anv: limit vertex buffers to 31
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <dlfcn.h>
25 #include <assert.h>
26 #include <stdbool.h>
27 #include <string.h>
28 #include <sys/mman.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32
33 #include "anv_private.h"
34 #include "util/strtod.h"
35 #include "util/debug.h"
36
37 #include "genxml/gen7_pack.h"
38
39 struct anv_dispatch_table dtable;
40
41 static void
42 compiler_debug_log(void *data, const char *fmt, ...)
43 { }
44
45 static void
46 compiler_perf_log(void *data, const char *fmt, ...)
47 {
48 va_list args;
49 va_start(args, fmt);
50
51 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
52 vfprintf(stderr, fmt, args);
53
54 va_end(args);
55 }
56
57 static bool
58 anv_get_function_timestamp(void *ptr, uint32_t* timestamp)
59 {
60 Dl_info info;
61 struct stat st;
62 if (!dladdr(ptr, &info) || !info.dli_fname)
63 return false;
64
65 if (stat(info.dli_fname, &st))
66 return false;
67
68 *timestamp = st.st_mtim.tv_sec;
69 return true;
70 }
71
72 static bool
73 anv_device_get_cache_uuid(void *uuid)
74 {
75 uint32_t timestamp;
76
77 memset(uuid, 0, VK_UUID_SIZE);
78 if (!anv_get_function_timestamp(anv_device_get_cache_uuid, &timestamp))
79 return false;
80
81 snprintf(uuid, VK_UUID_SIZE, "anv-%d", timestamp);
82 return true;
83 }
84
85 static VkResult
86 anv_physical_device_init(struct anv_physical_device *device,
87 struct anv_instance *instance,
88 const char *path)
89 {
90 VkResult result;
91 int fd;
92
93 fd = open(path, O_RDWR | O_CLOEXEC);
94 if (fd < 0)
95 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
96
97 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
98 device->instance = instance;
99
100 assert(strlen(path) < ARRAY_SIZE(device->path));
101 strncpy(device->path, path, ARRAY_SIZE(device->path));
102
103 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
104 if (!device->chipset_id) {
105 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
106 goto fail;
107 }
108
109 device->name = gen_get_device_name(device->chipset_id);
110 if (!gen_get_device_info(device->chipset_id, &device->info)) {
111 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
112 goto fail;
113 }
114
115 if (device->info.is_haswell) {
116 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
117 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
118 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
119 } else if (device->info.gen == 7 && device->info.is_baytrail) {
120 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
121 } else if (device->info.gen >= 8) {
122 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
123 * supported as anything */
124 } else {
125 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
126 "Vulkan not yet supported on %s", device->name);
127 goto fail;
128 }
129
130 device->cmd_parser_version = -1;
131 if (device->info.gen == 7) {
132 device->cmd_parser_version =
133 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
134 if (device->cmd_parser_version == -1) {
135 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get command parser version");
137 goto fail;
138 }
139 }
140
141 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
142 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
143 "failed to get aperture size: %m");
144 goto fail;
145 }
146
147 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
148 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
149 "kernel missing gem wait");
150 goto fail;
151 }
152
153 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
154 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
155 "kernel missing execbuf2");
156 goto fail;
157 }
158
159 if (!device->info.has_llc &&
160 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
161 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
162 "kernel missing wc mmap");
163 goto fail;
164 }
165
166 if (!anv_device_get_cache_uuid(device->uuid)) {
167 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
168 "cannot generate UUID");
169 goto fail;
170 }
171 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
172
173 /* GENs prior to 8 do not support EU/Subslice info */
174 if (device->info.gen >= 8) {
175 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
176 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
177
178 /* Without this information, we cannot get the right Braswell
179 * brandstrings, and we have to use conservative numbers for GPGPU on
180 * many platforms, but otherwise, things will just work.
181 */
182 if (device->subslice_total < 1 || device->eu_total < 1) {
183 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
184 " query GPU properties.\n");
185 }
186 } else if (device->info.gen == 7) {
187 device->subslice_total = 1 << (device->info.gt - 1);
188 }
189
190 if (device->info.is_cherryview &&
191 device->subslice_total > 0 && device->eu_total > 0) {
192 /* Logical CS threads = EUs per subslice * 7 threads per EU */
193 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
194
195 /* Fuse configurations may give more threads than expected, never less. */
196 if (max_cs_threads > device->info.max_cs_threads)
197 device->info.max_cs_threads = max_cs_threads;
198 }
199
200 brw_process_intel_debug_variable();
201
202 device->compiler = brw_compiler_create(NULL, &device->info);
203 if (device->compiler == NULL) {
204 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
205 goto fail;
206 }
207 device->compiler->shader_debug_log = compiler_debug_log;
208 device->compiler->shader_perf_log = compiler_perf_log;
209
210 result = anv_init_wsi(device);
211 if (result != VK_SUCCESS) {
212 ralloc_free(device->compiler);
213 goto fail;
214 }
215
216 isl_device_init(&device->isl_dev, &device->info, swizzled);
217
218 close(fd);
219 return VK_SUCCESS;
220
221 fail:
222 close(fd);
223 return result;
224 }
225
226 static void
227 anv_physical_device_finish(struct anv_physical_device *device)
228 {
229 anv_finish_wsi(device);
230 ralloc_free(device->compiler);
231 }
232
233 static const VkExtensionProperties global_extensions[] = {
234 {
235 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
236 .specVersion = 25,
237 },
238 #ifdef VK_USE_PLATFORM_XCB_KHR
239 {
240 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
241 .specVersion = 6,
242 },
243 #endif
244 #ifdef VK_USE_PLATFORM_XLIB_KHR
245 {
246 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
247 .specVersion = 6,
248 },
249 #endif
250 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
251 {
252 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
253 .specVersion = 5,
254 },
255 #endif
256 {
257 .extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
258 .specVersion = 1,
259 },
260 };
261
262 static const VkExtensionProperties device_extensions[] = {
263 {
264 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
265 .specVersion = 68,
266 },
267 {
268 .extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
269 .specVersion = 1,
270 },
271 {
272 .extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME,
273 .specVersion = 1,
274 },
275 };
276
277 static void *
278 default_alloc_func(void *pUserData, size_t size, size_t align,
279 VkSystemAllocationScope allocationScope)
280 {
281 return malloc(size);
282 }
283
284 static void *
285 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
286 size_t align, VkSystemAllocationScope allocationScope)
287 {
288 return realloc(pOriginal, size);
289 }
290
291 static void
292 default_free_func(void *pUserData, void *pMemory)
293 {
294 free(pMemory);
295 }
296
297 static const VkAllocationCallbacks default_alloc = {
298 .pUserData = NULL,
299 .pfnAllocation = default_alloc_func,
300 .pfnReallocation = default_realloc_func,
301 .pfnFree = default_free_func,
302 };
303
304 VkResult anv_CreateInstance(
305 const VkInstanceCreateInfo* pCreateInfo,
306 const VkAllocationCallbacks* pAllocator,
307 VkInstance* pInstance)
308 {
309 struct anv_instance *instance;
310
311 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
312
313 uint32_t client_version;
314 if (pCreateInfo->pApplicationInfo &&
315 pCreateInfo->pApplicationInfo->apiVersion != 0) {
316 client_version = pCreateInfo->pApplicationInfo->apiVersion;
317 } else {
318 client_version = VK_MAKE_VERSION(1, 0, 0);
319 }
320
321 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
322 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
323 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
324 "Client requested version %d.%d.%d",
325 VK_VERSION_MAJOR(client_version),
326 VK_VERSION_MINOR(client_version),
327 VK_VERSION_PATCH(client_version));
328 }
329
330 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
331 bool found = false;
332 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
333 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
334 global_extensions[j].extensionName) == 0) {
335 found = true;
336 break;
337 }
338 }
339 if (!found)
340 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
341 }
342
343 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
344 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
345 if (!instance)
346 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
347
348 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
349
350 if (pAllocator)
351 instance->alloc = *pAllocator;
352 else
353 instance->alloc = default_alloc;
354
355 instance->apiVersion = client_version;
356 instance->physicalDeviceCount = -1;
357
358 _mesa_locale_init();
359
360 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
361
362 *pInstance = anv_instance_to_handle(instance);
363
364 return VK_SUCCESS;
365 }
366
367 void anv_DestroyInstance(
368 VkInstance _instance,
369 const VkAllocationCallbacks* pAllocator)
370 {
371 ANV_FROM_HANDLE(anv_instance, instance, _instance);
372
373 if (instance->physicalDeviceCount > 0) {
374 /* We support at most one physical device. */
375 assert(instance->physicalDeviceCount == 1);
376 anv_physical_device_finish(&instance->physicalDevice);
377 }
378
379 VG(VALGRIND_DESTROY_MEMPOOL(instance));
380
381 _mesa_locale_fini();
382
383 vk_free(&instance->alloc, instance);
384 }
385
386 VkResult anv_EnumeratePhysicalDevices(
387 VkInstance _instance,
388 uint32_t* pPhysicalDeviceCount,
389 VkPhysicalDevice* pPhysicalDevices)
390 {
391 ANV_FROM_HANDLE(anv_instance, instance, _instance);
392 VkResult result;
393
394 if (instance->physicalDeviceCount < 0) {
395 char path[20];
396 for (unsigned i = 0; i < 8; i++) {
397 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
398 result = anv_physical_device_init(&instance->physicalDevice,
399 instance, path);
400 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
401 break;
402 }
403
404 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
405 instance->physicalDeviceCount = 0;
406 } else if (result == VK_SUCCESS) {
407 instance->physicalDeviceCount = 1;
408 } else {
409 return result;
410 }
411 }
412
413 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
414 * otherwise it's an inout parameter.
415 *
416 * The Vulkan spec (git aaed022) says:
417 *
418 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
419 * that is initialized with the number of devices the application is
420 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
421 * an array of at least this many VkPhysicalDevice handles [...].
422 *
423 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
424 * overwrites the contents of the variable pointed to by
425 * pPhysicalDeviceCount with the number of physical devices in in the
426 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
427 * pPhysicalDeviceCount with the number of physical handles written to
428 * pPhysicalDevices.
429 */
430 if (!pPhysicalDevices) {
431 *pPhysicalDeviceCount = instance->physicalDeviceCount;
432 } else if (*pPhysicalDeviceCount >= 1) {
433 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
434 *pPhysicalDeviceCount = 1;
435 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
436 return VK_INCOMPLETE;
437 } else {
438 *pPhysicalDeviceCount = 0;
439 }
440
441 return VK_SUCCESS;
442 }
443
444 void anv_GetPhysicalDeviceFeatures(
445 VkPhysicalDevice physicalDevice,
446 VkPhysicalDeviceFeatures* pFeatures)
447 {
448 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
449
450 *pFeatures = (VkPhysicalDeviceFeatures) {
451 .robustBufferAccess = true,
452 .fullDrawIndexUint32 = true,
453 .imageCubeArray = true,
454 .independentBlend = true,
455 .geometryShader = true,
456 .tessellationShader = true,
457 .sampleRateShading = true,
458 .dualSrcBlend = true,
459 .logicOp = true,
460 .multiDrawIndirect = false,
461 .drawIndirectFirstInstance = true,
462 .depthClamp = true,
463 .depthBiasClamp = true,
464 .fillModeNonSolid = true,
465 .depthBounds = false,
466 .wideLines = true,
467 .largePoints = true,
468 .alphaToOne = true,
469 .multiViewport = true,
470 .samplerAnisotropy = true,
471 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
472 pdevice->info.is_baytrail,
473 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
474 .textureCompressionBC = true,
475 .occlusionQueryPrecise = true,
476 .pipelineStatisticsQuery = false,
477 .fragmentStoresAndAtomics = true,
478 .shaderTessellationAndGeometryPointSize = true,
479 .shaderImageGatherExtended = true,
480 .shaderStorageImageExtendedFormats = true,
481 .shaderStorageImageMultisample = false,
482 .shaderStorageImageReadWithoutFormat = false,
483 .shaderStorageImageWriteWithoutFormat = false,
484 .shaderUniformBufferArrayDynamicIndexing = true,
485 .shaderSampledImageArrayDynamicIndexing = true,
486 .shaderStorageBufferArrayDynamicIndexing = true,
487 .shaderStorageImageArrayDynamicIndexing = true,
488 .shaderClipDistance = true,
489 .shaderCullDistance = true,
490 .shaderFloat64 = pdevice->info.gen >= 8,
491 .shaderInt64 = false,
492 .shaderInt16 = false,
493 .shaderResourceMinLod = false,
494 .variableMultisampleRate = false,
495 .inheritedQueries = false,
496 };
497
498 /* We can't do image stores in vec4 shaders */
499 pFeatures->vertexPipelineStoresAndAtomics =
500 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
501 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
502 }
503
504 void anv_GetPhysicalDeviceFeatures2KHR(
505 VkPhysicalDevice physicalDevice,
506 VkPhysicalDeviceFeatures2KHR* pFeatures)
507 {
508 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
509
510 for (struct anv_common *c = pFeatures->pNext; c != NULL; c = c->pNext) {
511 switch (c->sType) {
512 default:
513 anv_debug_ignored_stype(c->sType);
514 break;
515 }
516 }
517 }
518
519 void anv_GetPhysicalDeviceProperties(
520 VkPhysicalDevice physicalDevice,
521 VkPhysicalDeviceProperties* pProperties)
522 {
523 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
524 const struct gen_device_info *devinfo = &pdevice->info;
525
526 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
527
528 /* See assertions made when programming the buffer surface state. */
529 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
530 (1ul << 30) : (1ul << 27);
531
532 VkSampleCountFlags sample_counts =
533 isl_device_get_sample_counts(&pdevice->isl_dev);
534
535 VkPhysicalDeviceLimits limits = {
536 .maxImageDimension1D = (1 << 14),
537 .maxImageDimension2D = (1 << 14),
538 .maxImageDimension3D = (1 << 11),
539 .maxImageDimensionCube = (1 << 14),
540 .maxImageArrayLayers = (1 << 11),
541 .maxTexelBufferElements = 128 * 1024 * 1024,
542 .maxUniformBufferRange = (1ul << 27),
543 .maxStorageBufferRange = max_raw_buffer_sz,
544 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
545 .maxMemoryAllocationCount = UINT32_MAX,
546 .maxSamplerAllocationCount = 64 * 1024,
547 .bufferImageGranularity = 64, /* A cache line */
548 .sparseAddressSpaceSize = 0,
549 .maxBoundDescriptorSets = MAX_SETS,
550 .maxPerStageDescriptorSamplers = 64,
551 .maxPerStageDescriptorUniformBuffers = 64,
552 .maxPerStageDescriptorStorageBuffers = 64,
553 .maxPerStageDescriptorSampledImages = 64,
554 .maxPerStageDescriptorStorageImages = 64,
555 .maxPerStageDescriptorInputAttachments = 64,
556 .maxPerStageResources = 128,
557 .maxDescriptorSetSamplers = 256,
558 .maxDescriptorSetUniformBuffers = 256,
559 .maxDescriptorSetUniformBuffersDynamic = 256,
560 .maxDescriptorSetStorageBuffers = 256,
561 .maxDescriptorSetStorageBuffersDynamic = 256,
562 .maxDescriptorSetSampledImages = 256,
563 .maxDescriptorSetStorageImages = 256,
564 .maxDescriptorSetInputAttachments = 256,
565 .maxVertexInputAttributes = MAX_VBS,
566 .maxVertexInputBindings = MAX_VBS,
567 .maxVertexInputAttributeOffset = 2047,
568 .maxVertexInputBindingStride = 2048,
569 .maxVertexOutputComponents = 128,
570 .maxTessellationGenerationLevel = 64,
571 .maxTessellationPatchSize = 32,
572 .maxTessellationControlPerVertexInputComponents = 128,
573 .maxTessellationControlPerVertexOutputComponents = 128,
574 .maxTessellationControlPerPatchOutputComponents = 128,
575 .maxTessellationControlTotalOutputComponents = 2048,
576 .maxTessellationEvaluationInputComponents = 128,
577 .maxTessellationEvaluationOutputComponents = 128,
578 .maxGeometryShaderInvocations = 32,
579 .maxGeometryInputComponents = 64,
580 .maxGeometryOutputComponents = 128,
581 .maxGeometryOutputVertices = 256,
582 .maxGeometryTotalOutputComponents = 1024,
583 .maxFragmentInputComponents = 128,
584 .maxFragmentOutputAttachments = 8,
585 .maxFragmentDualSrcAttachments = 1,
586 .maxFragmentCombinedOutputResources = 8,
587 .maxComputeSharedMemorySize = 32768,
588 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
589 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
590 .maxComputeWorkGroupSize = {
591 16 * devinfo->max_cs_threads,
592 16 * devinfo->max_cs_threads,
593 16 * devinfo->max_cs_threads,
594 },
595 .subPixelPrecisionBits = 4 /* FIXME */,
596 .subTexelPrecisionBits = 4 /* FIXME */,
597 .mipmapPrecisionBits = 4 /* FIXME */,
598 .maxDrawIndexedIndexValue = UINT32_MAX,
599 .maxDrawIndirectCount = UINT32_MAX,
600 .maxSamplerLodBias = 16,
601 .maxSamplerAnisotropy = 16,
602 .maxViewports = MAX_VIEWPORTS,
603 .maxViewportDimensions = { (1 << 14), (1 << 14) },
604 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
605 .viewportSubPixelBits = 13, /* We take a float? */
606 .minMemoryMapAlignment = 4096, /* A page */
607 .minTexelBufferOffsetAlignment = 1,
608 .minUniformBufferOffsetAlignment = 16,
609 .minStorageBufferOffsetAlignment = 4,
610 .minTexelOffset = -8,
611 .maxTexelOffset = 7,
612 .minTexelGatherOffset = -32,
613 .maxTexelGatherOffset = 31,
614 .minInterpolationOffset = -0.5,
615 .maxInterpolationOffset = 0.4375,
616 .subPixelInterpolationOffsetBits = 4,
617 .maxFramebufferWidth = (1 << 14),
618 .maxFramebufferHeight = (1 << 14),
619 .maxFramebufferLayers = (1 << 11),
620 .framebufferColorSampleCounts = sample_counts,
621 .framebufferDepthSampleCounts = sample_counts,
622 .framebufferStencilSampleCounts = sample_counts,
623 .framebufferNoAttachmentsSampleCounts = sample_counts,
624 .maxColorAttachments = MAX_RTS,
625 .sampledImageColorSampleCounts = sample_counts,
626 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
627 .sampledImageDepthSampleCounts = sample_counts,
628 .sampledImageStencilSampleCounts = sample_counts,
629 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
630 .maxSampleMaskWords = 1,
631 .timestampComputeAndGraphics = false,
632 .timestampPeriod = time_stamp_base,
633 .maxClipDistances = 8,
634 .maxCullDistances = 8,
635 .maxCombinedClipAndCullDistances = 8,
636 .discreteQueuePriorities = 1,
637 .pointSizeRange = { 0.125, 255.875 },
638 .lineWidthRange = { 0.0, 7.9921875 },
639 .pointSizeGranularity = (1.0 / 8.0),
640 .lineWidthGranularity = (1.0 / 128.0),
641 .strictLines = false, /* FINISHME */
642 .standardSampleLocations = true,
643 .optimalBufferCopyOffsetAlignment = 128,
644 .optimalBufferCopyRowPitchAlignment = 128,
645 .nonCoherentAtomSize = 64,
646 };
647
648 *pProperties = (VkPhysicalDeviceProperties) {
649 .apiVersion = VK_MAKE_VERSION(1, 0, 39),
650 .driverVersion = 1,
651 .vendorID = 0x8086,
652 .deviceID = pdevice->chipset_id,
653 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
654 .limits = limits,
655 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
656 };
657
658 strcpy(pProperties->deviceName, pdevice->name);
659 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
660 }
661
662 void anv_GetPhysicalDeviceProperties2KHR(
663 VkPhysicalDevice physicalDevice,
664 VkPhysicalDeviceProperties2KHR* pProperties)
665 {
666 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
667
668 for (struct anv_common *c = pProperties->pNext; c != NULL; c = c->pNext) {
669 switch (c->sType) {
670 default:
671 anv_debug_ignored_stype(c->sType);
672 break;
673 }
674 }
675 }
676
677 static void
678 anv_get_queue_family_properties(struct anv_physical_device *phys_dev,
679 VkQueueFamilyProperties *props)
680 {
681 *props = (VkQueueFamilyProperties) {
682 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
683 VK_QUEUE_COMPUTE_BIT |
684 VK_QUEUE_TRANSFER_BIT,
685 .queueCount = 1,
686 .timestampValidBits = 36, /* XXX: Real value here */
687 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
688 };
689 }
690
691 void anv_GetPhysicalDeviceQueueFamilyProperties(
692 VkPhysicalDevice physicalDevice,
693 uint32_t* pCount,
694 VkQueueFamilyProperties* pQueueFamilyProperties)
695 {
696 ANV_FROM_HANDLE(anv_physical_device, phys_dev, physicalDevice);
697
698 if (pQueueFamilyProperties == NULL) {
699 *pCount = 1;
700 return;
701 }
702
703 /* The spec implicitly allows the incoming count to be 0. From the Vulkan
704 * 1.0.38 spec, Section 4.1 Physical Devices:
705 *
706 * If the value referenced by pQueueFamilyPropertyCount is not 0 [then
707 * do stuff].
708 */
709 if (*pCount == 0)
710 return;
711
712 *pCount = 1;
713 anv_get_queue_family_properties(phys_dev, pQueueFamilyProperties);
714 }
715
716 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
717 VkPhysicalDevice physicalDevice,
718 uint32_t* pQueueFamilyPropertyCount,
719 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
720 {
721
722 ANV_FROM_HANDLE(anv_physical_device, phys_dev, physicalDevice);
723
724 if (pQueueFamilyProperties == NULL) {
725 *pQueueFamilyPropertyCount = 1;
726 return;
727 }
728
729 /* The spec implicitly allows the incoming count to be 0. From the Vulkan
730 * 1.0.38 spec, Section 4.1 Physical Devices:
731 *
732 * If the value referenced by pQueueFamilyPropertyCount is not 0 [then
733 * do stuff].
734 */
735 if (*pQueueFamilyPropertyCount == 0)
736 return;
737
738 /* We support exactly one queue family. So need to traverse only the first
739 * array element's pNext chain.
740 */
741 *pQueueFamilyPropertyCount = 1;
742 anv_get_queue_family_properties(phys_dev,
743 &pQueueFamilyProperties->queueFamilyProperties);
744
745 for (struct anv_common *c = pQueueFamilyProperties->pNext;
746 c != NULL; c = c->pNext) {
747 switch (c->sType) {
748 default:
749 anv_debug_ignored_stype(c->sType);
750 break;
751 }
752 }
753 }
754
755 void anv_GetPhysicalDeviceMemoryProperties(
756 VkPhysicalDevice physicalDevice,
757 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
758 {
759 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
760 VkDeviceSize heap_size;
761
762 /* Reserve some wiggle room for the driver by exposing only 75% of the
763 * aperture to the heap.
764 */
765 heap_size = 3 * physical_device->aperture_size / 4;
766
767 if (physical_device->info.has_llc) {
768 /* Big core GPUs share LLC with the CPU and thus one memory type can be
769 * both cached and coherent at the same time.
770 */
771 pMemoryProperties->memoryTypeCount = 1;
772 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
773 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
774 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
775 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
776 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
777 .heapIndex = 0,
778 };
779 } else {
780 /* The spec requires that we expose a host-visible, coherent memory
781 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
782 * to give the application a choice between cached, but not coherent and
783 * coherent but uncached (WC though).
784 */
785 pMemoryProperties->memoryTypeCount = 2;
786 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
787 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
788 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
789 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
790 .heapIndex = 0,
791 };
792 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
793 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
794 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
795 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
796 .heapIndex = 0,
797 };
798 }
799
800 pMemoryProperties->memoryHeapCount = 1;
801 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
802 .size = heap_size,
803 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
804 };
805 }
806
807 void anv_GetPhysicalDeviceMemoryProperties2KHR(
808 VkPhysicalDevice physicalDevice,
809 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
810 {
811 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
812 &pMemoryProperties->memoryProperties);
813
814 for (struct anv_common *c = pMemoryProperties->pNext;
815 c != NULL; c = c->pNext) {
816 switch (c->sType) {
817 default:
818 anv_debug_ignored_stype(c->sType);
819 break;
820 }
821 }
822 }
823
824 PFN_vkVoidFunction anv_GetInstanceProcAddr(
825 VkInstance instance,
826 const char* pName)
827 {
828 return anv_lookup_entrypoint(NULL, pName);
829 }
830
831 /* With version 1+ of the loader interface the ICD should expose
832 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
833 */
834 PUBLIC
835 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
836 VkInstance instance,
837 const char* pName);
838
839 PUBLIC
840 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
841 VkInstance instance,
842 const char* pName)
843 {
844 return anv_GetInstanceProcAddr(instance, pName);
845 }
846
847 PFN_vkVoidFunction anv_GetDeviceProcAddr(
848 VkDevice _device,
849 const char* pName)
850 {
851 ANV_FROM_HANDLE(anv_device, device, _device);
852 return anv_lookup_entrypoint(&device->info, pName);
853 }
854
855 static void
856 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
857 {
858 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
859 queue->device = device;
860 queue->pool = &device->surface_state_pool;
861 }
862
863 static void
864 anv_queue_finish(struct anv_queue *queue)
865 {
866 }
867
868 static struct anv_state
869 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
870 {
871 struct anv_state state;
872
873 state = anv_state_pool_alloc(pool, size, align);
874 memcpy(state.map, p, size);
875
876 if (!pool->block_pool->device->info.has_llc)
877 anv_state_clflush(state);
878
879 return state;
880 }
881
882 struct gen8_border_color {
883 union {
884 float float32[4];
885 uint32_t uint32[4];
886 };
887 /* Pad out to 64 bytes */
888 uint32_t _pad[12];
889 };
890
891 static void
892 anv_device_init_border_colors(struct anv_device *device)
893 {
894 static const struct gen8_border_color border_colors[] = {
895 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
896 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
897 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
898 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
899 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
900 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
901 };
902
903 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
904 sizeof(border_colors), 64,
905 border_colors);
906 }
907
908 VkResult
909 anv_device_submit_simple_batch(struct anv_device *device,
910 struct anv_batch *batch)
911 {
912 struct drm_i915_gem_execbuffer2 execbuf;
913 struct drm_i915_gem_exec_object2 exec2_objects[1];
914 struct anv_bo bo, *exec_bos[1];
915 VkResult result = VK_SUCCESS;
916 uint32_t size;
917 int64_t timeout;
918 int ret;
919
920 /* Kernel driver requires 8 byte aligned batch length */
921 size = align_u32(batch->next - batch->start, 8);
922 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
923 if (result != VK_SUCCESS)
924 return result;
925
926 memcpy(bo.map, batch->start, size);
927 if (!device->info.has_llc)
928 anv_clflush_range(bo.map, size);
929
930 exec_bos[0] = &bo;
931 exec2_objects[0].handle = bo.gem_handle;
932 exec2_objects[0].relocation_count = 0;
933 exec2_objects[0].relocs_ptr = 0;
934 exec2_objects[0].alignment = 0;
935 exec2_objects[0].offset = bo.offset;
936 exec2_objects[0].flags = 0;
937 exec2_objects[0].rsvd1 = 0;
938 exec2_objects[0].rsvd2 = 0;
939
940 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
941 execbuf.buffer_count = 1;
942 execbuf.batch_start_offset = 0;
943 execbuf.batch_len = size;
944 execbuf.cliprects_ptr = 0;
945 execbuf.num_cliprects = 0;
946 execbuf.DR1 = 0;
947 execbuf.DR4 = 0;
948
949 execbuf.flags =
950 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
951 execbuf.rsvd1 = device->context_id;
952 execbuf.rsvd2 = 0;
953
954 result = anv_device_execbuf(device, &execbuf, exec_bos);
955 if (result != VK_SUCCESS)
956 goto fail;
957
958 timeout = INT64_MAX;
959 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
960 if (ret != 0) {
961 /* We don't know the real error. */
962 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
963 goto fail;
964 }
965
966 fail:
967 anv_bo_pool_free(&device->batch_bo_pool, &bo);
968
969 return result;
970 }
971
972 VkResult anv_CreateDevice(
973 VkPhysicalDevice physicalDevice,
974 const VkDeviceCreateInfo* pCreateInfo,
975 const VkAllocationCallbacks* pAllocator,
976 VkDevice* pDevice)
977 {
978 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
979 VkResult result;
980 struct anv_device *device;
981
982 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
983
984 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
985 bool found = false;
986 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
987 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
988 device_extensions[j].extensionName) == 0) {
989 found = true;
990 break;
991 }
992 }
993 if (!found)
994 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
995 }
996
997 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
998 sizeof(*device), 8,
999 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1000 if (!device)
1001 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1002
1003 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1004 device->instance = physical_device->instance;
1005 device->chipset_id = physical_device->chipset_id;
1006
1007 if (pAllocator)
1008 device->alloc = *pAllocator;
1009 else
1010 device->alloc = physical_device->instance->alloc;
1011
1012 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1013 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1014 if (device->fd == -1) {
1015 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1016 goto fail_device;
1017 }
1018
1019 device->context_id = anv_gem_create_context(device);
1020 if (device->context_id == -1) {
1021 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1022 goto fail_fd;
1023 }
1024
1025 device->info = physical_device->info;
1026 device->isl_dev = physical_device->isl_dev;
1027
1028 /* On Broadwell and later, we can use batch chaining to more efficiently
1029 * implement growing command buffers. Prior to Haswell, the kernel
1030 * command parser gets in the way and we have to fall back to growing
1031 * the batch.
1032 */
1033 device->can_chain_batches = device->info.gen >= 8;
1034
1035 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1036 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1037
1038 pthread_mutex_init(&device->mutex, NULL);
1039
1040 pthread_condattr_t condattr;
1041 pthread_condattr_init(&condattr);
1042 pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC);
1043 pthread_cond_init(&device->queue_submit, NULL);
1044 pthread_condattr_destroy(&condattr);
1045
1046 anv_bo_pool_init(&device->batch_bo_pool, device);
1047
1048 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
1049
1050 anv_state_pool_init(&device->dynamic_state_pool,
1051 &device->dynamic_state_block_pool);
1052
1053 anv_block_pool_init(&device->instruction_block_pool, device, 1024 * 1024);
1054 anv_state_pool_init(&device->instruction_state_pool,
1055 &device->instruction_block_pool);
1056
1057 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
1058
1059 anv_state_pool_init(&device->surface_state_pool,
1060 &device->surface_state_block_pool);
1061
1062 anv_bo_init_new(&device->workaround_bo, device, 1024);
1063
1064 anv_scratch_pool_init(device, &device->scratch_pool);
1065
1066 anv_queue_init(device, &device->queue);
1067
1068 switch (device->info.gen) {
1069 case 7:
1070 if (!device->info.is_haswell)
1071 result = gen7_init_device_state(device);
1072 else
1073 result = gen75_init_device_state(device);
1074 break;
1075 case 8:
1076 result = gen8_init_device_state(device);
1077 break;
1078 case 9:
1079 result = gen9_init_device_state(device);
1080 break;
1081 default:
1082 /* Shouldn't get here as we don't create physical devices for any other
1083 * gens. */
1084 unreachable("unhandled gen");
1085 }
1086 if (result != VK_SUCCESS)
1087 goto fail_fd;
1088
1089 anv_device_init_blorp(device);
1090
1091 anv_device_init_border_colors(device);
1092
1093 *pDevice = anv_device_to_handle(device);
1094
1095 return VK_SUCCESS;
1096
1097 fail_fd:
1098 close(device->fd);
1099 fail_device:
1100 vk_free(&device->alloc, device);
1101
1102 return result;
1103 }
1104
1105 void anv_DestroyDevice(
1106 VkDevice _device,
1107 const VkAllocationCallbacks* pAllocator)
1108 {
1109 ANV_FROM_HANDLE(anv_device, device, _device);
1110
1111 anv_device_finish_blorp(device);
1112
1113 anv_queue_finish(&device->queue);
1114
1115 #ifdef HAVE_VALGRIND
1116 /* We only need to free these to prevent valgrind errors. The backing
1117 * BO will go away in a couple of lines so we don't actually leak.
1118 */
1119 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1120 #endif
1121
1122 anv_scratch_pool_finish(device, &device->scratch_pool);
1123
1124 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1125 anv_gem_close(device, device->workaround_bo.gem_handle);
1126
1127 anv_state_pool_finish(&device->surface_state_pool);
1128 anv_block_pool_finish(&device->surface_state_block_pool);
1129 anv_state_pool_finish(&device->instruction_state_pool);
1130 anv_block_pool_finish(&device->instruction_block_pool);
1131 anv_state_pool_finish(&device->dynamic_state_pool);
1132 anv_block_pool_finish(&device->dynamic_state_block_pool);
1133
1134 anv_bo_pool_finish(&device->batch_bo_pool);
1135
1136 pthread_cond_destroy(&device->queue_submit);
1137 pthread_mutex_destroy(&device->mutex);
1138
1139 anv_gem_destroy_context(device, device->context_id);
1140
1141 close(device->fd);
1142
1143 vk_free(&device->alloc, device);
1144 }
1145
1146 VkResult anv_EnumerateInstanceExtensionProperties(
1147 const char* pLayerName,
1148 uint32_t* pPropertyCount,
1149 VkExtensionProperties* pProperties)
1150 {
1151 if (pProperties == NULL) {
1152 *pPropertyCount = ARRAY_SIZE(global_extensions);
1153 return VK_SUCCESS;
1154 }
1155
1156 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1157 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1158
1159 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1160 return VK_INCOMPLETE;
1161
1162 return VK_SUCCESS;
1163 }
1164
1165 VkResult anv_EnumerateDeviceExtensionProperties(
1166 VkPhysicalDevice physicalDevice,
1167 const char* pLayerName,
1168 uint32_t* pPropertyCount,
1169 VkExtensionProperties* pProperties)
1170 {
1171 if (pProperties == NULL) {
1172 *pPropertyCount = ARRAY_SIZE(device_extensions);
1173 return VK_SUCCESS;
1174 }
1175
1176 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1177 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1178
1179 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1180 return VK_INCOMPLETE;
1181
1182 return VK_SUCCESS;
1183 }
1184
1185 VkResult anv_EnumerateInstanceLayerProperties(
1186 uint32_t* pPropertyCount,
1187 VkLayerProperties* pProperties)
1188 {
1189 if (pProperties == NULL) {
1190 *pPropertyCount = 0;
1191 return VK_SUCCESS;
1192 }
1193
1194 /* None supported at this time */
1195 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1196 }
1197
1198 VkResult anv_EnumerateDeviceLayerProperties(
1199 VkPhysicalDevice physicalDevice,
1200 uint32_t* pPropertyCount,
1201 VkLayerProperties* pProperties)
1202 {
1203 if (pProperties == NULL) {
1204 *pPropertyCount = 0;
1205 return VK_SUCCESS;
1206 }
1207
1208 /* None supported at this time */
1209 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1210 }
1211
1212 void anv_GetDeviceQueue(
1213 VkDevice _device,
1214 uint32_t queueNodeIndex,
1215 uint32_t queueIndex,
1216 VkQueue* pQueue)
1217 {
1218 ANV_FROM_HANDLE(anv_device, device, _device);
1219
1220 assert(queueIndex == 0);
1221
1222 *pQueue = anv_queue_to_handle(&device->queue);
1223 }
1224
1225 VkResult
1226 anv_device_execbuf(struct anv_device *device,
1227 struct drm_i915_gem_execbuffer2 *execbuf,
1228 struct anv_bo **execbuf_bos)
1229 {
1230 int ret = anv_gem_execbuffer(device, execbuf);
1231 if (ret != 0) {
1232 /* We don't know the real error. */
1233 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1234 }
1235
1236 struct drm_i915_gem_exec_object2 *objects =
1237 (void *)(uintptr_t)execbuf->buffers_ptr;
1238 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1239 execbuf_bos[k]->offset = objects[k].offset;
1240
1241 return VK_SUCCESS;
1242 }
1243
1244 VkResult anv_QueueSubmit(
1245 VkQueue _queue,
1246 uint32_t submitCount,
1247 const VkSubmitInfo* pSubmits,
1248 VkFence _fence)
1249 {
1250 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1251 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1252 struct anv_device *device = queue->device;
1253 VkResult result = VK_SUCCESS;
1254
1255 /* We lock around QueueSubmit for three main reasons:
1256 *
1257 * 1) When a block pool is resized, we create a new gem handle with a
1258 * different size and, in the case of surface states, possibly a
1259 * different center offset but we re-use the same anv_bo struct when
1260 * we do so. If this happens in the middle of setting up an execbuf,
1261 * we could end up with our list of BOs out of sync with our list of
1262 * gem handles.
1263 *
1264 * 2) The algorithm we use for building the list of unique buffers isn't
1265 * thread-safe. While the client is supposed to syncronize around
1266 * QueueSubmit, this would be extremely difficult to debug if it ever
1267 * came up in the wild due to a broken app. It's better to play it
1268 * safe and just lock around QueueSubmit.
1269 *
1270 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
1271 * userspace. Due to the fact that the surface state buffer is shared
1272 * between batches, we can't afford to have that happen from multiple
1273 * threads at the same time. Even though the user is supposed to
1274 * ensure this doesn't happen, we play it safe as in (2) above.
1275 *
1276 * Since the only other things that ever take the device lock such as block
1277 * pool resize only rarely happen, this will almost never be contended so
1278 * taking a lock isn't really an expensive operation in this case.
1279 */
1280 pthread_mutex_lock(&device->mutex);
1281
1282 for (uint32_t i = 0; i < submitCount; i++) {
1283 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1284 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1285 pSubmits[i].pCommandBuffers[j]);
1286 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1287
1288 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1289 if (result != VK_SUCCESS)
1290 goto out;
1291 }
1292 }
1293
1294 if (fence) {
1295 struct anv_bo *fence_bo = &fence->bo;
1296 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1297 if (result != VK_SUCCESS)
1298 goto out;
1299
1300 /* Update the fence and wake up any waiters */
1301 assert(fence->state == ANV_FENCE_STATE_RESET);
1302 fence->state = ANV_FENCE_STATE_SUBMITTED;
1303 pthread_cond_broadcast(&device->queue_submit);
1304 }
1305
1306 out:
1307 pthread_mutex_unlock(&device->mutex);
1308
1309 return result;
1310 }
1311
1312 VkResult anv_QueueWaitIdle(
1313 VkQueue _queue)
1314 {
1315 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1316
1317 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1318 }
1319
1320 VkResult anv_DeviceWaitIdle(
1321 VkDevice _device)
1322 {
1323 ANV_FROM_HANDLE(anv_device, device, _device);
1324 struct anv_batch batch;
1325
1326 uint32_t cmds[8];
1327 batch.start = batch.next = cmds;
1328 batch.end = (void *) cmds + sizeof(cmds);
1329
1330 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1331 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1332
1333 return anv_device_submit_simple_batch(device, &batch);
1334 }
1335
1336 VkResult
1337 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1338 {
1339 uint32_t gem_handle = anv_gem_create(device, size);
1340 if (!gem_handle)
1341 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1342
1343 anv_bo_init(bo, gem_handle, size);
1344
1345 return VK_SUCCESS;
1346 }
1347
1348 VkResult anv_AllocateMemory(
1349 VkDevice _device,
1350 const VkMemoryAllocateInfo* pAllocateInfo,
1351 const VkAllocationCallbacks* pAllocator,
1352 VkDeviceMemory* pMem)
1353 {
1354 ANV_FROM_HANDLE(anv_device, device, _device);
1355 struct anv_device_memory *mem;
1356 VkResult result;
1357
1358 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1359
1360 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1361 assert(pAllocateInfo->allocationSize > 0);
1362
1363 /* We support exactly one memory heap. */
1364 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1365 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1366
1367 /* FINISHME: Fail if allocation request exceeds heap size. */
1368
1369 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1370 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1371 if (mem == NULL)
1372 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1373
1374 /* The kernel is going to give us whole pages anyway */
1375 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1376
1377 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1378 if (result != VK_SUCCESS)
1379 goto fail;
1380
1381 mem->type_index = pAllocateInfo->memoryTypeIndex;
1382
1383 mem->map = NULL;
1384 mem->map_size = 0;
1385
1386 *pMem = anv_device_memory_to_handle(mem);
1387
1388 return VK_SUCCESS;
1389
1390 fail:
1391 vk_free2(&device->alloc, pAllocator, mem);
1392
1393 return result;
1394 }
1395
1396 void anv_FreeMemory(
1397 VkDevice _device,
1398 VkDeviceMemory _mem,
1399 const VkAllocationCallbacks* pAllocator)
1400 {
1401 ANV_FROM_HANDLE(anv_device, device, _device);
1402 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1403
1404 if (mem == NULL)
1405 return;
1406
1407 if (mem->map)
1408 anv_UnmapMemory(_device, _mem);
1409
1410 if (mem->bo.map)
1411 anv_gem_munmap(mem->bo.map, mem->bo.size);
1412
1413 if (mem->bo.gem_handle != 0)
1414 anv_gem_close(device, mem->bo.gem_handle);
1415
1416 vk_free2(&device->alloc, pAllocator, mem);
1417 }
1418
1419 VkResult anv_MapMemory(
1420 VkDevice _device,
1421 VkDeviceMemory _memory,
1422 VkDeviceSize offset,
1423 VkDeviceSize size,
1424 VkMemoryMapFlags flags,
1425 void** ppData)
1426 {
1427 ANV_FROM_HANDLE(anv_device, device, _device);
1428 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1429
1430 if (mem == NULL) {
1431 *ppData = NULL;
1432 return VK_SUCCESS;
1433 }
1434
1435 if (size == VK_WHOLE_SIZE)
1436 size = mem->bo.size - offset;
1437
1438 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1439 *
1440 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1441 * assert(size != 0);
1442 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1443 * equal to the size of the memory minus offset
1444 */
1445 assert(size > 0);
1446 assert(offset + size <= mem->bo.size);
1447
1448 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1449 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1450 * at a time is valid. We could just mmap up front and return an offset
1451 * pointer here, but that may exhaust virtual memory on 32 bit
1452 * userspace. */
1453
1454 uint32_t gem_flags = 0;
1455 if (!device->info.has_llc && mem->type_index == 0)
1456 gem_flags |= I915_MMAP_WC;
1457
1458 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1459 uint64_t map_offset = offset & ~4095ull;
1460 assert(offset >= map_offset);
1461 uint64_t map_size = (offset + size) - map_offset;
1462
1463 /* Let's map whole pages */
1464 map_size = align_u64(map_size, 4096);
1465
1466 void *map = anv_gem_mmap(device, mem->bo.gem_handle,
1467 map_offset, map_size, gem_flags);
1468 if (map == MAP_FAILED)
1469 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1470
1471 mem->map = map;
1472 mem->map_size = map_size;
1473
1474 *ppData = mem->map + (offset - map_offset);
1475
1476 return VK_SUCCESS;
1477 }
1478
1479 void anv_UnmapMemory(
1480 VkDevice _device,
1481 VkDeviceMemory _memory)
1482 {
1483 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1484
1485 if (mem == NULL)
1486 return;
1487
1488 anv_gem_munmap(mem->map, mem->map_size);
1489
1490 mem->map = NULL;
1491 mem->map_size = 0;
1492 }
1493
1494 static void
1495 clflush_mapped_ranges(struct anv_device *device,
1496 uint32_t count,
1497 const VkMappedMemoryRange *ranges)
1498 {
1499 for (uint32_t i = 0; i < count; i++) {
1500 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1501 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1502 void *end;
1503
1504 if (ranges[i].offset + ranges[i].size > mem->map_size)
1505 end = mem->map + mem->map_size;
1506 else
1507 end = mem->map + ranges[i].offset + ranges[i].size;
1508
1509 while (p < end) {
1510 __builtin_ia32_clflush(p);
1511 p += CACHELINE_SIZE;
1512 }
1513 }
1514 }
1515
1516 VkResult anv_FlushMappedMemoryRanges(
1517 VkDevice _device,
1518 uint32_t memoryRangeCount,
1519 const VkMappedMemoryRange* pMemoryRanges)
1520 {
1521 ANV_FROM_HANDLE(anv_device, device, _device);
1522
1523 if (device->info.has_llc)
1524 return VK_SUCCESS;
1525
1526 /* Make sure the writes we're flushing have landed. */
1527 __builtin_ia32_mfence();
1528
1529 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1530
1531 return VK_SUCCESS;
1532 }
1533
1534 VkResult anv_InvalidateMappedMemoryRanges(
1535 VkDevice _device,
1536 uint32_t memoryRangeCount,
1537 const VkMappedMemoryRange* pMemoryRanges)
1538 {
1539 ANV_FROM_HANDLE(anv_device, device, _device);
1540
1541 if (device->info.has_llc)
1542 return VK_SUCCESS;
1543
1544 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1545
1546 /* Make sure no reads get moved up above the invalidate. */
1547 __builtin_ia32_mfence();
1548
1549 return VK_SUCCESS;
1550 }
1551
1552 void anv_GetBufferMemoryRequirements(
1553 VkDevice device,
1554 VkBuffer _buffer,
1555 VkMemoryRequirements* pMemoryRequirements)
1556 {
1557 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1558
1559 /* The Vulkan spec (git aaed022) says:
1560 *
1561 * memoryTypeBits is a bitfield and contains one bit set for every
1562 * supported memory type for the resource. The bit `1<<i` is set if and
1563 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1564 * structure for the physical device is supported.
1565 *
1566 * We support exactly one memory type.
1567 */
1568 pMemoryRequirements->memoryTypeBits = 1;
1569
1570 pMemoryRequirements->size = buffer->size;
1571 pMemoryRequirements->alignment = 16;
1572 }
1573
1574 void anv_GetImageMemoryRequirements(
1575 VkDevice device,
1576 VkImage _image,
1577 VkMemoryRequirements* pMemoryRequirements)
1578 {
1579 ANV_FROM_HANDLE(anv_image, image, _image);
1580
1581 /* The Vulkan spec (git aaed022) says:
1582 *
1583 * memoryTypeBits is a bitfield and contains one bit set for every
1584 * supported memory type for the resource. The bit `1<<i` is set if and
1585 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1586 * structure for the physical device is supported.
1587 *
1588 * We support exactly one memory type.
1589 */
1590 pMemoryRequirements->memoryTypeBits = 1;
1591
1592 pMemoryRequirements->size = image->size;
1593 pMemoryRequirements->alignment = image->alignment;
1594 }
1595
1596 void anv_GetImageSparseMemoryRequirements(
1597 VkDevice device,
1598 VkImage image,
1599 uint32_t* pSparseMemoryRequirementCount,
1600 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1601 {
1602 stub();
1603 }
1604
1605 void anv_GetDeviceMemoryCommitment(
1606 VkDevice device,
1607 VkDeviceMemory memory,
1608 VkDeviceSize* pCommittedMemoryInBytes)
1609 {
1610 *pCommittedMemoryInBytes = 0;
1611 }
1612
1613 VkResult anv_BindBufferMemory(
1614 VkDevice device,
1615 VkBuffer _buffer,
1616 VkDeviceMemory _memory,
1617 VkDeviceSize memoryOffset)
1618 {
1619 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1620 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1621
1622 if (mem) {
1623 buffer->bo = &mem->bo;
1624 buffer->offset = memoryOffset;
1625 } else {
1626 buffer->bo = NULL;
1627 buffer->offset = 0;
1628 }
1629
1630 return VK_SUCCESS;
1631 }
1632
1633 VkResult anv_QueueBindSparse(
1634 VkQueue queue,
1635 uint32_t bindInfoCount,
1636 const VkBindSparseInfo* pBindInfo,
1637 VkFence fence)
1638 {
1639 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1640 }
1641
1642 VkResult anv_CreateFence(
1643 VkDevice _device,
1644 const VkFenceCreateInfo* pCreateInfo,
1645 const VkAllocationCallbacks* pAllocator,
1646 VkFence* pFence)
1647 {
1648 ANV_FROM_HANDLE(anv_device, device, _device);
1649 struct anv_bo fence_bo;
1650 struct anv_fence *fence;
1651 struct anv_batch batch;
1652 VkResult result;
1653
1654 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1655
1656 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1657 if (result != VK_SUCCESS)
1658 return result;
1659
1660 /* Fences are small. Just store the CPU data structure in the BO. */
1661 fence = fence_bo.map;
1662 fence->bo = fence_bo;
1663
1664 /* Place the batch after the CPU data but on its own cache line. */
1665 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1666 batch.next = batch.start = fence->bo.map + batch_offset;
1667 batch.end = fence->bo.map + fence->bo.size;
1668 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1669 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1670
1671 if (!device->info.has_llc) {
1672 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1673 assert(batch.next - batch.start <= CACHELINE_SIZE);
1674 __builtin_ia32_mfence();
1675 __builtin_ia32_clflush(batch.start);
1676 }
1677
1678 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1679 fence->exec2_objects[0].relocation_count = 0;
1680 fence->exec2_objects[0].relocs_ptr = 0;
1681 fence->exec2_objects[0].alignment = 0;
1682 fence->exec2_objects[0].offset = fence->bo.offset;
1683 fence->exec2_objects[0].flags = 0;
1684 fence->exec2_objects[0].rsvd1 = 0;
1685 fence->exec2_objects[0].rsvd2 = 0;
1686
1687 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1688 fence->execbuf.buffer_count = 1;
1689 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1690 fence->execbuf.batch_len = batch.next - batch.start;
1691 fence->execbuf.cliprects_ptr = 0;
1692 fence->execbuf.num_cliprects = 0;
1693 fence->execbuf.DR1 = 0;
1694 fence->execbuf.DR4 = 0;
1695
1696 fence->execbuf.flags =
1697 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1698 fence->execbuf.rsvd1 = device->context_id;
1699 fence->execbuf.rsvd2 = 0;
1700
1701 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
1702 fence->state = ANV_FENCE_STATE_SIGNALED;
1703 } else {
1704 fence->state = ANV_FENCE_STATE_RESET;
1705 }
1706
1707 *pFence = anv_fence_to_handle(fence);
1708
1709 return VK_SUCCESS;
1710 }
1711
1712 void anv_DestroyFence(
1713 VkDevice _device,
1714 VkFence _fence,
1715 const VkAllocationCallbacks* pAllocator)
1716 {
1717 ANV_FROM_HANDLE(anv_device, device, _device);
1718 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1719
1720 if (!fence)
1721 return;
1722
1723 assert(fence->bo.map == fence);
1724 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1725 }
1726
1727 VkResult anv_ResetFences(
1728 VkDevice _device,
1729 uint32_t fenceCount,
1730 const VkFence* pFences)
1731 {
1732 for (uint32_t i = 0; i < fenceCount; i++) {
1733 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1734 fence->state = ANV_FENCE_STATE_RESET;
1735 }
1736
1737 return VK_SUCCESS;
1738 }
1739
1740 VkResult anv_GetFenceStatus(
1741 VkDevice _device,
1742 VkFence _fence)
1743 {
1744 ANV_FROM_HANDLE(anv_device, device, _device);
1745 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1746 int64_t t = 0;
1747 int ret;
1748
1749 switch (fence->state) {
1750 case ANV_FENCE_STATE_RESET:
1751 /* If it hasn't even been sent off to the GPU yet, it's not ready */
1752 return VK_NOT_READY;
1753
1754 case ANV_FENCE_STATE_SIGNALED:
1755 /* It's been signaled, return success */
1756 return VK_SUCCESS;
1757
1758 case ANV_FENCE_STATE_SUBMITTED:
1759 /* It's been submitted to the GPU but we don't know if it's done yet. */
1760 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1761 if (ret == 0) {
1762 fence->state = ANV_FENCE_STATE_SIGNALED;
1763 return VK_SUCCESS;
1764 } else {
1765 return VK_NOT_READY;
1766 }
1767 default:
1768 unreachable("Invalid fence status");
1769 }
1770 }
1771
1772 #define NSEC_PER_SEC 1000000000
1773 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
1774
1775 VkResult anv_WaitForFences(
1776 VkDevice _device,
1777 uint32_t fenceCount,
1778 const VkFence* pFences,
1779 VkBool32 waitAll,
1780 uint64_t _timeout)
1781 {
1782 ANV_FROM_HANDLE(anv_device, device, _device);
1783 int ret;
1784
1785 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1786 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1787 * for a couple of kernel releases. Since there's no way to know
1788 * whether or not the kernel we're using is one of the broken ones, the
1789 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1790 * maximum timeout from 584 years to 292 years - likely not a big deal.
1791 */
1792 int64_t timeout = MIN2(_timeout, INT64_MAX);
1793
1794 uint32_t pending_fences = fenceCount;
1795 while (pending_fences) {
1796 pending_fences = 0;
1797 bool signaled_fences = false;
1798 for (uint32_t i = 0; i < fenceCount; i++) {
1799 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1800 switch (fence->state) {
1801 case ANV_FENCE_STATE_RESET:
1802 /* This fence hasn't been submitted yet, we'll catch it the next
1803 * time around. Yes, this may mean we dead-loop but, short of
1804 * lots of locking and a condition variable, there's not much that
1805 * we can do about that.
1806 */
1807 pending_fences++;
1808 continue;
1809
1810 case ANV_FENCE_STATE_SIGNALED:
1811 /* This fence is not pending. If waitAll isn't set, we can return
1812 * early. Otherwise, we have to keep going.
1813 */
1814 if (!waitAll)
1815 return VK_SUCCESS;
1816 continue;
1817
1818 case ANV_FENCE_STATE_SUBMITTED:
1819 /* These are the fences we really care about. Go ahead and wait
1820 * on it until we hit a timeout.
1821 */
1822 ret = anv_gem_wait(device, fence->bo.gem_handle, &timeout);
1823 if (ret == -1 && errno == ETIME) {
1824 return VK_TIMEOUT;
1825 } else if (ret == -1) {
1826 /* We don't know the real error. */
1827 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1828 } else {
1829 fence->state = ANV_FENCE_STATE_SIGNALED;
1830 signaled_fences = true;
1831 if (!waitAll)
1832 return VK_SUCCESS;
1833 continue;
1834 }
1835 }
1836 }
1837
1838 if (pending_fences && !signaled_fences) {
1839 /* If we've hit this then someone decided to vkWaitForFences before
1840 * they've actually submitted any of them to a queue. This is a
1841 * fairly pessimal case, so it's ok to lock here and use a standard
1842 * pthreads condition variable.
1843 */
1844 pthread_mutex_lock(&device->mutex);
1845
1846 /* It's possible that some of the fences have changed state since the
1847 * last time we checked. Now that we have the lock, check for
1848 * pending fences again and don't wait if it's changed.
1849 */
1850 uint32_t now_pending_fences = 0;
1851 for (uint32_t i = 0; i < fenceCount; i++) {
1852 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1853 if (fence->state == ANV_FENCE_STATE_RESET)
1854 now_pending_fences++;
1855 }
1856 assert(now_pending_fences <= pending_fences);
1857
1858 if (now_pending_fences == pending_fences) {
1859 struct timespec before;
1860 clock_gettime(CLOCK_MONOTONIC, &before);
1861
1862 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
1863 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
1864 (timeout / NSEC_PER_SEC);
1865 abs_nsec %= NSEC_PER_SEC;
1866
1867 /* Avoid roll-over in tv_sec on 32-bit systems if the user
1868 * provided timeout is UINT64_MAX
1869 */
1870 struct timespec abstime;
1871 abstime.tv_nsec = abs_nsec;
1872 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
1873
1874 ret = pthread_cond_timedwait(&device->queue_submit,
1875 &device->mutex, &abstime);
1876 assert(ret != EINVAL);
1877
1878 struct timespec after;
1879 clock_gettime(CLOCK_MONOTONIC, &after);
1880 uint64_t time_elapsed =
1881 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
1882 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
1883
1884 if (time_elapsed >= timeout) {
1885 pthread_mutex_unlock(&device->mutex);
1886 return VK_TIMEOUT;
1887 }
1888
1889 timeout -= time_elapsed;
1890 }
1891
1892 pthread_mutex_unlock(&device->mutex);
1893 }
1894 }
1895
1896 return VK_SUCCESS;
1897 }
1898
1899 // Queue semaphore functions
1900
1901 VkResult anv_CreateSemaphore(
1902 VkDevice device,
1903 const VkSemaphoreCreateInfo* pCreateInfo,
1904 const VkAllocationCallbacks* pAllocator,
1905 VkSemaphore* pSemaphore)
1906 {
1907 /* The DRM execbuffer ioctl always execute in-oder, even between different
1908 * rings. As such, there's nothing to do for the user space semaphore.
1909 */
1910
1911 *pSemaphore = (VkSemaphore)1;
1912
1913 return VK_SUCCESS;
1914 }
1915
1916 void anv_DestroySemaphore(
1917 VkDevice device,
1918 VkSemaphore semaphore,
1919 const VkAllocationCallbacks* pAllocator)
1920 {
1921 }
1922
1923 // Event functions
1924
1925 VkResult anv_CreateEvent(
1926 VkDevice _device,
1927 const VkEventCreateInfo* pCreateInfo,
1928 const VkAllocationCallbacks* pAllocator,
1929 VkEvent* pEvent)
1930 {
1931 ANV_FROM_HANDLE(anv_device, device, _device);
1932 struct anv_state state;
1933 struct anv_event *event;
1934
1935 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1936
1937 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1938 sizeof(*event), 8);
1939 event = state.map;
1940 event->state = state;
1941 event->semaphore = VK_EVENT_RESET;
1942
1943 if (!device->info.has_llc) {
1944 /* Make sure the writes we're flushing have landed. */
1945 __builtin_ia32_mfence();
1946 __builtin_ia32_clflush(event);
1947 }
1948
1949 *pEvent = anv_event_to_handle(event);
1950
1951 return VK_SUCCESS;
1952 }
1953
1954 void anv_DestroyEvent(
1955 VkDevice _device,
1956 VkEvent _event,
1957 const VkAllocationCallbacks* pAllocator)
1958 {
1959 ANV_FROM_HANDLE(anv_device, device, _device);
1960 ANV_FROM_HANDLE(anv_event, event, _event);
1961
1962 if (!event)
1963 return;
1964
1965 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1966 }
1967
1968 VkResult anv_GetEventStatus(
1969 VkDevice _device,
1970 VkEvent _event)
1971 {
1972 ANV_FROM_HANDLE(anv_device, device, _device);
1973 ANV_FROM_HANDLE(anv_event, event, _event);
1974
1975 if (!device->info.has_llc) {
1976 /* Invalidate read cache before reading event written by GPU. */
1977 __builtin_ia32_clflush(event);
1978 __builtin_ia32_mfence();
1979
1980 }
1981
1982 return event->semaphore;
1983 }
1984
1985 VkResult anv_SetEvent(
1986 VkDevice _device,
1987 VkEvent _event)
1988 {
1989 ANV_FROM_HANDLE(anv_device, device, _device);
1990 ANV_FROM_HANDLE(anv_event, event, _event);
1991
1992 event->semaphore = VK_EVENT_SET;
1993
1994 if (!device->info.has_llc) {
1995 /* Make sure the writes we're flushing have landed. */
1996 __builtin_ia32_mfence();
1997 __builtin_ia32_clflush(event);
1998 }
1999
2000 return VK_SUCCESS;
2001 }
2002
2003 VkResult anv_ResetEvent(
2004 VkDevice _device,
2005 VkEvent _event)
2006 {
2007 ANV_FROM_HANDLE(anv_device, device, _device);
2008 ANV_FROM_HANDLE(anv_event, event, _event);
2009
2010 event->semaphore = VK_EVENT_RESET;
2011
2012 if (!device->info.has_llc) {
2013 /* Make sure the writes we're flushing have landed. */
2014 __builtin_ia32_mfence();
2015 __builtin_ia32_clflush(event);
2016 }
2017
2018 return VK_SUCCESS;
2019 }
2020
2021 // Buffer functions
2022
2023 VkResult anv_CreateBuffer(
2024 VkDevice _device,
2025 const VkBufferCreateInfo* pCreateInfo,
2026 const VkAllocationCallbacks* pAllocator,
2027 VkBuffer* pBuffer)
2028 {
2029 ANV_FROM_HANDLE(anv_device, device, _device);
2030 struct anv_buffer *buffer;
2031
2032 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2033
2034 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2035 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2036 if (buffer == NULL)
2037 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2038
2039 buffer->size = pCreateInfo->size;
2040 buffer->usage = pCreateInfo->usage;
2041 buffer->bo = NULL;
2042 buffer->offset = 0;
2043
2044 *pBuffer = anv_buffer_to_handle(buffer);
2045
2046 return VK_SUCCESS;
2047 }
2048
2049 void anv_DestroyBuffer(
2050 VkDevice _device,
2051 VkBuffer _buffer,
2052 const VkAllocationCallbacks* pAllocator)
2053 {
2054 ANV_FROM_HANDLE(anv_device, device, _device);
2055 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2056
2057 if (!buffer)
2058 return;
2059
2060 vk_free2(&device->alloc, pAllocator, buffer);
2061 }
2062
2063 void
2064 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2065 enum isl_format format,
2066 uint32_t offset, uint32_t range, uint32_t stride)
2067 {
2068 isl_buffer_fill_state(&device->isl_dev, state.map,
2069 .address = offset,
2070 .mocs = device->default_mocs,
2071 .size = range,
2072 .format = format,
2073 .stride = stride);
2074
2075 if (!device->info.has_llc)
2076 anv_state_clflush(state);
2077 }
2078
2079 void anv_DestroySampler(
2080 VkDevice _device,
2081 VkSampler _sampler,
2082 const VkAllocationCallbacks* pAllocator)
2083 {
2084 ANV_FROM_HANDLE(anv_device, device, _device);
2085 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2086
2087 if (!sampler)
2088 return;
2089
2090 vk_free2(&device->alloc, pAllocator, sampler);
2091 }
2092
2093 VkResult anv_CreateFramebuffer(
2094 VkDevice _device,
2095 const VkFramebufferCreateInfo* pCreateInfo,
2096 const VkAllocationCallbacks* pAllocator,
2097 VkFramebuffer* pFramebuffer)
2098 {
2099 ANV_FROM_HANDLE(anv_device, device, _device);
2100 struct anv_framebuffer *framebuffer;
2101
2102 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2103
2104 size_t size = sizeof(*framebuffer) +
2105 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2106 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2107 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2108 if (framebuffer == NULL)
2109 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2110
2111 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2112 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2113 VkImageView _iview = pCreateInfo->pAttachments[i];
2114 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2115 }
2116
2117 framebuffer->width = pCreateInfo->width;
2118 framebuffer->height = pCreateInfo->height;
2119 framebuffer->layers = pCreateInfo->layers;
2120
2121 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2122
2123 return VK_SUCCESS;
2124 }
2125
2126 void anv_DestroyFramebuffer(
2127 VkDevice _device,
2128 VkFramebuffer _fb,
2129 const VkAllocationCallbacks* pAllocator)
2130 {
2131 ANV_FROM_HANDLE(anv_device, device, _device);
2132 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2133
2134 if (!fb)
2135 return;
2136
2137 vk_free2(&device->alloc, pAllocator, fb);
2138 }
2139
2140 /* vk_icd.h does not declare this function, so we declare it here to
2141 * suppress Wmissing-prototypes.
2142 */
2143 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2144 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2145
2146 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2147 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2148 {
2149 /* For the full details on loader interface versioning, see
2150 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2151 * What follows is a condensed summary, to help you navigate the large and
2152 * confusing official doc.
2153 *
2154 * - Loader interface v0 is incompatible with later versions. We don't
2155 * support it.
2156 *
2157 * - In loader interface v1:
2158 * - The first ICD entrypoint called by the loader is
2159 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2160 * entrypoint.
2161 * - The ICD must statically expose no other Vulkan symbol unless it is
2162 * linked with -Bsymbolic.
2163 * - Each dispatchable Vulkan handle created by the ICD must be
2164 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2165 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2166 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2167 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2168 * such loader-managed surfaces.
2169 *
2170 * - Loader interface v2 differs from v1 in:
2171 * - The first ICD entrypoint called by the loader is
2172 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2173 * statically expose this entrypoint.
2174 *
2175 * - Loader interface v3 differs from v2 in:
2176 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2177 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2178 * because the loader no longer does so.
2179 */
2180 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2181 return VK_SUCCESS;
2182 }