anv: Trivially implement VK_KHR_device_group
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t *heap_size)
62 {
63 uint64_t gtt_size;
64 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
65 &gtt_size) == -1) {
66 /* If, for whatever reason, we can't actually get the GTT size from the
67 * kernel (too old?) fall back to the aperture size.
68 */
69 anv_perf_warn(NULL, NULL,
70 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
71
72 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
73 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get aperture size: %m");
75 }
76 }
77
78 /* Query the total ram from the system */
79 struct sysinfo info;
80 sysinfo(&info);
81
82 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
83
84 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
85 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
86 */
87 uint64_t available_ram;
88 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
89 available_ram = total_ram / 2;
90 else
91 available_ram = total_ram * 3 / 4;
92
93 /* We also want to leave some padding for things we allocate in the driver,
94 * so don't go over 3/4 of the GTT either.
95 */
96 uint64_t available_gtt = gtt_size * 3 / 4;
97
98 *heap_size = MIN2(available_ram, available_gtt);
99
100 return VK_SUCCESS;
101 }
102
103 static VkResult
104 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
105 {
106 /* The kernel query only tells us whether or not the kernel supports the
107 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
108 * hardware has actual 48bit address support.
109 */
110 device->supports_48bit_addresses =
111 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
112
113 uint64_t heap_size;
114 VkResult result = anv_compute_heap_size(fd, &heap_size);
115 if (result != VK_SUCCESS)
116 return result;
117
118 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
119 /* When running with an overridden PCI ID, we may get a GTT size from
120 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
121 * address support can still fail. Just clamp the address space size to
122 * 2 GiB if we don't have 48-bit support.
123 */
124 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
125 "not support for 48-bit addresses",
126 __FILE__, __LINE__);
127 heap_size = 2ull << 30;
128 }
129
130 if (heap_size <= 3ull * (1ull << 30)) {
131 /* In this case, everything fits nicely into the 32-bit address space,
132 * so there's no need for supporting 48bit addresses on client-allocated
133 * memory objects.
134 */
135 device->memory.heap_count = 1;
136 device->memory.heaps[0] = (struct anv_memory_heap) {
137 .size = heap_size,
138 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
139 .supports_48bit_addresses = false,
140 };
141 } else {
142 /* Not everything will fit nicely into a 32-bit address space. In this
143 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
144 * larger 48-bit heap. If we're in this case, then we have a total heap
145 * size larger than 3GiB which most likely means they have 8 GiB of
146 * video memory and so carving off 1 GiB for the 32-bit heap should be
147 * reasonable.
148 */
149 const uint64_t heap_size_32bit = 1ull << 30;
150 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
151
152 assert(device->supports_48bit_addresses);
153
154 device->memory.heap_count = 2;
155 device->memory.heaps[0] = (struct anv_memory_heap) {
156 .size = heap_size_48bit,
157 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
158 .supports_48bit_addresses = true,
159 };
160 device->memory.heaps[1] = (struct anv_memory_heap) {
161 .size = heap_size_32bit,
162 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
163 .supports_48bit_addresses = false,
164 };
165 }
166
167 uint32_t type_count = 0;
168 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
169 uint32_t valid_buffer_usage = ~0;
170
171 /* There appears to be a hardware issue in the VF cache where it only
172 * considers the bottom 32 bits of memory addresses. If you happen to
173 * have two vertex buffers which get placed exactly 4 GiB apart and use
174 * them in back-to-back draw calls, you can get collisions. In order to
175 * solve this problem, we require vertex and index buffers be bound to
176 * memory allocated out of the 32-bit heap.
177 */
178 if (device->memory.heaps[heap].supports_48bit_addresses) {
179 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
180 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
181 }
182
183 if (device->info.has_llc) {
184 /* Big core GPUs share LLC with the CPU and thus one memory type can be
185 * both cached and coherent at the same time.
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
191 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
192 .heapIndex = heap,
193 .valid_buffer_usage = valid_buffer_usage,
194 };
195 } else {
196 /* The spec requires that we expose a host-visible, coherent memory
197 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
198 * to give the application a choice between cached, but not coherent and
199 * coherent but uncached (WC though).
200 */
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
205 .heapIndex = heap,
206 .valid_buffer_usage = valid_buffer_usage,
207 };
208 device->memory.types[type_count++] = (struct anv_memory_type) {
209 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
210 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
211 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
212 .heapIndex = heap,
213 .valid_buffer_usage = valid_buffer_usage,
214 };
215 }
216 }
217 device->memory.type_count = type_count;
218
219 return VK_SUCCESS;
220 }
221
222 static VkResult
223 anv_physical_device_init_uuids(struct anv_physical_device *device)
224 {
225 const struct build_id_note *note =
226 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
227 if (!note) {
228 return vk_errorf(device->instance, device,
229 VK_ERROR_INITIALIZATION_FAILED,
230 "Failed to find build-id");
231 }
232
233 unsigned build_id_len = build_id_length(note);
234 if (build_id_len < 20) {
235 return vk_errorf(device->instance, device,
236 VK_ERROR_INITIALIZATION_FAILED,
237 "build-id too short. It needs to be a SHA");
238 }
239
240 struct mesa_sha1 sha1_ctx;
241 uint8_t sha1[20];
242 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
243
244 /* The pipeline cache UUID is used for determining when a pipeline cache is
245 * invalid. It needs both a driver build and the PCI ID of the device.
246 */
247 _mesa_sha1_init(&sha1_ctx);
248 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
249 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
250 sizeof(device->chipset_id));
251 _mesa_sha1_final(&sha1_ctx, sha1);
252 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
253
254 /* The driver UUID is used for determining sharability of images and memory
255 * between two Vulkan instances in separate processes. People who want to
256 * share memory need to also check the device UUID (below) so all this
257 * needs to be is the build-id.
258 */
259 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
260
261 /* The device UUID uniquely identifies the given device within the machine.
262 * Since we never have more than one device, this doesn't need to be a real
263 * UUID. However, on the off-chance that someone tries to use this to
264 * cache pre-tiled images or something of the like, we use the PCI ID and
265 * some bits of ISL info to ensure that this is safe.
266 */
267 _mesa_sha1_init(&sha1_ctx);
268 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
269 sizeof(device->chipset_id));
270 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
271 sizeof(device->isl_dev.has_bit6_swizzling));
272 _mesa_sha1_final(&sha1_ctx, sha1);
273 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
274
275 return VK_SUCCESS;
276 }
277
278 static VkResult
279 anv_physical_device_init(struct anv_physical_device *device,
280 struct anv_instance *instance,
281 const char *path)
282 {
283 VkResult result;
284 int fd;
285
286 brw_process_intel_debug_variable();
287
288 fd = open(path, O_RDWR | O_CLOEXEC);
289 if (fd < 0)
290 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
291
292 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
293 device->instance = instance;
294
295 assert(strlen(path) < ARRAY_SIZE(device->path));
296 strncpy(device->path, path, ARRAY_SIZE(device->path));
297
298 device->no_hw = getenv("INTEL_NO_HW") != NULL;
299
300 const int pci_id_override = gen_get_pci_device_id_override();
301 if (pci_id_override < 0) {
302 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
303 if (!device->chipset_id) {
304 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
305 goto fail;
306 }
307 } else {
308 device->chipset_id = pci_id_override;
309 device->no_hw = true;
310 }
311
312 device->name = gen_get_device_name(device->chipset_id);
313 if (!gen_get_device_info(device->chipset_id, &device->info)) {
314 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
315 goto fail;
316 }
317
318 if (device->info.is_haswell) {
319 intel_logw("Haswell Vulkan support is incomplete");
320 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
321 intel_logw("Ivy Bridge Vulkan support is incomplete");
322 } else if (device->info.gen == 7 && device->info.is_baytrail) {
323 intel_logw("Bay Trail Vulkan support is incomplete");
324 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
325 /* Gen8-10 fully supported */
326 } else {
327 result = vk_errorf(device->instance, device,
328 VK_ERROR_INCOMPATIBLE_DRIVER,
329 "Vulkan not yet supported on %s", device->name);
330 goto fail;
331 }
332
333 device->cmd_parser_version = -1;
334 if (device->info.gen == 7) {
335 device->cmd_parser_version =
336 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
337 if (device->cmd_parser_version == -1) {
338 result = vk_errorf(device->instance, device,
339 VK_ERROR_INITIALIZATION_FAILED,
340 "failed to get command parser version");
341 goto fail;
342 }
343 }
344
345 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
346 result = vk_errorf(device->instance, device,
347 VK_ERROR_INITIALIZATION_FAILED,
348 "kernel missing gem wait");
349 goto fail;
350 }
351
352 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
353 result = vk_errorf(device->instance, device,
354 VK_ERROR_INITIALIZATION_FAILED,
355 "kernel missing execbuf2");
356 goto fail;
357 }
358
359 if (!device->info.has_llc &&
360 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
361 result = vk_errorf(device->instance, device,
362 VK_ERROR_INITIALIZATION_FAILED,
363 "kernel missing wc mmap");
364 goto fail;
365 }
366
367 result = anv_physical_device_init_heaps(device, fd);
368 if (result != VK_SUCCESS)
369 goto fail;
370
371 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
372 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
373 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
374 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
375 device->has_syncobj_wait = device->has_syncobj &&
376 anv_gem_supports_syncobj_wait(fd);
377 device->has_context_priority = anv_gem_has_context_priority(fd);
378
379 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
380
381 /* Starting with Gen10, the timestamp frequency of the command streamer may
382 * vary from one part to another. We can query the value from the kernel.
383 */
384 if (device->info.gen >= 10) {
385 int timestamp_frequency =
386 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
387
388 if (timestamp_frequency < 0)
389 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
390 else
391 device->info.timestamp_frequency = timestamp_frequency;
392 }
393
394 /* GENs prior to 8 do not support EU/Subslice info */
395 if (device->info.gen >= 8) {
396 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
397 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
398
399 /* Without this information, we cannot get the right Braswell
400 * brandstrings, and we have to use conservative numbers for GPGPU on
401 * many platforms, but otherwise, things will just work.
402 */
403 if (device->subslice_total < 1 || device->eu_total < 1) {
404 intel_logw("Kernel 4.1 required to properly query GPU properties");
405 }
406 } else if (device->info.gen == 7) {
407 device->subslice_total = 1 << (device->info.gt - 1);
408 }
409
410 if (device->info.is_cherryview &&
411 device->subslice_total > 0 && device->eu_total > 0) {
412 /* Logical CS threads = EUs per subslice * num threads per EU */
413 uint32_t max_cs_threads =
414 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
415
416 /* Fuse configurations may give more threads than expected, never less. */
417 if (max_cs_threads > device->info.max_cs_threads)
418 device->info.max_cs_threads = max_cs_threads;
419 }
420
421 device->compiler = brw_compiler_create(NULL, &device->info);
422 if (device->compiler == NULL) {
423 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
424 goto fail;
425 }
426 device->compiler->shader_debug_log = compiler_debug_log;
427 device->compiler->shader_perf_log = compiler_perf_log;
428 device->compiler->supports_pull_constants = false;
429 device->compiler->constant_buffer_0_is_relative = true;
430
431 isl_device_init(&device->isl_dev, &device->info, swizzled);
432
433 result = anv_physical_device_init_uuids(device);
434 if (result != VK_SUCCESS)
435 goto fail;
436
437 result = anv_init_wsi(device);
438 if (result != VK_SUCCESS) {
439 ralloc_free(device->compiler);
440 goto fail;
441 }
442
443 anv_physical_device_get_supported_extensions(device,
444 &device->supported_extensions);
445
446 device->local_fd = fd;
447 return VK_SUCCESS;
448
449 fail:
450 close(fd);
451 return result;
452 }
453
454 static void
455 anv_physical_device_finish(struct anv_physical_device *device)
456 {
457 anv_finish_wsi(device);
458 ralloc_free(device->compiler);
459 close(device->local_fd);
460 }
461
462 static void *
463 default_alloc_func(void *pUserData, size_t size, size_t align,
464 VkSystemAllocationScope allocationScope)
465 {
466 return malloc(size);
467 }
468
469 static void *
470 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
471 size_t align, VkSystemAllocationScope allocationScope)
472 {
473 return realloc(pOriginal, size);
474 }
475
476 static void
477 default_free_func(void *pUserData, void *pMemory)
478 {
479 free(pMemory);
480 }
481
482 static const VkAllocationCallbacks default_alloc = {
483 .pUserData = NULL,
484 .pfnAllocation = default_alloc_func,
485 .pfnReallocation = default_realloc_func,
486 .pfnFree = default_free_func,
487 };
488
489 VkResult anv_EnumerateInstanceExtensionProperties(
490 const char* pLayerName,
491 uint32_t* pPropertyCount,
492 VkExtensionProperties* pProperties)
493 {
494 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
495
496 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
497 if (anv_instance_extensions_supported.extensions[i]) {
498 vk_outarray_append(&out, prop) {
499 *prop = anv_instance_extensions[i];
500 }
501 }
502 }
503
504 return vk_outarray_status(&out);
505 }
506
507 VkResult anv_CreateInstance(
508 const VkInstanceCreateInfo* pCreateInfo,
509 const VkAllocationCallbacks* pAllocator,
510 VkInstance* pInstance)
511 {
512 struct anv_instance *instance;
513 VkResult result;
514
515 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
516
517 /* Check if user passed a debug report callback to be used during
518 * Create/Destroy of instance.
519 */
520 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
521 vk_find_struct_const(pCreateInfo->pNext,
522 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
523
524 uint32_t client_version;
525 if (pCreateInfo->pApplicationInfo &&
526 pCreateInfo->pApplicationInfo->apiVersion != 0) {
527 client_version = pCreateInfo->pApplicationInfo->apiVersion;
528 } else {
529 client_version = VK_MAKE_VERSION(1, 0, 0);
530 }
531
532 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
533 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
534
535 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
536 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT,
537 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
538 VK_NULL_HANDLE, /* No handle available yet. */
539 __LINE__,
540 0,
541 "anv",
542 "incompatible driver version",
543 ctor_cb->pUserData);
544
545 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
546 "Client requested version %d.%d.%d",
547 VK_VERSION_MAJOR(client_version),
548 VK_VERSION_MINOR(client_version),
549 VK_VERSION_PATCH(client_version));
550 }
551
552 struct anv_instance_extension_table enabled_extensions = {};
553 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
554 int idx;
555 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
556 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
557 anv_instance_extensions[idx].extensionName) == 0)
558 break;
559 }
560
561 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
562 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
563
564 if (!anv_instance_extensions_supported.extensions[idx])
565 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
566
567 enabled_extensions.extensions[idx] = true;
568 }
569
570 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
571 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
572 if (!instance)
573 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
574
575 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
576
577 if (pAllocator)
578 instance->alloc = *pAllocator;
579 else
580 instance->alloc = default_alloc;
581
582 instance->apiVersion = client_version;
583 instance->enabled_extensions = enabled_extensions;
584
585 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
586 /* Vulkan requires that entrypoints for extensions which have not been
587 * enabled must not be advertised.
588 */
589 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
590 &instance->enabled_extensions, NULL)) {
591 instance->dispatch.entrypoints[i] = NULL;
592 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
593 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
594 } else {
595 instance->dispatch.entrypoints[i] =
596 anv_tramp_dispatch_table.entrypoints[i];
597 }
598 }
599
600 instance->physicalDeviceCount = -1;
601
602 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
603 if (result != VK_SUCCESS) {
604 vk_free2(&default_alloc, pAllocator, instance);
605 return vk_error(result);
606 }
607
608 _mesa_locale_init();
609
610 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
611
612 *pInstance = anv_instance_to_handle(instance);
613
614 return VK_SUCCESS;
615 }
616
617 void anv_DestroyInstance(
618 VkInstance _instance,
619 const VkAllocationCallbacks* pAllocator)
620 {
621 ANV_FROM_HANDLE(anv_instance, instance, _instance);
622
623 if (!instance)
624 return;
625
626 if (instance->physicalDeviceCount > 0) {
627 /* We support at most one physical device. */
628 assert(instance->physicalDeviceCount == 1);
629 anv_physical_device_finish(&instance->physicalDevice);
630 }
631
632 VG(VALGRIND_DESTROY_MEMPOOL(instance));
633
634 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
635
636 _mesa_locale_fini();
637
638 vk_free(&instance->alloc, instance);
639 }
640
641 static VkResult
642 anv_enumerate_devices(struct anv_instance *instance)
643 {
644 /* TODO: Check for more devices ? */
645 drmDevicePtr devices[8];
646 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
647 int max_devices;
648
649 instance->physicalDeviceCount = 0;
650
651 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
652 if (max_devices < 1)
653 return VK_ERROR_INCOMPATIBLE_DRIVER;
654
655 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
656 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
657 devices[i]->bustype == DRM_BUS_PCI &&
658 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
659
660 result = anv_physical_device_init(&instance->physicalDevice,
661 instance,
662 devices[i]->nodes[DRM_NODE_RENDER]);
663 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
664 break;
665 }
666 }
667 drmFreeDevices(devices, max_devices);
668
669 if (result == VK_SUCCESS)
670 instance->physicalDeviceCount = 1;
671
672 return result;
673 }
674
675 static VkResult
676 anv_instance_ensure_physical_device(struct anv_instance *instance)
677 {
678 if (instance->physicalDeviceCount < 0) {
679 VkResult result = anv_enumerate_devices(instance);
680 if (result != VK_SUCCESS &&
681 result != VK_ERROR_INCOMPATIBLE_DRIVER)
682 return result;
683 }
684
685 return VK_SUCCESS;
686 }
687
688 VkResult anv_EnumeratePhysicalDevices(
689 VkInstance _instance,
690 uint32_t* pPhysicalDeviceCount,
691 VkPhysicalDevice* pPhysicalDevices)
692 {
693 ANV_FROM_HANDLE(anv_instance, instance, _instance);
694 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
695
696 VkResult result = anv_instance_ensure_physical_device(instance);
697 if (result != VK_SUCCESS)
698 return result;
699
700 if (instance->physicalDeviceCount == 0)
701 return VK_SUCCESS;
702
703 assert(instance->physicalDeviceCount == 1);
704 vk_outarray_append(&out, i) {
705 *i = anv_physical_device_to_handle(&instance->physicalDevice);
706 }
707
708 return vk_outarray_status(&out);
709 }
710
711 VkResult anv_EnumeratePhysicalDeviceGroups(
712 VkInstance _instance,
713 uint32_t* pPhysicalDeviceGroupCount,
714 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
715 {
716 ANV_FROM_HANDLE(anv_instance, instance, _instance);
717 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
718 pPhysicalDeviceGroupCount);
719
720 VkResult result = anv_instance_ensure_physical_device(instance);
721 if (result != VK_SUCCESS)
722 return result;
723
724 if (instance->physicalDeviceCount == 0)
725 return VK_SUCCESS;
726
727 assert(instance->physicalDeviceCount == 1);
728
729 vk_outarray_append(&out, p) {
730 p->physicalDeviceCount = 1;
731 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
732 p->physicalDevices[0] =
733 anv_physical_device_to_handle(&instance->physicalDevice);
734 p->subsetAllocation = VK_FALSE;
735
736 vk_foreach_struct(ext, p->pNext)
737 anv_debug_ignored_stype(ext->sType);
738 }
739
740 return vk_outarray_status(&out);
741 }
742
743 void anv_GetPhysicalDeviceFeatures(
744 VkPhysicalDevice physicalDevice,
745 VkPhysicalDeviceFeatures* pFeatures)
746 {
747 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
748
749 *pFeatures = (VkPhysicalDeviceFeatures) {
750 .robustBufferAccess = true,
751 .fullDrawIndexUint32 = true,
752 .imageCubeArray = true,
753 .independentBlend = true,
754 .geometryShader = true,
755 .tessellationShader = true,
756 .sampleRateShading = true,
757 .dualSrcBlend = true,
758 .logicOp = true,
759 .multiDrawIndirect = true,
760 .drawIndirectFirstInstance = true,
761 .depthClamp = true,
762 .depthBiasClamp = true,
763 .fillModeNonSolid = true,
764 .depthBounds = false,
765 .wideLines = true,
766 .largePoints = true,
767 .alphaToOne = true,
768 .multiViewport = true,
769 .samplerAnisotropy = true,
770 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
771 pdevice->info.is_baytrail,
772 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
773 .textureCompressionBC = true,
774 .occlusionQueryPrecise = true,
775 .pipelineStatisticsQuery = true,
776 .fragmentStoresAndAtomics = true,
777 .shaderTessellationAndGeometryPointSize = true,
778 .shaderImageGatherExtended = true,
779 .shaderStorageImageExtendedFormats = true,
780 .shaderStorageImageMultisample = false,
781 .shaderStorageImageReadWithoutFormat = false,
782 .shaderStorageImageWriteWithoutFormat = true,
783 .shaderUniformBufferArrayDynamicIndexing = true,
784 .shaderSampledImageArrayDynamicIndexing = true,
785 .shaderStorageBufferArrayDynamicIndexing = true,
786 .shaderStorageImageArrayDynamicIndexing = true,
787 .shaderClipDistance = true,
788 .shaderCullDistance = true,
789 .shaderFloat64 = pdevice->info.gen >= 8,
790 .shaderInt64 = pdevice->info.gen >= 8,
791 .shaderInt16 = false,
792 .shaderResourceMinLod = false,
793 .variableMultisampleRate = false,
794 .inheritedQueries = true,
795 };
796
797 /* We can't do image stores in vec4 shaders */
798 pFeatures->vertexPipelineStoresAndAtomics =
799 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
800 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
801 }
802
803 void anv_GetPhysicalDeviceFeatures2(
804 VkPhysicalDevice physicalDevice,
805 VkPhysicalDeviceFeatures2* pFeatures)
806 {
807 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
808
809 vk_foreach_struct(ext, pFeatures->pNext) {
810 switch (ext->sType) {
811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
812 VkPhysicalDeviceMultiviewFeatures *features =
813 (VkPhysicalDeviceMultiviewFeatures *)ext;
814 features->multiview = true;
815 features->multiviewGeometryShader = true;
816 features->multiviewTessellationShader = true;
817 break;
818 }
819
820 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
821 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
822 features->variablePointersStorageBuffer = true;
823 features->variablePointers = true;
824 break;
825 }
826
827 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
828 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
829 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
830 features->samplerYcbcrConversion = true;
831 break;
832 }
833
834 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
835 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
836 features->shaderDrawParameters = true;
837 break;
838 }
839
840 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
841 VkPhysicalDevice16BitStorageFeaturesKHR *features =
842 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
843 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
844
845 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
846 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
847 features->storagePushConstant16 = pdevice->info.gen >= 8;
848 features->storageInputOutput16 = false;
849 break;
850 }
851
852 default:
853 anv_debug_ignored_stype(ext->sType);
854 break;
855 }
856 }
857 }
858
859 void anv_GetPhysicalDeviceProperties(
860 VkPhysicalDevice physicalDevice,
861 VkPhysicalDeviceProperties* pProperties)
862 {
863 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
864 const struct gen_device_info *devinfo = &pdevice->info;
865
866 /* See assertions made when programming the buffer surface state. */
867 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
868 (1ul << 30) : (1ul << 27);
869
870 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
871 128 : 16;
872
873 VkSampleCountFlags sample_counts =
874 isl_device_get_sample_counts(&pdevice->isl_dev);
875
876 VkPhysicalDeviceLimits limits = {
877 .maxImageDimension1D = (1 << 14),
878 .maxImageDimension2D = (1 << 14),
879 .maxImageDimension3D = (1 << 11),
880 .maxImageDimensionCube = (1 << 14),
881 .maxImageArrayLayers = (1 << 11),
882 .maxTexelBufferElements = 128 * 1024 * 1024,
883 .maxUniformBufferRange = (1ul << 27),
884 .maxStorageBufferRange = max_raw_buffer_sz,
885 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
886 .maxMemoryAllocationCount = UINT32_MAX,
887 .maxSamplerAllocationCount = 64 * 1024,
888 .bufferImageGranularity = 64, /* A cache line */
889 .sparseAddressSpaceSize = 0,
890 .maxBoundDescriptorSets = MAX_SETS,
891 .maxPerStageDescriptorSamplers = max_samplers,
892 .maxPerStageDescriptorUniformBuffers = 64,
893 .maxPerStageDescriptorStorageBuffers = 64,
894 .maxPerStageDescriptorSampledImages = max_samplers,
895 .maxPerStageDescriptorStorageImages = 64,
896 .maxPerStageDescriptorInputAttachments = 64,
897 .maxPerStageResources = 250,
898 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
899 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
900 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
901 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
902 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
903 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
904 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
905 .maxDescriptorSetInputAttachments = 256,
906 .maxVertexInputAttributes = MAX_VBS,
907 .maxVertexInputBindings = MAX_VBS,
908 .maxVertexInputAttributeOffset = 2047,
909 .maxVertexInputBindingStride = 2048,
910 .maxVertexOutputComponents = 128,
911 .maxTessellationGenerationLevel = 64,
912 .maxTessellationPatchSize = 32,
913 .maxTessellationControlPerVertexInputComponents = 128,
914 .maxTessellationControlPerVertexOutputComponents = 128,
915 .maxTessellationControlPerPatchOutputComponents = 128,
916 .maxTessellationControlTotalOutputComponents = 2048,
917 .maxTessellationEvaluationInputComponents = 128,
918 .maxTessellationEvaluationOutputComponents = 128,
919 .maxGeometryShaderInvocations = 32,
920 .maxGeometryInputComponents = 64,
921 .maxGeometryOutputComponents = 128,
922 .maxGeometryOutputVertices = 256,
923 .maxGeometryTotalOutputComponents = 1024,
924 .maxFragmentInputComponents = 128,
925 .maxFragmentOutputAttachments = 8,
926 .maxFragmentDualSrcAttachments = 1,
927 .maxFragmentCombinedOutputResources = 8,
928 .maxComputeSharedMemorySize = 32768,
929 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
930 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
931 .maxComputeWorkGroupSize = {
932 16 * devinfo->max_cs_threads,
933 16 * devinfo->max_cs_threads,
934 16 * devinfo->max_cs_threads,
935 },
936 .subPixelPrecisionBits = 4 /* FIXME */,
937 .subTexelPrecisionBits = 4 /* FIXME */,
938 .mipmapPrecisionBits = 4 /* FIXME */,
939 .maxDrawIndexedIndexValue = UINT32_MAX,
940 .maxDrawIndirectCount = UINT32_MAX,
941 .maxSamplerLodBias = 16,
942 .maxSamplerAnisotropy = 16,
943 .maxViewports = MAX_VIEWPORTS,
944 .maxViewportDimensions = { (1 << 14), (1 << 14) },
945 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
946 .viewportSubPixelBits = 13, /* We take a float? */
947 .minMemoryMapAlignment = 4096, /* A page */
948 .minTexelBufferOffsetAlignment = 1,
949 /* We need 16 for UBO block reads to work and 32 for push UBOs */
950 .minUniformBufferOffsetAlignment = 32,
951 .minStorageBufferOffsetAlignment = 4,
952 .minTexelOffset = -8,
953 .maxTexelOffset = 7,
954 .minTexelGatherOffset = -32,
955 .maxTexelGatherOffset = 31,
956 .minInterpolationOffset = -0.5,
957 .maxInterpolationOffset = 0.4375,
958 .subPixelInterpolationOffsetBits = 4,
959 .maxFramebufferWidth = (1 << 14),
960 .maxFramebufferHeight = (1 << 14),
961 .maxFramebufferLayers = (1 << 11),
962 .framebufferColorSampleCounts = sample_counts,
963 .framebufferDepthSampleCounts = sample_counts,
964 .framebufferStencilSampleCounts = sample_counts,
965 .framebufferNoAttachmentsSampleCounts = sample_counts,
966 .maxColorAttachments = MAX_RTS,
967 .sampledImageColorSampleCounts = sample_counts,
968 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
969 .sampledImageDepthSampleCounts = sample_counts,
970 .sampledImageStencilSampleCounts = sample_counts,
971 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
972 .maxSampleMaskWords = 1,
973 .timestampComputeAndGraphics = false,
974 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
975 .maxClipDistances = 8,
976 .maxCullDistances = 8,
977 .maxCombinedClipAndCullDistances = 8,
978 .discreteQueuePriorities = 1,
979 .pointSizeRange = { 0.125, 255.875 },
980 .lineWidthRange = { 0.0, 7.9921875 },
981 .pointSizeGranularity = (1.0 / 8.0),
982 .lineWidthGranularity = (1.0 / 128.0),
983 .strictLines = false, /* FINISHME */
984 .standardSampleLocations = true,
985 .optimalBufferCopyOffsetAlignment = 128,
986 .optimalBufferCopyRowPitchAlignment = 128,
987 .nonCoherentAtomSize = 64,
988 };
989
990 *pProperties = (VkPhysicalDeviceProperties) {
991 .apiVersion = anv_physical_device_api_version(pdevice),
992 .driverVersion = vk_get_driver_version(),
993 .vendorID = 0x8086,
994 .deviceID = pdevice->chipset_id,
995 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
996 .limits = limits,
997 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
998 };
999
1000 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1001 "%s", pdevice->name);
1002 memcpy(pProperties->pipelineCacheUUID,
1003 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1004 }
1005
1006 void anv_GetPhysicalDeviceProperties2(
1007 VkPhysicalDevice physicalDevice,
1008 VkPhysicalDeviceProperties2* pProperties)
1009 {
1010 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1011
1012 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1013
1014 vk_foreach_struct(ext, pProperties->pNext) {
1015 switch (ext->sType) {
1016 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1017 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1018 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1019
1020 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1021 break;
1022 }
1023
1024 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1025 VkPhysicalDeviceIDProperties *id_props =
1026 (VkPhysicalDeviceIDProperties *)ext;
1027 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1028 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1029 /* The LUID is for Windows. */
1030 id_props->deviceLUIDValid = false;
1031 break;
1032 }
1033
1034 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1035 VkPhysicalDeviceMaintenance3Properties *props =
1036 (VkPhysicalDeviceMaintenance3Properties *)ext;
1037 /* This value doesn't matter for us today as our per-stage
1038 * descriptors are the real limit.
1039 */
1040 props->maxPerSetDescriptors = 1024;
1041 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1042 break;
1043 }
1044
1045 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1046 VkPhysicalDeviceMultiviewProperties *properties =
1047 (VkPhysicalDeviceMultiviewProperties *)ext;
1048 properties->maxMultiviewViewCount = 16;
1049 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1050 break;
1051 }
1052
1053 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1054 VkPhysicalDevicePointClippingProperties *properties =
1055 (VkPhysicalDevicePointClippingProperties *) ext;
1056 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1057 anv_finishme("Implement pop-free point clipping");
1058 break;
1059 }
1060
1061 default:
1062 anv_debug_ignored_stype(ext->sType);
1063 break;
1064 }
1065 }
1066 }
1067
1068 /* We support exactly one queue family. */
1069 static const VkQueueFamilyProperties
1070 anv_queue_family_properties = {
1071 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1072 VK_QUEUE_COMPUTE_BIT |
1073 VK_QUEUE_TRANSFER_BIT,
1074 .queueCount = 1,
1075 .timestampValidBits = 36, /* XXX: Real value here */
1076 .minImageTransferGranularity = { 1, 1, 1 },
1077 };
1078
1079 void anv_GetPhysicalDeviceQueueFamilyProperties(
1080 VkPhysicalDevice physicalDevice,
1081 uint32_t* pCount,
1082 VkQueueFamilyProperties* pQueueFamilyProperties)
1083 {
1084 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1085
1086 vk_outarray_append(&out, p) {
1087 *p = anv_queue_family_properties;
1088 }
1089 }
1090
1091 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1092 VkPhysicalDevice physicalDevice,
1093 uint32_t* pQueueFamilyPropertyCount,
1094 VkQueueFamilyProperties2* pQueueFamilyProperties)
1095 {
1096
1097 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1098
1099 vk_outarray_append(&out, p) {
1100 p->queueFamilyProperties = anv_queue_family_properties;
1101
1102 vk_foreach_struct(s, p->pNext) {
1103 anv_debug_ignored_stype(s->sType);
1104 }
1105 }
1106 }
1107
1108 void anv_GetPhysicalDeviceMemoryProperties(
1109 VkPhysicalDevice physicalDevice,
1110 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1111 {
1112 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1113
1114 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1115 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1116 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1117 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1118 .heapIndex = physical_device->memory.types[i].heapIndex,
1119 };
1120 }
1121
1122 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1123 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1124 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1125 .size = physical_device->memory.heaps[i].size,
1126 .flags = physical_device->memory.heaps[i].flags,
1127 };
1128 }
1129 }
1130
1131 void anv_GetPhysicalDeviceMemoryProperties2(
1132 VkPhysicalDevice physicalDevice,
1133 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1134 {
1135 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1136 &pMemoryProperties->memoryProperties);
1137
1138 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1139 switch (ext->sType) {
1140 default:
1141 anv_debug_ignored_stype(ext->sType);
1142 break;
1143 }
1144 }
1145 }
1146
1147 void
1148 anv_GetDeviceGroupPeerMemoryFeatures(
1149 VkDevice device,
1150 uint32_t heapIndex,
1151 uint32_t localDeviceIndex,
1152 uint32_t remoteDeviceIndex,
1153 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1154 {
1155 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1156 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1157 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1158 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1159 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1160 }
1161
1162 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1163 VkInstance _instance,
1164 const char* pName)
1165 {
1166 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1167
1168 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1169 * when we have to return valid function pointers, NULL, or it's left
1170 * undefined. See the table for exact details.
1171 */
1172 if (pName == NULL)
1173 return NULL;
1174
1175 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1176 if (strcmp(pName, "vk" #entrypoint) == 0) \
1177 return (PFN_vkVoidFunction)anv_##entrypoint
1178
1179 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1180 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1181 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1182
1183 #undef LOOKUP_ANV_ENTRYPOINT
1184
1185 if (instance == NULL)
1186 return NULL;
1187
1188 int idx = anv_get_entrypoint_index(pName);
1189 if (idx < 0)
1190 return NULL;
1191
1192 return instance->dispatch.entrypoints[idx];
1193 }
1194
1195 /* With version 1+ of the loader interface the ICD should expose
1196 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1197 */
1198 PUBLIC
1199 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1200 VkInstance instance,
1201 const char* pName);
1202
1203 PUBLIC
1204 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1205 VkInstance instance,
1206 const char* pName)
1207 {
1208 return anv_GetInstanceProcAddr(instance, pName);
1209 }
1210
1211 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1212 VkDevice _device,
1213 const char* pName)
1214 {
1215 ANV_FROM_HANDLE(anv_device, device, _device);
1216
1217 if (!device || !pName)
1218 return NULL;
1219
1220 int idx = anv_get_entrypoint_index(pName);
1221 if (idx < 0)
1222 return NULL;
1223
1224 return device->dispatch.entrypoints[idx];
1225 }
1226
1227 VkResult
1228 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1229 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1230 const VkAllocationCallbacks* pAllocator,
1231 VkDebugReportCallbackEXT* pCallback)
1232 {
1233 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1234 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1235 pCreateInfo, pAllocator, &instance->alloc,
1236 pCallback);
1237 }
1238
1239 void
1240 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1241 VkDebugReportCallbackEXT _callback,
1242 const VkAllocationCallbacks* pAllocator)
1243 {
1244 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1245 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1246 _callback, pAllocator, &instance->alloc);
1247 }
1248
1249 void
1250 anv_DebugReportMessageEXT(VkInstance _instance,
1251 VkDebugReportFlagsEXT flags,
1252 VkDebugReportObjectTypeEXT objectType,
1253 uint64_t object,
1254 size_t location,
1255 int32_t messageCode,
1256 const char* pLayerPrefix,
1257 const char* pMessage)
1258 {
1259 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1260 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1261 object, location, messageCode, pLayerPrefix, pMessage);
1262 }
1263
1264 static void
1265 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1266 {
1267 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1268 queue->device = device;
1269 queue->pool = &device->surface_state_pool;
1270 }
1271
1272 static void
1273 anv_queue_finish(struct anv_queue *queue)
1274 {
1275 }
1276
1277 static struct anv_state
1278 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1279 {
1280 struct anv_state state;
1281
1282 state = anv_state_pool_alloc(pool, size, align);
1283 memcpy(state.map, p, size);
1284
1285 anv_state_flush(pool->block_pool.device, state);
1286
1287 return state;
1288 }
1289
1290 struct gen8_border_color {
1291 union {
1292 float float32[4];
1293 uint32_t uint32[4];
1294 };
1295 /* Pad out to 64 bytes */
1296 uint32_t _pad[12];
1297 };
1298
1299 static void
1300 anv_device_init_border_colors(struct anv_device *device)
1301 {
1302 static const struct gen8_border_color border_colors[] = {
1303 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1304 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1305 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1306 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1307 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1308 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1309 };
1310
1311 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1312 sizeof(border_colors), 64,
1313 border_colors);
1314 }
1315
1316 static void
1317 anv_device_init_trivial_batch(struct anv_device *device)
1318 {
1319 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1320
1321 if (device->instance->physicalDevice.has_exec_async)
1322 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1323
1324 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1325 0, 4096, 0);
1326
1327 struct anv_batch batch = {
1328 .start = map,
1329 .next = map,
1330 .end = map + 4096,
1331 };
1332
1333 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1334 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1335
1336 if (!device->info.has_llc)
1337 gen_clflush_range(map, batch.next - map);
1338
1339 anv_gem_munmap(map, device->trivial_batch_bo.size);
1340 }
1341
1342 VkResult anv_EnumerateDeviceExtensionProperties(
1343 VkPhysicalDevice physicalDevice,
1344 const char* pLayerName,
1345 uint32_t* pPropertyCount,
1346 VkExtensionProperties* pProperties)
1347 {
1348 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1349 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1350 (void)device;
1351
1352 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1353 if (device->supported_extensions.extensions[i]) {
1354 vk_outarray_append(&out, prop) {
1355 *prop = anv_device_extensions[i];
1356 }
1357 }
1358 }
1359
1360 return vk_outarray_status(&out);
1361 }
1362
1363 static void
1364 anv_device_init_dispatch(struct anv_device *device)
1365 {
1366 const struct anv_dispatch_table *genX_table;
1367 switch (device->info.gen) {
1368 case 10:
1369 genX_table = &gen10_dispatch_table;
1370 break;
1371 case 9:
1372 genX_table = &gen9_dispatch_table;
1373 break;
1374 case 8:
1375 genX_table = &gen8_dispatch_table;
1376 break;
1377 case 7:
1378 if (device->info.is_haswell)
1379 genX_table = &gen75_dispatch_table;
1380 else
1381 genX_table = &gen7_dispatch_table;
1382 break;
1383 default:
1384 unreachable("unsupported gen\n");
1385 }
1386
1387 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1388 /* Vulkan requires that entrypoints for extensions which have not been
1389 * enabled must not be advertised.
1390 */
1391 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1392 &device->instance->enabled_extensions,
1393 &device->enabled_extensions)) {
1394 device->dispatch.entrypoints[i] = NULL;
1395 } else if (genX_table->entrypoints[i]) {
1396 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1397 } else {
1398 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1399 }
1400 }
1401 }
1402
1403 static int
1404 vk_priority_to_gen(int priority)
1405 {
1406 switch (priority) {
1407 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1408 return GEN_CONTEXT_LOW_PRIORITY;
1409 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1410 return GEN_CONTEXT_MEDIUM_PRIORITY;
1411 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1412 return GEN_CONTEXT_HIGH_PRIORITY;
1413 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1414 return GEN_CONTEXT_REALTIME_PRIORITY;
1415 default:
1416 unreachable("Invalid priority");
1417 }
1418 }
1419
1420 VkResult anv_CreateDevice(
1421 VkPhysicalDevice physicalDevice,
1422 const VkDeviceCreateInfo* pCreateInfo,
1423 const VkAllocationCallbacks* pAllocator,
1424 VkDevice* pDevice)
1425 {
1426 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1427 VkResult result;
1428 struct anv_device *device;
1429
1430 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1431
1432 struct anv_device_extension_table enabled_extensions = { };
1433 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1434 int idx;
1435 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1436 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1437 anv_device_extensions[idx].extensionName) == 0)
1438 break;
1439 }
1440
1441 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1442 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1443
1444 if (!physical_device->supported_extensions.extensions[idx])
1445 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1446
1447 enabled_extensions.extensions[idx] = true;
1448 }
1449
1450 /* Check enabled features */
1451 if (pCreateInfo->pEnabledFeatures) {
1452 VkPhysicalDeviceFeatures supported_features;
1453 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1454 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1455 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1456 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1457 for (uint32_t i = 0; i < num_features; i++) {
1458 if (enabled_feature[i] && !supported_feature[i])
1459 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1460 }
1461 }
1462
1463 /* Check if client specified queue priority. */
1464 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1465 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1466 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1467
1468 VkQueueGlobalPriorityEXT priority =
1469 queue_priority ? queue_priority->globalPriority :
1470 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1471
1472 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1473 sizeof(*device), 8,
1474 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1475 if (!device)
1476 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1477
1478 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1479 device->instance = physical_device->instance;
1480 device->chipset_id = physical_device->chipset_id;
1481 device->no_hw = physical_device->no_hw;
1482 device->lost = false;
1483
1484 if (pAllocator)
1485 device->alloc = *pAllocator;
1486 else
1487 device->alloc = physical_device->instance->alloc;
1488
1489 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1490 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1491 if (device->fd == -1) {
1492 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1493 goto fail_device;
1494 }
1495
1496 device->context_id = anv_gem_create_context(device);
1497 if (device->context_id == -1) {
1498 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1499 goto fail_fd;
1500 }
1501
1502 /* As per spec, the driver implementation may deny requests to acquire
1503 * a priority above the default priority (MEDIUM) if the caller does not
1504 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1505 * is returned.
1506 */
1507 if (physical_device->has_context_priority) {
1508 int err = anv_gem_set_context_param(device->fd, device->context_id,
1509 I915_CONTEXT_PARAM_PRIORITY,
1510 vk_priority_to_gen(priority));
1511 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1512 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1513 goto fail_fd;
1514 }
1515 }
1516
1517 device->info = physical_device->info;
1518 device->isl_dev = physical_device->isl_dev;
1519
1520 /* On Broadwell and later, we can use batch chaining to more efficiently
1521 * implement growing command buffers. Prior to Haswell, the kernel
1522 * command parser gets in the way and we have to fall back to growing
1523 * the batch.
1524 */
1525 device->can_chain_batches = device->info.gen >= 8;
1526
1527 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1528 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1529 device->enabled_extensions = enabled_extensions;
1530
1531 anv_device_init_dispatch(device);
1532
1533 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1534 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1535 goto fail_context_id;
1536 }
1537
1538 pthread_condattr_t condattr;
1539 if (pthread_condattr_init(&condattr) != 0) {
1540 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1541 goto fail_mutex;
1542 }
1543 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1544 pthread_condattr_destroy(&condattr);
1545 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1546 goto fail_mutex;
1547 }
1548 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1549 pthread_condattr_destroy(&condattr);
1550 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1551 goto fail_mutex;
1552 }
1553 pthread_condattr_destroy(&condattr);
1554
1555 uint64_t bo_flags =
1556 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1557 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1558 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1559
1560 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1561
1562 result = anv_bo_cache_init(&device->bo_cache);
1563 if (result != VK_SUCCESS)
1564 goto fail_batch_bo_pool;
1565
1566 /* For the state pools we explicitly disable 48bit. */
1567 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1568 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1569
1570 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1571 bo_flags);
1572 if (result != VK_SUCCESS)
1573 goto fail_bo_cache;
1574
1575 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1576 bo_flags);
1577 if (result != VK_SUCCESS)
1578 goto fail_dynamic_state_pool;
1579
1580 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1581 bo_flags);
1582 if (result != VK_SUCCESS)
1583 goto fail_instruction_state_pool;
1584
1585 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1586 if (result != VK_SUCCESS)
1587 goto fail_surface_state_pool;
1588
1589 anv_device_init_trivial_batch(device);
1590
1591 anv_scratch_pool_init(device, &device->scratch_pool);
1592
1593 anv_queue_init(device, &device->queue);
1594
1595 switch (device->info.gen) {
1596 case 7:
1597 if (!device->info.is_haswell)
1598 result = gen7_init_device_state(device);
1599 else
1600 result = gen75_init_device_state(device);
1601 break;
1602 case 8:
1603 result = gen8_init_device_state(device);
1604 break;
1605 case 9:
1606 result = gen9_init_device_state(device);
1607 break;
1608 case 10:
1609 result = gen10_init_device_state(device);
1610 break;
1611 case 11:
1612 result = gen11_init_device_state(device);
1613 break;
1614 default:
1615 /* Shouldn't get here as we don't create physical devices for any other
1616 * gens. */
1617 unreachable("unhandled gen");
1618 }
1619 if (result != VK_SUCCESS)
1620 goto fail_workaround_bo;
1621
1622 anv_device_init_blorp(device);
1623
1624 anv_device_init_border_colors(device);
1625
1626 *pDevice = anv_device_to_handle(device);
1627
1628 return VK_SUCCESS;
1629
1630 fail_workaround_bo:
1631 anv_queue_finish(&device->queue);
1632 anv_scratch_pool_finish(device, &device->scratch_pool);
1633 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1634 anv_gem_close(device, device->workaround_bo.gem_handle);
1635 fail_surface_state_pool:
1636 anv_state_pool_finish(&device->surface_state_pool);
1637 fail_instruction_state_pool:
1638 anv_state_pool_finish(&device->instruction_state_pool);
1639 fail_dynamic_state_pool:
1640 anv_state_pool_finish(&device->dynamic_state_pool);
1641 fail_bo_cache:
1642 anv_bo_cache_finish(&device->bo_cache);
1643 fail_batch_bo_pool:
1644 anv_bo_pool_finish(&device->batch_bo_pool);
1645 pthread_cond_destroy(&device->queue_submit);
1646 fail_mutex:
1647 pthread_mutex_destroy(&device->mutex);
1648 fail_context_id:
1649 anv_gem_destroy_context(device, device->context_id);
1650 fail_fd:
1651 close(device->fd);
1652 fail_device:
1653 vk_free(&device->alloc, device);
1654
1655 return result;
1656 }
1657
1658 void anv_DestroyDevice(
1659 VkDevice _device,
1660 const VkAllocationCallbacks* pAllocator)
1661 {
1662 ANV_FROM_HANDLE(anv_device, device, _device);
1663
1664 if (!device)
1665 return;
1666
1667 anv_device_finish_blorp(device);
1668
1669 anv_queue_finish(&device->queue);
1670
1671 #ifdef HAVE_VALGRIND
1672 /* We only need to free these to prevent valgrind errors. The backing
1673 * BO will go away in a couple of lines so we don't actually leak.
1674 */
1675 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1676 #endif
1677
1678 anv_scratch_pool_finish(device, &device->scratch_pool);
1679
1680 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1681 anv_gem_close(device, device->workaround_bo.gem_handle);
1682
1683 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1684
1685 anv_state_pool_finish(&device->surface_state_pool);
1686 anv_state_pool_finish(&device->instruction_state_pool);
1687 anv_state_pool_finish(&device->dynamic_state_pool);
1688
1689 anv_bo_cache_finish(&device->bo_cache);
1690
1691 anv_bo_pool_finish(&device->batch_bo_pool);
1692
1693 pthread_cond_destroy(&device->queue_submit);
1694 pthread_mutex_destroy(&device->mutex);
1695
1696 anv_gem_destroy_context(device, device->context_id);
1697
1698 close(device->fd);
1699
1700 vk_free(&device->alloc, device);
1701 }
1702
1703 VkResult anv_EnumerateInstanceLayerProperties(
1704 uint32_t* pPropertyCount,
1705 VkLayerProperties* pProperties)
1706 {
1707 if (pProperties == NULL) {
1708 *pPropertyCount = 0;
1709 return VK_SUCCESS;
1710 }
1711
1712 /* None supported at this time */
1713 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1714 }
1715
1716 VkResult anv_EnumerateDeviceLayerProperties(
1717 VkPhysicalDevice physicalDevice,
1718 uint32_t* pPropertyCount,
1719 VkLayerProperties* pProperties)
1720 {
1721 if (pProperties == NULL) {
1722 *pPropertyCount = 0;
1723 return VK_SUCCESS;
1724 }
1725
1726 /* None supported at this time */
1727 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1728 }
1729
1730 void anv_GetDeviceQueue(
1731 VkDevice _device,
1732 uint32_t queueNodeIndex,
1733 uint32_t queueIndex,
1734 VkQueue* pQueue)
1735 {
1736 ANV_FROM_HANDLE(anv_device, device, _device);
1737
1738 assert(queueIndex == 0);
1739
1740 *pQueue = anv_queue_to_handle(&device->queue);
1741 }
1742
1743 VkResult
1744 anv_device_query_status(struct anv_device *device)
1745 {
1746 /* This isn't likely as most of the callers of this function already check
1747 * for it. However, it doesn't hurt to check and it potentially lets us
1748 * avoid an ioctl.
1749 */
1750 if (unlikely(device->lost))
1751 return VK_ERROR_DEVICE_LOST;
1752
1753 uint32_t active, pending;
1754 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1755 if (ret == -1) {
1756 /* We don't know the real error. */
1757 device->lost = true;
1758 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1759 "get_reset_stats failed: %m");
1760 }
1761
1762 if (active) {
1763 device->lost = true;
1764 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1765 "GPU hung on one of our command buffers");
1766 } else if (pending) {
1767 device->lost = true;
1768 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1769 "GPU hung with commands in-flight");
1770 }
1771
1772 return VK_SUCCESS;
1773 }
1774
1775 VkResult
1776 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1777 {
1778 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1779 * Other usages of the BO (such as on different hardware) will not be
1780 * flagged as "busy" by this ioctl. Use with care.
1781 */
1782 int ret = anv_gem_busy(device, bo->gem_handle);
1783 if (ret == 1) {
1784 return VK_NOT_READY;
1785 } else if (ret == -1) {
1786 /* We don't know the real error. */
1787 device->lost = true;
1788 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1789 "gem wait failed: %m");
1790 }
1791
1792 /* Query for device status after the busy call. If the BO we're checking
1793 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1794 * client because it clearly doesn't have valid data. Yes, this most
1795 * likely means an ioctl, but we just did an ioctl to query the busy status
1796 * so it's no great loss.
1797 */
1798 return anv_device_query_status(device);
1799 }
1800
1801 VkResult
1802 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1803 int64_t timeout)
1804 {
1805 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1806 if (ret == -1 && errno == ETIME) {
1807 return VK_TIMEOUT;
1808 } else if (ret == -1) {
1809 /* We don't know the real error. */
1810 device->lost = true;
1811 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1812 "gem wait failed: %m");
1813 }
1814
1815 /* Query for device status after the wait. If the BO we're waiting on got
1816 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1817 * because it clearly doesn't have valid data. Yes, this most likely means
1818 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1819 */
1820 return anv_device_query_status(device);
1821 }
1822
1823 VkResult anv_DeviceWaitIdle(
1824 VkDevice _device)
1825 {
1826 ANV_FROM_HANDLE(anv_device, device, _device);
1827 if (unlikely(device->lost))
1828 return VK_ERROR_DEVICE_LOST;
1829
1830 struct anv_batch batch;
1831
1832 uint32_t cmds[8];
1833 batch.start = batch.next = cmds;
1834 batch.end = (void *) cmds + sizeof(cmds);
1835
1836 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1837 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1838
1839 return anv_device_submit_simple_batch(device, &batch);
1840 }
1841
1842 VkResult
1843 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1844 {
1845 uint32_t gem_handle = anv_gem_create(device, size);
1846 if (!gem_handle)
1847 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1848
1849 anv_bo_init(bo, gem_handle, size);
1850
1851 return VK_SUCCESS;
1852 }
1853
1854 VkResult anv_AllocateMemory(
1855 VkDevice _device,
1856 const VkMemoryAllocateInfo* pAllocateInfo,
1857 const VkAllocationCallbacks* pAllocator,
1858 VkDeviceMemory* pMem)
1859 {
1860 ANV_FROM_HANDLE(anv_device, device, _device);
1861 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1862 struct anv_device_memory *mem;
1863 VkResult result = VK_SUCCESS;
1864
1865 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1866
1867 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1868 assert(pAllocateInfo->allocationSize > 0);
1869
1870 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
1871 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1872
1873 /* FINISHME: Fail if allocation request exceeds heap size. */
1874
1875 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1876 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1877 if (mem == NULL)
1878 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1879
1880 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1881 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1882 mem->map = NULL;
1883 mem->map_size = 0;
1884
1885 const VkImportMemoryFdInfoKHR *fd_info =
1886 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1887
1888 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1889 * ignored.
1890 */
1891 if (fd_info && fd_info->handleType) {
1892 /* At the moment, we support only the below handle types. */
1893 assert(fd_info->handleType ==
1894 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
1895 fd_info->handleType ==
1896 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1897
1898 result = anv_bo_cache_import(device, &device->bo_cache,
1899 fd_info->fd, &mem->bo);
1900 if (result != VK_SUCCESS)
1901 goto fail;
1902
1903 VkDeviceSize aligned_alloc_size =
1904 align_u64(pAllocateInfo->allocationSize, 4096);
1905
1906 /* For security purposes, we reject importing the bo if it's smaller
1907 * than the requested allocation size. This prevents a malicious client
1908 * from passing a buffer to a trusted client, lying about the size, and
1909 * telling the trusted client to try and texture from an image that goes
1910 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1911 * in the trusted client. The trusted client can protect itself against
1912 * this sort of attack but only if it can trust the buffer size.
1913 */
1914 if (mem->bo->size < aligned_alloc_size) {
1915 result = vk_errorf(device->instance, device,
1916 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1917 "aligned allocationSize too large for "
1918 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1919 "%"PRIu64"B > %"PRIu64"B",
1920 aligned_alloc_size, mem->bo->size);
1921 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1922 goto fail;
1923 }
1924
1925 /* From the Vulkan spec:
1926 *
1927 * "Importing memory from a file descriptor transfers ownership of
1928 * the file descriptor from the application to the Vulkan
1929 * implementation. The application must not perform any operations on
1930 * the file descriptor after a successful import."
1931 *
1932 * If the import fails, we leave the file descriptor open.
1933 */
1934 close(fd_info->fd);
1935 } else {
1936 result = anv_bo_cache_alloc(device, &device->bo_cache,
1937 pAllocateInfo->allocationSize,
1938 &mem->bo);
1939 if (result != VK_SUCCESS)
1940 goto fail;
1941
1942 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1943 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1944 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1945 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1946
1947 /* Some legacy (non-modifiers) consumers need the tiling to be set on
1948 * the BO. In this case, we have a dedicated allocation.
1949 */
1950 if (image->needs_set_tiling) {
1951 const uint32_t i915_tiling =
1952 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1953 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1954 image->planes[0].surface.isl.row_pitch,
1955 i915_tiling);
1956 if (ret) {
1957 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1958 return vk_errorf(device->instance, NULL,
1959 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1960 "failed to set BO tiling: %m");
1961 }
1962 }
1963 }
1964 }
1965
1966 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1967 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1968 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1969
1970 const struct wsi_memory_allocate_info *wsi_info =
1971 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
1972 if (wsi_info && wsi_info->implicit_sync) {
1973 /* We need to set the WRITE flag on window system buffers so that GEM
1974 * will know we're writing to them and synchronize uses on other rings
1975 * (eg if the display server uses the blitter ring).
1976 */
1977 mem->bo->flags |= EXEC_OBJECT_WRITE;
1978 } else if (pdevice->has_exec_async) {
1979 mem->bo->flags |= EXEC_OBJECT_ASYNC;
1980 }
1981
1982 *pMem = anv_device_memory_to_handle(mem);
1983
1984 return VK_SUCCESS;
1985
1986 fail:
1987 vk_free2(&device->alloc, pAllocator, mem);
1988
1989 return result;
1990 }
1991
1992 VkResult anv_GetMemoryFdKHR(
1993 VkDevice device_h,
1994 const VkMemoryGetFdInfoKHR* pGetFdInfo,
1995 int* pFd)
1996 {
1997 ANV_FROM_HANDLE(anv_device, dev, device_h);
1998 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
1999
2000 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2001
2002 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2003 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2004
2005 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2006 }
2007
2008 VkResult anv_GetMemoryFdPropertiesKHR(
2009 VkDevice _device,
2010 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2011 int fd,
2012 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2013 {
2014 ANV_FROM_HANDLE(anv_device, device, _device);
2015 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2016
2017 switch (handleType) {
2018 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2019 /* dma-buf can be imported as any memory type */
2020 pMemoryFdProperties->memoryTypeBits =
2021 (1 << pdevice->memory.type_count) - 1;
2022 return VK_SUCCESS;
2023
2024 default:
2025 /* The valid usage section for this function says:
2026 *
2027 * "handleType must not be one of the handle types defined as
2028 * opaque."
2029 *
2030 * So opaque handle types fall into the default "unsupported" case.
2031 */
2032 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2033 }
2034 }
2035
2036 void anv_FreeMemory(
2037 VkDevice _device,
2038 VkDeviceMemory _mem,
2039 const VkAllocationCallbacks* pAllocator)
2040 {
2041 ANV_FROM_HANDLE(anv_device, device, _device);
2042 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2043
2044 if (mem == NULL)
2045 return;
2046
2047 if (mem->map)
2048 anv_UnmapMemory(_device, _mem);
2049
2050 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2051
2052 vk_free2(&device->alloc, pAllocator, mem);
2053 }
2054
2055 VkResult anv_MapMemory(
2056 VkDevice _device,
2057 VkDeviceMemory _memory,
2058 VkDeviceSize offset,
2059 VkDeviceSize size,
2060 VkMemoryMapFlags flags,
2061 void** ppData)
2062 {
2063 ANV_FROM_HANDLE(anv_device, device, _device);
2064 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2065
2066 if (mem == NULL) {
2067 *ppData = NULL;
2068 return VK_SUCCESS;
2069 }
2070
2071 if (size == VK_WHOLE_SIZE)
2072 size = mem->bo->size - offset;
2073
2074 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2075 *
2076 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2077 * assert(size != 0);
2078 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2079 * equal to the size of the memory minus offset
2080 */
2081 assert(size > 0);
2082 assert(offset + size <= mem->bo->size);
2083
2084 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2085 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2086 * at a time is valid. We could just mmap up front and return an offset
2087 * pointer here, but that may exhaust virtual memory on 32 bit
2088 * userspace. */
2089
2090 uint32_t gem_flags = 0;
2091
2092 if (!device->info.has_llc &&
2093 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2094 gem_flags |= I915_MMAP_WC;
2095
2096 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2097 uint64_t map_offset = offset & ~4095ull;
2098 assert(offset >= map_offset);
2099 uint64_t map_size = (offset + size) - map_offset;
2100
2101 /* Let's map whole pages */
2102 map_size = align_u64(map_size, 4096);
2103
2104 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2105 map_offset, map_size, gem_flags);
2106 if (map == MAP_FAILED)
2107 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2108
2109 mem->map = map;
2110 mem->map_size = map_size;
2111
2112 *ppData = mem->map + (offset - map_offset);
2113
2114 return VK_SUCCESS;
2115 }
2116
2117 void anv_UnmapMemory(
2118 VkDevice _device,
2119 VkDeviceMemory _memory)
2120 {
2121 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2122
2123 if (mem == NULL)
2124 return;
2125
2126 anv_gem_munmap(mem->map, mem->map_size);
2127
2128 mem->map = NULL;
2129 mem->map_size = 0;
2130 }
2131
2132 static void
2133 clflush_mapped_ranges(struct anv_device *device,
2134 uint32_t count,
2135 const VkMappedMemoryRange *ranges)
2136 {
2137 for (uint32_t i = 0; i < count; i++) {
2138 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2139 if (ranges[i].offset >= mem->map_size)
2140 continue;
2141
2142 gen_clflush_range(mem->map + ranges[i].offset,
2143 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2144 }
2145 }
2146
2147 VkResult anv_FlushMappedMemoryRanges(
2148 VkDevice _device,
2149 uint32_t memoryRangeCount,
2150 const VkMappedMemoryRange* pMemoryRanges)
2151 {
2152 ANV_FROM_HANDLE(anv_device, device, _device);
2153
2154 if (device->info.has_llc)
2155 return VK_SUCCESS;
2156
2157 /* Make sure the writes we're flushing have landed. */
2158 __builtin_ia32_mfence();
2159
2160 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2161
2162 return VK_SUCCESS;
2163 }
2164
2165 VkResult anv_InvalidateMappedMemoryRanges(
2166 VkDevice _device,
2167 uint32_t memoryRangeCount,
2168 const VkMappedMemoryRange* pMemoryRanges)
2169 {
2170 ANV_FROM_HANDLE(anv_device, device, _device);
2171
2172 if (device->info.has_llc)
2173 return VK_SUCCESS;
2174
2175 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2176
2177 /* Make sure no reads get moved up above the invalidate. */
2178 __builtin_ia32_mfence();
2179
2180 return VK_SUCCESS;
2181 }
2182
2183 void anv_GetBufferMemoryRequirements(
2184 VkDevice _device,
2185 VkBuffer _buffer,
2186 VkMemoryRequirements* pMemoryRequirements)
2187 {
2188 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2189 ANV_FROM_HANDLE(anv_device, device, _device);
2190 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2191
2192 /* The Vulkan spec (git aaed022) says:
2193 *
2194 * memoryTypeBits is a bitfield and contains one bit set for every
2195 * supported memory type for the resource. The bit `1<<i` is set if and
2196 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2197 * structure for the physical device is supported.
2198 */
2199 uint32_t memory_types = 0;
2200 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2201 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2202 if ((valid_usage & buffer->usage) == buffer->usage)
2203 memory_types |= (1u << i);
2204 }
2205
2206 /* Base alignment requirement of a cache line */
2207 uint32_t alignment = 16;
2208
2209 /* We need an alignment of 32 for pushing UBOs */
2210 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2211 alignment = MAX2(alignment, 32);
2212
2213 pMemoryRequirements->size = buffer->size;
2214 pMemoryRequirements->alignment = alignment;
2215
2216 /* Storage and Uniform buffers should have their size aligned to
2217 * 32-bits to avoid boundary checks when last DWord is not complete.
2218 * This would ensure that not internal padding would be needed for
2219 * 16-bit types.
2220 */
2221 if (device->robust_buffer_access &&
2222 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2223 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2224 pMemoryRequirements->size = align_u64(buffer->size, 4);
2225
2226 pMemoryRequirements->memoryTypeBits = memory_types;
2227 }
2228
2229 void anv_GetBufferMemoryRequirements2(
2230 VkDevice _device,
2231 const VkBufferMemoryRequirementsInfo2* pInfo,
2232 VkMemoryRequirements2* pMemoryRequirements)
2233 {
2234 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2235 &pMemoryRequirements->memoryRequirements);
2236
2237 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2238 switch (ext->sType) {
2239 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2240 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2241 requirements->prefersDedicatedAllocation = VK_FALSE;
2242 requirements->requiresDedicatedAllocation = VK_FALSE;
2243 break;
2244 }
2245
2246 default:
2247 anv_debug_ignored_stype(ext->sType);
2248 break;
2249 }
2250 }
2251 }
2252
2253 void anv_GetImageMemoryRequirements(
2254 VkDevice _device,
2255 VkImage _image,
2256 VkMemoryRequirements* pMemoryRequirements)
2257 {
2258 ANV_FROM_HANDLE(anv_image, image, _image);
2259 ANV_FROM_HANDLE(anv_device, device, _device);
2260 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2261
2262 /* The Vulkan spec (git aaed022) says:
2263 *
2264 * memoryTypeBits is a bitfield and contains one bit set for every
2265 * supported memory type for the resource. The bit `1<<i` is set if and
2266 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2267 * structure for the physical device is supported.
2268 *
2269 * All types are currently supported for images.
2270 */
2271 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2272
2273 pMemoryRequirements->size = image->size;
2274 pMemoryRequirements->alignment = image->alignment;
2275 pMemoryRequirements->memoryTypeBits = memory_types;
2276 }
2277
2278 void anv_GetImageMemoryRequirements2(
2279 VkDevice _device,
2280 const VkImageMemoryRequirementsInfo2* pInfo,
2281 VkMemoryRequirements2* pMemoryRequirements)
2282 {
2283 ANV_FROM_HANDLE(anv_device, device, _device);
2284 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2285
2286 anv_GetImageMemoryRequirements(_device, pInfo->image,
2287 &pMemoryRequirements->memoryRequirements);
2288
2289 vk_foreach_struct_const(ext, pInfo->pNext) {
2290 switch (ext->sType) {
2291 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2292 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2293 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2294 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2295 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2296 plane_reqs->planeAspect);
2297
2298 assert(image->planes[plane].offset == 0);
2299
2300 /* The Vulkan spec (git aaed022) says:
2301 *
2302 * memoryTypeBits is a bitfield and contains one bit set for every
2303 * supported memory type for the resource. The bit `1<<i` is set
2304 * if and only if the memory type `i` in the
2305 * VkPhysicalDeviceMemoryProperties structure for the physical
2306 * device is supported.
2307 *
2308 * All types are currently supported for images.
2309 */
2310 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2311 (1ull << pdevice->memory.type_count) - 1;
2312
2313 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2314 pMemoryRequirements->memoryRequirements.alignment =
2315 image->planes[plane].alignment;
2316 break;
2317 }
2318
2319 default:
2320 anv_debug_ignored_stype(ext->sType);
2321 break;
2322 }
2323 }
2324
2325 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2326 switch (ext->sType) {
2327 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2328 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2329 if (image->needs_set_tiling) {
2330 /* If we need to set the tiling for external consumers, we need a
2331 * dedicated allocation.
2332 *
2333 * See also anv_AllocateMemory.
2334 */
2335 requirements->prefersDedicatedAllocation = VK_TRUE;
2336 requirements->requiresDedicatedAllocation = VK_TRUE;
2337 } else {
2338 requirements->prefersDedicatedAllocation = VK_FALSE;
2339 requirements->requiresDedicatedAllocation = VK_FALSE;
2340 }
2341 break;
2342 }
2343
2344 default:
2345 anv_debug_ignored_stype(ext->sType);
2346 break;
2347 }
2348 }
2349 }
2350
2351 void anv_GetImageSparseMemoryRequirements(
2352 VkDevice device,
2353 VkImage image,
2354 uint32_t* pSparseMemoryRequirementCount,
2355 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2356 {
2357 *pSparseMemoryRequirementCount = 0;
2358 }
2359
2360 void anv_GetImageSparseMemoryRequirements2(
2361 VkDevice device,
2362 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2363 uint32_t* pSparseMemoryRequirementCount,
2364 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2365 {
2366 *pSparseMemoryRequirementCount = 0;
2367 }
2368
2369 void anv_GetDeviceMemoryCommitment(
2370 VkDevice device,
2371 VkDeviceMemory memory,
2372 VkDeviceSize* pCommittedMemoryInBytes)
2373 {
2374 *pCommittedMemoryInBytes = 0;
2375 }
2376
2377 static void
2378 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2379 {
2380 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2381 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2382
2383 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2384
2385 if (mem) {
2386 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2387 buffer->bo = mem->bo;
2388 buffer->offset = pBindInfo->memoryOffset;
2389 } else {
2390 buffer->bo = NULL;
2391 buffer->offset = 0;
2392 }
2393 }
2394
2395 VkResult anv_BindBufferMemory(
2396 VkDevice device,
2397 VkBuffer buffer,
2398 VkDeviceMemory memory,
2399 VkDeviceSize memoryOffset)
2400 {
2401 anv_bind_buffer_memory(
2402 &(VkBindBufferMemoryInfo) {
2403 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2404 .buffer = buffer,
2405 .memory = memory,
2406 .memoryOffset = memoryOffset,
2407 });
2408
2409 return VK_SUCCESS;
2410 }
2411
2412 VkResult anv_BindBufferMemory2(
2413 VkDevice device,
2414 uint32_t bindInfoCount,
2415 const VkBindBufferMemoryInfo* pBindInfos)
2416 {
2417 for (uint32_t i = 0; i < bindInfoCount; i++)
2418 anv_bind_buffer_memory(&pBindInfos[i]);
2419
2420 return VK_SUCCESS;
2421 }
2422
2423 VkResult anv_QueueBindSparse(
2424 VkQueue _queue,
2425 uint32_t bindInfoCount,
2426 const VkBindSparseInfo* pBindInfo,
2427 VkFence fence)
2428 {
2429 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2430 if (unlikely(queue->device->lost))
2431 return VK_ERROR_DEVICE_LOST;
2432
2433 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2434 }
2435
2436 // Event functions
2437
2438 VkResult anv_CreateEvent(
2439 VkDevice _device,
2440 const VkEventCreateInfo* pCreateInfo,
2441 const VkAllocationCallbacks* pAllocator,
2442 VkEvent* pEvent)
2443 {
2444 ANV_FROM_HANDLE(anv_device, device, _device);
2445 struct anv_state state;
2446 struct anv_event *event;
2447
2448 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2449
2450 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2451 sizeof(*event), 8);
2452 event = state.map;
2453 event->state = state;
2454 event->semaphore = VK_EVENT_RESET;
2455
2456 if (!device->info.has_llc) {
2457 /* Make sure the writes we're flushing have landed. */
2458 __builtin_ia32_mfence();
2459 __builtin_ia32_clflush(event);
2460 }
2461
2462 *pEvent = anv_event_to_handle(event);
2463
2464 return VK_SUCCESS;
2465 }
2466
2467 void anv_DestroyEvent(
2468 VkDevice _device,
2469 VkEvent _event,
2470 const VkAllocationCallbacks* pAllocator)
2471 {
2472 ANV_FROM_HANDLE(anv_device, device, _device);
2473 ANV_FROM_HANDLE(anv_event, event, _event);
2474
2475 if (!event)
2476 return;
2477
2478 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2479 }
2480
2481 VkResult anv_GetEventStatus(
2482 VkDevice _device,
2483 VkEvent _event)
2484 {
2485 ANV_FROM_HANDLE(anv_device, device, _device);
2486 ANV_FROM_HANDLE(anv_event, event, _event);
2487
2488 if (unlikely(device->lost))
2489 return VK_ERROR_DEVICE_LOST;
2490
2491 if (!device->info.has_llc) {
2492 /* Invalidate read cache before reading event written by GPU. */
2493 __builtin_ia32_clflush(event);
2494 __builtin_ia32_mfence();
2495
2496 }
2497
2498 return event->semaphore;
2499 }
2500
2501 VkResult anv_SetEvent(
2502 VkDevice _device,
2503 VkEvent _event)
2504 {
2505 ANV_FROM_HANDLE(anv_device, device, _device);
2506 ANV_FROM_HANDLE(anv_event, event, _event);
2507
2508 event->semaphore = VK_EVENT_SET;
2509
2510 if (!device->info.has_llc) {
2511 /* Make sure the writes we're flushing have landed. */
2512 __builtin_ia32_mfence();
2513 __builtin_ia32_clflush(event);
2514 }
2515
2516 return VK_SUCCESS;
2517 }
2518
2519 VkResult anv_ResetEvent(
2520 VkDevice _device,
2521 VkEvent _event)
2522 {
2523 ANV_FROM_HANDLE(anv_device, device, _device);
2524 ANV_FROM_HANDLE(anv_event, event, _event);
2525
2526 event->semaphore = VK_EVENT_RESET;
2527
2528 if (!device->info.has_llc) {
2529 /* Make sure the writes we're flushing have landed. */
2530 __builtin_ia32_mfence();
2531 __builtin_ia32_clflush(event);
2532 }
2533
2534 return VK_SUCCESS;
2535 }
2536
2537 // Buffer functions
2538
2539 VkResult anv_CreateBuffer(
2540 VkDevice _device,
2541 const VkBufferCreateInfo* pCreateInfo,
2542 const VkAllocationCallbacks* pAllocator,
2543 VkBuffer* pBuffer)
2544 {
2545 ANV_FROM_HANDLE(anv_device, device, _device);
2546 struct anv_buffer *buffer;
2547
2548 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2549
2550 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2551 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2552 if (buffer == NULL)
2553 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2554
2555 buffer->size = pCreateInfo->size;
2556 buffer->usage = pCreateInfo->usage;
2557 buffer->bo = NULL;
2558 buffer->offset = 0;
2559
2560 *pBuffer = anv_buffer_to_handle(buffer);
2561
2562 return VK_SUCCESS;
2563 }
2564
2565 void anv_DestroyBuffer(
2566 VkDevice _device,
2567 VkBuffer _buffer,
2568 const VkAllocationCallbacks* pAllocator)
2569 {
2570 ANV_FROM_HANDLE(anv_device, device, _device);
2571 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2572
2573 if (!buffer)
2574 return;
2575
2576 vk_free2(&device->alloc, pAllocator, buffer);
2577 }
2578
2579 void
2580 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2581 enum isl_format format,
2582 uint32_t offset, uint32_t range, uint32_t stride)
2583 {
2584 isl_buffer_fill_state(&device->isl_dev, state.map,
2585 .address = offset,
2586 .mocs = device->default_mocs,
2587 .size = range,
2588 .format = format,
2589 .stride = stride);
2590
2591 anv_state_flush(device, state);
2592 }
2593
2594 void anv_DestroySampler(
2595 VkDevice _device,
2596 VkSampler _sampler,
2597 const VkAllocationCallbacks* pAllocator)
2598 {
2599 ANV_FROM_HANDLE(anv_device, device, _device);
2600 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2601
2602 if (!sampler)
2603 return;
2604
2605 vk_free2(&device->alloc, pAllocator, sampler);
2606 }
2607
2608 VkResult anv_CreateFramebuffer(
2609 VkDevice _device,
2610 const VkFramebufferCreateInfo* pCreateInfo,
2611 const VkAllocationCallbacks* pAllocator,
2612 VkFramebuffer* pFramebuffer)
2613 {
2614 ANV_FROM_HANDLE(anv_device, device, _device);
2615 struct anv_framebuffer *framebuffer;
2616
2617 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2618
2619 size_t size = sizeof(*framebuffer) +
2620 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2621 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2622 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2623 if (framebuffer == NULL)
2624 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2625
2626 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2627 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2628 VkImageView _iview = pCreateInfo->pAttachments[i];
2629 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2630 }
2631
2632 framebuffer->width = pCreateInfo->width;
2633 framebuffer->height = pCreateInfo->height;
2634 framebuffer->layers = pCreateInfo->layers;
2635
2636 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2637
2638 return VK_SUCCESS;
2639 }
2640
2641 void anv_DestroyFramebuffer(
2642 VkDevice _device,
2643 VkFramebuffer _fb,
2644 const VkAllocationCallbacks* pAllocator)
2645 {
2646 ANV_FROM_HANDLE(anv_device, device, _device);
2647 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2648
2649 if (!fb)
2650 return;
2651
2652 vk_free2(&device->alloc, pAllocator, fb);
2653 }
2654
2655 /* vk_icd.h does not declare this function, so we declare it here to
2656 * suppress Wmissing-prototypes.
2657 */
2658 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2659 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2660
2661 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2662 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2663 {
2664 /* For the full details on loader interface versioning, see
2665 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2666 * What follows is a condensed summary, to help you navigate the large and
2667 * confusing official doc.
2668 *
2669 * - Loader interface v0 is incompatible with later versions. We don't
2670 * support it.
2671 *
2672 * - In loader interface v1:
2673 * - The first ICD entrypoint called by the loader is
2674 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2675 * entrypoint.
2676 * - The ICD must statically expose no other Vulkan symbol unless it is
2677 * linked with -Bsymbolic.
2678 * - Each dispatchable Vulkan handle created by the ICD must be
2679 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2680 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2681 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2682 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2683 * such loader-managed surfaces.
2684 *
2685 * - Loader interface v2 differs from v1 in:
2686 * - The first ICD entrypoint called by the loader is
2687 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2688 * statically expose this entrypoint.
2689 *
2690 * - Loader interface v3 differs from v2 in:
2691 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2692 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2693 * because the loader no longer does so.
2694 */
2695 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2696 return VK_SUCCESS;
2697 }