anv: allow NULL batch parameter to anv_queue_submit_simple_batch
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/debug.h"
36 #include "util/build_id.h"
37 #include "util/disk_cache.h"
38 #include "util/mesa-sha1.h"
39 #include "util/os_file.h"
40 #include "util/u_atomic.h"
41 #include "util/u_string.h"
42 #include "util/xmlpool.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_aux_map.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_is_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 device->perf = anv_get_perf(&device->info, fd);
608
609 anv_physical_device_get_supported_extensions(device,
610 &device->supported_extensions);
611
612
613 device->local_fd = fd;
614
615 return VK_SUCCESS;
616
617 fail:
618 close(fd);
619 if (master_fd != -1)
620 close(master_fd);
621 return result;
622 }
623
624 static void
625 anv_physical_device_finish(struct anv_physical_device *device)
626 {
627 anv_finish_wsi(device);
628 anv_physical_device_free_disk_cache(device);
629 ralloc_free(device->compiler);
630 ralloc_free(device->perf);
631 close(device->local_fd);
632 if (device->master_fd >= 0)
633 close(device->master_fd);
634 }
635
636 static void *
637 default_alloc_func(void *pUserData, size_t size, size_t align,
638 VkSystemAllocationScope allocationScope)
639 {
640 return malloc(size);
641 }
642
643 static void *
644 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
645 size_t align, VkSystemAllocationScope allocationScope)
646 {
647 return realloc(pOriginal, size);
648 }
649
650 static void
651 default_free_func(void *pUserData, void *pMemory)
652 {
653 free(pMemory);
654 }
655
656 static const VkAllocationCallbacks default_alloc = {
657 .pUserData = NULL,
658 .pfnAllocation = default_alloc_func,
659 .pfnReallocation = default_realloc_func,
660 .pfnFree = default_free_func,
661 };
662
663 VkResult anv_EnumerateInstanceExtensionProperties(
664 const char* pLayerName,
665 uint32_t* pPropertyCount,
666 VkExtensionProperties* pProperties)
667 {
668 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
669
670 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
671 if (anv_instance_extensions_supported.extensions[i]) {
672 vk_outarray_append(&out, prop) {
673 *prop = anv_instance_extensions[i];
674 }
675 }
676 }
677
678 return vk_outarray_status(&out);
679 }
680
681 VkResult anv_CreateInstance(
682 const VkInstanceCreateInfo* pCreateInfo,
683 const VkAllocationCallbacks* pAllocator,
684 VkInstance* pInstance)
685 {
686 struct anv_instance *instance;
687 VkResult result;
688
689 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
690
691 struct anv_instance_extension_table enabled_extensions = {};
692 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
693 int idx;
694 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
695 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
696 anv_instance_extensions[idx].extensionName) == 0)
697 break;
698 }
699
700 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 if (!anv_instance_extensions_supported.extensions[idx])
704 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
705
706 enabled_extensions.extensions[idx] = true;
707 }
708
709 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
710 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
711 if (!instance)
712 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
713
714 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
715
716 if (pAllocator)
717 instance->alloc = *pAllocator;
718 else
719 instance->alloc = default_alloc;
720
721 instance->app_info = (struct anv_app_info) { .api_version = 0 };
722 if (pCreateInfo->pApplicationInfo) {
723 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
724
725 instance->app_info.app_name =
726 vk_strdup(&instance->alloc, app->pApplicationName,
727 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
728 instance->app_info.app_version = app->applicationVersion;
729
730 instance->app_info.engine_name =
731 vk_strdup(&instance->alloc, app->pEngineName,
732 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
733 instance->app_info.engine_version = app->engineVersion;
734
735 instance->app_info.api_version = app->apiVersion;
736 }
737
738 if (instance->app_info.api_version == 0)
739 instance->app_info.api_version = VK_API_VERSION_1_0;
740
741 instance->enabled_extensions = enabled_extensions;
742
743 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
744 /* Vulkan requires that entrypoints for extensions which have not been
745 * enabled must not be advertised.
746 */
747 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
748 &instance->enabled_extensions)) {
749 instance->dispatch.entrypoints[i] = NULL;
750 } else {
751 instance->dispatch.entrypoints[i] =
752 anv_instance_dispatch_table.entrypoints[i];
753 }
754 }
755
756 struct anv_physical_device *pdevice = &instance->physicalDevice;
757 for (unsigned i = 0; i < ARRAY_SIZE(pdevice->dispatch.entrypoints); i++) {
758 /* Vulkan requires that entrypoints for extensions which have not been
759 * enabled must not be advertised.
760 */
761 if (!anv_physical_device_entrypoint_is_enabled(i, instance->app_info.api_version,
762 &instance->enabled_extensions)) {
763 pdevice->dispatch.entrypoints[i] = NULL;
764 } else {
765 pdevice->dispatch.entrypoints[i] =
766 anv_physical_device_dispatch_table.entrypoints[i];
767 }
768 }
769
770 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
771 /* Vulkan requires that entrypoints for extensions which have not been
772 * enabled must not be advertised.
773 */
774 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
775 &instance->enabled_extensions, NULL)) {
776 instance->device_dispatch.entrypoints[i] = NULL;
777 } else {
778 instance->device_dispatch.entrypoints[i] =
779 anv_device_dispatch_table.entrypoints[i];
780 }
781 }
782
783 instance->physicalDeviceCount = -1;
784
785 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
786 if (result != VK_SUCCESS) {
787 vk_free2(&default_alloc, pAllocator, instance);
788 return vk_error(result);
789 }
790
791 instance->pipeline_cache_enabled =
792 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
793
794 glsl_type_singleton_init_or_ref();
795
796 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
797
798 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
799 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
800 0, "anv", NULL,
801 instance->app_info.engine_name,
802 instance->app_info.engine_version);
803
804 *pInstance = anv_instance_to_handle(instance);
805
806 return VK_SUCCESS;
807 }
808
809 void anv_DestroyInstance(
810 VkInstance _instance,
811 const VkAllocationCallbacks* pAllocator)
812 {
813 ANV_FROM_HANDLE(anv_instance, instance, _instance);
814
815 if (!instance)
816 return;
817
818 if (instance->physicalDeviceCount > 0) {
819 /* We support at most one physical device. */
820 assert(instance->physicalDeviceCount == 1);
821 anv_physical_device_finish(&instance->physicalDevice);
822 }
823
824 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
825 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
826
827 VG(VALGRIND_DESTROY_MEMPOOL(instance));
828
829 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
830
831 glsl_type_singleton_decref();
832
833 driDestroyOptionCache(&instance->dri_options);
834 driDestroyOptionInfo(&instance->available_dri_options);
835
836 vk_free(&instance->alloc, instance);
837 }
838
839 static VkResult
840 anv_enumerate_devices(struct anv_instance *instance)
841 {
842 /* TODO: Check for more devices ? */
843 drmDevicePtr devices[8];
844 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
845 int max_devices;
846
847 instance->physicalDeviceCount = 0;
848
849 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
850 if (max_devices < 1)
851 return VK_ERROR_INCOMPATIBLE_DRIVER;
852
853 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
854 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
855 devices[i]->bustype == DRM_BUS_PCI &&
856 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
857
858 result = anv_physical_device_init(&instance->physicalDevice,
859 instance, devices[i]);
860 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
861 break;
862 }
863 }
864 drmFreeDevices(devices, max_devices);
865
866 if (result == VK_SUCCESS)
867 instance->physicalDeviceCount = 1;
868
869 return result;
870 }
871
872 static VkResult
873 anv_instance_ensure_physical_device(struct anv_instance *instance)
874 {
875 if (instance->physicalDeviceCount < 0) {
876 VkResult result = anv_enumerate_devices(instance);
877 if (result != VK_SUCCESS &&
878 result != VK_ERROR_INCOMPATIBLE_DRIVER)
879 return result;
880 }
881
882 return VK_SUCCESS;
883 }
884
885 VkResult anv_EnumeratePhysicalDevices(
886 VkInstance _instance,
887 uint32_t* pPhysicalDeviceCount,
888 VkPhysicalDevice* pPhysicalDevices)
889 {
890 ANV_FROM_HANDLE(anv_instance, instance, _instance);
891 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
892
893 VkResult result = anv_instance_ensure_physical_device(instance);
894 if (result != VK_SUCCESS)
895 return result;
896
897 if (instance->physicalDeviceCount == 0)
898 return VK_SUCCESS;
899
900 assert(instance->physicalDeviceCount == 1);
901 vk_outarray_append(&out, i) {
902 *i = anv_physical_device_to_handle(&instance->physicalDevice);
903 }
904
905 return vk_outarray_status(&out);
906 }
907
908 VkResult anv_EnumeratePhysicalDeviceGroups(
909 VkInstance _instance,
910 uint32_t* pPhysicalDeviceGroupCount,
911 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
912 {
913 ANV_FROM_HANDLE(anv_instance, instance, _instance);
914 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
915 pPhysicalDeviceGroupCount);
916
917 VkResult result = anv_instance_ensure_physical_device(instance);
918 if (result != VK_SUCCESS)
919 return result;
920
921 if (instance->physicalDeviceCount == 0)
922 return VK_SUCCESS;
923
924 assert(instance->physicalDeviceCount == 1);
925
926 vk_outarray_append(&out, p) {
927 p->physicalDeviceCount = 1;
928 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
929 p->physicalDevices[0] =
930 anv_physical_device_to_handle(&instance->physicalDevice);
931 p->subsetAllocation = false;
932
933 vk_foreach_struct(ext, p->pNext)
934 anv_debug_ignored_stype(ext->sType);
935 }
936
937 return vk_outarray_status(&out);
938 }
939
940 void anv_GetPhysicalDeviceFeatures(
941 VkPhysicalDevice physicalDevice,
942 VkPhysicalDeviceFeatures* pFeatures)
943 {
944 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
945
946 *pFeatures = (VkPhysicalDeviceFeatures) {
947 .robustBufferAccess = true,
948 .fullDrawIndexUint32 = true,
949 .imageCubeArray = true,
950 .independentBlend = true,
951 .geometryShader = true,
952 .tessellationShader = true,
953 .sampleRateShading = true,
954 .dualSrcBlend = true,
955 .logicOp = true,
956 .multiDrawIndirect = true,
957 .drawIndirectFirstInstance = true,
958 .depthClamp = true,
959 .depthBiasClamp = true,
960 .fillModeNonSolid = true,
961 .depthBounds = pdevice->info.gen >= 12,
962 .wideLines = true,
963 .largePoints = true,
964 .alphaToOne = true,
965 .multiViewport = true,
966 .samplerAnisotropy = true,
967 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
968 pdevice->info.is_baytrail,
969 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
970 .textureCompressionBC = true,
971 .occlusionQueryPrecise = true,
972 .pipelineStatisticsQuery = true,
973 .fragmentStoresAndAtomics = true,
974 .shaderTessellationAndGeometryPointSize = true,
975 .shaderImageGatherExtended = true,
976 .shaderStorageImageExtendedFormats = true,
977 .shaderStorageImageMultisample = false,
978 .shaderStorageImageReadWithoutFormat = false,
979 .shaderStorageImageWriteWithoutFormat = true,
980 .shaderUniformBufferArrayDynamicIndexing = true,
981 .shaderSampledImageArrayDynamicIndexing = true,
982 .shaderStorageBufferArrayDynamicIndexing = true,
983 .shaderStorageImageArrayDynamicIndexing = true,
984 .shaderClipDistance = true,
985 .shaderCullDistance = true,
986 .shaderFloat64 = pdevice->info.gen >= 8 &&
987 pdevice->info.has_64bit_types,
988 .shaderInt64 = pdevice->info.gen >= 8 &&
989 pdevice->info.has_64bit_types,
990 .shaderInt16 = pdevice->info.gen >= 8,
991 .shaderResourceMinLod = pdevice->info.gen >= 9,
992 .variableMultisampleRate = true,
993 .inheritedQueries = true,
994 };
995
996 /* We can't do image stores in vec4 shaders */
997 pFeatures->vertexPipelineStoresAndAtomics =
998 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
999 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
1000
1001 struct anv_app_info *app_info = &pdevice->instance->app_info;
1002
1003 /* The new DOOM and Wolfenstein games require depthBounds without
1004 * checking for it. They seem to run fine without it so just claim it's
1005 * there and accept the consequences.
1006 */
1007 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
1008 pFeatures->depthBounds = true;
1009 }
1010
1011 void anv_GetPhysicalDeviceFeatures2(
1012 VkPhysicalDevice physicalDevice,
1013 VkPhysicalDeviceFeatures2* pFeatures)
1014 {
1015 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1016 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1017
1018 vk_foreach_struct(ext, pFeatures->pNext) {
1019 switch (ext->sType) {
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1021 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1022 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1023 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1024 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1025 features->storagePushConstant8 = pdevice->info.gen >= 8;
1026 break;
1027 }
1028
1029 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1030 VkPhysicalDevice16BitStorageFeatures *features =
1031 (VkPhysicalDevice16BitStorageFeatures *)ext;
1032 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1033 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1034 features->storagePushConstant16 = pdevice->info.gen >= 8;
1035 features->storageInputOutput16 = false;
1036 break;
1037 }
1038
1039 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1040 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1041 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1042 features->bufferDeviceAddressCaptureReplay = false;
1043 features->bufferDeviceAddressMultiDevice = false;
1044 break;
1045 }
1046
1047 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1048 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1049 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1050 features->computeDerivativeGroupQuads = true;
1051 features->computeDerivativeGroupLinear = true;
1052 break;
1053 }
1054
1055 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1056 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1057 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1058 features->conditionalRendering = pdevice->info.gen >= 8 ||
1059 pdevice->info.is_haswell;
1060 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1061 pdevice->info.is_haswell;
1062 break;
1063 }
1064
1065 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1066 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1067 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1068 features->depthClipEnable = true;
1069 break;
1070 }
1071
1072 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1073 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1074 features->shaderFloat16 = pdevice->info.gen >= 8;
1075 features->shaderInt8 = pdevice->info.gen >= 8;
1076 break;
1077 }
1078
1079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1080 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1081 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1082 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1083 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1084 features->fragmentShaderShadingRateInterlock = false;
1085 break;
1086 }
1087
1088 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1089 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1090 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1091 features->hostQueryReset = true;
1092 break;
1093 }
1094
1095 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1096 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1097 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1098 features->shaderInputAttachmentArrayDynamicIndexing = false;
1099 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1100 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1101 features->shaderUniformBufferArrayNonUniformIndexing = false;
1102 features->shaderSampledImageArrayNonUniformIndexing = true;
1103 features->shaderStorageBufferArrayNonUniformIndexing = true;
1104 features->shaderStorageImageArrayNonUniformIndexing = true;
1105 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1106 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1107 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1108 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1109 features->descriptorBindingSampledImageUpdateAfterBind = true;
1110 features->descriptorBindingStorageImageUpdateAfterBind = true;
1111 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1112 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1113 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1114 features->descriptorBindingUpdateUnusedWhilePending = true;
1115 features->descriptorBindingPartiallyBound = true;
1116 features->descriptorBindingVariableDescriptorCount = false;
1117 features->runtimeDescriptorArray = true;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1122 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1123 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1124 features->indexTypeUint8 = true;
1125 break;
1126 }
1127
1128 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1129 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1130 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1131 features->inlineUniformBlock = true;
1132 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1133 break;
1134 }
1135
1136 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1137 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1138 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1139 features->rectangularLines = true;
1140 features->bresenhamLines = true;
1141 features->smoothLines = true;
1142 features->stippledRectangularLines = false;
1143 features->stippledBresenhamLines = true;
1144 features->stippledSmoothLines = false;
1145 break;
1146 }
1147
1148 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1149 VkPhysicalDeviceMultiviewFeatures *features =
1150 (VkPhysicalDeviceMultiviewFeatures *)ext;
1151 features->multiview = true;
1152 features->multiviewGeometryShader = true;
1153 features->multiviewTessellationShader = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1158 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1159 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1160 features->imagelessFramebuffer = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1165 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1166 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1167 features->pipelineExecutableInfo = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1172 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1173 features->protectedMemory = false;
1174 break;
1175 }
1176
1177 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1178 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1179 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1180 features->samplerYcbcrConversion = true;
1181 break;
1182 }
1183
1184 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1185 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1186 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1187 features->scalarBlockLayout = true;
1188 break;
1189 }
1190
1191 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES_KHR: {
1192 VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *features =
1193 (VkPhysicalDeviceSeparateDepthStencilLayoutsFeaturesKHR *)ext;
1194 features->separateDepthStencilLayouts = true;
1195 break;
1196 }
1197
1198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1199 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1200 features->shaderBufferInt64Atomics =
1201 pdevice->info.gen >= 9 && pdevice->use_softpin;
1202 features->shaderSharedInt64Atomics = VK_FALSE;
1203 break;
1204 }
1205
1206 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1207 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1208 features->shaderDemoteToHelperInvocation = true;
1209 break;
1210 }
1211
1212 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1213 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1214 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1215 features->shaderSubgroupClock = true;
1216 features->shaderDeviceClock = false;
1217 break;
1218 }
1219
1220 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1221 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1222 features->shaderDrawParameters = true;
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_EXTENDED_TYPES_FEATURES_KHR: {
1227 VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *features =
1228 (VkPhysicalDeviceShaderSubgroupExtendedTypesFeaturesKHR *)ext;
1229 features->shaderSubgroupExtendedTypes = true;
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1234 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1235 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1236 features->subgroupSizeControl = true;
1237 features->computeFullSubgroups = true;
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1242 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1243 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1244 features->texelBufferAlignment = true;
1245 break;
1246 }
1247
1248 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1249 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1250 features->variablePointersStorageBuffer = true;
1251 features->variablePointers = true;
1252 break;
1253 }
1254
1255 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1256 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1257 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1258 features->transformFeedback = true;
1259 features->geometryStreams = true;
1260 break;
1261 }
1262
1263 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1264 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1265 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1266 features->uniformBufferStandardLayout = true;
1267 break;
1268 }
1269
1270 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1271 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1272 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1273 features->vertexAttributeInstanceRateDivisor = true;
1274 features->vertexAttributeInstanceRateZeroDivisor = true;
1275 break;
1276 }
1277
1278 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_MEMORY_MODEL_FEATURES_KHR: {
1279 VkPhysicalDeviceVulkanMemoryModelFeaturesKHR *features = (void *)ext;
1280 features->vulkanMemoryModel = true;
1281 features->vulkanMemoryModelDeviceScope = true;
1282 features->vulkanMemoryModelAvailabilityVisibilityChains = true;
1283 break;
1284 }
1285
1286 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1287 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1288 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1289 features->ycbcrImageArrays = true;
1290 break;
1291 }
1292
1293 default:
1294 anv_debug_ignored_stype(ext->sType);
1295 break;
1296 }
1297 }
1298 }
1299
1300 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1301
1302 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1303 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1304
1305 void anv_GetPhysicalDeviceProperties(
1306 VkPhysicalDevice physicalDevice,
1307 VkPhysicalDeviceProperties* pProperties)
1308 {
1309 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1310 const struct gen_device_info *devinfo = &pdevice->info;
1311
1312 /* See assertions made when programming the buffer surface state. */
1313 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1314 (1ul << 30) : (1ul << 27);
1315
1316 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1317 const uint32_t max_textures =
1318 pdevice->has_bindless_images ? UINT16_MAX : 128;
1319 const uint32_t max_samplers =
1320 pdevice->has_bindless_samplers ? UINT16_MAX :
1321 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1322 const uint32_t max_images =
1323 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1324
1325 /* If we can use bindless for everything, claim a high per-stage limit,
1326 * otherwise use the binding table size, minus the slots reserved for
1327 * render targets and one slot for the descriptor buffer. */
1328 const uint32_t max_per_stage =
1329 pdevice->has_bindless_images && pdevice->has_a64_buffer_access
1330 ? UINT32_MAX : MAX_BINDING_TABLE_SIZE - MAX_RTS - 1;
1331
1332 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1333
1334 VkSampleCountFlags sample_counts =
1335 isl_device_get_sample_counts(&pdevice->isl_dev);
1336
1337
1338 VkPhysicalDeviceLimits limits = {
1339 .maxImageDimension1D = (1 << 14),
1340 .maxImageDimension2D = (1 << 14),
1341 .maxImageDimension3D = (1 << 11),
1342 .maxImageDimensionCube = (1 << 14),
1343 .maxImageArrayLayers = (1 << 11),
1344 .maxTexelBufferElements = 128 * 1024 * 1024,
1345 .maxUniformBufferRange = (1ul << 27),
1346 .maxStorageBufferRange = max_raw_buffer_sz,
1347 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1348 .maxMemoryAllocationCount = UINT32_MAX,
1349 .maxSamplerAllocationCount = 64 * 1024,
1350 .bufferImageGranularity = 64, /* A cache line */
1351 .sparseAddressSpaceSize = 0,
1352 .maxBoundDescriptorSets = MAX_SETS,
1353 .maxPerStageDescriptorSamplers = max_samplers,
1354 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1355 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1356 .maxPerStageDescriptorSampledImages = max_textures,
1357 .maxPerStageDescriptorStorageImages = max_images,
1358 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1359 .maxPerStageResources = max_per_stage,
1360 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1361 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1362 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1363 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1364 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1365 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1366 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1367 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1368 .maxVertexInputAttributes = MAX_VBS,
1369 .maxVertexInputBindings = MAX_VBS,
1370 .maxVertexInputAttributeOffset = 2047,
1371 .maxVertexInputBindingStride = 2048,
1372 .maxVertexOutputComponents = 128,
1373 .maxTessellationGenerationLevel = 64,
1374 .maxTessellationPatchSize = 32,
1375 .maxTessellationControlPerVertexInputComponents = 128,
1376 .maxTessellationControlPerVertexOutputComponents = 128,
1377 .maxTessellationControlPerPatchOutputComponents = 128,
1378 .maxTessellationControlTotalOutputComponents = 2048,
1379 .maxTessellationEvaluationInputComponents = 128,
1380 .maxTessellationEvaluationOutputComponents = 128,
1381 .maxGeometryShaderInvocations = 32,
1382 .maxGeometryInputComponents = 64,
1383 .maxGeometryOutputComponents = 128,
1384 .maxGeometryOutputVertices = 256,
1385 .maxGeometryTotalOutputComponents = 1024,
1386 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1387 .maxFragmentOutputAttachments = 8,
1388 .maxFragmentDualSrcAttachments = 1,
1389 .maxFragmentCombinedOutputResources = 8,
1390 .maxComputeSharedMemorySize = 64 * 1024,
1391 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1392 .maxComputeWorkGroupInvocations = max_workgroup_size,
1393 .maxComputeWorkGroupSize = {
1394 max_workgroup_size,
1395 max_workgroup_size,
1396 max_workgroup_size,
1397 },
1398 .subPixelPrecisionBits = 8,
1399 .subTexelPrecisionBits = 8,
1400 .mipmapPrecisionBits = 8,
1401 .maxDrawIndexedIndexValue = UINT32_MAX,
1402 .maxDrawIndirectCount = UINT32_MAX,
1403 .maxSamplerLodBias = 16,
1404 .maxSamplerAnisotropy = 16,
1405 .maxViewports = MAX_VIEWPORTS,
1406 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1407 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1408 .viewportSubPixelBits = 13, /* We take a float? */
1409 .minMemoryMapAlignment = 4096, /* A page */
1410 /* The dataport requires texel alignment so we need to assume a worst
1411 * case of R32G32B32A32 which is 16 bytes.
1412 */
1413 .minTexelBufferOffsetAlignment = 16,
1414 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1415 .minUniformBufferOffsetAlignment = 32,
1416 .minStorageBufferOffsetAlignment = 4,
1417 .minTexelOffset = -8,
1418 .maxTexelOffset = 7,
1419 .minTexelGatherOffset = -32,
1420 .maxTexelGatherOffset = 31,
1421 .minInterpolationOffset = -0.5,
1422 .maxInterpolationOffset = 0.4375,
1423 .subPixelInterpolationOffsetBits = 4,
1424 .maxFramebufferWidth = (1 << 14),
1425 .maxFramebufferHeight = (1 << 14),
1426 .maxFramebufferLayers = (1 << 11),
1427 .framebufferColorSampleCounts = sample_counts,
1428 .framebufferDepthSampleCounts = sample_counts,
1429 .framebufferStencilSampleCounts = sample_counts,
1430 .framebufferNoAttachmentsSampleCounts = sample_counts,
1431 .maxColorAttachments = MAX_RTS,
1432 .sampledImageColorSampleCounts = sample_counts,
1433 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1434 .sampledImageDepthSampleCounts = sample_counts,
1435 .sampledImageStencilSampleCounts = sample_counts,
1436 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1437 .maxSampleMaskWords = 1,
1438 .timestampComputeAndGraphics = true,
1439 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1440 .maxClipDistances = 8,
1441 .maxCullDistances = 8,
1442 .maxCombinedClipAndCullDistances = 8,
1443 .discreteQueuePriorities = 2,
1444 .pointSizeRange = { 0.125, 255.875 },
1445 .lineWidthRange = {
1446 0.0,
1447 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1448 2047.9921875 : 7.9921875,
1449 },
1450 .pointSizeGranularity = (1.0 / 8.0),
1451 .lineWidthGranularity = (1.0 / 128.0),
1452 .strictLines = false,
1453 .standardSampleLocations = true,
1454 .optimalBufferCopyOffsetAlignment = 128,
1455 .optimalBufferCopyRowPitchAlignment = 128,
1456 .nonCoherentAtomSize = 64,
1457 };
1458
1459 *pProperties = (VkPhysicalDeviceProperties) {
1460 .apiVersion = anv_physical_device_api_version(pdevice),
1461 .driverVersion = vk_get_driver_version(),
1462 .vendorID = 0x8086,
1463 .deviceID = pdevice->chipset_id,
1464 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1465 .limits = limits,
1466 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1467 };
1468
1469 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1470 "%s", pdevice->name);
1471 memcpy(pProperties->pipelineCacheUUID,
1472 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1473 }
1474
1475 void anv_GetPhysicalDeviceProperties2(
1476 VkPhysicalDevice physicalDevice,
1477 VkPhysicalDeviceProperties2* pProperties)
1478 {
1479 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1480
1481 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1482
1483 vk_foreach_struct(ext, pProperties->pNext) {
1484 switch (ext->sType) {
1485 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1486 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1487 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1488
1489 /* We support all of the depth resolve modes */
1490 props->supportedDepthResolveModes =
1491 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1492 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1493 VK_RESOLVE_MODE_MIN_BIT_KHR |
1494 VK_RESOLVE_MODE_MAX_BIT_KHR;
1495
1496 /* Average doesn't make sense for stencil so we don't support that */
1497 props->supportedStencilResolveModes =
1498 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1499 if (pdevice->info.gen >= 8) {
1500 /* The advanced stencil resolve modes currently require stencil
1501 * sampling be supported by the hardware.
1502 */
1503 props->supportedStencilResolveModes |=
1504 VK_RESOLVE_MODE_MIN_BIT_KHR |
1505 VK_RESOLVE_MODE_MAX_BIT_KHR;
1506 }
1507
1508 props->independentResolveNone = true;
1509 props->independentResolve = true;
1510 break;
1511 }
1512
1513 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1514 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1515 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1516
1517 /* It's a bit hard to exactly map our implementation to the limits
1518 * described here. The bindless surface handle in the extended
1519 * message descriptors is 20 bits and it's an index into the table of
1520 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1521 * address. Given that most things consume two surface states per
1522 * view (general/sampled for textures and write-only/read-write for
1523 * images), we claim 2^19 things.
1524 *
1525 * For SSBOs, we just use A64 messages so there is no real limit
1526 * there beyond the limit on the total size of a descriptor set.
1527 */
1528 const unsigned max_bindless_views = 1 << 19;
1529
1530 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1531 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1532 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1533 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1534 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1535 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1536 props->robustBufferAccessUpdateAfterBind = true;
1537 props->quadDivergentImplicitLod = false;
1538 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1539 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1540 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1541 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1542 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1543 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1544 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1545 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1546 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1547 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1548 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1549 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1550 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1551 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1552 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1553 break;
1554 }
1555
1556 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1557 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1558 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1559
1560 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1561 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1562 "Intel open-source Mesa driver");
1563
1564 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1565 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1566
1567 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1568 .major = 1,
1569 .minor = 1,
1570 .subminor = 2,
1571 .patch = 0,
1572 };
1573 break;
1574 }
1575
1576 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1577 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1578 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1579 /* Userptr needs page aligned memory. */
1580 props->minImportedHostPointerAlignment = 4096;
1581 break;
1582 }
1583
1584 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1585 VkPhysicalDeviceIDProperties *id_props =
1586 (VkPhysicalDeviceIDProperties *)ext;
1587 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1588 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1589 /* The LUID is for Windows. */
1590 id_props->deviceLUIDValid = false;
1591 break;
1592 }
1593
1594 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1595 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1596 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1597 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1598 props->maxPerStageDescriptorInlineUniformBlocks =
1599 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1600 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1601 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1602 props->maxDescriptorSetInlineUniformBlocks =
1603 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1604 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1605 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1606 break;
1607 }
1608
1609 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1610 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1611 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1612 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1613 * Sampling Rules - Legacy Mode", it says the following:
1614 *
1615 * "Note that the device divides a pixel into a 16x16 array of
1616 * subpixels, referenced by their upper left corners."
1617 *
1618 * This is the only known reference in the PRMs to the subpixel
1619 * precision of line rasterization and a "16x16 array of subpixels"
1620 * implies 4 subpixel precision bits. Empirical testing has shown
1621 * that 4 subpixel precision bits applies to all line rasterization
1622 * types.
1623 */
1624 props->lineSubPixelPrecisionBits = 4;
1625 break;
1626 }
1627
1628 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1629 VkPhysicalDeviceMaintenance3Properties *props =
1630 (VkPhysicalDeviceMaintenance3Properties *)ext;
1631 /* This value doesn't matter for us today as our per-stage
1632 * descriptors are the real limit.
1633 */
1634 props->maxPerSetDescriptors = 1024;
1635 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1636 break;
1637 }
1638
1639 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1640 VkPhysicalDeviceMultiviewProperties *properties =
1641 (VkPhysicalDeviceMultiviewProperties *)ext;
1642 properties->maxMultiviewViewCount = 16;
1643 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1644 break;
1645 }
1646
1647 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1648 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1649 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1650 properties->pciDomain = pdevice->pci_info.domain;
1651 properties->pciBus = pdevice->pci_info.bus;
1652 properties->pciDevice = pdevice->pci_info.device;
1653 properties->pciFunction = pdevice->pci_info.function;
1654 break;
1655 }
1656
1657 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1658 VkPhysicalDevicePointClippingProperties *properties =
1659 (VkPhysicalDevicePointClippingProperties *) ext;
1660 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1661 break;
1662 }
1663
1664 #pragma GCC diagnostic push
1665 #pragma GCC diagnostic ignored "-Wswitch"
1666 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1667 VkPhysicalDevicePresentationPropertiesANDROID *props =
1668 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1669 props->sharedImage = VK_FALSE;
1670 break;
1671 }
1672 #pragma GCC diagnostic pop
1673
1674 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1675 VkPhysicalDeviceProtectedMemoryProperties *props =
1676 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1677 props->protectedNoFault = false;
1678 break;
1679 }
1680
1681 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1682 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1683 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1684
1685 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1686 break;
1687 }
1688
1689 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1690 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1691 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1692 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1693 properties->filterMinmaxSingleComponentFormats = true;
1694 break;
1695 }
1696
1697 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1698 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1699
1700 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1701
1702 VkShaderStageFlags scalar_stages = 0;
1703 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1704 if (pdevice->compiler->scalar_stage[stage])
1705 scalar_stages |= mesa_to_vk_shader_stage(stage);
1706 }
1707 properties->supportedStages = scalar_stages;
1708
1709 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1710 VK_SUBGROUP_FEATURE_VOTE_BIT |
1711 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1712 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1713 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1714 VK_SUBGROUP_FEATURE_QUAD_BIT;
1715 if (pdevice->info.gen >= 8) {
1716 /* TODO: There's no technical reason why these can't be made to
1717 * work on gen7 but they don't at the moment so it's best to leave
1718 * the feature disabled than enabled and broken.
1719 */
1720 properties->supportedOperations |=
1721 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1722 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1723 }
1724 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1725 break;
1726 }
1727
1728 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1729 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1730 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1731 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1732 props->minSubgroupSize = 8;
1733 props->maxSubgroupSize = 32;
1734 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1735 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1736 break;
1737 }
1738 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT_CONTROLS_PROPERTIES_KHR : {
1739 VkPhysicalDeviceFloatControlsPropertiesKHR *properties = (void *)ext;
1740 properties->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1741 properties->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE_KHR;
1742
1743 /* Broadwell does not support HF denorms and there are restrictions
1744 * other gens. According to Kabylake's PRM:
1745 *
1746 * "math - Extended Math Function
1747 * [...]
1748 * Restriction : Half-float denorms are always retained."
1749 */
1750 properties->shaderDenormFlushToZeroFloat16 = false;
1751 properties->shaderDenormPreserveFloat16 = pdevice->info.gen > 8;
1752 properties->shaderRoundingModeRTEFloat16 = true;
1753 properties->shaderRoundingModeRTZFloat16 = true;
1754 properties->shaderSignedZeroInfNanPreserveFloat16 = true;
1755
1756 properties->shaderDenormFlushToZeroFloat32 = true;
1757 properties->shaderDenormPreserveFloat32 = true;
1758 properties->shaderRoundingModeRTEFloat32 = true;
1759 properties->shaderRoundingModeRTZFloat32 = true;
1760 properties->shaderSignedZeroInfNanPreserveFloat32 = true;
1761
1762 properties->shaderDenormFlushToZeroFloat64 = true;
1763 properties->shaderDenormPreserveFloat64 = true;
1764 properties->shaderRoundingModeRTEFloat64 = true;
1765 properties->shaderRoundingModeRTZFloat64 = true;
1766 properties->shaderSignedZeroInfNanPreserveFloat64 = true;
1767 break;
1768 }
1769
1770 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1771 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1772 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1773
1774 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1775 * Base Address:
1776 *
1777 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1778 * specifies the base address of the first element of the surface,
1779 * computed in software by adding the surface base address to the
1780 * byte offset of the element in the buffer. The base address must
1781 * be aligned to element size."
1782 *
1783 * The typed dataport messages require that things be texel aligned.
1784 * Otherwise, we may just load/store the wrong data or, in the worst
1785 * case, there may be hangs.
1786 */
1787 props->storageTexelBufferOffsetAlignmentBytes = 16;
1788 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1789
1790 /* The sampler, however, is much more forgiving and it can handle
1791 * arbitrary byte alignment for linear and buffer surfaces. It's
1792 * hard to find a good PRM citation for this but years of empirical
1793 * experience demonstrate that this is true.
1794 */
1795 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1796 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1797 break;
1798 }
1799
1800 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1801 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1802 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1803
1804 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1805 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1806 props->maxTransformFeedbackBufferSize = (1ull << 32);
1807 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1808 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1809 props->maxTransformFeedbackBufferDataStride = 2048;
1810 props->transformFeedbackQueries = true;
1811 props->transformFeedbackStreamsLinesTriangles = false;
1812 props->transformFeedbackRasterizationStreamSelect = false;
1813 props->transformFeedbackDraw = true;
1814 break;
1815 }
1816
1817 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1818 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1819 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1820 /* We have to restrict this a bit for multiview */
1821 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1822 break;
1823 }
1824
1825 default:
1826 anv_debug_ignored_stype(ext->sType);
1827 break;
1828 }
1829 }
1830 }
1831
1832 /* We support exactly one queue family. */
1833 static const VkQueueFamilyProperties
1834 anv_queue_family_properties = {
1835 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1836 VK_QUEUE_COMPUTE_BIT |
1837 VK_QUEUE_TRANSFER_BIT,
1838 .queueCount = 1,
1839 .timestampValidBits = 36, /* XXX: Real value here */
1840 .minImageTransferGranularity = { 1, 1, 1 },
1841 };
1842
1843 void anv_GetPhysicalDeviceQueueFamilyProperties(
1844 VkPhysicalDevice physicalDevice,
1845 uint32_t* pCount,
1846 VkQueueFamilyProperties* pQueueFamilyProperties)
1847 {
1848 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1849
1850 vk_outarray_append(&out, p) {
1851 *p = anv_queue_family_properties;
1852 }
1853 }
1854
1855 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1856 VkPhysicalDevice physicalDevice,
1857 uint32_t* pQueueFamilyPropertyCount,
1858 VkQueueFamilyProperties2* pQueueFamilyProperties)
1859 {
1860
1861 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1862
1863 vk_outarray_append(&out, p) {
1864 p->queueFamilyProperties = anv_queue_family_properties;
1865
1866 vk_foreach_struct(s, p->pNext) {
1867 anv_debug_ignored_stype(s->sType);
1868 }
1869 }
1870 }
1871
1872 void anv_GetPhysicalDeviceMemoryProperties(
1873 VkPhysicalDevice physicalDevice,
1874 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1875 {
1876 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1877
1878 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1879 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1880 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1881 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1882 .heapIndex = physical_device->memory.types[i].heapIndex,
1883 };
1884 }
1885
1886 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1887 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1888 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1889 .size = physical_device->memory.heaps[i].size,
1890 .flags = physical_device->memory.heaps[i].flags,
1891 };
1892 }
1893 }
1894
1895 static void
1896 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1897 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1898 {
1899 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1900 uint64_t sys_available = get_available_system_memory();
1901 assert(sys_available > 0);
1902
1903 VkDeviceSize total_heaps_size = 0;
1904 for (size_t i = 0; i < device->memory.heap_count; i++)
1905 total_heaps_size += device->memory.heaps[i].size;
1906
1907 for (size_t i = 0; i < device->memory.heap_count; i++) {
1908 VkDeviceSize heap_size = device->memory.heaps[i].size;
1909 VkDeviceSize heap_used = device->memory.heaps[i].used;
1910 VkDeviceSize heap_budget;
1911
1912 double heap_proportion = (double) heap_size / total_heaps_size;
1913 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1914
1915 /*
1916 * Let's not incite the app to starve the system: report at most 90% of
1917 * available system memory.
1918 */
1919 uint64_t heap_available = sys_available_prop * 9 / 10;
1920 heap_budget = MIN2(heap_size, heap_used + heap_available);
1921
1922 /*
1923 * Round down to the nearest MB
1924 */
1925 heap_budget &= ~((1ull << 20) - 1);
1926
1927 /*
1928 * The heapBudget value must be non-zero for array elements less than
1929 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1930 * value must be less than or equal to VkMemoryHeap::size for each heap.
1931 */
1932 assert(0 < heap_budget && heap_budget <= heap_size);
1933
1934 memoryBudget->heapUsage[i] = heap_used;
1935 memoryBudget->heapBudget[i] = heap_budget;
1936 }
1937
1938 /* The heapBudget and heapUsage values must be zero for array elements
1939 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1940 */
1941 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1942 memoryBudget->heapBudget[i] = 0;
1943 memoryBudget->heapUsage[i] = 0;
1944 }
1945 }
1946
1947 void anv_GetPhysicalDeviceMemoryProperties2(
1948 VkPhysicalDevice physicalDevice,
1949 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1950 {
1951 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1952 &pMemoryProperties->memoryProperties);
1953
1954 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1955 switch (ext->sType) {
1956 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1957 anv_get_memory_budget(physicalDevice, (void*)ext);
1958 break;
1959 default:
1960 anv_debug_ignored_stype(ext->sType);
1961 break;
1962 }
1963 }
1964 }
1965
1966 void
1967 anv_GetDeviceGroupPeerMemoryFeatures(
1968 VkDevice device,
1969 uint32_t heapIndex,
1970 uint32_t localDeviceIndex,
1971 uint32_t remoteDeviceIndex,
1972 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1973 {
1974 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1975 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1976 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1977 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1978 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1979 }
1980
1981 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1982 VkInstance _instance,
1983 const char* pName)
1984 {
1985 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1986
1987 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1988 * when we have to return valid function pointers, NULL, or it's left
1989 * undefined. See the table for exact details.
1990 */
1991 if (pName == NULL)
1992 return NULL;
1993
1994 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1995 if (strcmp(pName, "vk" #entrypoint) == 0) \
1996 return (PFN_vkVoidFunction)anv_##entrypoint
1997
1998 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1999 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
2000 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
2001 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
2002
2003 #undef LOOKUP_ANV_ENTRYPOINT
2004
2005 if (instance == NULL)
2006 return NULL;
2007
2008 int idx = anv_get_instance_entrypoint_index(pName);
2009 if (idx >= 0)
2010 return instance->dispatch.entrypoints[idx];
2011
2012 idx = anv_get_physical_device_entrypoint_index(pName);
2013 if (idx >= 0)
2014 return instance->physicalDevice.dispatch.entrypoints[idx];
2015
2016 idx = anv_get_device_entrypoint_index(pName);
2017 if (idx >= 0)
2018 return instance->device_dispatch.entrypoints[idx];
2019
2020 return NULL;
2021 }
2022
2023 /* With version 1+ of the loader interface the ICD should expose
2024 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
2025 */
2026 PUBLIC
2027 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2028 VkInstance instance,
2029 const char* pName);
2030
2031 PUBLIC
2032 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2033 VkInstance instance,
2034 const char* pName)
2035 {
2036 return anv_GetInstanceProcAddr(instance, pName);
2037 }
2038
2039 PFN_vkVoidFunction anv_GetDeviceProcAddr(
2040 VkDevice _device,
2041 const char* pName)
2042 {
2043 ANV_FROM_HANDLE(anv_device, device, _device);
2044
2045 if (!device || !pName)
2046 return NULL;
2047
2048 int idx = anv_get_device_entrypoint_index(pName);
2049 if (idx < 0)
2050 return NULL;
2051
2052 return device->dispatch.entrypoints[idx];
2053 }
2054
2055 /* With version 4+ of the loader interface the ICD should expose
2056 * vk_icdGetPhysicalDeviceProcAddr()
2057 */
2058 PUBLIC
2059 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
2060 VkInstance _instance,
2061 const char* pName);
2062
2063 PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
2064 VkInstance _instance,
2065 const char* pName)
2066 {
2067 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2068
2069 if (!pName || !instance)
2070 return NULL;
2071
2072 int idx = anv_get_physical_device_entrypoint_index(pName);
2073 if (idx < 0)
2074 return NULL;
2075
2076 return instance->physicalDevice.dispatch.entrypoints[idx];
2077 }
2078
2079
2080 VkResult
2081 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
2082 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
2083 const VkAllocationCallbacks* pAllocator,
2084 VkDebugReportCallbackEXT* pCallback)
2085 {
2086 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2087 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
2088 pCreateInfo, pAllocator, &instance->alloc,
2089 pCallback);
2090 }
2091
2092 void
2093 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
2094 VkDebugReportCallbackEXT _callback,
2095 const VkAllocationCallbacks* pAllocator)
2096 {
2097 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2098 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
2099 _callback, pAllocator, &instance->alloc);
2100 }
2101
2102 void
2103 anv_DebugReportMessageEXT(VkInstance _instance,
2104 VkDebugReportFlagsEXT flags,
2105 VkDebugReportObjectTypeEXT objectType,
2106 uint64_t object,
2107 size_t location,
2108 int32_t messageCode,
2109 const char* pLayerPrefix,
2110 const char* pMessage)
2111 {
2112 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2113 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2114 object, location, messageCode, pLayerPrefix, pMessage);
2115 }
2116
2117 static struct anv_state
2118 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2119 {
2120 struct anv_state state;
2121
2122 state = anv_state_pool_alloc(pool, size, align);
2123 memcpy(state.map, p, size);
2124
2125 return state;
2126 }
2127
2128 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2129 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2130 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2131 * color as a separate entry /after/ the float color. The layout of this entry
2132 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2133 *
2134 * Since we don't know the format/bpp, we can't make any of the border colors
2135 * containing '1' work for all formats, as it would be in the wrong place for
2136 * some of them. We opt to make 32-bit integers work as this seems like the
2137 * most common option. Fortunately, transparent black works regardless, as
2138 * all zeroes is the same in every bit-size.
2139 */
2140 struct hsw_border_color {
2141 float float32[4];
2142 uint32_t _pad0[12];
2143 uint32_t uint32[4];
2144 uint32_t _pad1[108];
2145 };
2146
2147 struct gen8_border_color {
2148 union {
2149 float float32[4];
2150 uint32_t uint32[4];
2151 };
2152 /* Pad out to 64 bytes */
2153 uint32_t _pad[12];
2154 };
2155
2156 static void
2157 anv_device_init_border_colors(struct anv_device *device)
2158 {
2159 if (device->info.is_haswell) {
2160 static const struct hsw_border_color border_colors[] = {
2161 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2162 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2163 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2164 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2165 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2166 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2167 };
2168
2169 device->border_colors =
2170 anv_state_pool_emit_data(&device->dynamic_state_pool,
2171 sizeof(border_colors), 512, border_colors);
2172 } else {
2173 static const struct gen8_border_color border_colors[] = {
2174 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2175 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2176 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2177 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2178 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2179 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2180 };
2181
2182 device->border_colors =
2183 anv_state_pool_emit_data(&device->dynamic_state_pool,
2184 sizeof(border_colors), 64, border_colors);
2185 }
2186 }
2187
2188 static VkResult
2189 anv_device_init_trivial_batch(struct anv_device *device)
2190 {
2191 VkResult result = anv_device_alloc_bo(device, 4096,
2192 ANV_BO_ALLOC_MAPPED,
2193 &device->trivial_batch_bo);
2194 if (result != VK_SUCCESS)
2195 return result;
2196
2197 struct anv_batch batch = {
2198 .start = device->trivial_batch_bo->map,
2199 .next = device->trivial_batch_bo->map,
2200 .end = device->trivial_batch_bo->map + 4096,
2201 };
2202
2203 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2204 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2205
2206 if (!device->info.has_llc)
2207 gen_clflush_range(batch.start, batch.next - batch.start);
2208
2209 return VK_SUCCESS;
2210 }
2211
2212 VkResult anv_EnumerateDeviceExtensionProperties(
2213 VkPhysicalDevice physicalDevice,
2214 const char* pLayerName,
2215 uint32_t* pPropertyCount,
2216 VkExtensionProperties* pProperties)
2217 {
2218 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2219 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2220
2221 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2222 if (device->supported_extensions.extensions[i]) {
2223 vk_outarray_append(&out, prop) {
2224 *prop = anv_device_extensions[i];
2225 }
2226 }
2227 }
2228
2229 return vk_outarray_status(&out);
2230 }
2231
2232 static void
2233 anv_device_init_dispatch(struct anv_device *device)
2234 {
2235 const struct anv_device_dispatch_table *genX_table;
2236 switch (device->info.gen) {
2237 case 12:
2238 genX_table = &gen12_device_dispatch_table;
2239 break;
2240 case 11:
2241 genX_table = &gen11_device_dispatch_table;
2242 break;
2243 case 10:
2244 genX_table = &gen10_device_dispatch_table;
2245 break;
2246 case 9:
2247 genX_table = &gen9_device_dispatch_table;
2248 break;
2249 case 8:
2250 genX_table = &gen8_device_dispatch_table;
2251 break;
2252 case 7:
2253 if (device->info.is_haswell)
2254 genX_table = &gen75_device_dispatch_table;
2255 else
2256 genX_table = &gen7_device_dispatch_table;
2257 break;
2258 default:
2259 unreachable("unsupported gen\n");
2260 }
2261
2262 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2263 /* Vulkan requires that entrypoints for extensions which have not been
2264 * enabled must not be advertised.
2265 */
2266 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2267 &device->instance->enabled_extensions,
2268 &device->enabled_extensions)) {
2269 device->dispatch.entrypoints[i] = NULL;
2270 } else if (genX_table->entrypoints[i]) {
2271 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2272 } else {
2273 device->dispatch.entrypoints[i] =
2274 anv_device_dispatch_table.entrypoints[i];
2275 }
2276 }
2277 }
2278
2279 static int
2280 vk_priority_to_gen(int priority)
2281 {
2282 switch (priority) {
2283 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2284 return GEN_CONTEXT_LOW_PRIORITY;
2285 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2286 return GEN_CONTEXT_MEDIUM_PRIORITY;
2287 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2288 return GEN_CONTEXT_HIGH_PRIORITY;
2289 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2290 return GEN_CONTEXT_REALTIME_PRIORITY;
2291 default:
2292 unreachable("Invalid priority");
2293 }
2294 }
2295
2296 static VkResult
2297 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2298 {
2299 VkResult result = anv_device_alloc_bo(device, 4096,
2300 ANV_BO_ALLOC_MAPPED,
2301 &device->hiz_clear_bo);
2302 if (result != VK_SUCCESS)
2303 return result;
2304
2305 union isl_color_value hiz_clear = { .u32 = { 0, } };
2306 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2307
2308 memcpy(device->hiz_clear_bo->map, hiz_clear.u32, sizeof(hiz_clear.u32));
2309
2310 if (!device->info.has_llc)
2311 gen_clflush_range(device->hiz_clear_bo->map, sizeof(hiz_clear.u32));
2312
2313 return VK_SUCCESS;
2314 }
2315
2316 static bool
2317 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2318 struct anv_block_pool *pool,
2319 uint64_t address)
2320 {
2321 anv_block_pool_foreach_bo(bo, pool) {
2322 uint64_t bo_address = gen_48b_address(bo->offset);
2323 if (address >= bo_address && address < (bo_address + bo->size)) {
2324 *ret = (struct gen_batch_decode_bo) {
2325 .addr = bo_address,
2326 .size = bo->size,
2327 .map = bo->map,
2328 };
2329 return true;
2330 }
2331 }
2332 return false;
2333 }
2334
2335 /* Finding a buffer for batch decoding */
2336 static struct gen_batch_decode_bo
2337 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2338 {
2339 struct anv_device *device = v_batch;
2340 struct gen_batch_decode_bo ret_bo = {};
2341
2342 assert(ppgtt);
2343
2344 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2345 return ret_bo;
2346 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2347 return ret_bo;
2348 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2349 return ret_bo;
2350 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2351 return ret_bo;
2352
2353 if (!device->cmd_buffer_being_decoded)
2354 return (struct gen_batch_decode_bo) { };
2355
2356 struct anv_batch_bo **bo;
2357
2358 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2359 /* The decoder zeroes out the top 16 bits, so we need to as well */
2360 uint64_t bo_address = (*bo)->bo->offset & (~0ull >> 16);
2361
2362 if (address >= bo_address && address < bo_address + (*bo)->bo->size) {
2363 return (struct gen_batch_decode_bo) {
2364 .addr = bo_address,
2365 .size = (*bo)->bo->size,
2366 .map = (*bo)->bo->map,
2367 };
2368 }
2369 }
2370
2371 return (struct gen_batch_decode_bo) { };
2372 }
2373
2374 struct gen_aux_map_buffer {
2375 struct gen_buffer base;
2376 struct anv_state state;
2377 };
2378
2379 static struct gen_buffer *
2380 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2381 {
2382 struct gen_aux_map_buffer *buf = malloc(sizeof(struct gen_aux_map_buffer));
2383 if (!buf)
2384 return NULL;
2385
2386 struct anv_device *device = (struct anv_device*)driver_ctx;
2387 assert(device->instance->physicalDevice.supports_48bit_addresses &&
2388 device->instance->physicalDevice.use_softpin);
2389
2390 struct anv_state_pool *pool = &device->dynamic_state_pool;
2391 buf->state = anv_state_pool_alloc(pool, size, size);
2392
2393 buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
2394 buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
2395 buf->base.map = buf->state.map;
2396 buf->base.driver_bo = &buf->state;
2397 return &buf->base;
2398 }
2399
2400 static void
2401 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
2402 {
2403 struct gen_aux_map_buffer *buf = (struct gen_aux_map_buffer*)buffer;
2404 struct anv_device *device = (struct anv_device*)driver_ctx;
2405 struct anv_state_pool *pool = &device->dynamic_state_pool;
2406 anv_state_pool_free(pool, buf->state);
2407 free(buf);
2408 }
2409
2410 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
2411 .alloc = gen_aux_map_buffer_alloc,
2412 .free = gen_aux_map_buffer_free,
2413 };
2414
2415 VkResult anv_CreateDevice(
2416 VkPhysicalDevice physicalDevice,
2417 const VkDeviceCreateInfo* pCreateInfo,
2418 const VkAllocationCallbacks* pAllocator,
2419 VkDevice* pDevice)
2420 {
2421 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2422 VkResult result;
2423 struct anv_device *device;
2424
2425 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2426
2427 struct anv_device_extension_table enabled_extensions = { };
2428 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2429 int idx;
2430 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2431 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2432 anv_device_extensions[idx].extensionName) == 0)
2433 break;
2434 }
2435
2436 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2437 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2438
2439 if (!physical_device->supported_extensions.extensions[idx])
2440 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2441
2442 enabled_extensions.extensions[idx] = true;
2443 }
2444
2445 /* Check enabled features */
2446 if (pCreateInfo->pEnabledFeatures) {
2447 VkPhysicalDeviceFeatures supported_features;
2448 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2449 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2450 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2451 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2452 for (uint32_t i = 0; i < num_features; i++) {
2453 if (enabled_feature[i] && !supported_feature[i])
2454 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2455 }
2456 }
2457
2458 /* Check requested queues and fail if we are requested to create any
2459 * queues with flags we don't support.
2460 */
2461 assert(pCreateInfo->queueCreateInfoCount > 0);
2462 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2463 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2464 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2465 }
2466
2467 /* Check if client specified queue priority. */
2468 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2469 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2470 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2471
2472 VkQueueGlobalPriorityEXT priority =
2473 queue_priority ? queue_priority->globalPriority :
2474 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2475
2476 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2477 sizeof(*device), 8,
2478 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2479 if (!device)
2480 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2481
2482 if (INTEL_DEBUG & DEBUG_BATCH) {
2483 const unsigned decode_flags =
2484 GEN_BATCH_DECODE_FULL |
2485 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2486 GEN_BATCH_DECODE_OFFSETS |
2487 GEN_BATCH_DECODE_FLOATS;
2488
2489 gen_batch_decode_ctx_init(&device->decoder_ctx,
2490 &physical_device->info,
2491 stderr, decode_flags, NULL,
2492 decode_get_bo, NULL, device);
2493 }
2494
2495 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2496 device->instance = physical_device->instance;
2497 device->chipset_id = physical_device->chipset_id;
2498 device->no_hw = physical_device->no_hw;
2499 device->_lost = false;
2500
2501 if (pAllocator)
2502 device->alloc = *pAllocator;
2503 else
2504 device->alloc = physical_device->instance->alloc;
2505
2506 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2507 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2508 if (device->fd == -1) {
2509 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2510 goto fail_device;
2511 }
2512
2513 device->context_id = anv_gem_create_context(device);
2514 if (device->context_id == -1) {
2515 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2516 goto fail_fd;
2517 }
2518
2519 result = anv_queue_init(device, &device->queue);
2520 if (result != VK_SUCCESS)
2521 goto fail_context_id;
2522
2523 if (physical_device->use_softpin) {
2524 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2525 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2526 goto fail_queue;
2527 }
2528
2529 /* keep the page with address zero out of the allocator */
2530 struct anv_memory_heap *low_heap =
2531 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2532 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2533 device->vma_lo_available = low_heap->size;
2534
2535 struct anv_memory_heap *high_heap =
2536 &physical_device->memory.heaps[0];
2537 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2538 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2539 high_heap->size;
2540 }
2541
2542 list_inithead(&device->memory_objects);
2543
2544 /* As per spec, the driver implementation may deny requests to acquire
2545 * a priority above the default priority (MEDIUM) if the caller does not
2546 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2547 * is returned.
2548 */
2549 if (physical_device->has_context_priority) {
2550 int err = anv_gem_set_context_param(device->fd, device->context_id,
2551 I915_CONTEXT_PARAM_PRIORITY,
2552 vk_priority_to_gen(priority));
2553 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2554 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2555 goto fail_vmas;
2556 }
2557 }
2558
2559 device->info = physical_device->info;
2560 device->isl_dev = physical_device->isl_dev;
2561
2562 /* On Broadwell and later, we can use batch chaining to more efficiently
2563 * implement growing command buffers. Prior to Haswell, the kernel
2564 * command parser gets in the way and we have to fall back to growing
2565 * the batch.
2566 */
2567 device->can_chain_batches = device->info.gen >= 8;
2568
2569 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2570 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2571 device->enabled_extensions = enabled_extensions;
2572
2573 anv_device_init_dispatch(device);
2574
2575 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2576 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2577 goto fail_queue;
2578 }
2579
2580 pthread_condattr_t condattr;
2581 if (pthread_condattr_init(&condattr) != 0) {
2582 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2583 goto fail_mutex;
2584 }
2585 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2586 pthread_condattr_destroy(&condattr);
2587 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2588 goto fail_mutex;
2589 }
2590 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2591 pthread_condattr_destroy(&condattr);
2592 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2593 goto fail_mutex;
2594 }
2595 pthread_condattr_destroy(&condattr);
2596
2597 uint64_t bo_flags =
2598 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2599 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2600 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2601 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2602
2603 result = anv_bo_cache_init(&device->bo_cache);
2604 if (result != VK_SUCCESS)
2605 goto fail_queue_cond;
2606
2607 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2608
2609 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2610 DYNAMIC_STATE_POOL_MIN_ADDRESS, 16384);
2611 if (result != VK_SUCCESS)
2612 goto fail_batch_bo_pool;
2613
2614 result = anv_state_pool_init(&device->instruction_state_pool, device,
2615 INSTRUCTION_STATE_POOL_MIN_ADDRESS, 16384);
2616 if (result != VK_SUCCESS)
2617 goto fail_dynamic_state_pool;
2618
2619 result = anv_state_pool_init(&device->surface_state_pool, device,
2620 SURFACE_STATE_POOL_MIN_ADDRESS, 4096);
2621 if (result != VK_SUCCESS)
2622 goto fail_instruction_state_pool;
2623
2624 if (physical_device->use_softpin) {
2625 result = anv_state_pool_init(&device->binding_table_pool, device,
2626 BINDING_TABLE_POOL_MIN_ADDRESS, 4096);
2627 if (result != VK_SUCCESS)
2628 goto fail_surface_state_pool;
2629 }
2630
2631 if (device->info.gen >= 12) {
2632 device->aux_map_ctx = gen_aux_map_init(device, &aux_map_allocator,
2633 &physical_device->info);
2634 if (!device->aux_map_ctx)
2635 goto fail_binding_table_pool;
2636 }
2637
2638 result = anv_device_alloc_bo(device, 4096, 0, &device->workaround_bo);
2639 if (result != VK_SUCCESS)
2640 goto fail_surface_aux_map_pool;
2641
2642 result = anv_device_init_trivial_batch(device);
2643 if (result != VK_SUCCESS)
2644 goto fail_workaround_bo;
2645
2646 if (device->info.gen >= 10) {
2647 result = anv_device_init_hiz_clear_value_bo(device);
2648 if (result != VK_SUCCESS)
2649 goto fail_trivial_batch_bo;
2650 }
2651
2652 anv_scratch_pool_init(device, &device->scratch_pool);
2653
2654 switch (device->info.gen) {
2655 case 7:
2656 if (!device->info.is_haswell)
2657 result = gen7_init_device_state(device);
2658 else
2659 result = gen75_init_device_state(device);
2660 break;
2661 case 8:
2662 result = gen8_init_device_state(device);
2663 break;
2664 case 9:
2665 result = gen9_init_device_state(device);
2666 break;
2667 case 10:
2668 result = gen10_init_device_state(device);
2669 break;
2670 case 11:
2671 result = gen11_init_device_state(device);
2672 break;
2673 case 12:
2674 result = gen12_init_device_state(device);
2675 break;
2676 default:
2677 /* Shouldn't get here as we don't create physical devices for any other
2678 * gens. */
2679 unreachable("unhandled gen");
2680 }
2681 if (result != VK_SUCCESS)
2682 goto fail_workaround_bo;
2683
2684 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2685
2686 anv_device_init_blorp(device);
2687
2688 anv_device_init_border_colors(device);
2689
2690 anv_device_perf_init(device);
2691
2692 *pDevice = anv_device_to_handle(device);
2693
2694 return VK_SUCCESS;
2695
2696 fail_workaround_bo:
2697 anv_scratch_pool_finish(device, &device->scratch_pool);
2698 if (device->info.gen >= 10)
2699 anv_device_release_bo(device, device->hiz_clear_bo);
2700 anv_device_release_bo(device, device->workaround_bo);
2701 fail_trivial_batch_bo:
2702 anv_device_release_bo(device, device->trivial_batch_bo);
2703 fail_surface_aux_map_pool:
2704 if (device->info.gen >= 12) {
2705 gen_aux_map_finish(device->aux_map_ctx);
2706 device->aux_map_ctx = NULL;
2707 }
2708 fail_binding_table_pool:
2709 if (physical_device->use_softpin)
2710 anv_state_pool_finish(&device->binding_table_pool);
2711 fail_surface_state_pool:
2712 anv_state_pool_finish(&device->surface_state_pool);
2713 fail_instruction_state_pool:
2714 anv_state_pool_finish(&device->instruction_state_pool);
2715 fail_dynamic_state_pool:
2716 anv_state_pool_finish(&device->dynamic_state_pool);
2717 fail_batch_bo_pool:
2718 anv_bo_pool_finish(&device->batch_bo_pool);
2719 anv_bo_cache_finish(&device->bo_cache);
2720 fail_queue_cond:
2721 pthread_cond_destroy(&device->queue_submit);
2722 fail_mutex:
2723 pthread_mutex_destroy(&device->mutex);
2724 fail_vmas:
2725 if (physical_device->use_softpin) {
2726 util_vma_heap_finish(&device->vma_hi);
2727 util_vma_heap_finish(&device->vma_lo);
2728 }
2729 fail_queue:
2730 anv_queue_finish(&device->queue);
2731 fail_context_id:
2732 anv_gem_destroy_context(device, device->context_id);
2733 fail_fd:
2734 close(device->fd);
2735 fail_device:
2736 vk_free(&device->alloc, device);
2737
2738 return result;
2739 }
2740
2741 void anv_DestroyDevice(
2742 VkDevice _device,
2743 const VkAllocationCallbacks* pAllocator)
2744 {
2745 ANV_FROM_HANDLE(anv_device, device, _device);
2746 struct anv_physical_device *physical_device;
2747
2748 if (!device)
2749 return;
2750
2751 physical_device = &device->instance->physicalDevice;
2752
2753 anv_device_finish_blorp(device);
2754
2755 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2756
2757 anv_queue_finish(&device->queue);
2758
2759 #ifdef HAVE_VALGRIND
2760 /* We only need to free these to prevent valgrind errors. The backing
2761 * BO will go away in a couple of lines so we don't actually leak.
2762 */
2763 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2764 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2765 #endif
2766
2767 anv_scratch_pool_finish(device, &device->scratch_pool);
2768
2769 anv_device_release_bo(device, device->workaround_bo);
2770 anv_device_release_bo(device, device->trivial_batch_bo);
2771 if (device->info.gen >= 10)
2772 anv_device_release_bo(device, device->hiz_clear_bo);
2773
2774 if (device->info.gen >= 12) {
2775 gen_aux_map_finish(device->aux_map_ctx);
2776 device->aux_map_ctx = NULL;
2777 }
2778
2779 if (physical_device->use_softpin)
2780 anv_state_pool_finish(&device->binding_table_pool);
2781 anv_state_pool_finish(&device->surface_state_pool);
2782 anv_state_pool_finish(&device->instruction_state_pool);
2783 anv_state_pool_finish(&device->dynamic_state_pool);
2784
2785 anv_bo_pool_finish(&device->batch_bo_pool);
2786
2787 anv_bo_cache_finish(&device->bo_cache);
2788
2789 if (physical_device->use_softpin) {
2790 util_vma_heap_finish(&device->vma_hi);
2791 util_vma_heap_finish(&device->vma_lo);
2792 }
2793
2794 pthread_cond_destroy(&device->queue_submit);
2795 pthread_mutex_destroy(&device->mutex);
2796
2797 anv_gem_destroy_context(device, device->context_id);
2798
2799 if (INTEL_DEBUG & DEBUG_BATCH)
2800 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2801
2802 close(device->fd);
2803
2804 vk_free(&device->alloc, device);
2805 }
2806
2807 VkResult anv_EnumerateInstanceLayerProperties(
2808 uint32_t* pPropertyCount,
2809 VkLayerProperties* pProperties)
2810 {
2811 if (pProperties == NULL) {
2812 *pPropertyCount = 0;
2813 return VK_SUCCESS;
2814 }
2815
2816 /* None supported at this time */
2817 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2818 }
2819
2820 VkResult anv_EnumerateDeviceLayerProperties(
2821 VkPhysicalDevice physicalDevice,
2822 uint32_t* pPropertyCount,
2823 VkLayerProperties* pProperties)
2824 {
2825 if (pProperties == NULL) {
2826 *pPropertyCount = 0;
2827 return VK_SUCCESS;
2828 }
2829
2830 /* None supported at this time */
2831 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2832 }
2833
2834 void anv_GetDeviceQueue(
2835 VkDevice _device,
2836 uint32_t queueNodeIndex,
2837 uint32_t queueIndex,
2838 VkQueue* pQueue)
2839 {
2840 const VkDeviceQueueInfo2 info = {
2841 .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2,
2842 .pNext = NULL,
2843 .flags = 0,
2844 .queueFamilyIndex = queueNodeIndex,
2845 .queueIndex = queueIndex,
2846 };
2847
2848 anv_GetDeviceQueue2(_device, &info, pQueue);
2849 }
2850
2851 void anv_GetDeviceQueue2(
2852 VkDevice _device,
2853 const VkDeviceQueueInfo2* pQueueInfo,
2854 VkQueue* pQueue)
2855 {
2856 ANV_FROM_HANDLE(anv_device, device, _device);
2857
2858 assert(pQueueInfo->queueIndex == 0);
2859
2860 if (pQueueInfo->flags == device->queue.flags)
2861 *pQueue = anv_queue_to_handle(&device->queue);
2862 else
2863 *pQueue = NULL;
2864 }
2865
2866 VkResult
2867 _anv_device_set_lost(struct anv_device *device,
2868 const char *file, int line,
2869 const char *msg, ...)
2870 {
2871 VkResult err;
2872 va_list ap;
2873
2874 device->_lost = true;
2875
2876 va_start(ap, msg);
2877 err = __vk_errorv(device->instance, device,
2878 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2879 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2880 va_end(ap);
2881
2882 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2883 abort();
2884
2885 return err;
2886 }
2887
2888 VkResult
2889 anv_device_query_status(struct anv_device *device)
2890 {
2891 /* This isn't likely as most of the callers of this function already check
2892 * for it. However, it doesn't hurt to check and it potentially lets us
2893 * avoid an ioctl.
2894 */
2895 if (anv_device_is_lost(device))
2896 return VK_ERROR_DEVICE_LOST;
2897
2898 uint32_t active, pending;
2899 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2900 if (ret == -1) {
2901 /* We don't know the real error. */
2902 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2903 }
2904
2905 if (active) {
2906 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2907 } else if (pending) {
2908 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2909 }
2910
2911 return VK_SUCCESS;
2912 }
2913
2914 VkResult
2915 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2916 {
2917 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2918 * Other usages of the BO (such as on different hardware) will not be
2919 * flagged as "busy" by this ioctl. Use with care.
2920 */
2921 int ret = anv_gem_busy(device, bo->gem_handle);
2922 if (ret == 1) {
2923 return VK_NOT_READY;
2924 } else if (ret == -1) {
2925 /* We don't know the real error. */
2926 return anv_device_set_lost(device, "gem wait failed: %m");
2927 }
2928
2929 /* Query for device status after the busy call. If the BO we're checking
2930 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2931 * client because it clearly doesn't have valid data. Yes, this most
2932 * likely means an ioctl, but we just did an ioctl to query the busy status
2933 * so it's no great loss.
2934 */
2935 return anv_device_query_status(device);
2936 }
2937
2938 VkResult
2939 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2940 int64_t timeout)
2941 {
2942 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2943 if (ret == -1 && errno == ETIME) {
2944 return VK_TIMEOUT;
2945 } else if (ret == -1) {
2946 /* We don't know the real error. */
2947 return anv_device_set_lost(device, "gem wait failed: %m");
2948 }
2949
2950 /* Query for device status after the wait. If the BO we're waiting on got
2951 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2952 * because it clearly doesn't have valid data. Yes, this most likely means
2953 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2954 */
2955 return anv_device_query_status(device);
2956 }
2957
2958 VkResult anv_DeviceWaitIdle(
2959 VkDevice _device)
2960 {
2961 ANV_FROM_HANDLE(anv_device, device, _device);
2962
2963 if (anv_device_is_lost(device))
2964 return VK_ERROR_DEVICE_LOST;
2965
2966 return anv_device_submit_simple_batch(device, NULL);
2967 }
2968
2969 bool
2970 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2971 {
2972 if (!(bo->flags & EXEC_OBJECT_PINNED))
2973 return true;
2974
2975 pthread_mutex_lock(&device->vma_mutex);
2976
2977 bo->offset = 0;
2978
2979 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2980 device->vma_hi_available >= bo->size) {
2981 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2982 if (addr) {
2983 bo->offset = gen_canonical_address(addr);
2984 assert(addr == gen_48b_address(bo->offset));
2985 device->vma_hi_available -= bo->size;
2986 }
2987 }
2988
2989 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2990 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2991 if (addr) {
2992 bo->offset = gen_canonical_address(addr);
2993 assert(addr == gen_48b_address(bo->offset));
2994 device->vma_lo_available -= bo->size;
2995 }
2996 }
2997
2998 pthread_mutex_unlock(&device->vma_mutex);
2999
3000 return bo->offset != 0;
3001 }
3002
3003 void
3004 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
3005 {
3006 if (!(bo->flags & EXEC_OBJECT_PINNED))
3007 return;
3008
3009 const uint64_t addr_48b = gen_48b_address(bo->offset);
3010
3011 pthread_mutex_lock(&device->vma_mutex);
3012
3013 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
3014 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
3015 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
3016 device->vma_lo_available += bo->size;
3017 } else {
3018 ASSERTED const struct anv_physical_device *physical_device =
3019 &device->instance->physicalDevice;
3020 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
3021 addr_48b < (physical_device->memory.heaps[0].vma_start +
3022 physical_device->memory.heaps[0].vma_size));
3023 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
3024 device->vma_hi_available += bo->size;
3025 }
3026
3027 pthread_mutex_unlock(&device->vma_mutex);
3028
3029 bo->offset = 0;
3030 }
3031
3032 VkResult anv_AllocateMemory(
3033 VkDevice _device,
3034 const VkMemoryAllocateInfo* pAllocateInfo,
3035 const VkAllocationCallbacks* pAllocator,
3036 VkDeviceMemory* pMem)
3037 {
3038 ANV_FROM_HANDLE(anv_device, device, _device);
3039 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3040 struct anv_device_memory *mem;
3041 VkResult result = VK_SUCCESS;
3042
3043 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
3044
3045 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
3046 assert(pAllocateInfo->allocationSize > 0);
3047
3048 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
3049 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
3050
3051 /* FINISHME: Fail if allocation request exceeds heap size. */
3052
3053 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
3054 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3055 if (mem == NULL)
3056 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3057
3058 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
3059 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
3060 mem->map = NULL;
3061 mem->map_size = 0;
3062 mem->ahw = NULL;
3063 mem->host_ptr = NULL;
3064
3065 enum anv_bo_alloc_flags alloc_flags = 0;
3066
3067 assert(mem->type->heapIndex < pdevice->memory.heap_count);
3068 if (!pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
3069 alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
3070
3071 const struct wsi_memory_allocate_info *wsi_info =
3072 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
3073 if (wsi_info && wsi_info->implicit_sync) {
3074 /* We need to set the WRITE flag on window system buffers so that GEM
3075 * will know we're writing to them and synchronize uses on other rings
3076 * (eg if the display server uses the blitter ring).
3077 */
3078 alloc_flags |= ANV_BO_ALLOC_IMPLICIT_SYNC |
3079 ANV_BO_ALLOC_IMPLICIT_WRITE;
3080 }
3081
3082 const VkExportMemoryAllocateInfo *export_info =
3083 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
3084
3085 /* Check if we need to support Android HW buffer export. If so,
3086 * create AHardwareBuffer and import memory from it.
3087 */
3088 bool android_export = false;
3089 if (export_info && export_info->handleTypes &
3090 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
3091 android_export = true;
3092
3093 /* Android memory import. */
3094 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
3095 vk_find_struct_const(pAllocateInfo->pNext,
3096 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
3097
3098 if (ahw_import_info) {
3099 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
3100 if (result != VK_SUCCESS)
3101 goto fail;
3102
3103 goto success;
3104 } else if (android_export) {
3105 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
3106 if (result != VK_SUCCESS)
3107 goto fail;
3108
3109 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
3110 .buffer = mem->ahw,
3111 };
3112 result = anv_import_ahw_memory(_device, mem, &import_info);
3113 if (result != VK_SUCCESS)
3114 goto fail;
3115
3116 goto success;
3117 }
3118
3119 const VkImportMemoryFdInfoKHR *fd_info =
3120 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
3121
3122 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3123 * ignored.
3124 */
3125 if (fd_info && fd_info->handleType) {
3126 /* At the moment, we support only the below handle types. */
3127 assert(fd_info->handleType ==
3128 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3129 fd_info->handleType ==
3130 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3131
3132 result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
3133 &mem->bo);
3134 if (result != VK_SUCCESS)
3135 goto fail;
3136
3137 VkDeviceSize aligned_alloc_size =
3138 align_u64(pAllocateInfo->allocationSize, 4096);
3139
3140 /* For security purposes, we reject importing the bo if it's smaller
3141 * than the requested allocation size. This prevents a malicious client
3142 * from passing a buffer to a trusted client, lying about the size, and
3143 * telling the trusted client to try and texture from an image that goes
3144 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3145 * in the trusted client. The trusted client can protect itself against
3146 * this sort of attack but only if it can trust the buffer size.
3147 */
3148 if (mem->bo->size < aligned_alloc_size) {
3149 result = vk_errorf(device->instance, device,
3150 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3151 "aligned allocationSize too large for "
3152 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3153 "%"PRIu64"B > %"PRIu64"B",
3154 aligned_alloc_size, mem->bo->size);
3155 anv_device_release_bo(device, mem->bo);
3156 goto fail;
3157 }
3158
3159 /* From the Vulkan spec:
3160 *
3161 * "Importing memory from a file descriptor transfers ownership of
3162 * the file descriptor from the application to the Vulkan
3163 * implementation. The application must not perform any operations on
3164 * the file descriptor after a successful import."
3165 *
3166 * If the import fails, we leave the file descriptor open.
3167 */
3168 close(fd_info->fd);
3169 goto success;
3170 }
3171
3172 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3173 vk_find_struct_const(pAllocateInfo->pNext,
3174 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3175 if (host_ptr_info && host_ptr_info->handleType) {
3176 if (host_ptr_info->handleType ==
3177 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3178 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3179 goto fail;
3180 }
3181
3182 assert(host_ptr_info->handleType ==
3183 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3184
3185 result = anv_device_import_bo_from_host_ptr(device,
3186 host_ptr_info->pHostPointer,
3187 pAllocateInfo->allocationSize,
3188 alloc_flags,
3189 &mem->bo);
3190
3191 if (result != VK_SUCCESS)
3192 goto fail;
3193
3194 mem->host_ptr = host_ptr_info->pHostPointer;
3195 goto success;
3196 }
3197
3198 /* Regular allocate (not importing memory). */
3199
3200 if (export_info && export_info->handleTypes)
3201 alloc_flags |= ANV_BO_ALLOC_EXTERNAL;
3202
3203 result = anv_device_alloc_bo(device, pAllocateInfo->allocationSize,
3204 alloc_flags, &mem->bo);
3205 if (result != VK_SUCCESS)
3206 goto fail;
3207
3208 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3209 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3210 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3211 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3212
3213 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3214 * the BO. In this case, we have a dedicated allocation.
3215 */
3216 if (image->needs_set_tiling) {
3217 const uint32_t i915_tiling =
3218 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3219 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3220 image->planes[0].surface.isl.row_pitch_B,
3221 i915_tiling);
3222 if (ret) {
3223 anv_device_release_bo(device, mem->bo);
3224 return vk_errorf(device->instance, NULL,
3225 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3226 "failed to set BO tiling: %m");
3227 }
3228 }
3229 }
3230
3231 success:
3232 pthread_mutex_lock(&device->mutex);
3233 list_addtail(&mem->link, &device->memory_objects);
3234 pthread_mutex_unlock(&device->mutex);
3235
3236 *pMem = anv_device_memory_to_handle(mem);
3237
3238 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3239 mem->bo->size);
3240
3241 return VK_SUCCESS;
3242
3243 fail:
3244 vk_free2(&device->alloc, pAllocator, mem);
3245
3246 return result;
3247 }
3248
3249 VkResult anv_GetMemoryFdKHR(
3250 VkDevice device_h,
3251 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3252 int* pFd)
3253 {
3254 ANV_FROM_HANDLE(anv_device, dev, device_h);
3255 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3256
3257 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3258
3259 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3260 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3261
3262 return anv_device_export_bo(dev, mem->bo, pFd);
3263 }
3264
3265 VkResult anv_GetMemoryFdPropertiesKHR(
3266 VkDevice _device,
3267 VkExternalMemoryHandleTypeFlagBits handleType,
3268 int fd,
3269 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3270 {
3271 ANV_FROM_HANDLE(anv_device, device, _device);
3272 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3273
3274 switch (handleType) {
3275 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3276 /* dma-buf can be imported as any memory type */
3277 pMemoryFdProperties->memoryTypeBits =
3278 (1 << pdevice->memory.type_count) - 1;
3279 return VK_SUCCESS;
3280
3281 default:
3282 /* The valid usage section for this function says:
3283 *
3284 * "handleType must not be one of the handle types defined as
3285 * opaque."
3286 *
3287 * So opaque handle types fall into the default "unsupported" case.
3288 */
3289 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3290 }
3291 }
3292
3293 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3294 VkDevice _device,
3295 VkExternalMemoryHandleTypeFlagBits handleType,
3296 const void* pHostPointer,
3297 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3298 {
3299 ANV_FROM_HANDLE(anv_device, device, _device);
3300
3301 assert(pMemoryHostPointerProperties->sType ==
3302 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3303
3304 switch (handleType) {
3305 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3306 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3307
3308 /* Host memory can be imported as any memory type. */
3309 pMemoryHostPointerProperties->memoryTypeBits =
3310 (1ull << pdevice->memory.type_count) - 1;
3311
3312 return VK_SUCCESS;
3313 }
3314 default:
3315 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3316 }
3317 }
3318
3319 void anv_FreeMemory(
3320 VkDevice _device,
3321 VkDeviceMemory _mem,
3322 const VkAllocationCallbacks* pAllocator)
3323 {
3324 ANV_FROM_HANDLE(anv_device, device, _device);
3325 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3326 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3327
3328 if (mem == NULL)
3329 return;
3330
3331 pthread_mutex_lock(&device->mutex);
3332 list_del(&mem->link);
3333 pthread_mutex_unlock(&device->mutex);
3334
3335 if (mem->map)
3336 anv_UnmapMemory(_device, _mem);
3337
3338 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3339 -mem->bo->size);
3340
3341 anv_device_release_bo(device, mem->bo);
3342
3343 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3344 if (mem->ahw)
3345 AHardwareBuffer_release(mem->ahw);
3346 #endif
3347
3348 vk_free2(&device->alloc, pAllocator, mem);
3349 }
3350
3351 VkResult anv_MapMemory(
3352 VkDevice _device,
3353 VkDeviceMemory _memory,
3354 VkDeviceSize offset,
3355 VkDeviceSize size,
3356 VkMemoryMapFlags flags,
3357 void** ppData)
3358 {
3359 ANV_FROM_HANDLE(anv_device, device, _device);
3360 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3361
3362 if (mem == NULL) {
3363 *ppData = NULL;
3364 return VK_SUCCESS;
3365 }
3366
3367 if (mem->host_ptr) {
3368 *ppData = mem->host_ptr + offset;
3369 return VK_SUCCESS;
3370 }
3371
3372 if (size == VK_WHOLE_SIZE)
3373 size = mem->bo->size - offset;
3374
3375 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3376 *
3377 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3378 * assert(size != 0);
3379 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3380 * equal to the size of the memory minus offset
3381 */
3382 assert(size > 0);
3383 assert(offset + size <= mem->bo->size);
3384
3385 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3386 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3387 * at a time is valid. We could just mmap up front and return an offset
3388 * pointer here, but that may exhaust virtual memory on 32 bit
3389 * userspace. */
3390
3391 uint32_t gem_flags = 0;
3392
3393 if (!device->info.has_llc &&
3394 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3395 gem_flags |= I915_MMAP_WC;
3396
3397 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3398 uint64_t map_offset = offset & ~4095ull;
3399 assert(offset >= map_offset);
3400 uint64_t map_size = (offset + size) - map_offset;
3401
3402 /* Let's map whole pages */
3403 map_size = align_u64(map_size, 4096);
3404
3405 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3406 map_offset, map_size, gem_flags);
3407 if (map == MAP_FAILED)
3408 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3409
3410 mem->map = map;
3411 mem->map_size = map_size;
3412
3413 *ppData = mem->map + (offset - map_offset);
3414
3415 return VK_SUCCESS;
3416 }
3417
3418 void anv_UnmapMemory(
3419 VkDevice _device,
3420 VkDeviceMemory _memory)
3421 {
3422 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3423
3424 if (mem == NULL || mem->host_ptr)
3425 return;
3426
3427 anv_gem_munmap(mem->map, mem->map_size);
3428
3429 mem->map = NULL;
3430 mem->map_size = 0;
3431 }
3432
3433 static void
3434 clflush_mapped_ranges(struct anv_device *device,
3435 uint32_t count,
3436 const VkMappedMemoryRange *ranges)
3437 {
3438 for (uint32_t i = 0; i < count; i++) {
3439 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3440 if (ranges[i].offset >= mem->map_size)
3441 continue;
3442
3443 gen_clflush_range(mem->map + ranges[i].offset,
3444 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3445 }
3446 }
3447
3448 VkResult anv_FlushMappedMemoryRanges(
3449 VkDevice _device,
3450 uint32_t memoryRangeCount,
3451 const VkMappedMemoryRange* pMemoryRanges)
3452 {
3453 ANV_FROM_HANDLE(anv_device, device, _device);
3454
3455 if (device->info.has_llc)
3456 return VK_SUCCESS;
3457
3458 /* Make sure the writes we're flushing have landed. */
3459 __builtin_ia32_mfence();
3460
3461 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3462
3463 return VK_SUCCESS;
3464 }
3465
3466 VkResult anv_InvalidateMappedMemoryRanges(
3467 VkDevice _device,
3468 uint32_t memoryRangeCount,
3469 const VkMappedMemoryRange* pMemoryRanges)
3470 {
3471 ANV_FROM_HANDLE(anv_device, device, _device);
3472
3473 if (device->info.has_llc)
3474 return VK_SUCCESS;
3475
3476 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3477
3478 /* Make sure no reads get moved up above the invalidate. */
3479 __builtin_ia32_mfence();
3480
3481 return VK_SUCCESS;
3482 }
3483
3484 void anv_GetBufferMemoryRequirements(
3485 VkDevice _device,
3486 VkBuffer _buffer,
3487 VkMemoryRequirements* pMemoryRequirements)
3488 {
3489 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3490 ANV_FROM_HANDLE(anv_device, device, _device);
3491 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3492
3493 /* The Vulkan spec (git aaed022) says:
3494 *
3495 * memoryTypeBits is a bitfield and contains one bit set for every
3496 * supported memory type for the resource. The bit `1<<i` is set if and
3497 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3498 * structure for the physical device is supported.
3499 */
3500 uint32_t memory_types = 0;
3501 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3502 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3503 if ((valid_usage & buffer->usage) == buffer->usage)
3504 memory_types |= (1u << i);
3505 }
3506
3507 /* Base alignment requirement of a cache line */
3508 uint32_t alignment = 16;
3509
3510 /* We need an alignment of 32 for pushing UBOs */
3511 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3512 alignment = MAX2(alignment, 32);
3513
3514 pMemoryRequirements->size = buffer->size;
3515 pMemoryRequirements->alignment = alignment;
3516
3517 /* Storage and Uniform buffers should have their size aligned to
3518 * 32-bits to avoid boundary checks when last DWord is not complete.
3519 * This would ensure that not internal padding would be needed for
3520 * 16-bit types.
3521 */
3522 if (device->robust_buffer_access &&
3523 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3524 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3525 pMemoryRequirements->size = align_u64(buffer->size, 4);
3526
3527 pMemoryRequirements->memoryTypeBits = memory_types;
3528 }
3529
3530 void anv_GetBufferMemoryRequirements2(
3531 VkDevice _device,
3532 const VkBufferMemoryRequirementsInfo2* pInfo,
3533 VkMemoryRequirements2* pMemoryRequirements)
3534 {
3535 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3536 &pMemoryRequirements->memoryRequirements);
3537
3538 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3539 switch (ext->sType) {
3540 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3541 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3542 requirements->prefersDedicatedAllocation = false;
3543 requirements->requiresDedicatedAllocation = false;
3544 break;
3545 }
3546
3547 default:
3548 anv_debug_ignored_stype(ext->sType);
3549 break;
3550 }
3551 }
3552 }
3553
3554 void anv_GetImageMemoryRequirements(
3555 VkDevice _device,
3556 VkImage _image,
3557 VkMemoryRequirements* pMemoryRequirements)
3558 {
3559 ANV_FROM_HANDLE(anv_image, image, _image);
3560 ANV_FROM_HANDLE(anv_device, device, _device);
3561 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3562
3563 /* The Vulkan spec (git aaed022) says:
3564 *
3565 * memoryTypeBits is a bitfield and contains one bit set for every
3566 * supported memory type for the resource. The bit `1<<i` is set if and
3567 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3568 * structure for the physical device is supported.
3569 *
3570 * All types are currently supported for images.
3571 */
3572 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3573
3574 /* We must have image allocated or imported at this point. According to the
3575 * specification, external images must have been bound to memory before
3576 * calling GetImageMemoryRequirements.
3577 */
3578 assert(image->size > 0);
3579
3580 pMemoryRequirements->size = image->size;
3581 pMemoryRequirements->alignment = image->alignment;
3582 pMemoryRequirements->memoryTypeBits = memory_types;
3583 }
3584
3585 void anv_GetImageMemoryRequirements2(
3586 VkDevice _device,
3587 const VkImageMemoryRequirementsInfo2* pInfo,
3588 VkMemoryRequirements2* pMemoryRequirements)
3589 {
3590 ANV_FROM_HANDLE(anv_device, device, _device);
3591 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3592
3593 anv_GetImageMemoryRequirements(_device, pInfo->image,
3594 &pMemoryRequirements->memoryRequirements);
3595
3596 vk_foreach_struct_const(ext, pInfo->pNext) {
3597 switch (ext->sType) {
3598 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3599 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3600 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3601 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3602 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3603 plane_reqs->planeAspect);
3604
3605 assert(image->planes[plane].offset == 0);
3606
3607 /* The Vulkan spec (git aaed022) says:
3608 *
3609 * memoryTypeBits is a bitfield and contains one bit set for every
3610 * supported memory type for the resource. The bit `1<<i` is set
3611 * if and only if the memory type `i` in the
3612 * VkPhysicalDeviceMemoryProperties structure for the physical
3613 * device is supported.
3614 *
3615 * All types are currently supported for images.
3616 */
3617 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3618 (1ull << pdevice->memory.type_count) - 1;
3619
3620 /* We must have image allocated or imported at this point. According to the
3621 * specification, external images must have been bound to memory before
3622 * calling GetImageMemoryRequirements.
3623 */
3624 assert(image->planes[plane].size > 0);
3625
3626 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3627 pMemoryRequirements->memoryRequirements.alignment =
3628 image->planes[plane].alignment;
3629 break;
3630 }
3631
3632 default:
3633 anv_debug_ignored_stype(ext->sType);
3634 break;
3635 }
3636 }
3637
3638 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3639 switch (ext->sType) {
3640 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3641 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3642 if (image->needs_set_tiling || image->external_format) {
3643 /* If we need to set the tiling for external consumers, we need a
3644 * dedicated allocation.
3645 *
3646 * See also anv_AllocateMemory.
3647 */
3648 requirements->prefersDedicatedAllocation = true;
3649 requirements->requiresDedicatedAllocation = true;
3650 } else {
3651 requirements->prefersDedicatedAllocation = false;
3652 requirements->requiresDedicatedAllocation = false;
3653 }
3654 break;
3655 }
3656
3657 default:
3658 anv_debug_ignored_stype(ext->sType);
3659 break;
3660 }
3661 }
3662 }
3663
3664 void anv_GetImageSparseMemoryRequirements(
3665 VkDevice device,
3666 VkImage image,
3667 uint32_t* pSparseMemoryRequirementCount,
3668 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3669 {
3670 *pSparseMemoryRequirementCount = 0;
3671 }
3672
3673 void anv_GetImageSparseMemoryRequirements2(
3674 VkDevice device,
3675 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3676 uint32_t* pSparseMemoryRequirementCount,
3677 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3678 {
3679 *pSparseMemoryRequirementCount = 0;
3680 }
3681
3682 void anv_GetDeviceMemoryCommitment(
3683 VkDevice device,
3684 VkDeviceMemory memory,
3685 VkDeviceSize* pCommittedMemoryInBytes)
3686 {
3687 *pCommittedMemoryInBytes = 0;
3688 }
3689
3690 static void
3691 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3692 {
3693 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3694 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3695
3696 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3697
3698 if (mem) {
3699 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3700 buffer->address = (struct anv_address) {
3701 .bo = mem->bo,
3702 .offset = pBindInfo->memoryOffset,
3703 };
3704 } else {
3705 buffer->address = ANV_NULL_ADDRESS;
3706 }
3707 }
3708
3709 VkResult anv_BindBufferMemory(
3710 VkDevice device,
3711 VkBuffer buffer,
3712 VkDeviceMemory memory,
3713 VkDeviceSize memoryOffset)
3714 {
3715 anv_bind_buffer_memory(
3716 &(VkBindBufferMemoryInfo) {
3717 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3718 .buffer = buffer,
3719 .memory = memory,
3720 .memoryOffset = memoryOffset,
3721 });
3722
3723 return VK_SUCCESS;
3724 }
3725
3726 VkResult anv_BindBufferMemory2(
3727 VkDevice device,
3728 uint32_t bindInfoCount,
3729 const VkBindBufferMemoryInfo* pBindInfos)
3730 {
3731 for (uint32_t i = 0; i < bindInfoCount; i++)
3732 anv_bind_buffer_memory(&pBindInfos[i]);
3733
3734 return VK_SUCCESS;
3735 }
3736
3737 VkResult anv_QueueBindSparse(
3738 VkQueue _queue,
3739 uint32_t bindInfoCount,
3740 const VkBindSparseInfo* pBindInfo,
3741 VkFence fence)
3742 {
3743 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3744 if (anv_device_is_lost(queue->device))
3745 return VK_ERROR_DEVICE_LOST;
3746
3747 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3748 }
3749
3750 // Event functions
3751
3752 VkResult anv_CreateEvent(
3753 VkDevice _device,
3754 const VkEventCreateInfo* pCreateInfo,
3755 const VkAllocationCallbacks* pAllocator,
3756 VkEvent* pEvent)
3757 {
3758 ANV_FROM_HANDLE(anv_device, device, _device);
3759 struct anv_state state;
3760 struct anv_event *event;
3761
3762 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3763
3764 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3765 sizeof(*event), 8);
3766 event = state.map;
3767 event->state = state;
3768 event->semaphore = VK_EVENT_RESET;
3769
3770 if (!device->info.has_llc) {
3771 /* Make sure the writes we're flushing have landed. */
3772 __builtin_ia32_mfence();
3773 __builtin_ia32_clflush(event);
3774 }
3775
3776 *pEvent = anv_event_to_handle(event);
3777
3778 return VK_SUCCESS;
3779 }
3780
3781 void anv_DestroyEvent(
3782 VkDevice _device,
3783 VkEvent _event,
3784 const VkAllocationCallbacks* pAllocator)
3785 {
3786 ANV_FROM_HANDLE(anv_device, device, _device);
3787 ANV_FROM_HANDLE(anv_event, event, _event);
3788
3789 if (!event)
3790 return;
3791
3792 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3793 }
3794
3795 VkResult anv_GetEventStatus(
3796 VkDevice _device,
3797 VkEvent _event)
3798 {
3799 ANV_FROM_HANDLE(anv_device, device, _device);
3800 ANV_FROM_HANDLE(anv_event, event, _event);
3801
3802 if (anv_device_is_lost(device))
3803 return VK_ERROR_DEVICE_LOST;
3804
3805 if (!device->info.has_llc) {
3806 /* Invalidate read cache before reading event written by GPU. */
3807 __builtin_ia32_clflush(event);
3808 __builtin_ia32_mfence();
3809
3810 }
3811
3812 return event->semaphore;
3813 }
3814
3815 VkResult anv_SetEvent(
3816 VkDevice _device,
3817 VkEvent _event)
3818 {
3819 ANV_FROM_HANDLE(anv_device, device, _device);
3820 ANV_FROM_HANDLE(anv_event, event, _event);
3821
3822 event->semaphore = VK_EVENT_SET;
3823
3824 if (!device->info.has_llc) {
3825 /* Make sure the writes we're flushing have landed. */
3826 __builtin_ia32_mfence();
3827 __builtin_ia32_clflush(event);
3828 }
3829
3830 return VK_SUCCESS;
3831 }
3832
3833 VkResult anv_ResetEvent(
3834 VkDevice _device,
3835 VkEvent _event)
3836 {
3837 ANV_FROM_HANDLE(anv_device, device, _device);
3838 ANV_FROM_HANDLE(anv_event, event, _event);
3839
3840 event->semaphore = VK_EVENT_RESET;
3841
3842 if (!device->info.has_llc) {
3843 /* Make sure the writes we're flushing have landed. */
3844 __builtin_ia32_mfence();
3845 __builtin_ia32_clflush(event);
3846 }
3847
3848 return VK_SUCCESS;
3849 }
3850
3851 // Buffer functions
3852
3853 VkResult anv_CreateBuffer(
3854 VkDevice _device,
3855 const VkBufferCreateInfo* pCreateInfo,
3856 const VkAllocationCallbacks* pAllocator,
3857 VkBuffer* pBuffer)
3858 {
3859 ANV_FROM_HANDLE(anv_device, device, _device);
3860 struct anv_buffer *buffer;
3861
3862 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3863
3864 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3865 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3866 if (buffer == NULL)
3867 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3868
3869 buffer->size = pCreateInfo->size;
3870 buffer->usage = pCreateInfo->usage;
3871 buffer->address = ANV_NULL_ADDRESS;
3872
3873 *pBuffer = anv_buffer_to_handle(buffer);
3874
3875 return VK_SUCCESS;
3876 }
3877
3878 void anv_DestroyBuffer(
3879 VkDevice _device,
3880 VkBuffer _buffer,
3881 const VkAllocationCallbacks* pAllocator)
3882 {
3883 ANV_FROM_HANDLE(anv_device, device, _device);
3884 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3885
3886 if (!buffer)
3887 return;
3888
3889 vk_free2(&device->alloc, pAllocator, buffer);
3890 }
3891
3892 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3893 VkDevice device,
3894 const VkBufferDeviceAddressInfoEXT* pInfo)
3895 {
3896 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3897
3898 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3899
3900 return anv_address_physical(buffer->address);
3901 }
3902
3903 void
3904 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3905 enum isl_format format,
3906 struct anv_address address,
3907 uint32_t range, uint32_t stride)
3908 {
3909 isl_buffer_fill_state(&device->isl_dev, state.map,
3910 .address = anv_address_physical(address),
3911 .mocs = device->default_mocs,
3912 .size_B = range,
3913 .format = format,
3914 .swizzle = ISL_SWIZZLE_IDENTITY,
3915 .stride_B = stride);
3916 }
3917
3918 void anv_DestroySampler(
3919 VkDevice _device,
3920 VkSampler _sampler,
3921 const VkAllocationCallbacks* pAllocator)
3922 {
3923 ANV_FROM_HANDLE(anv_device, device, _device);
3924 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3925
3926 if (!sampler)
3927 return;
3928
3929 if (sampler->bindless_state.map) {
3930 anv_state_pool_free(&device->dynamic_state_pool,
3931 sampler->bindless_state);
3932 }
3933
3934 vk_free2(&device->alloc, pAllocator, sampler);
3935 }
3936
3937 VkResult anv_CreateFramebuffer(
3938 VkDevice _device,
3939 const VkFramebufferCreateInfo* pCreateInfo,
3940 const VkAllocationCallbacks* pAllocator,
3941 VkFramebuffer* pFramebuffer)
3942 {
3943 ANV_FROM_HANDLE(anv_device, device, _device);
3944 struct anv_framebuffer *framebuffer;
3945
3946 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3947
3948 size_t size = sizeof(*framebuffer);
3949
3950 /* VK_KHR_imageless_framebuffer extension says:
3951 *
3952 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3953 * parameter pAttachments is ignored.
3954 */
3955 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3956 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3957 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3958 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3959 if (framebuffer == NULL)
3960 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3961
3962 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3963 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3964 framebuffer->attachments[i] = iview;
3965 }
3966 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3967 } else {
3968 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3969 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3970 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3971 if (framebuffer == NULL)
3972 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3973
3974 framebuffer->attachment_count = 0;
3975 }
3976
3977 framebuffer->width = pCreateInfo->width;
3978 framebuffer->height = pCreateInfo->height;
3979 framebuffer->layers = pCreateInfo->layers;
3980
3981 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3982
3983 return VK_SUCCESS;
3984 }
3985
3986 void anv_DestroyFramebuffer(
3987 VkDevice _device,
3988 VkFramebuffer _fb,
3989 const VkAllocationCallbacks* pAllocator)
3990 {
3991 ANV_FROM_HANDLE(anv_device, device, _device);
3992 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3993
3994 if (!fb)
3995 return;
3996
3997 vk_free2(&device->alloc, pAllocator, fb);
3998 }
3999
4000 static const VkTimeDomainEXT anv_time_domains[] = {
4001 VK_TIME_DOMAIN_DEVICE_EXT,
4002 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
4003 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
4004 };
4005
4006 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
4007 VkPhysicalDevice physicalDevice,
4008 uint32_t *pTimeDomainCount,
4009 VkTimeDomainEXT *pTimeDomains)
4010 {
4011 int d;
4012 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
4013
4014 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
4015 vk_outarray_append(&out, i) {
4016 *i = anv_time_domains[d];
4017 }
4018 }
4019
4020 return vk_outarray_status(&out);
4021 }
4022
4023 static uint64_t
4024 anv_clock_gettime(clockid_t clock_id)
4025 {
4026 struct timespec current;
4027 int ret;
4028
4029 ret = clock_gettime(clock_id, &current);
4030 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
4031 ret = clock_gettime(CLOCK_MONOTONIC, &current);
4032 if (ret < 0)
4033 return 0;
4034
4035 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
4036 }
4037
4038 #define TIMESTAMP 0x2358
4039
4040 VkResult anv_GetCalibratedTimestampsEXT(
4041 VkDevice _device,
4042 uint32_t timestampCount,
4043 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
4044 uint64_t *pTimestamps,
4045 uint64_t *pMaxDeviation)
4046 {
4047 ANV_FROM_HANDLE(anv_device, device, _device);
4048 uint64_t timestamp_frequency = device->info.timestamp_frequency;
4049 int ret;
4050 int d;
4051 uint64_t begin, end;
4052 uint64_t max_clock_period = 0;
4053
4054 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4055
4056 for (d = 0; d < timestampCount; d++) {
4057 switch (pTimestampInfos[d].timeDomain) {
4058 case VK_TIME_DOMAIN_DEVICE_EXT:
4059 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
4060 &pTimestamps[d]);
4061
4062 if (ret != 0) {
4063 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
4064 "register: %m");
4065 }
4066 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
4067 max_clock_period = MAX2(max_clock_period, device_period);
4068 break;
4069 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
4070 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
4071 max_clock_period = MAX2(max_clock_period, 1);
4072 break;
4073
4074 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
4075 pTimestamps[d] = begin;
4076 break;
4077 default:
4078 pTimestamps[d] = 0;
4079 break;
4080 }
4081 }
4082
4083 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
4084
4085 /*
4086 * The maximum deviation is the sum of the interval over which we
4087 * perform the sampling and the maximum period of any sampled
4088 * clock. That's because the maximum skew between any two sampled
4089 * clock edges is when the sampled clock with the largest period is
4090 * sampled at the end of that period but right at the beginning of the
4091 * sampling interval and some other clock is sampled right at the
4092 * begining of its sampling period and right at the end of the
4093 * sampling interval. Let's assume the GPU has the longest clock
4094 * period and that the application is sampling GPU and monotonic:
4095 *
4096 * s e
4097 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
4098 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4099 *
4100 * g
4101 * 0 1 2 3
4102 * GPU -----_____-----_____-----_____-----_____
4103 *
4104 * m
4105 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
4106 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
4107 *
4108 * Interval <----------------->
4109 * Deviation <-------------------------->
4110 *
4111 * s = read(raw) 2
4112 * g = read(GPU) 1
4113 * m = read(monotonic) 2
4114 * e = read(raw) b
4115 *
4116 * We round the sample interval up by one tick to cover sampling error
4117 * in the interval clock
4118 */
4119
4120 uint64_t sample_interval = end - begin + 1;
4121
4122 *pMaxDeviation = sample_interval + max_clock_period;
4123
4124 return VK_SUCCESS;
4125 }
4126
4127 /* vk_icd.h does not declare this function, so we declare it here to
4128 * suppress Wmissing-prototypes.
4129 */
4130 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4131 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4132
4133 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4134 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4135 {
4136 /* For the full details on loader interface versioning, see
4137 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4138 * What follows is a condensed summary, to help you navigate the large and
4139 * confusing official doc.
4140 *
4141 * - Loader interface v0 is incompatible with later versions. We don't
4142 * support it.
4143 *
4144 * - In loader interface v1:
4145 * - The first ICD entrypoint called by the loader is
4146 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4147 * entrypoint.
4148 * - The ICD must statically expose no other Vulkan symbol unless it is
4149 * linked with -Bsymbolic.
4150 * - Each dispatchable Vulkan handle created by the ICD must be
4151 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4152 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4153 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4154 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4155 * such loader-managed surfaces.
4156 *
4157 * - Loader interface v2 differs from v1 in:
4158 * - The first ICD entrypoint called by the loader is
4159 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4160 * statically expose this entrypoint.
4161 *
4162 * - Loader interface v3 differs from v2 in:
4163 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4164 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4165 * because the loader no longer does so.
4166 *
4167 * - Loader interface v4 differs from v3 in:
4168 * - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
4169 */
4170 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
4171 return VK_SUCCESS;
4172 }