anv: Memset array properties
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57
58 DRI_CONF_SECTION_DEBUG
59 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
60 DRI_CONF_SECTION_END
61 DRI_CONF_END;
62
63 /* This is probably far to big but it reflects the max size used for messages
64 * in OpenGLs KHR_debug.
65 */
66 #define MAX_DEBUG_MESSAGE_LENGTH 4096
67
68 static void
69 compiler_debug_log(void *data, const char *fmt, ...)
70 {
71 char str[MAX_DEBUG_MESSAGE_LENGTH];
72 struct anv_device *device = (struct anv_device *)data;
73
74 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
75 return;
76
77 va_list args;
78 va_start(args, fmt);
79 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
80 va_end(args);
81
82 vk_debug_report(&device->instance->debug_report_callbacks,
83 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
84 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
85 0, 0, 0, "anv", str);
86 }
87
88 static void
89 compiler_perf_log(void *data, const char *fmt, ...)
90 {
91 va_list args;
92 va_start(args, fmt);
93
94 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
95 intel_logd_v(fmt, args);
96
97 va_end(args);
98 }
99
100 static uint64_t
101 anv_compute_heap_size(int fd, uint64_t gtt_size)
102 {
103 /* Query the total ram from the system */
104 struct sysinfo info;
105 sysinfo(&info);
106
107 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
108
109 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
110 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
111 */
112 uint64_t available_ram;
113 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
114 available_ram = total_ram / 2;
115 else
116 available_ram = total_ram * 3 / 4;
117
118 /* We also want to leave some padding for things we allocate in the driver,
119 * so don't go over 3/4 of the GTT either.
120 */
121 uint64_t available_gtt = gtt_size * 3 / 4;
122
123 return MIN2(available_ram, available_gtt);
124 }
125
126 static VkResult
127 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
128 {
129 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
130 &device->gtt_size) == -1) {
131 /* If, for whatever reason, we can't actually get the GTT size from the
132 * kernel (too old?) fall back to the aperture size.
133 */
134 anv_perf_warn(NULL, NULL,
135 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
136
137 if (anv_gem_get_aperture(fd, &device->gtt_size) == -1) {
138 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
139 "failed to get aperture size: %m");
140 }
141 }
142
143 /* We only allow 48-bit addresses with softpin because knowing the actual
144 * address is required for the vertex cache flush workaround.
145 */
146 device->supports_48bit_addresses = (device->info.gen >= 8) &&
147 device->has_softpin &&
148 device->gtt_size > (4ULL << 30 /* GiB */);
149
150 uint64_t heap_size = anv_compute_heap_size(fd, device->gtt_size);
151
152 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
153 /* When running with an overridden PCI ID, we may get a GTT size from
154 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
155 * address support can still fail. Just clamp the address space size to
156 * 2 GiB if we don't have 48-bit support.
157 */
158 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
159 "not support for 48-bit addresses",
160 __FILE__, __LINE__);
161 heap_size = 2ull << 30;
162 }
163
164 device->memory.heap_count = 1;
165 device->memory.heaps[0] = (struct anv_memory_heap) {
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 };
169
170 uint32_t type_count = 0;
171 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
172 if (device->info.has_llc) {
173 /* Big core GPUs share LLC with the CPU and thus one memory type can be
174 * both cached and coherent at the same time.
175 */
176 device->memory.types[type_count++] = (struct anv_memory_type) {
177 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
178 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
179 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
180 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
181 .heapIndex = heap,
182 };
183 } else {
184 /* The spec requires that we expose a host-visible, coherent memory
185 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
186 * to give the application a choice between cached, but not coherent and
187 * coherent but uncached (WC though).
188 */
189 device->memory.types[type_count++] = (struct anv_memory_type) {
190 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
191 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
192 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
193 .heapIndex = heap,
194 };
195 device->memory.types[type_count++] = (struct anv_memory_type) {
196 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
197 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
198 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
199 .heapIndex = heap,
200 };
201 }
202 }
203 device->memory.type_count = type_count;
204
205 return VK_SUCCESS;
206 }
207
208 static VkResult
209 anv_physical_device_init_uuids(struct anv_physical_device *device)
210 {
211 const struct build_id_note *note =
212 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
213 if (!note) {
214 return vk_errorf(device->instance, device,
215 VK_ERROR_INITIALIZATION_FAILED,
216 "Failed to find build-id");
217 }
218
219 unsigned build_id_len = build_id_length(note);
220 if (build_id_len < 20) {
221 return vk_errorf(device->instance, device,
222 VK_ERROR_INITIALIZATION_FAILED,
223 "build-id too short. It needs to be a SHA");
224 }
225
226 memcpy(device->driver_build_sha1, build_id_data(note), 20);
227
228 struct mesa_sha1 sha1_ctx;
229 uint8_t sha1[20];
230 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
231
232 /* The pipeline cache UUID is used for determining when a pipeline cache is
233 * invalid. It needs both a driver build and the PCI ID of the device.
234 */
235 _mesa_sha1_init(&sha1_ctx);
236 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
237 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
238 sizeof(device->chipset_id));
239 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
240 sizeof(device->always_use_bindless));
241 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
242 sizeof(device->has_a64_buffer_access));
243 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
244 sizeof(device->has_bindless_images));
245 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
246 sizeof(device->has_bindless_samplers));
247 _mesa_sha1_final(&sha1_ctx, sha1);
248 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
249
250 /* The driver UUID is used for determining sharability of images and memory
251 * between two Vulkan instances in separate processes. People who want to
252 * share memory need to also check the device UUID (below) so all this
253 * needs to be is the build-id.
254 */
255 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
256
257 /* The device UUID uniquely identifies the given device within the machine.
258 * Since we never have more than one device, this doesn't need to be a real
259 * UUID. However, on the off-chance that someone tries to use this to
260 * cache pre-tiled images or something of the like, we use the PCI ID and
261 * some bits of ISL info to ensure that this is safe.
262 */
263 _mesa_sha1_init(&sha1_ctx);
264 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
265 sizeof(device->chipset_id));
266 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
267 sizeof(device->isl_dev.has_bit6_swizzling));
268 _mesa_sha1_final(&sha1_ctx, sha1);
269 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
270
271 return VK_SUCCESS;
272 }
273
274 static void
275 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
276 {
277 #ifdef ENABLE_SHADER_CACHE
278 char renderer[10];
279 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
280 device->chipset_id);
281 assert(len == sizeof(renderer) - 2);
282
283 char timestamp[41];
284 _mesa_sha1_format(timestamp, device->driver_build_sha1);
285
286 const uint64_t driver_flags =
287 brw_get_compiler_config_value(device->compiler);
288 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
289 #else
290 device->disk_cache = NULL;
291 #endif
292 }
293
294 static void
295 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
296 {
297 #ifdef ENABLE_SHADER_CACHE
298 if (device->disk_cache)
299 disk_cache_destroy(device->disk_cache);
300 #else
301 assert(device->disk_cache == NULL);
302 #endif
303 }
304
305 static uint64_t
306 get_available_system_memory()
307 {
308 char *meminfo = os_read_file("/proc/meminfo");
309 if (!meminfo)
310 return 0;
311
312 char *str = strstr(meminfo, "MemAvailable:");
313 if (!str) {
314 free(meminfo);
315 return 0;
316 }
317
318 uint64_t kb_mem_available;
319 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
320 free(meminfo);
321 return kb_mem_available << 10;
322 }
323
324 free(meminfo);
325 return 0;
326 }
327
328 static VkResult
329 anv_physical_device_init(struct anv_physical_device *device,
330 struct anv_instance *instance,
331 drmDevicePtr drm_device)
332 {
333 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
334 const char *path = drm_device->nodes[DRM_NODE_RENDER];
335 VkResult result;
336 int fd;
337 int master_fd = -1;
338
339 brw_process_intel_debug_variable();
340
341 fd = open(path, O_RDWR | O_CLOEXEC);
342 if (fd < 0)
343 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
344
345 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
346 device->instance = instance;
347
348 assert(strlen(path) < ARRAY_SIZE(device->path));
349 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
350
351 if (!gen_get_device_info_from_fd(fd, &device->info)) {
352 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
353 goto fail;
354 }
355 device->chipset_id = device->info.chipset_id;
356 device->no_hw = device->info.no_hw;
357
358 if (getenv("INTEL_NO_HW") != NULL)
359 device->no_hw = true;
360
361 device->pci_info.domain = drm_device->businfo.pci->domain;
362 device->pci_info.bus = drm_device->businfo.pci->bus;
363 device->pci_info.device = drm_device->businfo.pci->dev;
364 device->pci_info.function = drm_device->businfo.pci->func;
365
366 device->name = gen_get_device_name(device->chipset_id);
367
368 if (device->info.is_haswell) {
369 intel_logw("Haswell Vulkan support is incomplete");
370 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
371 intel_logw("Ivy Bridge Vulkan support is incomplete");
372 } else if (device->info.gen == 7 && device->info.is_baytrail) {
373 intel_logw("Bay Trail Vulkan support is incomplete");
374 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
375 /* Gen8-11 fully supported */
376 } else if (device->info.gen == 12) {
377 intel_logw("Vulkan is not yet fully supported on gen12");
378 } else {
379 result = vk_errorf(device->instance, device,
380 VK_ERROR_INCOMPATIBLE_DRIVER,
381 "Vulkan not yet supported on %s", device->name);
382 goto fail;
383 }
384
385 device->cmd_parser_version = -1;
386 if (device->info.gen == 7) {
387 device->cmd_parser_version =
388 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
389 if (device->cmd_parser_version == -1) {
390 result = vk_errorf(device->instance, device,
391 VK_ERROR_INITIALIZATION_FAILED,
392 "failed to get command parser version");
393 goto fail;
394 }
395 }
396
397 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
398 result = vk_errorf(device->instance, device,
399 VK_ERROR_INITIALIZATION_FAILED,
400 "kernel missing gem wait");
401 goto fail;
402 }
403
404 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
405 result = vk_errorf(device->instance, device,
406 VK_ERROR_INITIALIZATION_FAILED,
407 "kernel missing execbuf2");
408 goto fail;
409 }
410
411 if (!device->info.has_llc &&
412 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
413 result = vk_errorf(device->instance, device,
414 VK_ERROR_INITIALIZATION_FAILED,
415 "kernel missing wc mmap");
416 goto fail;
417 }
418
419 device->has_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN);
420 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
421 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
422 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
423 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
424 device->has_syncobj_wait = device->has_syncobj &&
425 anv_gem_supports_syncobj_wait(fd);
426 device->has_context_priority = anv_gem_has_context_priority(fd);
427
428 result = anv_physical_device_init_heaps(device, fd);
429 if (result != VK_SUCCESS)
430 goto fail;
431
432 device->use_softpin = device->has_softpin &&
433 device->supports_48bit_addresses;
434
435 device->has_context_isolation =
436 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
437
438 device->always_use_bindless =
439 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
440
441 /* We first got the A64 messages on broadwell and we can only use them if
442 * we can pass addresses directly into the shader which requires softpin.
443 */
444 device->has_a64_buffer_access = device->info.gen >= 8 &&
445 device->use_softpin;
446
447 /* We first get bindless image access on Skylake and we can only really do
448 * it if we don't have any relocations so we need softpin.
449 */
450 device->has_bindless_images = device->info.gen >= 9 &&
451 device->use_softpin;
452
453 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
454 * because it's just a matter of setting the sampler address in the sample
455 * message header. However, we've not bothered to wire it up for vec4 so
456 * we leave it disabled on gen7.
457 */
458 device->has_bindless_samplers = device->info.gen >= 8;
459
460 device->has_mem_available = get_available_system_memory() != 0;
461
462 device->always_flush_cache =
463 driQueryOptionb(&instance->dri_options, "always_flush_cache");
464
465 /* Starting with Gen10, the timestamp frequency of the command streamer may
466 * vary from one part to another. We can query the value from the kernel.
467 */
468 if (device->info.gen >= 10) {
469 int timestamp_frequency =
470 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
471
472 if (timestamp_frequency < 0)
473 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
474 else
475 device->info.timestamp_frequency = timestamp_frequency;
476 }
477
478 /* GENs prior to 8 do not support EU/Subslice info */
479 if (device->info.gen >= 8) {
480 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
481 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
482
483 /* Without this information, we cannot get the right Braswell
484 * brandstrings, and we have to use conservative numbers for GPGPU on
485 * many platforms, but otherwise, things will just work.
486 */
487 if (device->subslice_total < 1 || device->eu_total < 1) {
488 intel_logw("Kernel 4.1 required to properly query GPU properties");
489 }
490 } else if (device->info.gen == 7) {
491 device->subslice_total = 1 << (device->info.gt - 1);
492 }
493
494 if (device->info.is_cherryview &&
495 device->subslice_total > 0 && device->eu_total > 0) {
496 /* Logical CS threads = EUs per subslice * num threads per EU */
497 uint32_t max_cs_threads =
498 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
499
500 /* Fuse configurations may give more threads than expected, never less. */
501 if (max_cs_threads > device->info.max_cs_threads)
502 device->info.max_cs_threads = max_cs_threads;
503 }
504
505 device->compiler = brw_compiler_create(NULL, &device->info);
506 if (device->compiler == NULL) {
507 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
508 goto fail;
509 }
510 device->compiler->shader_debug_log = compiler_debug_log;
511 device->compiler->shader_perf_log = compiler_perf_log;
512 device->compiler->supports_pull_constants = false;
513 device->compiler->constant_buffer_0_is_relative =
514 device->info.gen < 8 || !device->has_context_isolation;
515 device->compiler->supports_shader_constants = true;
516 device->compiler->compact_params = false;
517
518 /* Broadwell PRM says:
519 *
520 * "Before Gen8, there was a historical configuration control field to
521 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
522 * different places: TILECTL[1:0], ARB_MODE[5:4], and
523 * DISP_ARB_CTL[14:13].
524 *
525 * For Gen8 and subsequent generations, the swizzle fields are all
526 * reserved, and the CPU's memory controller performs all address
527 * swizzling modifications."
528 */
529 bool swizzled =
530 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
531
532 isl_device_init(&device->isl_dev, &device->info, swizzled);
533
534 result = anv_physical_device_init_uuids(device);
535 if (result != VK_SUCCESS)
536 goto fail;
537
538 anv_physical_device_init_disk_cache(device);
539
540 if (instance->enabled_extensions.KHR_display) {
541 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
542 if (master_fd >= 0) {
543 /* prod the device with a GETPARAM call which will fail if
544 * we don't have permission to even render on this device
545 */
546 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
547 close(master_fd);
548 master_fd = -1;
549 }
550 }
551 }
552 device->master_fd = master_fd;
553
554 result = anv_init_wsi(device);
555 if (result != VK_SUCCESS) {
556 ralloc_free(device->compiler);
557 anv_physical_device_free_disk_cache(device);
558 goto fail;
559 }
560
561 device->perf = anv_get_perf(&device->info, fd);
562
563 anv_physical_device_get_supported_extensions(device,
564 &device->supported_extensions);
565
566
567 device->local_fd = fd;
568
569 return VK_SUCCESS;
570
571 fail:
572 close(fd);
573 if (master_fd != -1)
574 close(master_fd);
575 return result;
576 }
577
578 static void
579 anv_physical_device_finish(struct anv_physical_device *device)
580 {
581 anv_finish_wsi(device);
582 anv_physical_device_free_disk_cache(device);
583 ralloc_free(device->compiler);
584 ralloc_free(device->perf);
585 close(device->local_fd);
586 if (device->master_fd >= 0)
587 close(device->master_fd);
588 }
589
590 static void *
591 default_alloc_func(void *pUserData, size_t size, size_t align,
592 VkSystemAllocationScope allocationScope)
593 {
594 return malloc(size);
595 }
596
597 static void *
598 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
599 size_t align, VkSystemAllocationScope allocationScope)
600 {
601 return realloc(pOriginal, size);
602 }
603
604 static void
605 default_free_func(void *pUserData, void *pMemory)
606 {
607 free(pMemory);
608 }
609
610 static const VkAllocationCallbacks default_alloc = {
611 .pUserData = NULL,
612 .pfnAllocation = default_alloc_func,
613 .pfnReallocation = default_realloc_func,
614 .pfnFree = default_free_func,
615 };
616
617 VkResult anv_EnumerateInstanceExtensionProperties(
618 const char* pLayerName,
619 uint32_t* pPropertyCount,
620 VkExtensionProperties* pProperties)
621 {
622 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
623
624 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
625 if (anv_instance_extensions_supported.extensions[i]) {
626 vk_outarray_append(&out, prop) {
627 *prop = anv_instance_extensions[i];
628 }
629 }
630 }
631
632 return vk_outarray_status(&out);
633 }
634
635 VkResult anv_CreateInstance(
636 const VkInstanceCreateInfo* pCreateInfo,
637 const VkAllocationCallbacks* pAllocator,
638 VkInstance* pInstance)
639 {
640 struct anv_instance *instance;
641 VkResult result;
642
643 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
644
645 struct anv_instance_extension_table enabled_extensions = {};
646 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
647 int idx;
648 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
649 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
650 anv_instance_extensions[idx].extensionName) == 0)
651 break;
652 }
653
654 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
655 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
656
657 if (!anv_instance_extensions_supported.extensions[idx])
658 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
659
660 enabled_extensions.extensions[idx] = true;
661 }
662
663 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
664 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
665 if (!instance)
666 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
667
668 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
669
670 if (pAllocator)
671 instance->alloc = *pAllocator;
672 else
673 instance->alloc = default_alloc;
674
675 instance->app_info = (struct anv_app_info) { .api_version = 0 };
676 if (pCreateInfo->pApplicationInfo) {
677 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
678
679 instance->app_info.app_name =
680 vk_strdup(&instance->alloc, app->pApplicationName,
681 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
682 instance->app_info.app_version = app->applicationVersion;
683
684 instance->app_info.engine_name =
685 vk_strdup(&instance->alloc, app->pEngineName,
686 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
687 instance->app_info.engine_version = app->engineVersion;
688
689 instance->app_info.api_version = app->apiVersion;
690 }
691
692 if (instance->app_info.api_version == 0)
693 instance->app_info.api_version = VK_API_VERSION_1_0;
694
695 instance->enabled_extensions = enabled_extensions;
696
697 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
698 /* Vulkan requires that entrypoints for extensions which have not been
699 * enabled must not be advertised.
700 */
701 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
702 &instance->enabled_extensions)) {
703 instance->dispatch.entrypoints[i] = NULL;
704 } else {
705 instance->dispatch.entrypoints[i] =
706 anv_instance_dispatch_table.entrypoints[i];
707 }
708 }
709
710 struct anv_physical_device *pdevice = &instance->physicalDevice;
711 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
712 /* Vulkan requires that entrypoints for extensions which have not been
713 * enabled must not be advertised.
714 */
715 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
716 &instance->enabled_extensions)) {
717 pdevice->dispatch.entrypoints[i] = NULL;
718 } else {
719 pdevice->dispatch.entrypoints[i] =
720 anv_physical_device_dispatch_table.entrypoints[i];
721 }
722 }
723
724 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
725 /* Vulkan requires that entrypoints for extensions which have not been
726 * enabled must not be advertised.
727 */
728 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
729 &instance->enabled_extensions, NULL)) {
730 instance->device_dispatch.entrypoints[i] = NULL;
731 } else {
732 instance->device_dispatch.entrypoints[i] =
733 anv_device_dispatch_table.entrypoints[i];
734 }
735 }
736
737 instance->physicalDeviceCount = -1;
738
739 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
740 if (result != VK_SUCCESS) {
741 vk_free2(&default_alloc, pAllocator, instance);
742 return vk_error(result);
743 }
744
745 instance->pipeline_cache_enabled =
746 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
747
748 glsl_type_singleton_init_or_ref();
749
750 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
751
752 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
753 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
754 0, "anv", NULL,
755 instance->app_info.engine_name,
756 instance->app_info.engine_version);
757
758 *pInstance = anv_instance_to_handle(instance);
759
760 return VK_SUCCESS;
761 }
762
763 void anv_DestroyInstance(
764 VkInstance _instance,
765 const VkAllocationCallbacks* pAllocator)
766 {
767 ANV_FROM_HANDLE(anv_instance, instance, _instance);
768
769 if (!instance)
770 return;
771
772 if (instance->physicalDeviceCount > 0) {
773 /* We support at most one physical device. */
774 assert(instance->physicalDeviceCount == 1);
775 anv_physical_device_finish(&instance->physicalDevice);
776 }
777
778 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
779 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
780
781 VG(VALGRIND_DESTROY_MEMPOOL(instance));
782
783 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
784
785 glsl_type_singleton_decref();
786
787 driDestroyOptionCache(&instance->dri_options);
788 driDestroyOptionInfo(&instance->available_dri_options);
789
790 vk_free(&instance->alloc, instance);
791 }
792
793 static VkResult
794 anv_enumerate_devices(struct anv_instance *instance)
795 {
796 /* TODO: Check for more devices ? */
797 drmDevicePtr devices[8];
798 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
799 int max_devices;
800
801 instance->physicalDeviceCount = 0;
802
803 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
804 if (max_devices < 1)
805 return VK_ERROR_INCOMPATIBLE_DRIVER;
806
807 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
808 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
809 devices[i]->bustype == DRM_BUS_PCI &&
810 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
811
812 result = anv_physical_device_init(&instance->physicalDevice,
813 instance, devices[i]);
814 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
815 break;
816 }
817 }
818 drmFreeDevices(devices, max_devices);
819
820 if (result == VK_SUCCESS)
821 instance->physicalDeviceCount = 1;
822
823 return result;
824 }
825
826 static VkResult
827 anv_instance_ensure_physical_device(struct anv_instance *instance)
828 {
829 if (instance->physicalDeviceCount < 0) {
830 VkResult result = anv_enumerate_devices(instance);
831 if (result != VK_SUCCESS &&
832 result != VK_ERROR_INCOMPATIBLE_DRIVER)
833 return result;
834 }
835
836 return VK_SUCCESS;
837 }
838
839 VkResult anv_EnumeratePhysicalDevices(
840 VkInstance _instance,
841 uint32_t* pPhysicalDeviceCount,
842 VkPhysicalDevice* pPhysicalDevices)
843 {
844 ANV_FROM_HANDLE(anv_instance, instance, _instance);
845 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
846
847 VkResult result = anv_instance_ensure_physical_device(instance);
848 if (result != VK_SUCCESS)
849 return result;
850
851 if (instance->physicalDeviceCount == 0)
852 return VK_SUCCESS;
853
854 assert(instance->physicalDeviceCount == 1);
855 vk_outarray_append(&out, i) {
856 *i = anv_physical_device_to_handle(&instance->physicalDevice);
857 }
858
859 return vk_outarray_status(&out);
860 }
861
862 VkResult anv_EnumeratePhysicalDeviceGroups(
863 VkInstance _instance,
864 uint32_t* pPhysicalDeviceGroupCount,
865 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
866 {
867 ANV_FROM_HANDLE(anv_instance, instance, _instance);
868 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
869 pPhysicalDeviceGroupCount);
870
871 VkResult result = anv_instance_ensure_physical_device(instance);
872 if (result != VK_SUCCESS)
873 return result;
874
875 if (instance->physicalDeviceCount == 0)
876 return VK_SUCCESS;
877
878 assert(instance->physicalDeviceCount == 1);
879
880 vk_outarray_append(&out, p) {
881 p->physicalDeviceCount = 1;
882 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
883 p->physicalDevices[0] =
884 anv_physical_device_to_handle(&instance->physicalDevice);
885 p->subsetAllocation = false;
886
887 vk_foreach_struct(ext, p->pNext)
888 anv_debug_ignored_stype(ext->sType);
889 }
890
891 return vk_outarray_status(&out);
892 }
893
894 void anv_GetPhysicalDeviceFeatures(
895 VkPhysicalDevice physicalDevice,
896 VkPhysicalDeviceFeatures* pFeatures)
897 {
898 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
899
900 *pFeatures = (VkPhysicalDeviceFeatures) {
901 .robustBufferAccess = true,
902 .fullDrawIndexUint32 = true,
903 .imageCubeArray = true,
904 .independentBlend = true,
905 .geometryShader = true,
906 .tessellationShader = true,
907 .sampleRateShading = true,
908 .dualSrcBlend = true,
909 .logicOp = true,
910 .multiDrawIndirect = true,
911 .drawIndirectFirstInstance = true,
912 .depthClamp = true,
913 .depthBiasClamp = true,
914 .fillModeNonSolid = true,
915 .depthBounds = pdevice->info.gen >= 12,
916 .wideLines = true,
917 .largePoints = true,
918 .alphaToOne = true,
919 .multiViewport = true,
920 .samplerAnisotropy = true,
921 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
922 pdevice->info.is_baytrail,
923 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
924 .textureCompressionBC = true,
925 .occlusionQueryPrecise = true,
926 .pipelineStatisticsQuery = true,
927 .fragmentStoresAndAtomics = true,
928 .shaderTessellationAndGeometryPointSize = true,
929 .shaderImageGatherExtended = true,
930 .shaderStorageImageExtendedFormats = true,
931 .shaderStorageImageMultisample = false,
932 .shaderStorageImageReadWithoutFormat = false,
933 .shaderStorageImageWriteWithoutFormat = true,
934 .shaderUniformBufferArrayDynamicIndexing = true,
935 .shaderSampledImageArrayDynamicIndexing = true,
936 .shaderStorageBufferArrayDynamicIndexing = true,
937 .shaderStorageImageArrayDynamicIndexing = true,
938 .shaderClipDistance = true,
939 .shaderCullDistance = true,
940 .shaderFloat64 = pdevice->info.gen >= 8 &&
941 pdevice->info.has_64bit_types,
942 .shaderInt64 = pdevice->info.gen >= 8 &&
943 pdevice->info.has_64bit_types,
944 .shaderInt16 = pdevice->info.gen >= 8,
945 .shaderResourceMinLod = pdevice->info.gen >= 9,
946 .variableMultisampleRate = true,
947 .inheritedQueries = true,
948 };
949
950 /* We can't do image stores in vec4 shaders */
951 pFeatures->vertexPipelineStoresAndAtomics =
952 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
953 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
954
955 struct anv_app_info *app_info = &pdevice->instance->app_info;
956
957 /* The new DOOM and Wolfenstein games require depthBounds without
958 * checking for it. They seem to run fine without it so just claim it's
959 * there and accept the consequences.
960 */
961 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
962 pFeatures->depthBounds = true;
963 }
964
965 void anv_GetPhysicalDeviceFeatures2(
966 VkPhysicalDevice physicalDevice,
967 VkPhysicalDeviceFeatures2* pFeatures)
968 {
969 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
970 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
971
972 vk_foreach_struct(ext, pFeatures->pNext) {
973 switch (ext->sType) {
974 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
975 VkPhysicalDevice8BitStorageFeaturesKHR *features =
976 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
977 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
978 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
979 features->storagePushConstant8 = pdevice->info.gen >= 8;
980 break;
981 }
982
983 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
984 VkPhysicalDevice16BitStorageFeatures *features =
985 (VkPhysicalDevice16BitStorageFeatures *)ext;
986 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
987 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
988 features->storagePushConstant16 = pdevice->info.gen >= 8;
989 features->storageInputOutput16 = false;
990 break;
991 }
992
993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
994 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
995 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
996 features->bufferDeviceAddressCaptureReplay = false;
997 features->bufferDeviceAddressMultiDevice = false;
998 break;
999 }
1000
1001 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_KHR: {
1002 VkPhysicalDeviceBufferDeviceAddressFeaturesKHR *features = (void *)ext;
1003 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1004 features->bufferDeviceAddressCaptureReplay =
1005 pdevice->has_a64_buffer_access;
1006 features->bufferDeviceAddressMultiDevice = false;
1007 break;
1008 }
1009
1010 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1011 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1012 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1013 features->computeDerivativeGroupQuads = true;
1014 features->computeDerivativeGroupLinear = true;
1015 break;
1016 }
1017
1018 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1019 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1020 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1021 features->conditionalRendering = pdevice->info.gen >= 8 ||
1022 pdevice->info.is_haswell;
1023 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1024 pdevice->info.is_haswell;
1025 break;
1026 }
1027
1028 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1029 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1030 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1031 features->depthClipEnable = true;
1032 break;
1033 }
1034
1035 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1036 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1037 features->shaderFloat16 = pdevice->info.gen >= 8;
1038 features->shaderInt8 = pdevice->info.gen >= 8;
1039 break;
1040 }
1041
1042 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1043 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1044 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1045 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1046 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1047 features->fragmentShaderShadingRateInterlock = false;
1048 break;
1049 }
1050
1051 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1052 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1053 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1054 features->hostQueryReset = true;
1055 break;
1056 }
1057
1058 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1059 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1060 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1061 bool descIndexing = pdevice->has_a64_buffer_access &&
1062 pdevice->has_bindless_images;
1063 features->shaderInputAttachmentArrayDynamicIndexing = false;
1064 features->shaderUniformTexelBufferArrayDynamicIndexing = descIndexing;
1065 features->shaderStorageTexelBufferArrayDynamicIndexing = descIndexing;
1066 features->shaderUniformBufferArrayNonUniformIndexing = false;
1067 features->shaderSampledImageArrayNonUniformIndexing = descIndexing;
1068 features->shaderStorageBufferArrayNonUniformIndexing = descIndexing;
1069 features->shaderStorageImageArrayNonUniformIndexing = descIndexing;
1070 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1071 features->shaderUniformTexelBufferArrayNonUniformIndexing = descIndexing;
1072 features->shaderStorageTexelBufferArrayNonUniformIndexing = descIndexing;
1073 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1074 features->descriptorBindingSampledImageUpdateAfterBind = descIndexing;
1075 features->descriptorBindingStorageImageUpdateAfterBind = descIndexing;
1076 features->descriptorBindingStorageBufferUpdateAfterBind = descIndexing;
1077 features->descriptorBindingUniformTexelBufferUpdateAfterBind = descIndexing;
1078 features->descriptorBindingStorageTexelBufferUpdateAfterBind = descIndexing;
1079 features->descriptorBindingUpdateUnusedWhilePending = descIndexing;
1080 features->descriptorBindingPartiallyBound = descIndexing;
1081 features->descriptorBindingVariableDescriptorCount = false;
1082 features->runtimeDescriptorArray = descIndexing;
1083 break;
1084 }
1085
1086 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1087 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1088 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1089 features->indexTypeUint8 = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1094 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1095 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1096 features->inlineUniformBlock = true;
1097 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1098 break;
1099 }
1100
1101 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1102 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1103 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1104 features->rectangularLines = true;
1105 features->bresenhamLines = true;
1106 /* Support for Smooth lines with MSAA was removed on gen11. From the
1107 * BSpec section "Multisample ModesState" table for "AA Line Support
1108 * Requirements":
1109 *
1110 * GEN10:BUG:######## NUM_MULTISAMPLES == 1
1111 *
1112 * Fortunately, this isn't a case most people care about.
1113 */
1114 features->smoothLines = pdevice->info.gen < 10;
1115 features->stippledRectangularLines = false;
1116 features->stippledBresenhamLines = true;
1117 features->stippledSmoothLines = false;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1122 VkPhysicalDeviceMultiviewFeatures *features =
1123 (VkPhysicalDeviceMultiviewFeatures *)ext;
1124 features->multiview = true;
1125 features->multiviewGeometryShader = true;
1126 features->multiviewTessellationShader = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1131 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1132 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1133 features->imagelessFramebuffer = true;
1134 break;
1135 }
1136
1137 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1138 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1139 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1140 features->pipelineExecutableInfo = true;
1141 break;
1142 }
1143
1144 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1145 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1146 features->protectedMemory = false;
1147 break;
1148 }
1149
1150 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1151 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1152 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1153 features->samplerYcbcrConversion = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1158 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1159 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1160 features->scalarBlockLayout = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1165 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1166 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1167 features->separateDepthStencilLayouts = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1172 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1173 features->shaderBufferInt64Atomics =
1174 pdevice->info.gen >= 9 && pdevice->use_softpin;
1175 features->shaderSharedInt64Atomics = VK_FALSE;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1180 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1181 features->shaderDemoteToHelperInvocation = true;
1182 break;
1183 }
1184
1185 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1186 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1187 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1188 features->shaderSubgroupClock = true;
1189 features->shaderDeviceClock = false;
1190 break;
1191 }
1192
1193 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1194 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1195 features->shaderDrawParameters = true;
1196 break;
1197 }
1198
1199 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1200 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1201 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1202 features->shaderSubgroupExtendedTypes = true;
1203 break;
1204 }
1205
1206 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1207 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1208 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1209 features->subgroupSizeControl = true;
1210 features->computeFullSubgroups = true;
1211 break;
1212 }
1213
1214 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1215 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1216 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1217 features->texelBufferAlignment = true;
1218 break;
1219 }
1220
1221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES_KHR: {
1222 VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *features =
1223 (VkPhysicalDeviceTimelineSemaphoreFeaturesKHR *) ext;
1224 features->timelineSemaphore = true;
1225 break;
1226 }
1227
1228 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1229 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1230 features->variablePointersStorageBuffer = true;
1231 features->variablePointers = true;
1232 break;
1233 }
1234
1235 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1236 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1237 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1238 features->transformFeedback = true;
1239 features->geometryStreams = true;
1240 break;
1241 }
1242
1243 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1244 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1245 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1246 features->uniformBufferStandardLayout = true;
1247 break;
1248 }
1249
1250 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1251 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1252 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1253 features->vertexAttributeInstanceRateDivisor = true;
1254 features->vertexAttributeInstanceRateZeroDivisor = true;
1255 break;
1256 }
1257
1258 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1259 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1260 features->vulkanMemoryModel = true;
1261 features->vulkanMemoryModelDeviceScope = true;
1262 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1263 break;
1264 }
1265
1266 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1267 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1268 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1269 features->ycbcrImageArrays = true;
1270 break;
1271 }
1272
1273 default:
1274 anv_debug_ignored_stype(ext->sType);
1275 break;
1276 }
1277 }
1278 }
1279
1280 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1281
1282 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1283 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1284
1285 void anv_GetPhysicalDeviceProperties(
1286 VkPhysicalDevice physicalDevice,
1287 VkPhysicalDeviceProperties* pProperties)
1288 {
1289 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1290 const struct gen_device_info *devinfo = &pdevice->info;
1291
1292 /* See assertions made when programming the buffer surface state. */
1293 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1294 (1ul << 30) : (1ul << 27);
1295
1296 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1297 const uint32_t max_textures =
1298 pdevice->has_bindless_images ? UINT16_MAX : 128;
1299 const uint32_t max_samplers =
1300 pdevice->has_bindless_samplers ? UINT16_MAX :
1301 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1302 const uint32_t max_images =
1303 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1304
1305 /* If we can use bindless for everything, claim a high per-stage limit,
1306 * otherwise use the binding table size, minus the slots reserved for
1307 * render targets and one slot for the descriptor buffer. */
1308 const uint32_t max_per_stage =
1309 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1310 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1311
1312 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1313
1314 VkSampleCountFlags sample_counts =
1315 isl_device_get_sample_counts(&pdevice->isl_dev);
1316
1317
1318 VkPhysicalDeviceLimits limits = {
1319 .maxImageDimension1D = (1 << 14),
1320 .maxImageDimension2D = (1 << 14),
1321 .maxImageDimension3D = (1 << 11),
1322 .maxImageDimensionCube = (1 << 14),
1323 .maxImageArrayLayers = (1 << 11),
1324 .maxTexelBufferElements = 128 * 1024 * 1024,
1325 .maxUniformBufferRange = (1ul << 27),
1326 .maxStorageBufferRange = max_raw_buffer_sz,
1327 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1328 .maxMemoryAllocationCount = UINT32_MAX,
1329 .maxSamplerAllocationCount = 64 * 1024,
1330 .bufferImageGranularity = 64, /* A cache line */
1331 .sparseAddressSpaceSize = 0,
1332 .maxBoundDescriptorSets = MAX_SETS,
1333 .maxPerStageDescriptorSamplers = max_samplers,
1334 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1335 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1336 .maxPerStageDescriptorSampledImages = max_textures,
1337 .maxPerStageDescriptorStorageImages = max_images,
1338 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1339 .maxPerStageResources = max_per_stage,
1340 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1341 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1342 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1343 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1344 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1345 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1346 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1347 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1348 .maxVertexInputAttributes = MAX_VBS,
1349 .maxVertexInputBindings = MAX_VBS,
1350 .maxVertexInputAttributeOffset = 2047,
1351 .maxVertexInputBindingStride = 2048,
1352 .maxVertexOutputComponents = 128,
1353 .maxTessellationGenerationLevel = 64,
1354 .maxTessellationPatchSize = 32,
1355 .maxTessellationControlPerVertexInputComponents = 128,
1356 .maxTessellationControlPerVertexOutputComponents = 128,
1357 .maxTessellationControlPerPatchOutputComponents = 128,
1358 .maxTessellationControlTotalOutputComponents = 2048,
1359 .maxTessellationEvaluationInputComponents = 128,
1360 .maxTessellationEvaluationOutputComponents = 128,
1361 .maxGeometryShaderInvocations = 32,
1362 .maxGeometryInputComponents = 64,
1363 .maxGeometryOutputComponents = 128,
1364 .maxGeometryOutputVertices = 256,
1365 .maxGeometryTotalOutputComponents = 1024,
1366 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1367 .maxFragmentOutputAttachments = 8,
1368 .maxFragmentDualSrcAttachments = 1,
1369 .maxFragmentCombinedOutputResources = 8,
1370 .maxComputeSharedMemorySize = 64 * 1024,
1371 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1372 .maxComputeWorkGroupInvocations = max_workgroup_size,
1373 .maxComputeWorkGroupSize = {
1374 max_workgroup_size,
1375 max_workgroup_size,
1376 max_workgroup_size,
1377 },
1378 .subPixelPrecisionBits = 8,
1379 .subTexelPrecisionBits = 8,
1380 .mipmapPrecisionBits = 8,
1381 .maxDrawIndexedIndexValue = UINT32_MAX,
1382 .maxDrawIndirectCount = UINT32_MAX,
1383 .maxSamplerLodBias = 16,
1384 .maxSamplerAnisotropy = 16,
1385 .maxViewports = MAX_VIEWPORTS,
1386 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1387 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1388 .viewportSubPixelBits = 13, /* We take a float? */
1389 .minMemoryMapAlignment = 4096, /* A page */
1390 /* The dataport requires texel alignment so we need to assume a worst
1391 * case of R32G32B32A32 which is 16 bytes.
1392 */
1393 .minTexelBufferOffsetAlignment = 16,
1394 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1395 .minUniformBufferOffsetAlignment = 32,
1396 .minStorageBufferOffsetAlignment = 4,
1397 .minTexelOffset = -8,
1398 .maxTexelOffset = 7,
1399 .minTexelGatherOffset = -32,
1400 .maxTexelGatherOffset = 31,
1401 .minInterpolationOffset = -0.5,
1402 .maxInterpolationOffset = 0.4375,
1403 .subPixelInterpolationOffsetBits = 4,
1404 .maxFramebufferWidth = (1 << 14),
1405 .maxFramebufferHeight = (1 << 14),
1406 .maxFramebufferLayers = (1 << 11),
1407 .framebufferColorSampleCounts = sample_counts,
1408 .framebufferDepthSampleCounts = sample_counts,
1409 .framebufferStencilSampleCounts = sample_counts,
1410 .framebufferNoAttachmentsSampleCounts = sample_counts,
1411 .maxColorAttachments = MAX_RTS,
1412 .sampledImageColorSampleCounts = sample_counts,
1413 .sampledImageIntegerSampleCounts = sample_counts,
1414 .sampledImageDepthSampleCounts = sample_counts,
1415 .sampledImageStencilSampleCounts = sample_counts,
1416 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1417 .maxSampleMaskWords = 1,
1418 .timestampComputeAndGraphics = true,
1419 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1420 .maxClipDistances = 8,
1421 .maxCullDistances = 8,
1422 .maxCombinedClipAndCullDistances = 8,
1423 .discreteQueuePriorities = 2,
1424 .pointSizeRange = { 0.125, 255.875 },
1425 .lineWidthRange = {
1426 0.0,
1427 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1428 2047.9921875 : 7.9921875,
1429 },
1430 .pointSizeGranularity = (1.0 / 8.0),
1431 .lineWidthGranularity = (1.0 / 128.0),
1432 .strictLines = false,
1433 .standardSampleLocations = true,
1434 .optimalBufferCopyOffsetAlignment = 128,
1435 .optimalBufferCopyRowPitchAlignment = 128,
1436 .nonCoherentAtomSize = 64,
1437 };
1438
1439 *pProperties = (VkPhysicalDeviceProperties) {
1440 .apiVersion = anv_physical_device_api_version(pdevice),
1441 .driverVersion = vk_get_driver_version(),
1442 .vendorID = 0x8086,
1443 .deviceID = pdevice->chipset_id,
1444 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1445 .limits = limits,
1446 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1447 };
1448
1449 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1450 "%s", pdevice->name);
1451 memcpy(pProperties->pipelineCacheUUID,
1452 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1453 }
1454
1455 void anv_GetPhysicalDeviceProperties2(
1456 VkPhysicalDevice physicalDevice,
1457 VkPhysicalDeviceProperties2* pProperties)
1458 {
1459 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1460
1461 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1462
1463 vk_foreach_struct(ext, pProperties->pNext) {
1464 switch (ext->sType) {
1465 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1466 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1467 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1468
1469 /* We support all of the depth resolve modes */
1470 props->supportedDepthResolveModes =
1471 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1472 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1473 VK_RESOLVE_MODE_MIN_BIT_KHR |
1474 VK_RESOLVE_MODE_MAX_BIT_KHR;
1475
1476 /* Average doesn't make sense for stencil so we don't support that */
1477 props->supportedStencilResolveModes =
1478 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1479 if (pdevice->info.gen >= 8) {
1480 /* The advanced stencil resolve modes currently require stencil
1481 * sampling be supported by the hardware.
1482 */
1483 props->supportedStencilResolveModes |=
1484 VK_RESOLVE_MODE_MIN_BIT_KHR |
1485 VK_RESOLVE_MODE_MAX_BIT_KHR;
1486 }
1487
1488 props->independentResolveNone = true;
1489 props->independentResolve = true;
1490 break;
1491 }
1492
1493 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1494 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1495 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1496
1497 /* It's a bit hard to exactly map our implementation to the limits
1498 * described here. The bindless surface handle in the extended
1499 * message descriptors is 20 bits and it's an index into the table of
1500 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1501 * address. Given that most things consume two surface states per
1502 * view (general/sampled for textures and write-only/read-write for
1503 * images), we claim 2^19 things.
1504 *
1505 * For SSBOs, we just use A64 messages so there is no real limit
1506 * there beyond the limit on the total size of a descriptor set.
1507 */
1508 const unsigned max_bindless_views = 1 << 19;
1509
1510 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1511 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1512 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1513 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1514 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1515 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1516 props->robustBufferAccessUpdateAfterBind = true;
1517 props->quadDivergentImplicitLod = false;
1518 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1519 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1520 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1521 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1522 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1523 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1524 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1525 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1526 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1527 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1528 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1529 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1530 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1531 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1532 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1533 break;
1534 }
1535
1536 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1537 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1538 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1539
1540 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1541 memset(driver_props->driverName, 0,
1542 sizeof(driver_props->driverName));
1543 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1544 "Intel open-source Mesa driver");
1545
1546 memset(driver_props->driverInfo, 0,
1547 sizeof(driver_props->driverInfo));
1548 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1549 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1550
1551 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1552 .major = 1,
1553 .minor = 1,
1554 .subminor = 2,
1555 .patch = 0,
1556 };
1557 break;
1558 }
1559
1560 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1561 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1562 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1563 /* Userptr needs page aligned memory. */
1564 props->minImportedHostPointerAlignment = 4096;
1565 break;
1566 }
1567
1568 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1569 VkPhysicalDeviceIDProperties *id_props =
1570 (VkPhysicalDeviceIDProperties *)ext;
1571 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1572 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1573 /* The LUID is for Windows. */
1574 memset(id_props->deviceLUID, 0, VK_UUID_SIZE);
1575 id_props->deviceLUIDValid = false;
1576 break;
1577 }
1578
1579 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1580 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1581 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1582 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1583 props->maxPerStageDescriptorInlineUniformBlocks =
1584 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1585 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1586 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1587 props->maxDescriptorSetInlineUniformBlocks =
1588 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1589 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1590 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1591 break;
1592 }
1593
1594 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1595 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1596 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1597 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1598 * Sampling Rules - Legacy Mode", it says the following:
1599 *
1600 * "Note that the device divides a pixel into a 16x16 array of
1601 * subpixels, referenced by their upper left corners."
1602 *
1603 * This is the only known reference in the PRMs to the subpixel
1604 * precision of line rasterization and a "16x16 array of subpixels"
1605 * implies 4 subpixel precision bits. Empirical testing has shown
1606 * that 4 subpixel precision bits applies to all line rasterization
1607 * types.
1608 */
1609 props->lineSubPixelPrecisionBits = 4;
1610 break;
1611 }
1612
1613 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1614 VkPhysicalDeviceMaintenance3Properties *props =
1615 (VkPhysicalDeviceMaintenance3Properties *)ext;
1616 /* This value doesn't matter for us today as our per-stage
1617 * descriptors are the real limit.
1618 */
1619 props->maxPerSetDescriptors = 1024;
1620 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1621 break;
1622 }
1623
1624 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1625 VkPhysicalDeviceMultiviewProperties *properties =
1626 (VkPhysicalDeviceMultiviewProperties *)ext;
1627 properties->maxMultiviewViewCount = 16;
1628 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1629 break;
1630 }
1631
1632 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1633 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1634 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1635 properties->pciDomain = pdevice->pci_info.domain;
1636 properties->pciBus = pdevice->pci_info.bus;
1637 properties->pciDevice = pdevice->pci_info.device;
1638 properties->pciFunction = pdevice->pci_info.function;
1639 break;
1640 }
1641
1642 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1643 VkPhysicalDevicePointClippingProperties *properties =
1644 (VkPhysicalDevicePointClippingProperties *) ext;
1645 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1646 break;
1647 }
1648
1649 #pragma GCC diagnostic push
1650 #pragma GCC diagnostic ignored "-Wswitch"
1651 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1652 VkPhysicalDevicePresentationPropertiesANDROID *props =
1653 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1654 props->sharedImage = VK_FALSE;
1655 break;
1656 }
1657 #pragma GCC diagnostic pop
1658
1659 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1660 VkPhysicalDeviceProtectedMemoryProperties *props =
1661 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1662 props->protectedNoFault = false;
1663 break;
1664 }
1665
1666 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1667 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1668 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1669
1670 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1671 break;
1672 }
1673
1674 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1675 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1676 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1677 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1678 properties->filterMinmaxSingleComponentFormats = pdevice->info.gen >= 9;
1679 break;
1680 }
1681
1682 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1683 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1684
1685 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1686
1687 VkShaderStageFlags scalar_stages = 0;
1688 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1689 if (pdevice->compiler->scalar_stage[stage])
1690 scalar_stages |= mesa_to_vk_shader_stage(stage);
1691 }
1692 properties->supportedStages = scalar_stages;
1693
1694 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1695 VK_SUBGROUP_FEATURE_VOTE_BIT |
1696 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1697 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1698 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1699 VK_SUBGROUP_FEATURE_QUAD_BIT;
1700 if (pdevice->info.gen >= 8) {
1701 /* TODO: There's no technical reason why these can't be made to
1702 * work on gen7 but they don't at the moment so it's best to leave
1703 * the feature disabled than enabled and broken.
1704 */
1705 properties->supportedOperations |=
1706 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1707 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1708 }
1709 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1710 break;
1711 }
1712
1713 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1714 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1715 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1716 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1717 props->minSubgroupSize = 8;
1718 props->maxSubgroupSize = 32;
1719 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1720 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1721 break;
1722 }
1723 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1724 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1725 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1726 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1727
1728 /* Broadwell does not support HF denorms and there are restrictions
1729 * other gens. According to Kabylake's PRM:
1730 *
1731 * "math - Extended Math Function
1732 * [...]
1733 * Restriction : Half-float denorms are always retained."
1734 */
1735 properties->shaderDenormFlushToZeroFloat16 = false;
1736 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1737 properties->shaderRoundingModeRTEFloat16 = true;
1738 properties->shaderRoundingModeRTZFloat16 = true;
1739 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1740
1741 properties->shaderDenormFlushToZeroFloat32 = true;
1742 properties->shaderDenormPreserveFloat32 = true;
1743 properties->shaderRoundingModeRTEFloat32 = true;
1744 properties->shaderRoundingModeRTZFloat32 = true;
1745 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1746
1747 properties->shaderDenormFlushToZeroFloat64 = true;
1748 properties->shaderDenormPreserveFloat64 = true;
1749 properties->shaderRoundingModeRTEFloat64 = true;
1750 properties->shaderRoundingModeRTZFloat64 = true;
1751 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1752 break;
1753 }
1754
1755 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1756 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1757 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1758
1759 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1760 * Base Address:
1761 *
1762 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1763 * specifies the base address of the first element of the surface,
1764 * computed in software by adding the surface base address to the
1765 * byte offset of the element in the buffer. The base address must
1766 * be aligned to element size."
1767 *
1768 * The typed dataport messages require that things be texel aligned.
1769 * Otherwise, we may just load/store the wrong data or, in the worst
1770 * case, there may be hangs.
1771 */
1772 props->storageTexelBufferOffsetAlignmentBytes = 16;
1773 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1774
1775 /* The sampler, however, is much more forgiving and it can handle
1776 * arbitrary byte alignment for linear and buffer surfaces. It's
1777 * hard to find a good PRM citation for this but years of empirical
1778 * experience demonstrate that this is true.
1779 */
1780 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1781 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1782 break;
1783 }
1784
1785 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_PROPERTIES_KHR: {
1786 VkPhysicalDeviceTimelineSemaphorePropertiesKHR *props =
1787 (VkPhysicalDeviceTimelineSemaphorePropertiesKHR *) ext;
1788 props->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1789 break;
1790 }
1791
1792 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1793 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1794 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1795
1796 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1797 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1798 props->maxTransformFeedbackBufferSize = (1ull << 32);
1799 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1800 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1801 props->maxTransformFeedbackBufferDataStride = 2048;
1802 props->transformFeedbackQueries = true;
1803 props->transformFeedbackStreamsLinesTriangles = false;
1804 props->transformFeedbackRasterizationStreamSelect = false;
1805 props->transformFeedbackDraw = true;
1806 break;
1807 }
1808
1809 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1810 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1811 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1812 /* We have to restrict this a bit for multiview */
1813 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1814 break;
1815 }
1816
1817 default:
1818 anv_debug_ignored_stype(ext->sType);
1819 break;
1820 }
1821 }
1822 }
1823
1824 /* We support exactly one queue family. */
1825 static const VkQueueFamilyProperties
1826 anv_queue_family_properties = {
1827 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1828 VK_QUEUE_COMPUTE_BIT |
1829 VK_QUEUE_TRANSFER_BIT,
1830 .queueCount = 1,
1831 .timestampValidBits = 36, /* XXX: Real value here */
1832 .minImageTransferGranularity = { 1, 1, 1 },
1833 };
1834
1835 void anv_GetPhysicalDeviceQueueFamilyProperties(
1836 VkPhysicalDevice physicalDevice,
1837 uint32_t* pCount,
1838 VkQueueFamilyProperties* pQueueFamilyProperties)
1839 {
1840 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1841
1842 vk_outarray_append(&out, p) {
1843 *p = anv_queue_family_properties;
1844 }
1845 }
1846
1847 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1848 VkPhysicalDevice physicalDevice,
1849 uint32_t* pQueueFamilyPropertyCount,
1850 VkQueueFamilyProperties2* pQueueFamilyProperties)
1851 {
1852
1853 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1854
1855 vk_outarray_append(&out, p) {
1856 p->queueFamilyProperties = anv_queue_family_properties;
1857
1858 vk_foreach_struct(s, p->pNext) {
1859 anv_debug_ignored_stype(s->sType);
1860 }
1861 }
1862 }
1863
1864 void anv_GetPhysicalDeviceMemoryProperties(
1865 VkPhysicalDevice physicalDevice,
1866 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1867 {
1868 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1869
1870 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1871 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1872 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1873 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1874 .heapIndex = physical_device->memory.types[i].heapIndex,
1875 };
1876 }
1877
1878 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1879 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1880 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1881 .size = physical_device->memory.heaps[i].size,
1882 .flags = physical_device->memory.heaps[i].flags,
1883 };
1884 }
1885 }
1886
1887 static void
1888 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1889 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1890 {
1891 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1892 uint64_t sys_available = get_available_system_memory();
1893 assert(sys_available > 0);
1894
1895 VkDeviceSize total_heaps_size = 0;
1896 for (size_t i = 0; i < device->memory.heap_count; i++)
1897 total_heaps_size += device->memory.heaps[i].size;
1898
1899 for (size_t i = 0; i < device->memory.heap_count; i++) {
1900 VkDeviceSize heap_size = device->memory.heaps[i].size;
1901 VkDeviceSize heap_used = device->memory.heaps[i].used;
1902 VkDeviceSize heap_budget;
1903
1904 double heap_proportion = (double) heap_size / total_heaps_size;
1905 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1906
1907 /*
1908 * Let's not incite the app to starve the system: report at most 90% of
1909 * available system memory.
1910 */
1911 uint64_t heap_available = sys_available_prop * 9 / 10;
1912 heap_budget = MIN2(heap_size, heap_used + heap_available);
1913
1914 /*
1915 * Round down to the nearest MB
1916 */
1917 heap_budget &= ~((1ull << 20) - 1);
1918
1919 /*
1920 * The heapBudget value must be non-zero for array elements less than
1921 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1922 * value must be less than or equal to VkMemoryHeap::size for each heap.
1923 */
1924 assert(0 < heap_budget && heap_budget <= heap_size);
1925
1926 memoryBudget->heapUsage[i] = heap_used;
1927 memoryBudget->heapBudget[i] = heap_budget;
1928 }
1929
1930 /* The heapBudget and heapUsage values must be zero for array elements
1931 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1932 */
1933 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1934 memoryBudget->heapBudget[i] = 0;
1935 memoryBudget->heapUsage[i] = 0;
1936 }
1937 }
1938
1939 void anv_GetPhysicalDeviceMemoryProperties2(
1940 VkPhysicalDevice physicalDevice,
1941 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1942 {
1943 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1944 &pMemoryProperties->memoryProperties);
1945
1946 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1947 switch (ext->sType) {
1948 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1949 anv_get_memory_budget(physicalDevice, (void*)ext);
1950 break;
1951 default:
1952 anv_debug_ignored_stype(ext->sType);
1953 break;
1954 }
1955 }
1956 }
1957
1958 void
1959 anv_GetDeviceGroupPeerMemoryFeatures(
1960 VkDevice device,
1961 uint32_t heapIndex,
1962 uint32_t localDeviceIndex,
1963 uint32_t remoteDeviceIndex,
1964 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1965 {
1966 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1967 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1968 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1969 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1970 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1971 }
1972
1973 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1974 VkInstance _instance,
1975 const char* pName)
1976 {
1977 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1978
1979 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1980 * when we have to return valid function pointers, NULL, or it's left
1981 * undefined. See the table for exact details.
1982 */
1983 if (pName == NULL)
1984 return NULL;
1985
1986 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1987 if (strcmp(pName, "vk" #entrypoint) == 0) \
1988 return (PFN_vkVoidFunction)anv_##entrypoint
1989
1990 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1991 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1992 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1993 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1994
1995 #undef LOOKUP_ANV_ENTRYPOINT
1996
1997 if (instance == NULL)
1998 return NULL;
1999
2000 int idx = anv_get_instance_entrypoint_index(pName);
2001 if (idx >= 0)
2002 return instance->dispatch.entrypoints[idx];
2003
2004 idx = anv_get_physical_device_entrypoint_index(pName);
2005 if (idx >= 0)
2006 return instance->physicalDevice.dispatch.entrypoints[idx];
2007
2008 idx = anv_get_device_entrypoint_index(pName);
2009 if (idx >= 0)
2010 return instance->device_dispatch.entrypoints[idx];
2011
2012 return NULL;
2013 }
2014
2015 /* With version 1+ of the loader interface the ICD should expose
2016 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2017 */
2018 PUBLIC
2019 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2020 VkInstance instance,
2021 const char* pName);
2022
2023 PUBLIC
2024 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2025 VkInstance instance,
2026 const char* pName)
2027 {
2028 return anv_GetInstanceProcAddr(instance, pName);
2029 }
2030
2031 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2032 VkDevice _device,
2033 const char* pName)
2034 {
2035 ANV_FROM_HANDLE(anv_device, device, _device);
2036
2037 if (!device || !pName)
2038 return NULL;
2039
2040 int idx = anv_get_device_entrypoint_index(pName);
2041 if (idx < 0)
2042 return NULL;
2043
2044 return device->dispatch.entrypoints[idx];
2045 }
2046
2047 /* With version 4+ of the loader interface the ICD should expose
2048 * vk_icdGetPhysicalDeviceProcAddr()
2049 */
2050 PUBLIC
2051 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2052 VkInstance _instance,
2053 const char* pName);
2054
2055 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2056 VkInstance _instance,
2057 const char* pName)
2058 {
2059 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2060
2061 if (!pName || !instance)
2062 return NULL;
2063
2064 int idx = anv_get_physical_device_entrypoint_index(pName);
2065 if (idx < 0)
2066 return NULL;
2067
2068 return instance->physicalDevice.dispatch.entrypoints[idx];
2069 }
2070
2071
2072 VkResult
2073 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2074 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2075 const VkAllocationCallbacks* pAllocator,
2076 VkDebugReportCallbackEXT* pCallback)
2077 {
2078 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2079 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2080 pCreateInfo, pAllocator, &instance->alloc,
2081 pCallback);
2082 }
2083
2084 void
2085 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2086 VkDebugReportCallbackEXT _callback,
2087 const VkAllocationCallbacks* pAllocator)
2088 {
2089 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2090 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2091 _callback, pAllocator, &instance->alloc);
2092 }
2093
2094 void
2095 anv_DebugReportMessageEXT(VkInstance _instance,
2096 VkDebugReportFlagsEXT flags,
2097 VkDebugReportObjectTypeEXT objectType,
2098 uint64_t object,
2099 size_t location,
2100 int32_t messageCode,
2101 const char* pLayerPrefix,
2102 const char* pMessage)
2103 {
2104 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2105 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2106 object, location, messageCode, pLayerPrefix, pMessage);
2107 }
2108
2109 static struct anv_state
2110 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2111 {
2112 struct anv_state state;
2113
2114 state = anv_state_pool_alloc(pool, size, align);
2115 memcpy(state.map, p, size);
2116
2117 return state;
2118 }
2119
2120 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2121 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2122 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2123 * color as a separate entry /after/ the float color. The layout of this entry
2124 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2125 *
2126 * Since we don't know the format/bpp, we can't make any of the border colors
2127 * containing '1' work for all formats, as it would be in the wrong place for
2128 * some of them. We opt to make 32-bit integers work as this seems like the
2129 * most common option. Fortunately, transparent black works regardless, as
2130 * all zeroes is the same in every bit-size.
2131 */
2132 struct hsw_border_color {
2133 float float32[4];
2134 uint32_t _pad0[12];
2135 uint32_t uint32[4];
2136 uint32_t _pad1[108];
2137 };
2138
2139 struct gen8_border_color {
2140 union {
2141 float float32[4];
2142 uint32_t uint32[4];
2143 };
2144 /* Pad out to 64 bytes */
2145 uint32_t _pad[12];
2146 };
2147
2148 static void
2149 anv_device_init_border_colors(struct anv_device *device)
2150 {
2151 if (device->info.is_haswell) {
2152 static const struct hsw_border_color border_colors[] = {
2153 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2154 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2155 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2156 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2157 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2158 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2159 };
2160
2161 device->border_colors =
2162 anv_state_pool_emit_data(&device->dynamic_state_pool,
2163 sizeof(border_colors), 512, border_colors);
2164 } else {
2165 static const struct gen8_border_color border_colors[] = {
2166 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2167 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2168 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2169 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2170 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2171 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2172 };
2173
2174 device->border_colors =
2175 anv_state_pool_emit_data(&device->dynamic_state_pool,
2176 sizeof(border_colors), 64, border_colors);
2177 }
2178 }
2179
2180 static VkResult
2181 anv_device_init_trivial_batch(struct anv_device *device)
2182 {
2183 VkResult result = anv_device_alloc_bo(device, 4096,
2184 ANV_BO_ALLOC_MAPPED,
2185 0 /* explicit_address */,
2186 &device->trivial_batch_bo);
2187 if (result != VK_SUCCESS)
2188 return result;
2189
2190 struct anv_batch batch = {
2191 .start = device->trivial_batch_bo->map,
2192 .next = device->trivial_batch_bo->map,
2193 .end = device->trivial_batch_bo->map + 4096,
2194 };
2195
2196 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2197 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2198
2199 if (!device->info.has_llc)
2200 gen_clflush_range(batch.start, batch.next - batch.start);
2201
2202 return VK_SUCCESS;
2203 }
2204
2205 VkResult anv_EnumerateDeviceExtensionProperties(
2206 VkPhysicalDevice physicalDevice,
2207 const char* pLayerName,
2208 uint32_t* pPropertyCount,
2209 VkExtensionProperties* pProperties)
2210 {
2211 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2212 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2213
2214 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2215 if (device->supported_extensions.extensions[i]) {
2216 vk_outarray_append(&out, prop) {
2217 *prop = anv_device_extensions[i];
2218 }
2219 }
2220 }
2221
2222 return vk_outarray_status(&out);
2223 }
2224
2225 static void
2226 anv_device_init_dispatch(struct anv_device *device)
2227 {
2228 const struct anv_device_dispatch_table *genX_table;
2229 switch (device->info.gen) {
2230 case 12:
2231 genX_table = &gen12_device_dispatch_table;
2232 break;
2233 case 11:
2234 genX_table = &gen11_device_dispatch_table;
2235 break;
2236 case 10:
2237 genX_table = &gen10_device_dispatch_table;
2238 break;
2239 case 9:
2240 genX_table = &gen9_device_dispatch_table;
2241 break;
2242 case 8:
2243 genX_table = &gen8_device_dispatch_table;
2244 break;
2245 case 7:
2246 if (device->info.is_haswell)
2247 genX_table = &gen75_device_dispatch_table;
2248 else
2249 genX_table = &gen7_device_dispatch_table;
2250 break;
2251 default:
2252 unreachable("unsupported gen\n");
2253 }
2254
2255 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2256 /* Vulkan requires that entrypoints for extensions which have not been
2257 * enabled must not be advertised.
2258 */
2259 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2260 &device->instance->enabled_extensions,
2261 &device->enabled_extensions)) {
2262 device->dispatch.entrypoints[i] = NULL;
2263 } else if (genX_table->entrypoints[i]) {
2264 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2265 } else {
2266 device->dispatch.entrypoints[i] =
2267 anv_device_dispatch_table.entrypoints[i];
2268 }
2269 }
2270 }
2271
2272 static int
2273 vk_priority_to_gen(int priority)
2274 {
2275 switch (priority) {
2276 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2277 return GEN_CONTEXT_LOW_PRIORITY;
2278 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2279 return GEN_CONTEXT_MEDIUM_PRIORITY;
2280 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2281 return GEN_CONTEXT_HIGH_PRIORITY;
2282 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2283 return GEN_CONTEXT_REALTIME_PRIORITY;
2284 default:
2285 unreachable("Invalid priority");
2286 }
2287 }
2288
2289 static VkResult
2290 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2291 {
2292 VkResult result = anv_device_alloc_bo(device, 4096,
2293 ANV_BO_ALLOC_MAPPED,
2294 0 /* explicit_address */,
2295 &device->hiz_clear_bo);
2296 if (result != VK_SUCCESS)
2297 return result;
2298
2299 union isl_color_value hiz_clear = { .u32 = { 0, } };
2300 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2301
2302 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2303
2304 if (!device->info.has_llc)
2305 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2306
2307 return VK_SUCCESS;
2308 }
2309
2310 static bool
2311 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2312 struct anv_block_pool *pool,
2313 uint64_t address)
2314 {
2315 anv_block_pool_foreach_bo(bo, pool) {
2316 uint64_t bo_address = gen_48b_address(bo->offset);
2317 if (address >= bo_address && address < (bo_address + bo->size)) {
2318 *ret = (struct gen_batch_decode_bo) {
2319 .addr = bo_address,
2320 .size = bo->size,
2321 .map = bo->map,
2322 };
2323 return true;
2324 }
2325 }
2326 return false;
2327 }
2328
2329 /* Finding a buffer for batch decoding */
2330 static struct gen_batch_decode_bo
2331 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2332 {
2333 struct anv_device *device = v_batch;
2334 struct gen_batch_decode_bo ret_bo = {};
2335
2336 assert(ppgtt);
2337
2338 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2339 return ret_bo;
2340 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2341 return ret_bo;
2342 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2343 return ret_bo;
2344 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2345 return ret_bo;
2346
2347 if (!device->cmd_buffer_being_decoded)
2348 return (struct gen_batch_decode_bo) { };
2349
2350 struct anv_batch_bo **bo;
2351
2352 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2353 /* The decoder zeroes out the top 16 bits, so we need to as well */
2354 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2355
2356 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2357 return (struct gen_batch_decode_bo) {
2358 .addr = bo_address,
2359 .size = (*bo)->bo->size,
2360 .map = (*bo)->bo->map,
2361 };
2362 }
2363 }
2364
2365 return (struct gen_batch_decode_bo) { };
2366 }
2367
2368 struct gen_aux_map_buffer {
2369 struct gen_buffer base;
2370 struct anv_state state;
2371 };
2372
2373 static struct gen_buffer *
2374 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2375 {
2376 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2377 if (!buf)
2378 return NULL;
2379
2380 struct anv_device *device = (struct anv_device*)driver_ctx;
2381 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2382 device->instance->physicalDevice.use_softpin);
2383
2384 struct anv_state_pool *pool = &device->dynamic_state_pool;
2385 buf->state = anv_state_pool_alloc(pool, size, size);
2386
2387 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2388 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2389 buf->base.map = buf->state.map;
2390 buf->base.driver_bo = &buf->state;
2391 return &buf->base;
2392 }
2393
2394 static void
2395 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2396 {
2397 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2398 struct anv_device *device = (struct anv_device*)driver_ctx;
2399 struct anv_state_pool *pool = &device->dynamic_state_pool;
2400 anv_state_pool_free(pool, buf->state);
2401 free(buf);
2402 }
2403
2404 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2405 .alloc = gen_aux_map_buffer_alloc,
2406 .free = gen_aux_map_buffer_free,
2407 };
2408
2409 VkResult anv_CreateDevice(
2410 VkPhysicalDevice physicalDevice,
2411 const VkDeviceCreateInfo* pCreateInfo,
2412 const VkAllocationCallbacks* pAllocator,
2413 VkDevice* pDevice)
2414 {
2415 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2416 VkResult result;
2417 struct anv_device *device;
2418
2419 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2420
2421 struct anv_device_extension_table enabled_extensions = { };
2422 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2423 int idx;
2424 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2425 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2426 anv_device_extensions[idx].extensionName) == 0)
2427 break;
2428 }
2429
2430 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2431 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2432
2433 if (!physical_device->supported_extensions.extensions[idx])
2434 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2435
2436 enabled_extensions.extensions[idx] = true;
2437 }
2438
2439 /* Check enabled features */
2440 if (pCreateInfo->pEnabledFeatures) {
2441 VkPhysicalDeviceFeatures supported_features;
2442 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2443 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2444 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2445 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2446 for (uint32_t i = 0; i < num_features; i++) {
2447 if (enabled_feature[i] && !supported_feature[i])
2448 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2449 }
2450 }
2451
2452 /* Check requested queues and fail if we are requested to create any
2453 * queues with flags we don't support.
2454 */
2455 assert(pCreateInfo->queueCreateInfoCount > 0);
2456 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2457 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2458 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2459 }
2460
2461 /* Check if client specified queue priority. */
2462 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2463 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2464 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2465
2466 VkQueueGlobalPriorityEXT priority =
2467 queue_priority ? queue_priority->globalPriority :
2468 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2469
2470 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2471 sizeof(*device), 8,
2472 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2473 if (!device)
2474 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2475
2476 if (INTEL_DEBUG & DEBUG_BATCH) {
2477 const unsigned decode_flags =
2478 GEN_BATCH_DECODE_FULL |
2479 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2480 GEN_BATCH_DECODE_OFFSETS |
2481 GEN_BATCH_DECODE_FLOATS;
2482
2483 gen_batch_decode_ctx_init(&device->decoder_ctx,
2484 &physical_device->info,
2485 stderr, decode_flags, NULL,
2486 decode_get_bo, NULL, device);
2487 }
2488
2489 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2490 device->instance = physical_device->instance;
2491 device->chipset_id = physical_device->chipset_id;
2492 device->no_hw = physical_device->no_hw;
2493 device->_lost = false;
2494
2495 if (pAllocator)
2496 device->alloc = *pAllocator;
2497 else
2498 device->alloc = physical_device->instance->alloc;
2499
2500 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2501 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2502 if (device->fd == -1) {
2503 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2504 goto fail_device;
2505 }
2506
2507 device->context_id = anv_gem_create_context(device);
2508 if (device->context_id == -1) {
2509 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2510 goto fail_fd;
2511 }
2512
2513 result = anv_queue_init(device, &device->queue);
2514 if (result != VK_SUCCESS)
2515 goto fail_context_id;
2516
2517 if (physical_device->use_softpin) {
2518 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2519 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2520 goto fail_queue;
2521 }
2522
2523 /* keep the page with address zero out of the allocator */
2524 util_vma_heap_init(&device->vma_lo,
2525 LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
2526
2527 util_vma_heap_init(&device->vma_cva, CLIENT_VISIBLE_HEAP_MIN_ADDRESS,
2528 CLIENT_VISIBLE_HEAP_SIZE);
2529
2530 /* Leave the last 4GiB out of the high vma range, so that no state
2531 * base address + size can overflow 48 bits. For more information see
2532 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
2533 */
2534 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
2535 physical_device->gtt_size - (1ull << 32) -
2536 HIGH_HEAP_MIN_ADDRESS);
2537 }
2538
2539 list_inithead(&device->memory_objects);
2540
2541 /* As per spec, the driver implementation may deny requests to acquire
2542 * a priority above the default priority (MEDIUM) if the caller does not
2543 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2544 * is returned.
2545 */
2546 if (physical_device->has_context_priority) {
2547 int err = anv_gem_set_context_param(device->fd, device->context_id,
2548 I915_CONTEXT_PARAM_PRIORITY,
2549 vk_priority_to_gen(priority));
2550 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2551 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2552 goto fail_vmas;
2553 }
2554 }
2555
2556 device->info = physical_device->info;
2557 device->isl_dev = physical_device->isl_dev;
2558
2559 /* On Broadwell and later, we can use batch chaining to more efficiently
2560 * implement growing command buffers. Prior to Haswell, the kernel
2561 * command parser gets in the way and we have to fall back to growing
2562 * the batch.
2563 */
2564 device->can_chain_batches = device->info.gen >= 8;
2565
2566 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2567 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2568 device->enabled_extensions = enabled_extensions;
2569
2570 anv_device_init_dispatch(device);
2571
2572 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2573 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2574 goto fail_queue;
2575 }
2576
2577 pthread_condattr_t condattr;
2578 if (pthread_condattr_init(&condattr) != 0) {
2579 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2580 goto fail_mutex;
2581 }
2582 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2583 pthread_condattr_destroy(&condattr);
2584 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2585 goto fail_mutex;
2586 }
2587 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2588 pthread_condattr_destroy(&condattr);
2589 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2590 goto fail_mutex;
2591 }
2592 pthread_condattr_destroy(&condattr);
2593
2594 result = anv_bo_cache_init(&device->bo_cache);
2595 if (result != VK_SUCCESS)
2596 goto fail_queue_cond;
2597
2598 anv_bo_pool_init(&device->batch_bo_pool, device);
2599
2600 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2601 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2602 if (result != VK_SUCCESS)
2603 goto fail_batch_bo_pool;
2604
2605 result = anv_state_pool_init(&device->instruction_state_pool, device,
2606 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2607 if (result != VK_SUCCESS)
2608 goto fail_dynamic_state_pool;
2609
2610 result = anv_state_pool_init(&device->surface_state_pool, device,
2611 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2612 if (result != VK_SUCCESS)
2613 goto fail_instruction_state_pool;
2614
2615 if (physical_device->use_softpin) {
2616 result = anv_state_pool_init(&device->binding_table_pool, device,
2617 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2618 if (result != VK_SUCCESS)
2619 goto fail_surface_state_pool;
2620 }
2621
2622 if (device->info.gen >= 12) {
2623 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2624 &physical_device->info);
2625 if (!device->aux_map_ctx)
2626 goto fail_binding_table_pool;
2627 }
2628
2629 result = anv_device_alloc_bo(device, 4096, 0 /* flags */,
2630 0 /* explicit_address */,
2631 &device->workaround_bo);
2632 if (result != VK_SUCCESS)
2633 goto fail_surface_aux_map_pool;
2634
2635 result = anv_device_init_trivial_batch(device);
2636 if (result != VK_SUCCESS)
2637 goto fail_workaround_bo;
2638
2639 if (device->info.gen >= 10) {
2640 result = anv_device_init_hiz_clear_value_bo(device);
2641 if (result != VK_SUCCESS)
2642 goto fail_trivial_batch_bo;
2643 }
2644
2645 anv_scratch_pool_init(device, &device->scratch_pool);
2646
2647 switch (device->info.gen) {
2648 case 7:
2649 if (!device->info.is_haswell)
2650 result = gen7_init_device_state(device);
2651 else
2652 result = gen75_init_device_state(device);
2653 break;
2654 case 8:
2655 result = gen8_init_device_state(device);
2656 break;
2657 case 9:
2658 result = gen9_init_device_state(device);
2659 break;
2660 case 10:
2661 result = gen10_init_device_state(device);
2662 break;
2663 case 11:
2664 result = gen11_init_device_state(device);
2665 break;
2666 case 12:
2667 result = gen12_init_device_state(device);
2668 break;
2669 default:
2670 /* Shouldn't get here as we don't create physical devices for any other
2671 * gens. */
2672 unreachable("unhandled gen");
2673 }
2674 if (result != VK_SUCCESS)
2675 goto fail_workaround_bo;
2676
2677 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2678
2679 anv_device_init_blorp(device);
2680
2681 anv_device_init_border_colors(device);
2682
2683 anv_device_perf_init(device);
2684
2685 *pDevice = anv_device_to_handle(device);
2686
2687 return VK_SUCCESS;
2688
2689 fail_workaround_bo:
2690 anv_scratch_pool_finish(device, &device->scratch_pool);
2691 if (device->info.gen >= 10)
2692 anv_device_release_bo(device, device->hiz_clear_bo);
2693 anv_device_release_bo(device, device->workaround_bo);
2694 fail_trivial_batch_bo:
2695 anv_device_release_bo(device, device->trivial_batch_bo);
2696 fail_surface_aux_map_pool:
2697 if (device->info.gen >= 12) {
2698 gen_aux_map_finish(device->aux_map_ctx);
2699 device->aux_map_ctx = NULL;
2700 }
2701 fail_binding_table_pool:
2702 if (physical_device->use_softpin)
2703 anv_state_pool_finish(&device->binding_table_pool);
2704 fail_surface_state_pool:
2705 anv_state_pool_finish(&device->surface_state_pool);
2706 fail_instruction_state_pool:
2707 anv_state_pool_finish(&device->instruction_state_pool);
2708 fail_dynamic_state_pool:
2709 anv_state_pool_finish(&device->dynamic_state_pool);
2710 fail_batch_bo_pool:
2711 anv_bo_pool_finish(&device->batch_bo_pool);
2712 anv_bo_cache_finish(&device->bo_cache);
2713 fail_queue_cond:
2714 pthread_cond_destroy(&device->queue_submit);
2715 fail_mutex:
2716 pthread_mutex_destroy(&device->mutex);
2717 fail_vmas:
2718 if (physical_device->use_softpin) {
2719 util_vma_heap_finish(&device->vma_hi);
2720 util_vma_heap_finish(&device->vma_cva);
2721 util_vma_heap_finish(&device->vma_lo);
2722 }
2723 fail_queue:
2724 anv_queue_finish(&device->queue);
2725 fail_context_id:
2726 anv_gem_destroy_context(device, device->context_id);
2727 fail_fd:
2728 close(device->fd);
2729 fail_device:
2730 vk_free(&device->alloc, device);
2731
2732 return result;
2733 }
2734
2735 void anv_DestroyDevice(
2736 VkDevice _device,
2737 const VkAllocationCallbacks* pAllocator)
2738 {
2739 ANV_FROM_HANDLE(anv_device, device, _device);
2740 struct anv_physical_device *physical_device;
2741
2742 if (!device)
2743 return;
2744
2745 physical_device = &device->instance->physicalDevice;
2746
2747 anv_device_finish_blorp(device);
2748
2749 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2750
2751 anv_queue_finish(&device->queue);
2752
2753 #ifdef HAVE_VALGRIND
2754 /* We only need to free these to prevent valgrind errors. The backing
2755 * BO will go away in a couple of lines so we don't actually leak.
2756 */
2757 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2758 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2759 #endif
2760
2761 anv_scratch_pool_finish(device, &device->scratch_pool);
2762
2763 anv_device_release_bo(device, device->workaround_bo);
2764 anv_device_release_bo(device, device->trivial_batch_bo);
2765 if (device->info.gen >= 10)
2766 anv_device_release_bo(device, device->hiz_clear_bo);
2767
2768 if (device->info.gen >= 12) {
2769 gen_aux_map_finish(device->aux_map_ctx);
2770 device->aux_map_ctx = NULL;
2771 }
2772
2773 if (physical_device->use_softpin)
2774 anv_state_pool_finish(&device->binding_table_pool);
2775 anv_state_pool_finish(&device->surface_state_pool);
2776 anv_state_pool_finish(&device->instruction_state_pool);
2777 anv_state_pool_finish(&device->dynamic_state_pool);
2778
2779 anv_bo_pool_finish(&device->batch_bo_pool);
2780
2781 anv_bo_cache_finish(&device->bo_cache);
2782
2783 if (physical_device->use_softpin) {
2784 util_vma_heap_finish(&device->vma_hi);
2785 util_vma_heap_finish(&device->vma_cva);
2786 util_vma_heap_finish(&device->vma_lo);
2787 }
2788
2789 pthread_cond_destroy(&device->queue_submit);
2790 pthread_mutex_destroy(&device->mutex);
2791
2792 anv_gem_destroy_context(device, device->context_id);
2793
2794 if (INTEL_DEBUG & DEBUG_BATCH)
2795 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2796
2797 close(device->fd);
2798
2799 vk_free(&device->alloc, device);
2800 }
2801
2802 VkResult anv_EnumerateInstanceLayerProperties(
2803 uint32_t* pPropertyCount,
2804 VkLayerProperties* pProperties)
2805 {
2806 if (pProperties == NULL) {
2807 *pPropertyCount = 0;
2808 return VK_SUCCESS;
2809 }
2810
2811 /* None supported at this time */
2812 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2813 }
2814
2815 VkResult anv_EnumerateDeviceLayerProperties(
2816 VkPhysicalDevice physicalDevice,
2817 uint32_t* pPropertyCount,
2818 VkLayerProperties* pProperties)
2819 {
2820 if (pProperties == NULL) {
2821 *pPropertyCount = 0;
2822 return VK_SUCCESS;
2823 }
2824
2825 /* None supported at this time */
2826 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2827 }
2828
2829 void anv_GetDeviceQueue(
2830 VkDevice _device,
2831 uint32_t queueNodeIndex,
2832 uint32_t queueIndex,
2833 VkQueue* pQueue)
2834 {
2835 const VkDeviceQueueInfo2 info = {
2836 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2837 .pNext = NULL,
2838 .flags = 0,
2839 .queueFamilyIndex = queueNodeIndex,
2840 .queueIndex = queueIndex,
2841 };
2842
2843 anv_GetDeviceQueue2(_device, &info, pQueue);
2844 }
2845
2846 void anv_GetDeviceQueue2(
2847 VkDevice _device,
2848 const VkDeviceQueueInfo2* pQueueInfo,
2849 VkQueue* pQueue)
2850 {
2851 ANV_FROM_HANDLE(anv_device, device, _device);
2852
2853 assert(pQueueInfo->queueIndex == 0);
2854
2855 if (pQueueInfo->flags == device->queue.flags)
2856 *pQueue = anv_queue_to_handle(&device->queue);
2857 else
2858 *pQueue = NULL;
2859 }
2860
2861 VkResult
2862 _anv_device_set_lost(struct anv_device *device,
2863 const char *file, int line,
2864 const char *msg, ...)
2865 {
2866 VkResult err;
2867 va_list ap;
2868
2869 p_atomic_inc(&device->_lost);
2870
2871 va_start(ap, msg);
2872 err = __vk_errorv(device->instance, device,
2873 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2874 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2875 va_end(ap);
2876
2877 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2878 abort();
2879
2880 return err;
2881 }
2882
2883 VkResult
2884 _anv_queue_set_lost(struct anv_queue *queue,
2885 const char *file, int line,
2886 const char *msg, ...)
2887 {
2888 VkResult err;
2889 va_list ap;
2890
2891 p_atomic_inc(&queue->device->_lost);
2892
2893 va_start(ap, msg);
2894 err = __vk_errorv(queue->device->instance, queue->device,
2895 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2896 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2897 va_end(ap);
2898
2899 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2900 abort();
2901
2902 return err;
2903 }
2904
2905 VkResult
2906 anv_device_query_status(struct anv_device *device)
2907 {
2908 /* This isn't likely as most of the callers of this function already check
2909 * for it. However, it doesn't hurt to check and it potentially lets us
2910 * avoid an ioctl.
2911 */
2912 if (anv_device_is_lost(device))
2913 return VK_ERROR_DEVICE_LOST;
2914
2915 uint32_t active, pending;
2916 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2917 if (ret == -1) {
2918 /* We don't know the real error. */
2919 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2920 }
2921
2922 if (active) {
2923 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2924 } else if (pending) {
2925 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2926 }
2927
2928 return VK_SUCCESS;
2929 }
2930
2931 VkResult
2932 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2933 {
2934 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2935 * Other usages of the BO (such as on different hardware) will not be
2936 * flagged as "busy" by this ioctl. Use with care.
2937 */
2938 int ret = anv_gem_busy(device, bo->gem_handle);
2939 if (ret == 1) {
2940 return VK_NOT_READY;
2941 } else if (ret == -1) {
2942 /* We don't know the real error. */
2943 return anv_device_set_lost(device, "gem wait failed: %m");
2944 }
2945
2946 /* Query for device status after the busy call. If the BO we're checking
2947 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2948 * client because it clearly doesn't have valid data. Yes, this most
2949 * likely means an ioctl, but we just did an ioctl to query the busy status
2950 * so it's no great loss.
2951 */
2952 return anv_device_query_status(device);
2953 }
2954
2955 VkResult
2956 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2957 int64_t timeout)
2958 {
2959 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2960 if (ret == -1 && errno == ETIME) {
2961 return VK_TIMEOUT;
2962 } else if (ret == -1) {
2963 /* We don't know the real error. */
2964 return anv_device_set_lost(device, "gem wait failed: %m");
2965 }
2966
2967 /* Query for device status after the wait. If the BO we're waiting on got
2968 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2969 * because it clearly doesn't have valid data. Yes, this most likely means
2970 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2971 */
2972 return anv_device_query_status(device);
2973 }
2974
2975 VkResult anv_DeviceWaitIdle(
2976 VkDevice _device)
2977 {
2978 ANV_FROM_HANDLE(anv_device, device, _device);
2979
2980 if (anv_device_is_lost(device))
2981 return VK_ERROR_DEVICE_LOST;
2982
2983 return anv_queue_submit_simple_batch(&device->queue, NULL);
2984 }
2985
2986 bool
2987 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
2988 uint64_t client_address)
2989 {
2990 const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2991 const struct gen_device_info *devinfo = &pdevice->info;
2992 /* Gen12 CCS surface addresses need to be 64K aligned. We have no way of
2993 * telling what this allocation is for so pick the largest alignment.
2994 */
2995 const uint32_t vma_alignment =
2996 devinfo->gen >= 12 ? (64 * 1024) : (4 * 1024);
2997
2998 if (!(bo->flags & EXEC_OBJECT_PINNED)) {
2999 assert(!(bo->has_client_visible_address));
3000 return true;
3001 }
3002
3003 pthread_mutex_lock(&device->vma_mutex);
3004
3005 bo->offset = 0;
3006
3007 if (bo->has_client_visible_address) {
3008 assert(bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS);
3009 if (client_address) {
3010 if (util_vma_heap_alloc_addr(&device->vma_cva,
3011 client_address, bo->size)) {
3012 bo->offset = gen_canonical_address(client_address);
3013 }
3014 } else {
3015 uint64_t addr =
3016 util_vma_heap_alloc(&device->vma_cva, bo->size, vma_alignment);
3017 if (addr) {
3018 bo->offset = gen_canonical_address(addr);
3019 assert(addr == gen_48b_address(bo->offset));
3020 }
3021 }
3022 /* We don't want to fall back to other heaps */
3023 goto done;
3024 }
3025
3026 assert(client_address == 0);
3027
3028 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) {
3029 uint64_t addr =
3030 util_vma_heap_alloc(&device->vma_hi, bo->size, vma_alignment);
3031 if (addr) {
3032 bo->offset = gen_canonical_address(addr);
3033 assert(addr == gen_48b_address(bo->offset));
3034 }
3035 }
3036
3037 if (bo->offset == 0) {
3038 uint64_t addr =
3039 util_vma_heap_alloc(&device->vma_lo, bo->size, vma_alignment);
3040 if (addr) {
3041 bo->offset = gen_canonical_address(addr);
3042 assert(addr == gen_48b_address(bo->offset));
3043 }
3044 }
3045
3046 done:
3047 pthread_mutex_unlock(&device->vma_mutex);
3048
3049 return bo->offset != 0;
3050 }
3051
3052 void
3053 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3054 {
3055 if (!(bo->flags & EXEC_OBJECT_PINNED))
3056 return;
3057
3058 const uint64_t addr_48b = gen_48b_address(bo->offset);
3059
3060 pthread_mutex_lock(&device->vma_mutex);
3061
3062 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3063 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3064 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3065 } else if (addr_48b >= CLIENT_VISIBLE_HEAP_MIN_ADDRESS &&
3066 addr_48b <= CLIENT_VISIBLE_HEAP_MAX_ADDRESS) {
3067 util_vma_heap_free(&device->vma_cva, addr_48b, bo->size);
3068 } else {
3069 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS);
3070 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3071 }
3072
3073 pthread_mutex_unlock(&device->vma_mutex);
3074
3075 bo->offset = 0;
3076 }
3077
3078 VkResult anv_AllocateMemory(
3079 VkDevice _device,
3080 const VkMemoryAllocateInfo* pAllocateInfo,
3081 const VkAllocationCallbacks* pAllocator,
3082 VkDeviceMemory* pMem)
3083 {
3084 ANV_FROM_HANDLE(anv_device, device, _device);
3085 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3086 struct anv_device_memory *mem;
3087 VkResult result = VK_SUCCESS;
3088
3089 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3090
3091 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3092 assert(pAllocateInfo->allocationSize > 0);
3093
3094 VkDeviceSize aligned_alloc_size =
3095 align_u64(pAllocateInfo->allocationSize, 4096);
3096
3097 if (aligned_alloc_size > MAX_MEMORY_ALLOCATION_SIZE)
3098 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3099
3100 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3101 struct anv_memory_type *mem_type =
3102 &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3103 assert(mem_type->heapIndex < pdevice->memory.heap_count);
3104 struct anv_memory_heap *mem_heap =
3105 &pdevice->memory.heaps[mem_type->heapIndex];
3106
3107 uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
3108 if (mem_heap_used + aligned_alloc_size > mem_heap->size)
3109 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3110
3111 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3112 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3113 if (mem == NULL)
3114 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3115
3116 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3117 mem->type = mem_type;
3118 mem->map = NULL;
3119 mem->map_size = 0;
3120 mem->ahw = NULL;
3121 mem->host_ptr = NULL;
3122
3123 enum anv_bo_alloc_flags alloc_flags = 0;
3124
3125 const VkExportMemoryAllocateInfo *export_info = NULL;
3126 const VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info = NULL;
3127 const VkImportMemoryFdInfoKHR *fd_info = NULL;
3128 const VkImportMemoryHostPointerInfoEXT *host_ptr_info = NULL;
3129 const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
3130 VkMemoryAllocateFlags vk_flags = 0;
3131 uint64_t client_address = 0;
3132
3133 vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
3134 switch (ext->sType) {
3135 case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
3136 export_info = (void *)ext;
3137 break;
3138
3139 case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
3140 ahw_import_info = (void *)ext;
3141 break;
3142
3143 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
3144 fd_info = (void *)ext;
3145 break;
3146
3147 case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
3148 host_ptr_info = (void *)ext;
3149 break;
3150
3151 case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO: {
3152 const VkMemoryAllocateFlagsInfo *flags_info = (void *)ext;
3153 vk_flags = flags_info->flags;
3154 break;
3155 }
3156
3157 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
3158 dedicated_info = (void *)ext;
3159 break;
3160
3161 case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO_KHR: {
3162 const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *addr_info =
3163 (const VkMemoryOpaqueCaptureAddressAllocateInfoKHR *)ext;
3164 client_address = addr_info->opaqueCaptureAddress;
3165 break;
3166 }
3167
3168 default:
3169 anv_debug_ignored_stype(ext->sType);
3170 break;
3171 }
3172 }
3173
3174 if (vk_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR)
3175 alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
3176
3177 /* Check if we need to support Android HW buffer export. If so,
3178 * create AHardwareBuffer and import memory from it.
3179 */
3180 bool android_export = false;
3181 if (export_info && export_info->handleTypes &
3182 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3183 android_export = true;
3184
3185 if (ahw_import_info) {
3186 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3187 if (result != VK_SUCCESS)
3188 goto fail;
3189
3190 goto success;
3191 } else if (android_export) {
3192 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3193 if (result != VK_SUCCESS)
3194 goto fail;
3195
3196 const VkImportAndroidHardwareBufferInfoANDROID import_info = {
3197 .buffer = mem->ahw,
3198 };
3199 result = anv_import_ahw_memory(_device, mem, &import_info);
3200 if (result != VK_SUCCESS)
3201 goto fail;
3202
3203 goto success;
3204 }
3205
3206 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3207 * ignored.
3208 */
3209 if (fd_info && fd_info->handleType) {
3210 /* At the moment, we support only the below handle types. */
3211 assert(fd_info->handleType ==
3212 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3213 fd_info->handleType ==
3214 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3215
3216 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3217 client_address, &mem->bo);
3218 if (result != VK_SUCCESS)
3219 goto fail;
3220
3221 VkDeviceSize aligned_alloc_size =
3222 align_u64(pAllocateInfo->allocationSize, 4096);
3223
3224 /* For security purposes, we reject importing the bo if it's smaller
3225 * than the requested allocation size. This prevents a malicious client
3226 * from passing a buffer to a trusted client, lying about the size, and
3227 * telling the trusted client to try and texture from an image that goes
3228 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3229 * in the trusted client. The trusted client can protect itself against
3230 * this sort of attack but only if it can trust the buffer size.
3231 */
3232 if (mem->bo->size < aligned_alloc_size) {
3233 result = vk_errorf(device->instance, device,
3234 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3235 "aligned allocationSize too large for "
3236 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3237 "%"PRIu64"B > %"PRIu64"B",
3238 aligned_alloc_size, mem->bo->size);
3239 anv_device_release_bo(device, mem->bo);
3240 goto fail;
3241 }
3242
3243 /* From the Vulkan spec:
3244 *
3245 * "Importing memory from a file descriptor transfers ownership of
3246 * the file descriptor from the application to the Vulkan
3247 * implementation. The application must not perform any operations on
3248 * the file descriptor after a successful import."
3249 *
3250 * If the import fails, we leave the file descriptor open.
3251 */
3252 close(fd_info->fd);
3253 goto success;
3254 }
3255
3256 if (host_ptr_info && host_ptr_info->handleType) {
3257 if (host_ptr_info->handleType ==
3258 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3259 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3260 goto fail;
3261 }
3262
3263 assert(host_ptr_info->handleType ==
3264 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3265
3266 result = anv_device_import_bo_from_host_ptr(device,
3267 host_ptr_info->pHostPointer,
3268 pAllocateInfo->allocationSize,
3269 alloc_flags,
3270 client_address,
3271 &mem->bo);
3272 if (result != VK_SUCCESS)
3273 goto fail;
3274
3275 mem->host_ptr = host_ptr_info->pHostPointer;
3276 goto success;
3277 }
3278
3279 /* Regular allocate (not importing memory). */
3280
3281 if (export_info && export_info->handleTypes)
3282 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3283
3284 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3285 alloc_flags, client_address, &mem->bo);
3286 if (result != VK_SUCCESS)
3287 goto fail;
3288
3289 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3290 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3291
3292 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3293 * the BO. In this case, we have a dedicated allocation.
3294 */
3295 if (image->needs_set_tiling) {
3296 const uint32_t i915_tiling =
3297 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3298 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3299 image->planes[0].surface.isl.row_pitch_B,
3300 i915_tiling);
3301 if (ret) {
3302 anv_device_release_bo(device, mem->bo);
3303 result = vk_errorf(device->instance, NULL,
3304 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3305 "failed to set BO tiling: %m");
3306 goto fail;
3307 }
3308 }
3309 }
3310
3311 success:
3312 mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
3313 if (mem_heap_used > mem_heap->size) {
3314 p_atomic_add(&mem_heap->used, -mem->bo->size);
3315 anv_device_release_bo(device, mem->bo);
3316 result = vk_errorf(device->instance, NULL,
3317 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3318 "Out of heap memory");
3319 goto fail;
3320 }
3321
3322 pthread_mutex_lock(&device->mutex);
3323 list_addtail(&mem->link, &device->memory_objects);
3324 pthread_mutex_unlock(&device->mutex);
3325
3326 *pMem = anv_device_memory_to_handle(mem);
3327
3328 return VK_SUCCESS;
3329
3330 fail:
3331 vk_free2(&device->alloc, pAllocator, mem);
3332
3333 return result;
3334 }
3335
3336 VkResult anv_GetMemoryFdKHR(
3337 VkDevice device_h,
3338 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3339 int* pFd)
3340 {
3341 ANV_FROM_HANDLE(anv_device, dev, device_h);
3342 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3343
3344 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3345
3346 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3347 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3348
3349 return anv_device_export_bo(dev, mem->bo, pFd);
3350 }
3351
3352 VkResult anv_GetMemoryFdPropertiesKHR(
3353 VkDevice _device,
3354 VkExternalMemoryHandleTypeFlagBits handleType,
3355 int fd,
3356 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3357 {
3358 ANV_FROM_HANDLE(anv_device, device, _device);
3359 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3360
3361 switch (handleType) {
3362 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3363 /* dma-buf can be imported as any memory type */
3364 pMemoryFdProperties->memoryTypeBits =
3365 (1 << pdevice->memory.type_count) - 1;
3366 return VK_SUCCESS;
3367
3368 default:
3369 /* The valid usage section for this function says:
3370 *
3371 * "handleType must not be one of the handle types defined as
3372 * opaque."
3373 *
3374 * So opaque handle types fall into the default "unsupported" case.
3375 */
3376 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3377 }
3378 }
3379
3380 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3381 VkDevice _device,
3382 VkExternalMemoryHandleTypeFlagBits handleType,
3383 const void* pHostPointer,
3384 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3385 {
3386 ANV_FROM_HANDLE(anv_device, device, _device);
3387
3388 assert(pMemoryHostPointerProperties->sType ==
3389 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3390
3391 switch (handleType) {
3392 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3393 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3394
3395 /* Host memory can be imported as any memory type. */
3396 pMemoryHostPointerProperties->memoryTypeBits =
3397 (1ull << pdevice->memory.type_count) - 1;
3398
3399 return VK_SUCCESS;
3400 }
3401 default:
3402 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3403 }
3404 }
3405
3406 void anv_FreeMemory(
3407 VkDevice _device,
3408 VkDeviceMemory _mem,
3409 const VkAllocationCallbacks* pAllocator)
3410 {
3411 ANV_FROM_HANDLE(anv_device, device, _device);
3412 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3413 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3414
3415 if (mem == NULL)
3416 return;
3417
3418 pthread_mutex_lock(&device->mutex);
3419 list_del(&mem->link);
3420 pthread_mutex_unlock(&device->mutex);
3421
3422 if (mem->map)
3423 anv_UnmapMemory(_device, _mem);
3424
3425 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3426 -mem->bo->size);
3427
3428 anv_device_release_bo(device, mem->bo);
3429
3430 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3431 if (mem->ahw)
3432 AHardwareBuffer_release(mem->ahw);
3433 #endif
3434
3435 vk_free2(&device->alloc, pAllocator, mem);
3436 }
3437
3438 VkResult anv_MapMemory(
3439 VkDevice _device,
3440 VkDeviceMemory _memory,
3441 VkDeviceSize offset,
3442 VkDeviceSize size,
3443 VkMemoryMapFlags flags,
3444 void** ppData)
3445 {
3446 ANV_FROM_HANDLE(anv_device, device, _device);
3447 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3448
3449 if (mem == NULL) {
3450 *ppData = NULL;
3451 return VK_SUCCESS;
3452 }
3453
3454 if (mem->host_ptr) {
3455 *ppData = mem->host_ptr + offset;
3456 return VK_SUCCESS;
3457 }
3458
3459 if (size == VK_WHOLE_SIZE)
3460 size = mem->bo->size - offset;
3461
3462 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3463 *
3464 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3465 * assert(size != 0);
3466 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3467 * equal to the size of the memory minus offset
3468 */
3469 assert(size > 0);
3470 assert(offset + size <= mem->bo->size);
3471
3472 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3473 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3474 * at a time is valid. We could just mmap up front and return an offset
3475 * pointer here, but that may exhaust virtual memory on 32 bit
3476 * userspace. */
3477
3478 uint32_t gem_flags = 0;
3479
3480 if (!device->info.has_llc &&
3481 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3482 gem_flags |= I915_MMAP_WC;
3483
3484 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3485 uint64_t map_offset = offset & ~4095ull;
3486 assert(offset >= map_offset);
3487 uint64_t map_size = (offset + size) - map_offset;
3488
3489 /* Let's map whole pages */
3490 map_size = align_u64(map_size, 4096);
3491
3492 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3493 map_offset, map_size, gem_flags);
3494 if (map == MAP_FAILED)
3495 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3496
3497 mem->map = map;
3498 mem->map_size = map_size;
3499
3500 *ppData = mem->map + (offset - map_offset);
3501
3502 return VK_SUCCESS;
3503 }
3504
3505 void anv_UnmapMemory(
3506 VkDevice _device,
3507 VkDeviceMemory _memory)
3508 {
3509 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3510
3511 if (mem == NULL || mem->host_ptr)
3512 return;
3513
3514 anv_gem_munmap(mem->map, mem->map_size);
3515
3516 mem->map = NULL;
3517 mem->map_size = 0;
3518 }
3519
3520 static void
3521 clflush_mapped_ranges(struct anv_device *device,
3522 uint32_t count,
3523 const VkMappedMemoryRange *ranges)
3524 {
3525 for (uint32_t i = 0; i < count; i++) {
3526 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3527 if (ranges[i].offset >= mem->map_size)
3528 continue;
3529
3530 gen_clflush_range(mem->map + ranges[i].offset,
3531 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3532 }
3533 }
3534
3535 VkResult anv_FlushMappedMemoryRanges(
3536 VkDevice _device,
3537 uint32_t memoryRangeCount,
3538 const VkMappedMemoryRange* pMemoryRanges)
3539 {
3540 ANV_FROM_HANDLE(anv_device, device, _device);
3541
3542 if (device->info.has_llc)
3543 return VK_SUCCESS;
3544
3545 /* Make sure the writes we're flushing have landed. */
3546 __builtin_ia32_mfence();
3547
3548 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3549
3550 return VK_SUCCESS;
3551 }
3552
3553 VkResult anv_InvalidateMappedMemoryRanges(
3554 VkDevice _device,
3555 uint32_t memoryRangeCount,
3556 const VkMappedMemoryRange* pMemoryRanges)
3557 {
3558 ANV_FROM_HANDLE(anv_device, device, _device);
3559
3560 if (device->info.has_llc)
3561 return VK_SUCCESS;
3562
3563 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3564
3565 /* Make sure no reads get moved up above the invalidate. */
3566 __builtin_ia32_mfence();
3567
3568 return VK_SUCCESS;
3569 }
3570
3571 void anv_GetBufferMemoryRequirements(
3572 VkDevice _device,
3573 VkBuffer _buffer,
3574 VkMemoryRequirements* pMemoryRequirements)
3575 {
3576 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3577 ANV_FROM_HANDLE(anv_device, device, _device);
3578 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3579
3580 /* The Vulkan spec (git aaed022) says:
3581 *
3582 * memoryTypeBits is a bitfield and contains one bit set for every
3583 * supported memory type for the resource. The bit `1<<i` is set if and
3584 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3585 * structure for the physical device is supported.
3586 */
3587 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3588
3589 /* Base alignment requirement of a cache line */
3590 uint32_t alignment = 16;
3591
3592 /* We need an alignment of 32 for pushing UBOs */
3593 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3594 alignment = MAX2(alignment, 32);
3595
3596 pMemoryRequirements->size = buffer->size;
3597 pMemoryRequirements->alignment = alignment;
3598
3599 /* Storage and Uniform buffers should have their size aligned to
3600 * 32-bits to avoid boundary checks when last DWord is not complete.
3601 * This would ensure that not internal padding would be needed for
3602 * 16-bit types.
3603 */
3604 if (device->robust_buffer_access &&
3605 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3606 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3607 pMemoryRequirements->size = align_u64(buffer->size, 4);
3608
3609 pMemoryRequirements->memoryTypeBits = memory_types;
3610 }
3611
3612 void anv_GetBufferMemoryRequirements2(
3613 VkDevice _device,
3614 const VkBufferMemoryRequirementsInfo2* pInfo,
3615 VkMemoryRequirements2* pMemoryRequirements)
3616 {
3617 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3618 &pMemoryRequirements->memoryRequirements);
3619
3620 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3621 switch (ext->sType) {
3622 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3623 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3624 requirements->prefersDedicatedAllocation = false;
3625 requirements->requiresDedicatedAllocation = false;
3626 break;
3627 }
3628
3629 default:
3630 anv_debug_ignored_stype(ext->sType);
3631 break;
3632 }
3633 }
3634 }
3635
3636 void anv_GetImageMemoryRequirements(
3637 VkDevice _device,
3638 VkImage _image,
3639 VkMemoryRequirements* pMemoryRequirements)
3640 {
3641 ANV_FROM_HANDLE(anv_image, image, _image);
3642 ANV_FROM_HANDLE(anv_device, device, _device);
3643 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3644
3645 /* The Vulkan spec (git aaed022) says:
3646 *
3647 * memoryTypeBits is a bitfield and contains one bit set for every
3648 * supported memory type for the resource. The bit `1<<i` is set if and
3649 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3650 * structure for the physical device is supported.
3651 *
3652 * All types are currently supported for images.
3653 */
3654 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3655
3656 /* We must have image allocated or imported at this point. According to the
3657 * specification, external images must have been bound to memory before
3658 * calling GetImageMemoryRequirements.
3659 */
3660 assert(image->size > 0);
3661
3662 pMemoryRequirements->size = image->size;
3663 pMemoryRequirements->alignment = image->alignment;
3664 pMemoryRequirements->memoryTypeBits = memory_types;
3665 }
3666
3667 void anv_GetImageMemoryRequirements2(
3668 VkDevice _device,
3669 const VkImageMemoryRequirementsInfo2* pInfo,
3670 VkMemoryRequirements2* pMemoryRequirements)
3671 {
3672 ANV_FROM_HANDLE(anv_device, device, _device);
3673 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3674
3675 anv_GetImageMemoryRequirements(_device, pInfo->image,
3676 &pMemoryRequirements->memoryRequirements);
3677
3678 vk_foreach_struct_const(ext, pInfo->pNext) {
3679 switch (ext->sType) {
3680 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3681 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3682 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3683 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3684 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3685 plane_reqs->planeAspect);
3686
3687 assert(image->planes[plane].offset == 0);
3688
3689 /* The Vulkan spec (git aaed022) says:
3690 *
3691 * memoryTypeBits is a bitfield and contains one bit set for every
3692 * supported memory type for the resource. The bit `1<<i` is set
3693 * if and only if the memory type `i` in the
3694 * VkPhysicalDeviceMemoryProperties structure for the physical
3695 * device is supported.
3696 *
3697 * All types are currently supported for images.
3698 */
3699 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3700 (1ull << pdevice->memory.type_count) - 1;
3701
3702 /* We must have image allocated or imported at this point. According to the
3703 * specification, external images must have been bound to memory before
3704 * calling GetImageMemoryRequirements.
3705 */
3706 assert(image->planes[plane].size > 0);
3707
3708 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3709 pMemoryRequirements->memoryRequirements.alignment =
3710 image->planes[plane].alignment;
3711 break;
3712 }
3713
3714 default:
3715 anv_debug_ignored_stype(ext->sType);
3716 break;
3717 }
3718 }
3719
3720 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3721 switch (ext->sType) {
3722 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3723 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3724 if (image->needs_set_tiling || image->external_format) {
3725 /* If we need to set the tiling for external consumers, we need a
3726 * dedicated allocation.
3727 *
3728 * See also anv_AllocateMemory.
3729 */
3730 requirements->prefersDedicatedAllocation = true;
3731 requirements->requiresDedicatedAllocation = true;
3732 } else {
3733 requirements->prefersDedicatedAllocation = false;
3734 requirements->requiresDedicatedAllocation = false;
3735 }
3736 break;
3737 }
3738
3739 default:
3740 anv_debug_ignored_stype(ext->sType);
3741 break;
3742 }
3743 }
3744 }
3745
3746 void anv_GetImageSparseMemoryRequirements(
3747 VkDevice device,
3748 VkImage image,
3749 uint32_t* pSparseMemoryRequirementCount,
3750 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3751 {
3752 *pSparseMemoryRequirementCount = 0;
3753 }
3754
3755 void anv_GetImageSparseMemoryRequirements2(
3756 VkDevice device,
3757 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3758 uint32_t* pSparseMemoryRequirementCount,
3759 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3760 {
3761 *pSparseMemoryRequirementCount = 0;
3762 }
3763
3764 void anv_GetDeviceMemoryCommitment(
3765 VkDevice device,
3766 VkDeviceMemory memory,
3767 VkDeviceSize* pCommittedMemoryInBytes)
3768 {
3769 *pCommittedMemoryInBytes = 0;
3770 }
3771
3772 static void
3773 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3774 {
3775 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3776 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3777
3778 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3779
3780 if (mem) {
3781 buffer->address = (struct anv_address) {
3782 .bo = mem->bo,
3783 .offset = pBindInfo->memoryOffset,
3784 };
3785 } else {
3786 buffer->address = ANV_NULL_ADDRESS;
3787 }
3788 }
3789
3790 VkResult anv_BindBufferMemory(
3791 VkDevice device,
3792 VkBuffer buffer,
3793 VkDeviceMemory memory,
3794 VkDeviceSize memoryOffset)
3795 {
3796 anv_bind_buffer_memory(
3797 &(VkBindBufferMemoryInfo) {
3798 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3799 .buffer = buffer,
3800 .memory = memory,
3801 .memoryOffset = memoryOffset,
3802 });
3803
3804 return VK_SUCCESS;
3805 }
3806
3807 VkResult anv_BindBufferMemory2(
3808 VkDevice device,
3809 uint32_t bindInfoCount,
3810 const VkBindBufferMemoryInfo* pBindInfos)
3811 {
3812 for (uint32_t i = 0; i < bindInfoCount; i++)
3813 anv_bind_buffer_memory(&pBindInfos[i]);
3814
3815 return VK_SUCCESS;
3816 }
3817
3818 VkResult anv_QueueBindSparse(
3819 VkQueue _queue,
3820 uint32_t bindInfoCount,
3821 const VkBindSparseInfo* pBindInfo,
3822 VkFence fence)
3823 {
3824 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3825 if (anv_device_is_lost(queue->device))
3826 return VK_ERROR_DEVICE_LOST;
3827
3828 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3829 }
3830
3831 // Event functions
3832
3833 VkResult anv_CreateEvent(
3834 VkDevice _device,
3835 const VkEventCreateInfo* pCreateInfo,
3836 const VkAllocationCallbacks* pAllocator,
3837 VkEvent* pEvent)
3838 {
3839 ANV_FROM_HANDLE(anv_device, device, _device);
3840 struct anv_state state;
3841 struct anv_event *event;
3842
3843 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3844
3845 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3846 sizeof(*event), 8);
3847 event = state.map;
3848 event->state = state;
3849 event->semaphore = VK_EVENT_RESET;
3850
3851 if (!device->info.has_llc) {
3852 /* Make sure the writes we're flushing have landed. */
3853 __builtin_ia32_mfence();
3854 __builtin_ia32_clflush(event);
3855 }
3856
3857 *pEvent = anv_event_to_handle(event);
3858
3859 return VK_SUCCESS;
3860 }
3861
3862 void anv_DestroyEvent(
3863 VkDevice _device,
3864 VkEvent _event,
3865 const VkAllocationCallbacks* pAllocator)
3866 {
3867 ANV_FROM_HANDLE(anv_device, device, _device);
3868 ANV_FROM_HANDLE(anv_event, event, _event);
3869
3870 if (!event)
3871 return;
3872
3873 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3874 }
3875
3876 VkResult anv_GetEventStatus(
3877 VkDevice _device,
3878 VkEvent _event)
3879 {
3880 ANV_FROM_HANDLE(anv_device, device, _device);
3881 ANV_FROM_HANDLE(anv_event, event, _event);
3882
3883 if (anv_device_is_lost(device))
3884 return VK_ERROR_DEVICE_LOST;
3885
3886 if (!device->info.has_llc) {
3887 /* Invalidate read cache before reading event written by GPU. */
3888 __builtin_ia32_clflush(event);
3889 __builtin_ia32_mfence();
3890
3891 }
3892
3893 return event->semaphore;
3894 }
3895
3896 VkResult anv_SetEvent(
3897 VkDevice _device,
3898 VkEvent _event)
3899 {
3900 ANV_FROM_HANDLE(anv_device, device, _device);
3901 ANV_FROM_HANDLE(anv_event, event, _event);
3902
3903 event->semaphore = VK_EVENT_SET;
3904
3905 if (!device->info.has_llc) {
3906 /* Make sure the writes we're flushing have landed. */
3907 __builtin_ia32_mfence();
3908 __builtin_ia32_clflush(event);
3909 }
3910
3911 return VK_SUCCESS;
3912 }
3913
3914 VkResult anv_ResetEvent(
3915 VkDevice _device,
3916 VkEvent _event)
3917 {
3918 ANV_FROM_HANDLE(anv_device, device, _device);
3919 ANV_FROM_HANDLE(anv_event, event, _event);
3920
3921 event->semaphore = VK_EVENT_RESET;
3922
3923 if (!device->info.has_llc) {
3924 /* Make sure the writes we're flushing have landed. */
3925 __builtin_ia32_mfence();
3926 __builtin_ia32_clflush(event);
3927 }
3928
3929 return VK_SUCCESS;
3930 }
3931
3932 // Buffer functions
3933
3934 VkResult anv_CreateBuffer(
3935 VkDevice _device,
3936 const VkBufferCreateInfo* pCreateInfo,
3937 const VkAllocationCallbacks* pAllocator,
3938 VkBuffer* pBuffer)
3939 {
3940 ANV_FROM_HANDLE(anv_device, device, _device);
3941 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3942 struct anv_buffer *buffer;
3943
3944 /* Don't allow creating buffers bigger than our address space. The real
3945 * issue here is that we may align up the buffer size and we don't want
3946 * doing so to cause roll-over. However, no one has any business
3947 * allocating a buffer larger than our GTT size.
3948 */
3949 if (pCreateInfo->size > pdevice->gtt_size)
3950 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3951
3952 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3953
3954 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3955 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3956 if (buffer == NULL)
3957 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3958
3959 buffer->size = pCreateInfo->size;
3960 buffer->usage = pCreateInfo->usage;
3961 buffer->address = ANV_NULL_ADDRESS;
3962
3963 *pBuffer = anv_buffer_to_handle(buffer);
3964
3965 return VK_SUCCESS;
3966 }
3967
3968 void anv_DestroyBuffer(
3969 VkDevice _device,
3970 VkBuffer _buffer,
3971 const VkAllocationCallbacks* pAllocator)
3972 {
3973 ANV_FROM_HANDLE(anv_device, device, _device);
3974 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3975
3976 if (!buffer)
3977 return;
3978
3979 vk_free2(&device->alloc, pAllocator, buffer);
3980 }
3981
3982 VkDeviceAddress anv_GetBufferDeviceAddressKHR(
3983 VkDevice device,
3984 const VkBufferDeviceAddressInfoKHR* pInfo)
3985 {
3986 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3987
3988 assert(!anv_address_is_null(buffer->address));
3989 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3990
3991 return anv_address_physical(buffer->address);
3992 }
3993
3994 uint64_t anv_GetBufferOpaqueCaptureAddressKHR(
3995 VkDevice device,
3996 const VkBufferDeviceAddressInfoKHR* pInfo)
3997 {
3998 return 0;
3999 }
4000
4001 uint64_t anv_GetDeviceMemoryOpaqueCaptureAddressKHR(
4002 VkDevice device,
4003 const VkDeviceMemoryOpaqueCaptureAddressInfoKHR* pInfo)
4004 {
4005 ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
4006
4007 assert(memory->bo->flags & EXEC_OBJECT_PINNED);
4008 assert(memory->bo->has_client_visible_address);
4009
4010 return gen_48b_address(memory->bo->offset);
4011 }
4012
4013 void
4014 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
4015 enum isl_format format,
4016 struct anv_address address,
4017 uint32_t range, uint32_t stride)
4018 {
4019 isl_buffer_fill_state(&device->isl_dev, state.map,
4020 .address = anv_address_physical(address),
4021 .mocs = device->isl_dev.mocs.internal,
4022 .size_B = range,
4023 .format = format,
4024 .swizzle = ISL_SWIZZLE_IDENTITY,
4025 .stride_B = stride);
4026 }
4027
4028 void anv_DestroySampler(
4029 VkDevice _device,
4030 VkSampler _sampler,
4031 const VkAllocationCallbacks* pAllocator)
4032 {
4033 ANV_FROM_HANDLE(anv_device, device, _device);
4034 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
4035
4036 if (!sampler)
4037 return;
4038
4039 if (sampler->bindless_state.map) {
4040 anv_state_pool_free(&device->dynamic_state_pool,
4041 sampler->bindless_state);
4042 }
4043
4044 vk_free2(&device->alloc, pAllocator, sampler);
4045 }
4046
4047 VkResult anv_CreateFramebuffer(
4048 VkDevice _device,
4049 const VkFramebufferCreateInfo* pCreateInfo,
4050 const VkAllocationCallbacks* pAllocator,
4051 VkFramebuffer* pFramebuffer)
4052 {
4053 ANV_FROM_HANDLE(anv_device, device, _device);
4054 struct anv_framebuffer *framebuffer;
4055
4056 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
4057
4058 size_t size = sizeof(*framebuffer);
4059
4060 /* VK_KHR_imageless_framebuffer extension says:
4061 *
4062 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
4063 * parameter pAttachments is ignored.
4064 */
4065 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
4066 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
4067 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4068 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4069 if (framebuffer == NULL)
4070 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4071
4072 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
4073 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
4074 framebuffer->attachments[i] = iview;
4075 }
4076 framebuffer->attachment_count = pCreateInfo->attachmentCount;
4077 } else {
4078 assert(device->enabled_extensions.KHR_imageless_framebuffer);
4079 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
4080 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4081 if (framebuffer == NULL)
4082 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
4083
4084 framebuffer->attachment_count = 0;
4085 }
4086
4087 framebuffer->width = pCreateInfo->width;
4088 framebuffer->height = pCreateInfo->height;
4089 framebuffer->layers = pCreateInfo->layers;
4090
4091 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
4092
4093 return VK_SUCCESS;
4094 }
4095
4096 void anv_DestroyFramebuffer(
4097 VkDevice _device,
4098 VkFramebuffer _fb,
4099 const VkAllocationCallbacks* pAllocator)
4100 {
4101 ANV_FROM_HANDLE(anv_device, device, _device);
4102 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
4103
4104 if (!fb)
4105 return;
4106
4107 vk_free2(&device->alloc, pAllocator, fb);
4108 }
4109
4110 static const VkTimeDomainEXT anv_time_domains[] = {
4111 VK_TIME_DOMAIN_DEVICE_EXT,
4112 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4113 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4114 };
4115
4116 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4117 VkPhysicalDevice physicalDevice,
4118 uint32_t *pTimeDomainCount,
4119 VkTimeDomainEXT *pTimeDomains)
4120 {
4121 int d;
4122 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4123
4124 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4125 vk_outarray_append(&out, i) {
4126 *i = anv_time_domains[d];
4127 }
4128 }
4129
4130 return vk_outarray_status(&out);
4131 }
4132
4133 static uint64_t
4134 anv_clock_gettime(clockid_t clock_id)
4135 {
4136 struct timespec current;
4137 int ret;
4138
4139 ret = clock_gettime(clock_id, &current);
4140 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4141 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4142 if (ret < 0)
4143 return 0;
4144
4145 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4146 }
4147
4148 #define TIMESTAMP 0x2358
4149
4150 VkResult anv_GetCalibratedTimestampsEXT(
4151 VkDevice _device,
4152 uint32_t timestampCount,
4153 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4154 uint64_t *pTimestamps,
4155 uint64_t *pMaxDeviation)
4156 {
4157 ANV_FROM_HANDLE(anv_device, device, _device);
4158 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4159 int ret;
4160 int d;
4161 uint64_t begin, end;
4162 uint64_t max_clock_period = 0;
4163
4164 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4165
4166 for (d = 0; d < timestampCount; d++) {
4167 switch (pTimestampInfos[d].timeDomain) {
4168 case VK_TIME_DOMAIN_DEVICE_EXT:
4169 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4170 &pTimestamps[d]);
4171
4172 if (ret != 0) {
4173 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4174 "register: %m");
4175 }
4176 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4177 max_clock_period = MAX2(max_clock_period, device_period);
4178 break;
4179 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4180 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4181 max_clock_period = MAX2(max_clock_period, 1);
4182 break;
4183
4184 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4185 pTimestamps[d] = begin;
4186 break;
4187 default:
4188 pTimestamps[d] = 0;
4189 break;
4190 }
4191 }
4192
4193 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4194
4195 /*
4196 * The maximum deviation is the sum of the interval over which we
4197 * perform the sampling and the maximum period of any sampled
4198 * clock. That's because the maximum skew between any two sampled
4199 * clock edges is when the sampled clock with the largest period is
4200 * sampled at the end of that period but right at the beginning of the
4201 * sampling interval and some other clock is sampled right at the
4202 * begining of its sampling period and right at the end of the
4203 * sampling interval. Let's assume the GPU has the longest clock
4204 * period and that the application is sampling GPU and monotonic:
4205 *
4206 * s e
4207 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4208 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4209 *
4210 * g
4211 * 0 1 2 3
4212 * GPU -----_____-----_____-----_____-----_____
4213 *
4214 * m
4215 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4216 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4217 *
4218 * Interval <----------------->
4219 * Deviation <-------------------------->
4220 *
4221 * s = read(raw) 2
4222 * g = read(GPU) 1
4223 * m = read(monotonic) 2
4224 * e = read(raw) b
4225 *
4226 * We round the sample interval up by one tick to cover sampling error
4227 * in the interval clock
4228 */
4229
4230 uint64_t sample_interval = end - begin + 1;
4231
4232 *pMaxDeviation = sample_interval + max_clock_period;
4233
4234 return VK_SUCCESS;
4235 }
4236
4237 /* vk_icd.h does not declare this function, so we declare it here to
4238 * suppress Wmissing-prototypes.
4239 */
4240 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4241 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4242
4243 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4244 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4245 {
4246 /* For the full details on loader interface versioning, see
4247 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4248 * What follows is a condensed summary, to help you navigate the large and
4249 * confusing official doc.
4250 *
4251 * - Loader interface v0 is incompatible with later versions. We don't
4252 * support it.
4253 *
4254 * - In loader interface v1:
4255 * - The first ICD entrypoint called by the loader is
4256 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4257 * entrypoint.
4258 * - The ICD must statically expose no other Vulkan symbol unless it is
4259 * linked with -Bsymbolic.
4260 * - Each dispatchable Vulkan handle created by the ICD must be
4261 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4262 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4263 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4264 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4265 * such loader-managed surfaces.
4266 *
4267 * - Loader interface v2 differs from v1 in:
4268 * - The first ICD entrypoint called by the loader is
4269 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4270 * statically expose this entrypoint.
4271 *
4272 * - Loader interface v3 differs from v2 in:
4273 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4274 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4275 * because the loader no longer does so.
4276 *
4277 * - Loader interface v4 differs from v3 in:
4278 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4279 */
4280 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4281 return VK_SUCCESS;
4282 }