HANDLE(anv_device, device, _device);
3641 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3642
3643 if (!fb)
3644 return;
3645
3646 vk_free2(&device->alloc, pAllocator, fb);
3647 }
3648
3649 static const VkTimeDomainEXT anv_time_domains[] = {
3650 VK_TIME_DOMAIN_DEVICE_EXT,
3651 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3652 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3653 };
3654
3655 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3656 VkPhysicalDevice physicalDevice,
3657 uint32_t *pTimeDomainCount,
3658 VkTimeDomainEXT *pTimeDomains)
3659 {
3660 int d;
3661 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3662
3663 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3664 vk_outarray_append(&out, i) {
3665 *i = anv_time_domains[d];
3666 }
3667 }
3668
3669 return vk_outarray_status(&out);
3670 }
3671
3672 static uint64_t
3673 anv_clock_gettime(clockid_t clock_id)
3674 {
3675 struct timespec current;
3676 int ret;
3677
3678 ret = clock_gettime(clock_id, &current);
3679 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3680 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3681 if (ret < 0)
3682 return 0;
3683
3684 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3685 }
3686
3687 #define TIMESTAMP 0x2358
3688
3689 VkResult anv_GetCalibratedTimestampsEXT(
3690 VkDevice _device,
3691 uint32_t timestampCount,
3692 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3693 uint64_t *pTimestamps,
3694 uint64_t *pMaxDeviation)
3695 {
3696 ANV_FROM_HANDLE(anv_device, device, _device);
3697 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3698 int ret;
3699 int d;
3700 uint64_t begin, end;
3701 uint64_t max_clock_period = 0;
3702
3703 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3704
3705 for (d = 0; d < timestampCount; d++) {
3706 switch (pTimestampInfos[d].timeDomain) {
3707 case VK_TIME_DOMAIN_DEVICE_EXT:
3708 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3709 &pTimestamps[d]);
3710
3711 if (ret != 0) {
3712 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3713 "register: %m");
3714 }
3715 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3716 max_clock_period = MAX2(max_clock_period, device_period);
3717 break;
3718 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3719 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3720 max_clock_period = MAX2(max_clock_period, 1);
3721 break;
3722
3723 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3724 pTimestamps[d] = begin;
3725 break;
3726 default:
3727 pTimestamps[d] = 0;
3728 break;
3729 }
3730 }
3731
3732 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3733
3734 /*
3735 * The maximum deviation is the sum of the interval over which we
3736 * perform the sampling and the maximum period of any sampled
3737 * clock. That's because the maximum skew between any two sampled
3738 * clock edges is when the sampled clock with the largest period is
3739 * sampled at the end of that period but right at the beginning of the
3740 * sampling interval and some other clock is sampled right at the
3741 * begining of its sampling period and right at the end of the
3742 * sampling interval. Let's assume the GPU has the longest clock
3743 * period and that the application is sampling GPU and monotonic:
3744 *
3745 * s e
3746 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3747 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3748 *
3749 * g
3750 * 0 1 2 3
3751 * GPU -----_____-----_____-----_____-----_____
3752 *
3753 * m
3754 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3755 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3756 *
3757 * Interval <----------------->
3758 * Deviation <-------------------------->
3759 *
3760 * s = read(raw) 2
3761 * g = read(GPU) 1
3762 * m = read(monotonic) 2
3763 * e = read(raw) b
3764 *
3765 * We round the sample interval up by one tick to cover sampling error
3766 * in the interval clock
3767 */
3768
3769 uint64_t sample_interval = end - begin + 1;
3770
3771 *pMaxDeviation = sample_interval + max_clock_period;
3772
3773 return VK_SUCCESS;
3774 }
3775
3776 /* vk_icd.h does not declare this function, so we declare it here to
3777 * suppress Wmissing-prototypes.
3778 */
3779 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3780 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3781
3782 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3783 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3784 {
3785 /* For the full details on loader interface versioning, see
3786 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3787 * What follows is a condensed summary, to help you navigate the large and
3788 * confusing official doc.
3789 *
3790 * - Loader interface v0 is incompatible with later versions. We don't
3791 * support it.
3792 *
3793 * - In loader interface v1:
3794 * - The first ICD entrypoint called by the loader is
3795 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3796 * entrypoint.
3797 * - The ICD must statically expose no other Vulkan symbol unless it is
3798 * linked with -Bsymbolic.
3799 * - Each dispatchable Vulkan handle created by the ICD must be
3800 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3801 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3802 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3803 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3804 * such loader-managed surfaces.
3805 *
3806 * - Loader interface v2 differs from v1 in:
3807 * - The first ICD entrypoint called by the loader is
3808 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3809 * statically expose this entrypoint.
3810 *
3811 * - Loader interface v3 differs from v2 in:
3812 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3813 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3814 * because the loader no longer does so.
3815 */
3816 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3817 return VK_SUCCESS;
3818 }