anv/device: GetDeviceQueue2 should only return queues with matching flags
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t *heap_size)
62 {
63 uint64_t gtt_size;
64 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
65 &gtt_size) == -1) {
66 /* If, for whatever reason, we can't actually get the GTT size from the
67 * kernel (too old?) fall back to the aperture size.
68 */
69 anv_perf_warn(NULL, NULL,
70 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
71
72 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
73 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
74 "failed to get aperture size: %m");
75 }
76 }
77
78 /* Query the total ram from the system */
79 struct sysinfo info;
80 sysinfo(&info);
81
82 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
83
84 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
85 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
86 */
87 uint64_t available_ram;
88 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
89 available_ram = total_ram / 2;
90 else
91 available_ram = total_ram * 3 / 4;
92
93 /* We also want to leave some padding for things we allocate in the driver,
94 * so don't go over 3/4 of the GTT either.
95 */
96 uint64_t available_gtt = gtt_size * 3 / 4;
97
98 *heap_size = MIN2(available_ram, available_gtt);
99
100 return VK_SUCCESS;
101 }
102
103 static VkResult
104 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
105 {
106 /* The kernel query only tells us whether or not the kernel supports the
107 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
108 * hardware has actual 48bit address support.
109 */
110 device->supports_48bit_addresses =
111 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
112
113 uint64_t heap_size;
114 VkResult result = anv_compute_heap_size(fd, &heap_size);
115 if (result != VK_SUCCESS)
116 return result;
117
118 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
119 /* When running with an overridden PCI ID, we may get a GTT size from
120 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
121 * address support can still fail. Just clamp the address space size to
122 * 2 GiB if we don't have 48-bit support.
123 */
124 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
125 "not support for 48-bit addresses",
126 __FILE__, __LINE__);
127 heap_size = 2ull << 30;
128 }
129
130 if (heap_size <= 3ull * (1ull << 30)) {
131 /* In this case, everything fits nicely into the 32-bit address space,
132 * so there's no need for supporting 48bit addresses on client-allocated
133 * memory objects.
134 */
135 device->memory.heap_count = 1;
136 device->memory.heaps[0] = (struct anv_memory_heap) {
137 .size = heap_size,
138 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
139 .supports_48bit_addresses = false,
140 };
141 } else {
142 /* Not everything will fit nicely into a 32-bit address space. In this
143 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
144 * larger 48-bit heap. If we're in this case, then we have a total heap
145 * size larger than 3GiB which most likely means they have 8 GiB of
146 * video memory and so carving off 1 GiB for the 32-bit heap should be
147 * reasonable.
148 */
149 const uint64_t heap_size_32bit = 1ull << 30;
150 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
151
152 assert(device->supports_48bit_addresses);
153
154 device->memory.heap_count = 2;
155 device->memory.heaps[0] = (struct anv_memory_heap) {
156 .size = heap_size_48bit,
157 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
158 .supports_48bit_addresses = true,
159 };
160 device->memory.heaps[1] = (struct anv_memory_heap) {
161 .size = heap_size_32bit,
162 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
163 .supports_48bit_addresses = false,
164 };
165 }
166
167 uint32_t type_count = 0;
168 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
169 uint32_t valid_buffer_usage = ~0;
170
171 /* There appears to be a hardware issue in the VF cache where it only
172 * considers the bottom 32 bits of memory addresses. If you happen to
173 * have two vertex buffers which get placed exactly 4 GiB apart and use
174 * them in back-to-back draw calls, you can get collisions. In order to
175 * solve this problem, we require vertex and index buffers be bound to
176 * memory allocated out of the 32-bit heap.
177 */
178 if (device->memory.heaps[heap].supports_48bit_addresses) {
179 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
180 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
181 }
182
183 if (device->info.has_llc) {
184 /* Big core GPUs share LLC with the CPU and thus one memory type can be
185 * both cached and coherent at the same time.
186 */
187 device->memory.types[type_count++] = (struct anv_memory_type) {
188 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
189 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
190 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
191 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
192 .heapIndex = heap,
193 .valid_buffer_usage = valid_buffer_usage,
194 };
195 } else {
196 /* The spec requires that we expose a host-visible, coherent memory
197 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
198 * to give the application a choice between cached, but not coherent and
199 * coherent but uncached (WC though).
200 */
201 device->memory.types[type_count++] = (struct anv_memory_type) {
202 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
203 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
204 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
205 .heapIndex = heap,
206 .valid_buffer_usage = valid_buffer_usage,
207 };
208 device->memory.types[type_count++] = (struct anv_memory_type) {
209 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
210 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
211 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
212 .heapIndex = heap,
213 .valid_buffer_usage = valid_buffer_usage,
214 };
215 }
216 }
217 device->memory.type_count = type_count;
218
219 return VK_SUCCESS;
220 }
221
222 static VkResult
223 anv_physical_device_init_uuids(struct anv_physical_device *device)
224 {
225 const struct build_id_note *note =
226 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
227 if (!note) {
228 return vk_errorf(device->instance, device,
229 VK_ERROR_INITIALIZATION_FAILED,
230 "Failed to find build-id");
231 }
232
233 unsigned build_id_len = build_id_length(note);
234 if (build_id_len < 20) {
235 return vk_errorf(device->instance, device,
236 VK_ERROR_INITIALIZATION_FAILED,
237 "build-id too short. It needs to be a SHA");
238 }
239
240 struct mesa_sha1 sha1_ctx;
241 uint8_t sha1[20];
242 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
243
244 /* The pipeline cache UUID is used for determining when a pipeline cache is
245 * invalid. It needs both a driver build and the PCI ID of the device.
246 */
247 _mesa_sha1_init(&sha1_ctx);
248 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
249 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
250 sizeof(device->chipset_id));
251 _mesa_sha1_final(&sha1_ctx, sha1);
252 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
253
254 /* The driver UUID is used for determining sharability of images and memory
255 * between two Vulkan instances in separate processes. People who want to
256 * share memory need to also check the device UUID (below) so all this
257 * needs to be is the build-id.
258 */
259 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
260
261 /* The device UUID uniquely identifies the given device within the machine.
262 * Since we never have more than one device, this doesn't need to be a real
263 * UUID. However, on the off-chance that someone tries to use this to
264 * cache pre-tiled images or something of the like, we use the PCI ID and
265 * some bits of ISL info to ensure that this is safe.
266 */
267 _mesa_sha1_init(&sha1_ctx);
268 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
269 sizeof(device->chipset_id));
270 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
271 sizeof(device->isl_dev.has_bit6_swizzling));
272 _mesa_sha1_final(&sha1_ctx, sha1);
273 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
274
275 return VK_SUCCESS;
276 }
277
278 static VkResult
279 anv_physical_device_init(struct anv_physical_device *device,
280 struct anv_instance *instance,
281 const char *path)
282 {
283 VkResult result;
284 int fd;
285
286 brw_process_intel_debug_variable();
287
288 fd = open(path, O_RDWR | O_CLOEXEC);
289 if (fd < 0)
290 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
291
292 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
293 device->instance = instance;
294
295 assert(strlen(path) < ARRAY_SIZE(device->path));
296 strncpy(device->path, path, ARRAY_SIZE(device->path));
297
298 device->no_hw = getenv("INTEL_NO_HW") != NULL;
299
300 const int pci_id_override = gen_get_pci_device_id_override();
301 if (pci_id_override < 0) {
302 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
303 if (!device->chipset_id) {
304 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
305 goto fail;
306 }
307 } else {
308 device->chipset_id = pci_id_override;
309 device->no_hw = true;
310 }
311
312 device->name = gen_get_device_name(device->chipset_id);
313 if (!gen_get_device_info(device->chipset_id, &device->info)) {
314 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
315 goto fail;
316 }
317
318 if (device->info.is_haswell) {
319 intel_logw("Haswell Vulkan support is incomplete");
320 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
321 intel_logw("Ivy Bridge Vulkan support is incomplete");
322 } else if (device->info.gen == 7 && device->info.is_baytrail) {
323 intel_logw("Bay Trail Vulkan support is incomplete");
324 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
325 /* Gen8-10 fully supported */
326 } else {
327 result = vk_errorf(device->instance, device,
328 VK_ERROR_INCOMPATIBLE_DRIVER,
329 "Vulkan not yet supported on %s", device->name);
330 goto fail;
331 }
332
333 device->cmd_parser_version = -1;
334 if (device->info.gen == 7) {
335 device->cmd_parser_version =
336 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
337 if (device->cmd_parser_version == -1) {
338 result = vk_errorf(device->instance, device,
339 VK_ERROR_INITIALIZATION_FAILED,
340 "failed to get command parser version");
341 goto fail;
342 }
343 }
344
345 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
346 result = vk_errorf(device->instance, device,
347 VK_ERROR_INITIALIZATION_FAILED,
348 "kernel missing gem wait");
349 goto fail;
350 }
351
352 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
353 result = vk_errorf(device->instance, device,
354 VK_ERROR_INITIALIZATION_FAILED,
355 "kernel missing execbuf2");
356 goto fail;
357 }
358
359 if (!device->info.has_llc &&
360 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
361 result = vk_errorf(device->instance, device,
362 VK_ERROR_INITIALIZATION_FAILED,
363 "kernel missing wc mmap");
364 goto fail;
365 }
366
367 result = anv_physical_device_init_heaps(device, fd);
368 if (result != VK_SUCCESS)
369 goto fail;
370
371 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
372 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
373 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
374 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
375 device->has_syncobj_wait = device->has_syncobj &&
376 anv_gem_supports_syncobj_wait(fd);
377 device->has_context_priority = anv_gem_has_context_priority(fd);
378
379 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
380
381 /* Starting with Gen10, the timestamp frequency of the command streamer may
382 * vary from one part to another. We can query the value from the kernel.
383 */
384 if (device->info.gen >= 10) {
385 int timestamp_frequency =
386 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
387
388 if (timestamp_frequency < 0)
389 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
390 else
391 device->info.timestamp_frequency = timestamp_frequency;
392 }
393
394 /* GENs prior to 8 do not support EU/Subslice info */
395 if (device->info.gen >= 8) {
396 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
397 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
398
399 /* Without this information, we cannot get the right Braswell
400 * brandstrings, and we have to use conservative numbers for GPGPU on
401 * many platforms, but otherwise, things will just work.
402 */
403 if (device->subslice_total < 1 || device->eu_total < 1) {
404 intel_logw("Kernel 4.1 required to properly query GPU properties");
405 }
406 } else if (device->info.gen == 7) {
407 device->subslice_total = 1 << (device->info.gt - 1);
408 }
409
410 if (device->info.is_cherryview &&
411 device->subslice_total > 0 && device->eu_total > 0) {
412 /* Logical CS threads = EUs per subslice * num threads per EU */
413 uint32_t max_cs_threads =
414 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
415
416 /* Fuse configurations may give more threads than expected, never less. */
417 if (max_cs_threads > device->info.max_cs_threads)
418 device->info.max_cs_threads = max_cs_threads;
419 }
420
421 device->compiler = brw_compiler_create(NULL, &device->info);
422 if (device->compiler == NULL) {
423 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
424 goto fail;
425 }
426 device->compiler->shader_debug_log = compiler_debug_log;
427 device->compiler->shader_perf_log = compiler_perf_log;
428 device->compiler->supports_pull_constants = false;
429 device->compiler->constant_buffer_0_is_relative = true;
430
431 isl_device_init(&device->isl_dev, &device->info, swizzled);
432
433 result = anv_physical_device_init_uuids(device);
434 if (result != VK_SUCCESS)
435 goto fail;
436
437 result = anv_init_wsi(device);
438 if (result != VK_SUCCESS) {
439 ralloc_free(device->compiler);
440 goto fail;
441 }
442
443 anv_physical_device_get_supported_extensions(device,
444 &device->supported_extensions);
445
446 device->local_fd = fd;
447 return VK_SUCCESS;
448
449 fail:
450 close(fd);
451 return result;
452 }
453
454 static void
455 anv_physical_device_finish(struct anv_physical_device *device)
456 {
457 anv_finish_wsi(device);
458 ralloc_free(device->compiler);
459 close(device->local_fd);
460 }
461
462 static void *
463 default_alloc_func(void *pUserData, size_t size, size_t align,
464 VkSystemAllocationScope allocationScope)
465 {
466 return malloc(size);
467 }
468
469 static void *
470 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
471 size_t align, VkSystemAllocationScope allocationScope)
472 {
473 return realloc(pOriginal, size);
474 }
475
476 static void
477 default_free_func(void *pUserData, void *pMemory)
478 {
479 free(pMemory);
480 }
481
482 static const VkAllocationCallbacks default_alloc = {
483 .pUserData = NULL,
484 .pfnAllocation = default_alloc_func,
485 .pfnReallocation = default_realloc_func,
486 .pfnFree = default_free_func,
487 };
488
489 VkResult anv_EnumerateInstanceExtensionProperties(
490 const char* pLayerName,
491 uint32_t* pPropertyCount,
492 VkExtensionProperties* pProperties)
493 {
494 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
495
496 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
497 if (anv_instance_extensions_supported.extensions[i]) {
498 vk_outarray_append(&out, prop) {
499 *prop = anv_instance_extensions[i];
500 }
501 }
502 }
503
504 return vk_outarray_status(&out);
505 }
506
507 VkResult anv_CreateInstance(
508 const VkInstanceCreateInfo* pCreateInfo,
509 const VkAllocationCallbacks* pAllocator,
510 VkInstance* pInstance)
511 {
512 struct anv_instance *instance;
513 VkResult result;
514
515 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
516
517 /* Check if user passed a debug report callback to be used during
518 * Create/Destroy of instance.
519 */
520 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
521 vk_find_struct_const(pCreateInfo->pNext,
522 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
523
524 uint32_t client_version;
525 if (pCreateInfo->pApplicationInfo &&
526 pCreateInfo->pApplicationInfo->apiVersion != 0) {
527 client_version = pCreateInfo->pApplicationInfo->apiVersion;
528 } else {
529 client_version = VK_MAKE_VERSION(1, 0, 0);
530 }
531
532 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
533 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
534
535 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
536 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT,
537 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
538 VK_NULL_HANDLE, /* No handle available yet. */
539 __LINE__,
540 0,
541 "anv",
542 "incompatible driver version",
543 ctor_cb->pUserData);
544
545 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
546 "Client requested version %d.%d.%d",
547 VK_VERSION_MAJOR(client_version),
548 VK_VERSION_MINOR(client_version),
549 VK_VERSION_PATCH(client_version));
550 }
551
552 struct anv_instance_extension_table enabled_extensions = {};
553 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
554 int idx;
555 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
556 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
557 anv_instance_extensions[idx].extensionName) == 0)
558 break;
559 }
560
561 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
562 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
563
564 if (!anv_instance_extensions_supported.extensions[idx])
565 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
566
567 enabled_extensions.extensions[idx] = true;
568 }
569
570 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
571 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
572 if (!instance)
573 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
574
575 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
576
577 if (pAllocator)
578 instance->alloc = *pAllocator;
579 else
580 instance->alloc = default_alloc;
581
582 instance->apiVersion = client_version;
583 instance->enabled_extensions = enabled_extensions;
584
585 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
586 /* Vulkan requires that entrypoints for extensions which have not been
587 * enabled must not be advertised.
588 */
589 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
590 &instance->enabled_extensions, NULL)) {
591 instance->dispatch.entrypoints[i] = NULL;
592 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
593 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
594 } else {
595 instance->dispatch.entrypoints[i] =
596 anv_tramp_dispatch_table.entrypoints[i];
597 }
598 }
599
600 instance->physicalDeviceCount = -1;
601
602 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
603 if (result != VK_SUCCESS) {
604 vk_free2(&default_alloc, pAllocator, instance);
605 return vk_error(result);
606 }
607
608 _mesa_locale_init();
609
610 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
611
612 *pInstance = anv_instance_to_handle(instance);
613
614 return VK_SUCCESS;
615 }
616
617 void anv_DestroyInstance(
618 VkInstance _instance,
619 const VkAllocationCallbacks* pAllocator)
620 {
621 ANV_FROM_HANDLE(anv_instance, instance, _instance);
622
623 if (!instance)
624 return;
625
626 if (instance->physicalDeviceCount > 0) {
627 /* We support at most one physical device. */
628 assert(instance->physicalDeviceCount == 1);
629 anv_physical_device_finish(&instance->physicalDevice);
630 }
631
632 VG(VALGRIND_DESTROY_MEMPOOL(instance));
633
634 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
635
636 _mesa_locale_fini();
637
638 vk_free(&instance->alloc, instance);
639 }
640
641 static VkResult
642 anv_enumerate_devices(struct anv_instance *instance)
643 {
644 /* TODO: Check for more devices ? */
645 drmDevicePtr devices[8];
646 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
647 int max_devices;
648
649 instance->physicalDeviceCount = 0;
650
651 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
652 if (max_devices < 1)
653 return VK_ERROR_INCOMPATIBLE_DRIVER;
654
655 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
656 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
657 devices[i]->bustype == DRM_BUS_PCI &&
658 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
659
660 result = anv_physical_device_init(&instance->physicalDevice,
661 instance,
662 devices[i]->nodes[DRM_NODE_RENDER]);
663 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
664 break;
665 }
666 }
667 drmFreeDevices(devices, max_devices);
668
669 if (result == VK_SUCCESS)
670 instance->physicalDeviceCount = 1;
671
672 return result;
673 }
674
675 static VkResult
676 anv_instance_ensure_physical_device(struct anv_instance *instance)
677 {
678 if (instance->physicalDeviceCount < 0) {
679 VkResult result = anv_enumerate_devices(instance);
680 if (result != VK_SUCCESS &&
681 result != VK_ERROR_INCOMPATIBLE_DRIVER)
682 return result;
683 }
684
685 return VK_SUCCESS;
686 }
687
688 VkResult anv_EnumeratePhysicalDevices(
689 VkInstance _instance,
690 uint32_t* pPhysicalDeviceCount,
691 VkPhysicalDevice* pPhysicalDevices)
692 {
693 ANV_FROM_HANDLE(anv_instance, instance, _instance);
694 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
695
696 VkResult result = anv_instance_ensure_physical_device(instance);
697 if (result != VK_SUCCESS)
698 return result;
699
700 if (instance->physicalDeviceCount == 0)
701 return VK_SUCCESS;
702
703 assert(instance->physicalDeviceCount == 1);
704 vk_outarray_append(&out, i) {
705 *i = anv_physical_device_to_handle(&instance->physicalDevice);
706 }
707
708 return vk_outarray_status(&out);
709 }
710
711 VkResult anv_EnumeratePhysicalDeviceGroups(
712 VkInstance _instance,
713 uint32_t* pPhysicalDeviceGroupCount,
714 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
715 {
716 ANV_FROM_HANDLE(anv_instance, instance, _instance);
717 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
718 pPhysicalDeviceGroupCount);
719
720 VkResult result = anv_instance_ensure_physical_device(instance);
721 if (result != VK_SUCCESS)
722 return result;
723
724 if (instance->physicalDeviceCount == 0)
725 return VK_SUCCESS;
726
727 assert(instance->physicalDeviceCount == 1);
728
729 vk_outarray_append(&out, p) {
730 p->physicalDeviceCount = 1;
731 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
732 p->physicalDevices[0] =
733 anv_physical_device_to_handle(&instance->physicalDevice);
734 p->subsetAllocation = VK_FALSE;
735
736 vk_foreach_struct(ext, p->pNext)
737 anv_debug_ignored_stype(ext->sType);
738 }
739
740 return vk_outarray_status(&out);
741 }
742
743 void anv_GetPhysicalDeviceFeatures(
744 VkPhysicalDevice physicalDevice,
745 VkPhysicalDeviceFeatures* pFeatures)
746 {
747 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
748
749 *pFeatures = (VkPhysicalDeviceFeatures) {
750 .robustBufferAccess = true,
751 .fullDrawIndexUint32 = true,
752 .imageCubeArray = true,
753 .independentBlend = true,
754 .geometryShader = true,
755 .tessellationShader = true,
756 .sampleRateShading = true,
757 .dualSrcBlend = true,
758 .logicOp = true,
759 .multiDrawIndirect = true,
760 .drawIndirectFirstInstance = true,
761 .depthClamp = true,
762 .depthBiasClamp = true,
763 .fillModeNonSolid = true,
764 .depthBounds = false,
765 .wideLines = true,
766 .largePoints = true,
767 .alphaToOne = true,
768 .multiViewport = true,
769 .samplerAnisotropy = true,
770 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
771 pdevice->info.is_baytrail,
772 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
773 .textureCompressionBC = true,
774 .occlusionQueryPrecise = true,
775 .pipelineStatisticsQuery = true,
776 .fragmentStoresAndAtomics = true,
777 .shaderTessellationAndGeometryPointSize = true,
778 .shaderImageGatherExtended = true,
779 .shaderStorageImageExtendedFormats = true,
780 .shaderStorageImageMultisample = false,
781 .shaderStorageImageReadWithoutFormat = false,
782 .shaderStorageImageWriteWithoutFormat = true,
783 .shaderUniformBufferArrayDynamicIndexing = true,
784 .shaderSampledImageArrayDynamicIndexing = true,
785 .shaderStorageBufferArrayDynamicIndexing = true,
786 .shaderStorageImageArrayDynamicIndexing = true,
787 .shaderClipDistance = true,
788 .shaderCullDistance = true,
789 .shaderFloat64 = pdevice->info.gen >= 8,
790 .shaderInt64 = pdevice->info.gen >= 8,
791 .shaderInt16 = false,
792 .shaderResourceMinLod = false,
793 .variableMultisampleRate = false,
794 .inheritedQueries = true,
795 };
796
797 /* We can't do image stores in vec4 shaders */
798 pFeatures->vertexPipelineStoresAndAtomics =
799 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
800 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
801 }
802
803 void anv_GetPhysicalDeviceFeatures2(
804 VkPhysicalDevice physicalDevice,
805 VkPhysicalDeviceFeatures2* pFeatures)
806 {
807 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
808
809 vk_foreach_struct(ext, pFeatures->pNext) {
810 switch (ext->sType) {
811 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
812 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
813 features->protectedMemory = VK_FALSE;
814 break;
815 }
816
817 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
818 VkPhysicalDeviceMultiviewFeatures *features =
819 (VkPhysicalDeviceMultiviewFeatures *)ext;
820 features->multiview = true;
821 features->multiviewGeometryShader = true;
822 features->multiviewTessellationShader = true;
823 break;
824 }
825
826 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
827 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
828 features->variablePointersStorageBuffer = true;
829 features->variablePointers = true;
830 break;
831 }
832
833 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
834 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
835 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
836 features->samplerYcbcrConversion = true;
837 break;
838 }
839
840 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
841 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
842 features->shaderDrawParameters = true;
843 break;
844 }
845
846 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
847 VkPhysicalDevice16BitStorageFeaturesKHR *features =
848 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
849 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
850
851 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
852 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
853 features->storagePushConstant16 = pdevice->info.gen >= 8;
854 features->storageInputOutput16 = false;
855 break;
856 }
857
858 default:
859 anv_debug_ignored_stype(ext->sType);
860 break;
861 }
862 }
863 }
864
865 void anv_GetPhysicalDeviceProperties(
866 VkPhysicalDevice physicalDevice,
867 VkPhysicalDeviceProperties* pProperties)
868 {
869 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
870 const struct gen_device_info *devinfo = &pdevice->info;
871
872 /* See assertions made when programming the buffer surface state. */
873 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
874 (1ul << 30) : (1ul << 27);
875
876 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
877 128 : 16;
878
879 VkSampleCountFlags sample_counts =
880 isl_device_get_sample_counts(&pdevice->isl_dev);
881
882 VkPhysicalDeviceLimits limits = {
883 .maxImageDimension1D = (1 << 14),
884 .maxImageDimension2D = (1 << 14),
885 .maxImageDimension3D = (1 << 11),
886 .maxImageDimensionCube = (1 << 14),
887 .maxImageArrayLayers = (1 << 11),
888 .maxTexelBufferElements = 128 * 1024 * 1024,
889 .maxUniformBufferRange = (1ul << 27),
890 .maxStorageBufferRange = max_raw_buffer_sz,
891 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
892 .maxMemoryAllocationCount = UINT32_MAX,
893 .maxSamplerAllocationCount = 64 * 1024,
894 .bufferImageGranularity = 64, /* A cache line */
895 .sparseAddressSpaceSize = 0,
896 .maxBoundDescriptorSets = MAX_SETS,
897 .maxPerStageDescriptorSamplers = max_samplers,
898 .maxPerStageDescriptorUniformBuffers = 64,
899 .maxPerStageDescriptorStorageBuffers = 64,
900 .maxPerStageDescriptorSampledImages = max_samplers,
901 .maxPerStageDescriptorStorageImages = 64,
902 .maxPerStageDescriptorInputAttachments = 64,
903 .maxPerStageResources = 250,
904 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
905 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
906 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
907 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
908 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
909 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
910 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
911 .maxDescriptorSetInputAttachments = 256,
912 .maxVertexInputAttributes = MAX_VBS,
913 .maxVertexInputBindings = MAX_VBS,
914 .maxVertexInputAttributeOffset = 2047,
915 .maxVertexInputBindingStride = 2048,
916 .maxVertexOutputComponents = 128,
917 .maxTessellationGenerationLevel = 64,
918 .maxTessellationPatchSize = 32,
919 .maxTessellationControlPerVertexInputComponents = 128,
920 .maxTessellationControlPerVertexOutputComponents = 128,
921 .maxTessellationControlPerPatchOutputComponents = 128,
922 .maxTessellationControlTotalOutputComponents = 2048,
923 .maxTessellationEvaluationInputComponents = 128,
924 .maxTessellationEvaluationOutputComponents = 128,
925 .maxGeometryShaderInvocations = 32,
926 .maxGeometryInputComponents = 64,
927 .maxGeometryOutputComponents = 128,
928 .maxGeometryOutputVertices = 256,
929 .maxGeometryTotalOutputComponents = 1024,
930 .maxFragmentInputComponents = 128,
931 .maxFragmentOutputAttachments = 8,
932 .maxFragmentDualSrcAttachments = 1,
933 .maxFragmentCombinedOutputResources = 8,
934 .maxComputeSharedMemorySize = 32768,
935 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
936 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
937 .maxComputeWorkGroupSize = {
938 16 * devinfo->max_cs_threads,
939 16 * devinfo->max_cs_threads,
940 16 * devinfo->max_cs_threads,
941 },
942 .subPixelPrecisionBits = 4 /* FIXME */,
943 .subTexelPrecisionBits = 4 /* FIXME */,
944 .mipmapPrecisionBits = 4 /* FIXME */,
945 .maxDrawIndexedIndexValue = UINT32_MAX,
946 .maxDrawIndirectCount = UINT32_MAX,
947 .maxSamplerLodBias = 16,
948 .maxSamplerAnisotropy = 16,
949 .maxViewports = MAX_VIEWPORTS,
950 .maxViewportDimensions = { (1 << 14), (1 << 14) },
951 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
952 .viewportSubPixelBits = 13, /* We take a float? */
953 .minMemoryMapAlignment = 4096, /* A page */
954 .minTexelBufferOffsetAlignment = 1,
955 /* We need 16 for UBO block reads to work and 32 for push UBOs */
956 .minUniformBufferOffsetAlignment = 32,
957 .minStorageBufferOffsetAlignment = 4,
958 .minTexelOffset = -8,
959 .maxTexelOffset = 7,
960 .minTexelGatherOffset = -32,
961 .maxTexelGatherOffset = 31,
962 .minInterpolationOffset = -0.5,
963 .maxInterpolationOffset = 0.4375,
964 .subPixelInterpolationOffsetBits = 4,
965 .maxFramebufferWidth = (1 << 14),
966 .maxFramebufferHeight = (1 << 14),
967 .maxFramebufferLayers = (1 << 11),
968 .framebufferColorSampleCounts = sample_counts,
969 .framebufferDepthSampleCounts = sample_counts,
970 .framebufferStencilSampleCounts = sample_counts,
971 .framebufferNoAttachmentsSampleCounts = sample_counts,
972 .maxColorAttachments = MAX_RTS,
973 .sampledImageColorSampleCounts = sample_counts,
974 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
975 .sampledImageDepthSampleCounts = sample_counts,
976 .sampledImageStencilSampleCounts = sample_counts,
977 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
978 .maxSampleMaskWords = 1,
979 .timestampComputeAndGraphics = false,
980 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
981 .maxClipDistances = 8,
982 .maxCullDistances = 8,
983 .maxCombinedClipAndCullDistances = 8,
984 .discreteQueuePriorities = 1,
985 .pointSizeRange = { 0.125, 255.875 },
986 .lineWidthRange = { 0.0, 7.9921875 },
987 .pointSizeGranularity = (1.0 / 8.0),
988 .lineWidthGranularity = (1.0 / 128.0),
989 .strictLines = false, /* FINISHME */
990 .standardSampleLocations = true,
991 .optimalBufferCopyOffsetAlignment = 128,
992 .optimalBufferCopyRowPitchAlignment = 128,
993 .nonCoherentAtomSize = 64,
994 };
995
996 *pProperties = (VkPhysicalDeviceProperties) {
997 .apiVersion = anv_physical_device_api_version(pdevice),
998 .driverVersion = vk_get_driver_version(),
999 .vendorID = 0x8086,
1000 .deviceID = pdevice->chipset_id,
1001 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1002 .limits = limits,
1003 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1004 };
1005
1006 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1007 "%s", pdevice->name);
1008 memcpy(pProperties->pipelineCacheUUID,
1009 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1010 }
1011
1012 void anv_GetPhysicalDeviceProperties2(
1013 VkPhysicalDevice physicalDevice,
1014 VkPhysicalDeviceProperties2* pProperties)
1015 {
1016 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1017
1018 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1019
1020 vk_foreach_struct(ext, pProperties->pNext) {
1021 switch (ext->sType) {
1022 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1023 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1024 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1025
1026 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1027 break;
1028 }
1029
1030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1031 VkPhysicalDeviceIDProperties *id_props =
1032 (VkPhysicalDeviceIDProperties *)ext;
1033 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1034 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1035 /* The LUID is for Windows. */
1036 id_props->deviceLUIDValid = false;
1037 break;
1038 }
1039
1040 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1041 VkPhysicalDeviceMaintenance3Properties *props =
1042 (VkPhysicalDeviceMaintenance3Properties *)ext;
1043 /* This value doesn't matter for us today as our per-stage
1044 * descriptors are the real limit.
1045 */
1046 props->maxPerSetDescriptors = 1024;
1047 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1048 break;
1049 }
1050
1051 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1052 VkPhysicalDeviceMultiviewProperties *properties =
1053 (VkPhysicalDeviceMultiviewProperties *)ext;
1054 properties->maxMultiviewViewCount = 16;
1055 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1056 break;
1057 }
1058
1059 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1060 VkPhysicalDevicePointClippingProperties *properties =
1061 (VkPhysicalDevicePointClippingProperties *) ext;
1062 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1063 anv_finishme("Implement pop-free point clipping");
1064 break;
1065 }
1066
1067 default:
1068 anv_debug_ignored_stype(ext->sType);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /* We support exactly one queue family. */
1075 static const VkQueueFamilyProperties
1076 anv_queue_family_properties = {
1077 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1078 VK_QUEUE_COMPUTE_BIT |
1079 VK_QUEUE_TRANSFER_BIT,
1080 .queueCount = 1,
1081 .timestampValidBits = 36, /* XXX: Real value here */
1082 .minImageTransferGranularity = { 1, 1, 1 },
1083 };
1084
1085 void anv_GetPhysicalDeviceQueueFamilyProperties(
1086 VkPhysicalDevice physicalDevice,
1087 uint32_t* pCount,
1088 VkQueueFamilyProperties* pQueueFamilyProperties)
1089 {
1090 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1091
1092 vk_outarray_append(&out, p) {
1093 *p = anv_queue_family_properties;
1094 }
1095 }
1096
1097 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1098 VkPhysicalDevice physicalDevice,
1099 uint32_t* pQueueFamilyPropertyCount,
1100 VkQueueFamilyProperties2* pQueueFamilyProperties)
1101 {
1102
1103 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1104
1105 vk_outarray_append(&out, p) {
1106 p->queueFamilyProperties = anv_queue_family_properties;
1107
1108 vk_foreach_struct(s, p->pNext) {
1109 anv_debug_ignored_stype(s->sType);
1110 }
1111 }
1112 }
1113
1114 void anv_GetPhysicalDeviceMemoryProperties(
1115 VkPhysicalDevice physicalDevice,
1116 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1117 {
1118 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1119
1120 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1121 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1122 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1123 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1124 .heapIndex = physical_device->memory.types[i].heapIndex,
1125 };
1126 }
1127
1128 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1129 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1130 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1131 .size = physical_device->memory.heaps[i].size,
1132 .flags = physical_device->memory.heaps[i].flags,
1133 };
1134 }
1135 }
1136
1137 void anv_GetPhysicalDeviceMemoryProperties2(
1138 VkPhysicalDevice physicalDevice,
1139 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1140 {
1141 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1142 &pMemoryProperties->memoryProperties);
1143
1144 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1145 switch (ext->sType) {
1146 default:
1147 anv_debug_ignored_stype(ext->sType);
1148 break;
1149 }
1150 }
1151 }
1152
1153 void
1154 anv_GetDeviceGroupPeerMemoryFeatures(
1155 VkDevice device,
1156 uint32_t heapIndex,
1157 uint32_t localDeviceIndex,
1158 uint32_t remoteDeviceIndex,
1159 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1160 {
1161 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1162 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1163 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1164 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1165 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1166 }
1167
1168 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1169 VkInstance _instance,
1170 const char* pName)
1171 {
1172 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1173
1174 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1175 * when we have to return valid function pointers, NULL, or it's left
1176 * undefined. See the table for exact details.
1177 */
1178 if (pName == NULL)
1179 return NULL;
1180
1181 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1182 if (strcmp(pName, "vk" #entrypoint) == 0) \
1183 return (PFN_vkVoidFunction)anv_##entrypoint
1184
1185 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1186 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1187 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1188
1189 #undef LOOKUP_ANV_ENTRYPOINT
1190
1191 if (instance == NULL)
1192 return NULL;
1193
1194 int idx = anv_get_entrypoint_index(pName);
1195 if (idx < 0)
1196 return NULL;
1197
1198 return instance->dispatch.entrypoints[idx];
1199 }
1200
1201 /* With version 1+ of the loader interface the ICD should expose
1202 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1203 */
1204 PUBLIC
1205 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1206 VkInstance instance,
1207 const char* pName);
1208
1209 PUBLIC
1210 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1211 VkInstance instance,
1212 const char* pName)
1213 {
1214 return anv_GetInstanceProcAddr(instance, pName);
1215 }
1216
1217 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1218 VkDevice _device,
1219 const char* pName)
1220 {
1221 ANV_FROM_HANDLE(anv_device, device, _device);
1222
1223 if (!device || !pName)
1224 return NULL;
1225
1226 int idx = anv_get_entrypoint_index(pName);
1227 if (idx < 0)
1228 return NULL;
1229
1230 return device->dispatch.entrypoints[idx];
1231 }
1232
1233 VkResult
1234 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1235 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1236 const VkAllocationCallbacks* pAllocator,
1237 VkDebugReportCallbackEXT* pCallback)
1238 {
1239 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1240 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1241 pCreateInfo, pAllocator, &instance->alloc,
1242 pCallback);
1243 }
1244
1245 void
1246 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1247 VkDebugReportCallbackEXT _callback,
1248 const VkAllocationCallbacks* pAllocator)
1249 {
1250 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1251 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1252 _callback, pAllocator, &instance->alloc);
1253 }
1254
1255 void
1256 anv_DebugReportMessageEXT(VkInstance _instance,
1257 VkDebugReportFlagsEXT flags,
1258 VkDebugReportObjectTypeEXT objectType,
1259 uint64_t object,
1260 size_t location,
1261 int32_t messageCode,
1262 const char* pLayerPrefix,
1263 const char* pMessage)
1264 {
1265 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1266 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1267 object, location, messageCode, pLayerPrefix, pMessage);
1268 }
1269
1270 static void
1271 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1272 {
1273 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1274 queue->device = device;
1275 queue->pool = &device->surface_state_pool;
1276 queue->flags = 0;
1277 }
1278
1279 static void
1280 anv_queue_finish(struct anv_queue *queue)
1281 {
1282 }
1283
1284 static struct anv_state
1285 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1286 {
1287 struct anv_state state;
1288
1289 state = anv_state_pool_alloc(pool, size, align);
1290 memcpy(state.map, p, size);
1291
1292 anv_state_flush(pool->block_pool.device, state);
1293
1294 return state;
1295 }
1296
1297 struct gen8_border_color {
1298 union {
1299 float float32[4];
1300 uint32_t uint32[4];
1301 };
1302 /* Pad out to 64 bytes */
1303 uint32_t _pad[12];
1304 };
1305
1306 static void
1307 anv_device_init_border_colors(struct anv_device *device)
1308 {
1309 static const struct gen8_border_color border_colors[] = {
1310 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1311 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1312 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1313 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1314 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1315 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1316 };
1317
1318 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1319 sizeof(border_colors), 64,
1320 border_colors);
1321 }
1322
1323 static void
1324 anv_device_init_trivial_batch(struct anv_device *device)
1325 {
1326 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1327
1328 if (device->instance->physicalDevice.has_exec_async)
1329 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1330
1331 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1332 0, 4096, 0);
1333
1334 struct anv_batch batch = {
1335 .start = map,
1336 .next = map,
1337 .end = map + 4096,
1338 };
1339
1340 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1341 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1342
1343 if (!device->info.has_llc)
1344 gen_clflush_range(map, batch.next - map);
1345
1346 anv_gem_munmap(map, device->trivial_batch_bo.size);
1347 }
1348
1349 VkResult anv_EnumerateDeviceExtensionProperties(
1350 VkPhysicalDevice physicalDevice,
1351 const char* pLayerName,
1352 uint32_t* pPropertyCount,
1353 VkExtensionProperties* pProperties)
1354 {
1355 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1356 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1357 (void)device;
1358
1359 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1360 if (device->supported_extensions.extensions[i]) {
1361 vk_outarray_append(&out, prop) {
1362 *prop = anv_device_extensions[i];
1363 }
1364 }
1365 }
1366
1367 return vk_outarray_status(&out);
1368 }
1369
1370 static void
1371 anv_device_init_dispatch(struct anv_device *device)
1372 {
1373 const struct anv_dispatch_table *genX_table;
1374 switch (device->info.gen) {
1375 case 10:
1376 genX_table = &gen10_dispatch_table;
1377 break;
1378 case 9:
1379 genX_table = &gen9_dispatch_table;
1380 break;
1381 case 8:
1382 genX_table = &gen8_dispatch_table;
1383 break;
1384 case 7:
1385 if (device->info.is_haswell)
1386 genX_table = &gen75_dispatch_table;
1387 else
1388 genX_table = &gen7_dispatch_table;
1389 break;
1390 default:
1391 unreachable("unsupported gen\n");
1392 }
1393
1394 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1395 /* Vulkan requires that entrypoints for extensions which have not been
1396 * enabled must not be advertised.
1397 */
1398 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1399 &device->instance->enabled_extensions,
1400 &device->enabled_extensions)) {
1401 device->dispatch.entrypoints[i] = NULL;
1402 } else if (genX_table->entrypoints[i]) {
1403 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1404 } else {
1405 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1406 }
1407 }
1408 }
1409
1410 static int
1411 vk_priority_to_gen(int priority)
1412 {
1413 switch (priority) {
1414 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1415 return GEN_CONTEXT_LOW_PRIORITY;
1416 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1417 return GEN_CONTEXT_MEDIUM_PRIORITY;
1418 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1419 return GEN_CONTEXT_HIGH_PRIORITY;
1420 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1421 return GEN_CONTEXT_REALTIME_PRIORITY;
1422 default:
1423 unreachable("Invalid priority");
1424 }
1425 }
1426
1427 VkResult anv_CreateDevice(
1428 VkPhysicalDevice physicalDevice,
1429 const VkDeviceCreateInfo* pCreateInfo,
1430 const VkAllocationCallbacks* pAllocator,
1431 VkDevice* pDevice)
1432 {
1433 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1434 VkResult result;
1435 struct anv_device *device;
1436
1437 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1438
1439 struct anv_device_extension_table enabled_extensions = { };
1440 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1441 int idx;
1442 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1443 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1444 anv_device_extensions[idx].extensionName) == 0)
1445 break;
1446 }
1447
1448 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1449 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1450
1451 if (!physical_device->supported_extensions.extensions[idx])
1452 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1453
1454 enabled_extensions.extensions[idx] = true;
1455 }
1456
1457 /* Check enabled features */
1458 if (pCreateInfo->pEnabledFeatures) {
1459 VkPhysicalDeviceFeatures supported_features;
1460 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1461 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1462 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1463 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1464 for (uint32_t i = 0; i < num_features; i++) {
1465 if (enabled_feature[i] && !supported_feature[i])
1466 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1467 }
1468 }
1469
1470 /* Check if client specified queue priority. */
1471 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1472 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1473 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1474
1475 VkQueueGlobalPriorityEXT priority =
1476 queue_priority ? queue_priority->globalPriority :
1477 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1478
1479 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1480 sizeof(*device), 8,
1481 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1482 if (!device)
1483 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1484
1485 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1486 device->instance = physical_device->instance;
1487 device->chipset_id = physical_device->chipset_id;
1488 device->no_hw = physical_device->no_hw;
1489 device->lost = false;
1490
1491 if (pAllocator)
1492 device->alloc = *pAllocator;
1493 else
1494 device->alloc = physical_device->instance->alloc;
1495
1496 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1497 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1498 if (device->fd == -1) {
1499 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1500 goto fail_device;
1501 }
1502
1503 device->context_id = anv_gem_create_context(device);
1504 if (device->context_id == -1) {
1505 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1506 goto fail_fd;
1507 }
1508
1509 /* As per spec, the driver implementation may deny requests to acquire
1510 * a priority above the default priority (MEDIUM) if the caller does not
1511 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1512 * is returned.
1513 */
1514 if (physical_device->has_context_priority) {
1515 int err = anv_gem_set_context_param(device->fd, device->context_id,
1516 I915_CONTEXT_PARAM_PRIORITY,
1517 vk_priority_to_gen(priority));
1518 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1519 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1520 goto fail_fd;
1521 }
1522 }
1523
1524 device->info = physical_device->info;
1525 device->isl_dev = physical_device->isl_dev;
1526
1527 /* On Broadwell and later, we can use batch chaining to more efficiently
1528 * implement growing command buffers. Prior to Haswell, the kernel
1529 * command parser gets in the way and we have to fall back to growing
1530 * the batch.
1531 */
1532 device->can_chain_batches = device->info.gen >= 8;
1533
1534 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1535 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1536 device->enabled_extensions = enabled_extensions;
1537
1538 anv_device_init_dispatch(device);
1539
1540 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1541 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1542 goto fail_context_id;
1543 }
1544
1545 pthread_condattr_t condattr;
1546 if (pthread_condattr_init(&condattr) != 0) {
1547 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1548 goto fail_mutex;
1549 }
1550 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1551 pthread_condattr_destroy(&condattr);
1552 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1553 goto fail_mutex;
1554 }
1555 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1556 pthread_condattr_destroy(&condattr);
1557 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1558 goto fail_mutex;
1559 }
1560 pthread_condattr_destroy(&condattr);
1561
1562 uint64_t bo_flags =
1563 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1564 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1565 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1566
1567 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1568
1569 result = anv_bo_cache_init(&device->bo_cache);
1570 if (result != VK_SUCCESS)
1571 goto fail_batch_bo_pool;
1572
1573 /* For the state pools we explicitly disable 48bit. */
1574 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1575 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1576
1577 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1578 bo_flags);
1579 if (result != VK_SUCCESS)
1580 goto fail_bo_cache;
1581
1582 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1583 bo_flags);
1584 if (result != VK_SUCCESS)
1585 goto fail_dynamic_state_pool;
1586
1587 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1588 bo_flags);
1589 if (result != VK_SUCCESS)
1590 goto fail_instruction_state_pool;
1591
1592 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1593 if (result != VK_SUCCESS)
1594 goto fail_surface_state_pool;
1595
1596 anv_device_init_trivial_batch(device);
1597
1598 anv_scratch_pool_init(device, &device->scratch_pool);
1599
1600 anv_queue_init(device, &device->queue);
1601
1602 switch (device->info.gen) {
1603 case 7:
1604 if (!device->info.is_haswell)
1605 result = gen7_init_device_state(device);
1606 else
1607 result = gen75_init_device_state(device);
1608 break;
1609 case 8:
1610 result = gen8_init_device_state(device);
1611 break;
1612 case 9:
1613 result = gen9_init_device_state(device);
1614 break;
1615 case 10:
1616 result = gen10_init_device_state(device);
1617 break;
1618 case 11:
1619 result = gen11_init_device_state(device);
1620 break;
1621 default:
1622 /* Shouldn't get here as we don't create physical devices for any other
1623 * gens. */
1624 unreachable("unhandled gen");
1625 }
1626 if (result != VK_SUCCESS)
1627 goto fail_workaround_bo;
1628
1629 anv_device_init_blorp(device);
1630
1631 anv_device_init_border_colors(device);
1632
1633 *pDevice = anv_device_to_handle(device);
1634
1635 return VK_SUCCESS;
1636
1637 fail_workaround_bo:
1638 anv_queue_finish(&device->queue);
1639 anv_scratch_pool_finish(device, &device->scratch_pool);
1640 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1641 anv_gem_close(device, device->workaround_bo.gem_handle);
1642 fail_surface_state_pool:
1643 anv_state_pool_finish(&device->surface_state_pool);
1644 fail_instruction_state_pool:
1645 anv_state_pool_finish(&device->instruction_state_pool);
1646 fail_dynamic_state_pool:
1647 anv_state_pool_finish(&device->dynamic_state_pool);
1648 fail_bo_cache:
1649 anv_bo_cache_finish(&device->bo_cache);
1650 fail_batch_bo_pool:
1651 anv_bo_pool_finish(&device->batch_bo_pool);
1652 pthread_cond_destroy(&device->queue_submit);
1653 fail_mutex:
1654 pthread_mutex_destroy(&device->mutex);
1655 fail_context_id:
1656 anv_gem_destroy_context(device, device->context_id);
1657 fail_fd:
1658 close(device->fd);
1659 fail_device:
1660 vk_free(&device->alloc, device);
1661
1662 return result;
1663 }
1664
1665 void anv_DestroyDevice(
1666 VkDevice _device,
1667 const VkAllocationCallbacks* pAllocator)
1668 {
1669 ANV_FROM_HANDLE(anv_device, device, _device);
1670
1671 if (!device)
1672 return;
1673
1674 anv_device_finish_blorp(device);
1675
1676 anv_queue_finish(&device->queue);
1677
1678 #ifdef HAVE_VALGRIND
1679 /* We only need to free these to prevent valgrind errors. The backing
1680 * BO will go away in a couple of lines so we don't actually leak.
1681 */
1682 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1683 #endif
1684
1685 anv_scratch_pool_finish(device, &device->scratch_pool);
1686
1687 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1688 anv_gem_close(device, device->workaround_bo.gem_handle);
1689
1690 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1691
1692 anv_state_pool_finish(&device->surface_state_pool);
1693 anv_state_pool_finish(&device->instruction_state_pool);
1694 anv_state_pool_finish(&device->dynamic_state_pool);
1695
1696 anv_bo_cache_finish(&device->bo_cache);
1697
1698 anv_bo_pool_finish(&device->batch_bo_pool);
1699
1700 pthread_cond_destroy(&device->queue_submit);
1701 pthread_mutex_destroy(&device->mutex);
1702
1703 anv_gem_destroy_context(device, device->context_id);
1704
1705 close(device->fd);
1706
1707 vk_free(&device->alloc, device);
1708 }
1709
1710 VkResult anv_EnumerateInstanceLayerProperties(
1711 uint32_t* pPropertyCount,
1712 VkLayerProperties* pProperties)
1713 {
1714 if (pProperties == NULL) {
1715 *pPropertyCount = 0;
1716 return VK_SUCCESS;
1717 }
1718
1719 /* None supported at this time */
1720 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1721 }
1722
1723 VkResult anv_EnumerateDeviceLayerProperties(
1724 VkPhysicalDevice physicalDevice,
1725 uint32_t* pPropertyCount,
1726 VkLayerProperties* pProperties)
1727 {
1728 if (pProperties == NULL) {
1729 *pPropertyCount = 0;
1730 return VK_SUCCESS;
1731 }
1732
1733 /* None supported at this time */
1734 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1735 }
1736
1737 void anv_GetDeviceQueue(
1738 VkDevice _device,
1739 uint32_t queueNodeIndex,
1740 uint32_t queueIndex,
1741 VkQueue* pQueue)
1742 {
1743 ANV_FROM_HANDLE(anv_device, device, _device);
1744
1745 assert(queueIndex == 0);
1746
1747 *pQueue = anv_queue_to_handle(&device->queue);
1748 }
1749
1750 void anv_GetDeviceQueue2(
1751 VkDevice _device,
1752 const VkDeviceQueueInfo2* pQueueInfo,
1753 VkQueue* pQueue)
1754 {
1755 ANV_FROM_HANDLE(anv_device, device, _device);
1756
1757 assert(pQueueInfo->queueIndex == 0);
1758
1759 if (pQueueInfo->flags == device->queue.flags)
1760 *pQueue = anv_queue_to_handle(&device->queue);
1761 else
1762 *pQueue = NULL;
1763 }
1764
1765 VkResult
1766 anv_device_query_status(struct anv_device *device)
1767 {
1768 /* This isn't likely as most of the callers of this function already check
1769 * for it. However, it doesn't hurt to check and it potentially lets us
1770 * avoid an ioctl.
1771 */
1772 if (unlikely(device->lost))
1773 return VK_ERROR_DEVICE_LOST;
1774
1775 uint32_t active, pending;
1776 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1777 if (ret == -1) {
1778 /* We don't know the real error. */
1779 device->lost = true;
1780 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1781 "get_reset_stats failed: %m");
1782 }
1783
1784 if (active) {
1785 device->lost = true;
1786 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1787 "GPU hung on one of our command buffers");
1788 } else if (pending) {
1789 device->lost = true;
1790 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1791 "GPU hung with commands in-flight");
1792 }
1793
1794 return VK_SUCCESS;
1795 }
1796
1797 VkResult
1798 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1799 {
1800 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1801 * Other usages of the BO (such as on different hardware) will not be
1802 * flagged as "busy" by this ioctl. Use with care.
1803 */
1804 int ret = anv_gem_busy(device, bo->gem_handle);
1805 if (ret == 1) {
1806 return VK_NOT_READY;
1807 } else if (ret == -1) {
1808 /* We don't know the real error. */
1809 device->lost = true;
1810 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1811 "gem wait failed: %m");
1812 }
1813
1814 /* Query for device status after the busy call. If the BO we're checking
1815 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1816 * client because it clearly doesn't have valid data. Yes, this most
1817 * likely means an ioctl, but we just did an ioctl to query the busy status
1818 * so it's no great loss.
1819 */
1820 return anv_device_query_status(device);
1821 }
1822
1823 VkResult
1824 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1825 int64_t timeout)
1826 {
1827 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1828 if (ret == -1 && errno == ETIME) {
1829 return VK_TIMEOUT;
1830 } else if (ret == -1) {
1831 /* We don't know the real error. */
1832 device->lost = true;
1833 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1834 "gem wait failed: %m");
1835 }
1836
1837 /* Query for device status after the wait. If the BO we're waiting on got
1838 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1839 * because it clearly doesn't have valid data. Yes, this most likely means
1840 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1841 */
1842 return anv_device_query_status(device);
1843 }
1844
1845 VkResult anv_DeviceWaitIdle(
1846 VkDevice _device)
1847 {
1848 ANV_FROM_HANDLE(anv_device, device, _device);
1849 if (unlikely(device->lost))
1850 return VK_ERROR_DEVICE_LOST;
1851
1852 struct anv_batch batch;
1853
1854 uint32_t cmds[8];
1855 batch.start = batch.next = cmds;
1856 batch.end = (void *) cmds + sizeof(cmds);
1857
1858 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1859 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1860
1861 return anv_device_submit_simple_batch(device, &batch);
1862 }
1863
1864 VkResult
1865 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1866 {
1867 uint32_t gem_handle = anv_gem_create(device, size);
1868 if (!gem_handle)
1869 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1870
1871 anv_bo_init(bo, gem_handle, size);
1872
1873 return VK_SUCCESS;
1874 }
1875
1876 VkResult anv_AllocateMemory(
1877 VkDevice _device,
1878 const VkMemoryAllocateInfo* pAllocateInfo,
1879 const VkAllocationCallbacks* pAllocator,
1880 VkDeviceMemory* pMem)
1881 {
1882 ANV_FROM_HANDLE(anv_device, device, _device);
1883 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1884 struct anv_device_memory *mem;
1885 VkResult result = VK_SUCCESS;
1886
1887 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1888
1889 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1890 assert(pAllocateInfo->allocationSize > 0);
1891
1892 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
1893 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1894
1895 /* FINISHME: Fail if allocation request exceeds heap size. */
1896
1897 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1898 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1899 if (mem == NULL)
1900 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1901
1902 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1903 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1904 mem->map = NULL;
1905 mem->map_size = 0;
1906
1907 const VkImportMemoryFdInfoKHR *fd_info =
1908 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1909
1910 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1911 * ignored.
1912 */
1913 if (fd_info && fd_info->handleType) {
1914 /* At the moment, we support only the below handle types. */
1915 assert(fd_info->handleType ==
1916 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
1917 fd_info->handleType ==
1918 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1919
1920 result = anv_bo_cache_import(device, &device->bo_cache,
1921 fd_info->fd, &mem->bo);
1922 if (result != VK_SUCCESS)
1923 goto fail;
1924
1925 VkDeviceSize aligned_alloc_size =
1926 align_u64(pAllocateInfo->allocationSize, 4096);
1927
1928 /* For security purposes, we reject importing the bo if it's smaller
1929 * than the requested allocation size. This prevents a malicious client
1930 * from passing a buffer to a trusted client, lying about the size, and
1931 * telling the trusted client to try and texture from an image that goes
1932 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1933 * in the trusted client. The trusted client can protect itself against
1934 * this sort of attack but only if it can trust the buffer size.
1935 */
1936 if (mem->bo->size < aligned_alloc_size) {
1937 result = vk_errorf(device->instance, device,
1938 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1939 "aligned allocationSize too large for "
1940 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1941 "%"PRIu64"B > %"PRIu64"B",
1942 aligned_alloc_size, mem->bo->size);
1943 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1944 goto fail;
1945 }
1946
1947 /* From the Vulkan spec:
1948 *
1949 * "Importing memory from a file descriptor transfers ownership of
1950 * the file descriptor from the application to the Vulkan
1951 * implementation. The application must not perform any operations on
1952 * the file descriptor after a successful import."
1953 *
1954 * If the import fails, we leave the file descriptor open.
1955 */
1956 close(fd_info->fd);
1957 } else {
1958 result = anv_bo_cache_alloc(device, &device->bo_cache,
1959 pAllocateInfo->allocationSize,
1960 &mem->bo);
1961 if (result != VK_SUCCESS)
1962 goto fail;
1963
1964 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1965 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1966 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1967 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1968
1969 /* Some legacy (non-modifiers) consumers need the tiling to be set on
1970 * the BO. In this case, we have a dedicated allocation.
1971 */
1972 if (image->needs_set_tiling) {
1973 const uint32_t i915_tiling =
1974 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1975 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1976 image->planes[0].surface.isl.row_pitch,
1977 i915_tiling);
1978 if (ret) {
1979 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1980 return vk_errorf(device->instance, NULL,
1981 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1982 "failed to set BO tiling: %m");
1983 }
1984 }
1985 }
1986 }
1987
1988 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1989 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1990 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1991
1992 const struct wsi_memory_allocate_info *wsi_info =
1993 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
1994 if (wsi_info && wsi_info->implicit_sync) {
1995 /* We need to set the WRITE flag on window system buffers so that GEM
1996 * will know we're writing to them and synchronize uses on other rings
1997 * (eg if the display server uses the blitter ring).
1998 */
1999 mem->bo->flags |= EXEC_OBJECT_WRITE;
2000 } else if (pdevice->has_exec_async) {
2001 mem->bo->flags |= EXEC_OBJECT_ASYNC;
2002 }
2003
2004 *pMem = anv_device_memory_to_handle(mem);
2005
2006 return VK_SUCCESS;
2007
2008 fail:
2009 vk_free2(&device->alloc, pAllocator, mem);
2010
2011 return result;
2012 }
2013
2014 VkResult anv_GetMemoryFdKHR(
2015 VkDevice device_h,
2016 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2017 int* pFd)
2018 {
2019 ANV_FROM_HANDLE(anv_device, dev, device_h);
2020 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2021
2022 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2023
2024 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2025 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2026
2027 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2028 }
2029
2030 VkResult anv_GetMemoryFdPropertiesKHR(
2031 VkDevice _device,
2032 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2033 int fd,
2034 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2035 {
2036 ANV_FROM_HANDLE(anv_device, device, _device);
2037 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2038
2039 switch (handleType) {
2040 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2041 /* dma-buf can be imported as any memory type */
2042 pMemoryFdProperties->memoryTypeBits =
2043 (1 << pdevice->memory.type_count) - 1;
2044 return VK_SUCCESS;
2045
2046 default:
2047 /* The valid usage section for this function says:
2048 *
2049 * "handleType must not be one of the handle types defined as
2050 * opaque."
2051 *
2052 * So opaque handle types fall into the default "unsupported" case.
2053 */
2054 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2055 }
2056 }
2057
2058 void anv_FreeMemory(
2059 VkDevice _device,
2060 VkDeviceMemory _mem,
2061 const VkAllocationCallbacks* pAllocator)
2062 {
2063 ANV_FROM_HANDLE(anv_device, device, _device);
2064 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2065
2066 if (mem == NULL)
2067 return;
2068
2069 if (mem->map)
2070 anv_UnmapMemory(_device, _mem);
2071
2072 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2073
2074 vk_free2(&device->alloc, pAllocator, mem);
2075 }
2076
2077 VkResult anv_MapMemory(
2078 VkDevice _device,
2079 VkDeviceMemory _memory,
2080 VkDeviceSize offset,
2081 VkDeviceSize size,
2082 VkMemoryMapFlags flags,
2083 void** ppData)
2084 {
2085 ANV_FROM_HANDLE(anv_device, device, _device);
2086 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2087
2088 if (mem == NULL) {
2089 *ppData = NULL;
2090 return VK_SUCCESS;
2091 }
2092
2093 if (size == VK_WHOLE_SIZE)
2094 size = mem->bo->size - offset;
2095
2096 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2097 *
2098 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2099 * assert(size != 0);
2100 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2101 * equal to the size of the memory minus offset
2102 */
2103 assert(size > 0);
2104 assert(offset + size <= mem->bo->size);
2105
2106 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2107 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2108 * at a time is valid. We could just mmap up front and return an offset
2109 * pointer here, but that may exhaust virtual memory on 32 bit
2110 * userspace. */
2111
2112 uint32_t gem_flags = 0;
2113
2114 if (!device->info.has_llc &&
2115 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2116 gem_flags |= I915_MMAP_WC;
2117
2118 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2119 uint64_t map_offset = offset & ~4095ull;
2120 assert(offset >= map_offset);
2121 uint64_t map_size = (offset + size) - map_offset;
2122
2123 /* Let's map whole pages */
2124 map_size = align_u64(map_size, 4096);
2125
2126 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2127 map_offset, map_size, gem_flags);
2128 if (map == MAP_FAILED)
2129 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2130
2131 mem->map = map;
2132 mem->map_size = map_size;
2133
2134 *ppData = mem->map + (offset - map_offset);
2135
2136 return VK_SUCCESS;
2137 }
2138
2139 void anv_UnmapMemory(
2140 VkDevice _device,
2141 VkDeviceMemory _memory)
2142 {
2143 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2144
2145 if (mem == NULL)
2146 return;
2147
2148 anv_gem_munmap(mem->map, mem->map_size);
2149
2150 mem->map = NULL;
2151 mem->map_size = 0;
2152 }
2153
2154 static void
2155 clflush_mapped_ranges(struct anv_device *device,
2156 uint32_t count,
2157 const VkMappedMemoryRange *ranges)
2158 {
2159 for (uint32_t i = 0; i < count; i++) {
2160 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2161 if (ranges[i].offset >= mem->map_size)
2162 continue;
2163
2164 gen_clflush_range(mem->map + ranges[i].offset,
2165 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2166 }
2167 }
2168
2169 VkResult anv_FlushMappedMemoryRanges(
2170 VkDevice _device,
2171 uint32_t memoryRangeCount,
2172 const VkMappedMemoryRange* pMemoryRanges)
2173 {
2174 ANV_FROM_HANDLE(anv_device, device, _device);
2175
2176 if (device->info.has_llc)
2177 return VK_SUCCESS;
2178
2179 /* Make sure the writes we're flushing have landed. */
2180 __builtin_ia32_mfence();
2181
2182 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2183
2184 return VK_SUCCESS;
2185 }
2186
2187 VkResult anv_InvalidateMappedMemoryRanges(
2188 VkDevice _device,
2189 uint32_t memoryRangeCount,
2190 const VkMappedMemoryRange* pMemoryRanges)
2191 {
2192 ANV_FROM_HANDLE(anv_device, device, _device);
2193
2194 if (device->info.has_llc)
2195 return VK_SUCCESS;
2196
2197 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2198
2199 /* Make sure no reads get moved up above the invalidate. */
2200 __builtin_ia32_mfence();
2201
2202 return VK_SUCCESS;
2203 }
2204
2205 void anv_GetBufferMemoryRequirements(
2206 VkDevice _device,
2207 VkBuffer _buffer,
2208 VkMemoryRequirements* pMemoryRequirements)
2209 {
2210 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2211 ANV_FROM_HANDLE(anv_device, device, _device);
2212 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2213
2214 /* The Vulkan spec (git aaed022) says:
2215 *
2216 * memoryTypeBits is a bitfield and contains one bit set for every
2217 * supported memory type for the resource. The bit `1<<i` is set if and
2218 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2219 * structure for the physical device is supported.
2220 */
2221 uint32_t memory_types = 0;
2222 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2223 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2224 if ((valid_usage & buffer->usage) == buffer->usage)
2225 memory_types |= (1u << i);
2226 }
2227
2228 /* Base alignment requirement of a cache line */
2229 uint32_t alignment = 16;
2230
2231 /* We need an alignment of 32 for pushing UBOs */
2232 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2233 alignment = MAX2(alignment, 32);
2234
2235 pMemoryRequirements->size = buffer->size;
2236 pMemoryRequirements->alignment = alignment;
2237
2238 /* Storage and Uniform buffers should have their size aligned to
2239 * 32-bits to avoid boundary checks when last DWord is not complete.
2240 * This would ensure that not internal padding would be needed for
2241 * 16-bit types.
2242 */
2243 if (device->robust_buffer_access &&
2244 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2245 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2246 pMemoryRequirements->size = align_u64(buffer->size, 4);
2247
2248 pMemoryRequirements->memoryTypeBits = memory_types;
2249 }
2250
2251 void anv_GetBufferMemoryRequirements2(
2252 VkDevice _device,
2253 const VkBufferMemoryRequirementsInfo2* pInfo,
2254 VkMemoryRequirements2* pMemoryRequirements)
2255 {
2256 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2257 &pMemoryRequirements->memoryRequirements);
2258
2259 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2260 switch (ext->sType) {
2261 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2262 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2263 requirements->prefersDedicatedAllocation = VK_FALSE;
2264 requirements->requiresDedicatedAllocation = VK_FALSE;
2265 break;
2266 }
2267
2268 default:
2269 anv_debug_ignored_stype(ext->sType);
2270 break;
2271 }
2272 }
2273 }
2274
2275 void anv_GetImageMemoryRequirements(
2276 VkDevice _device,
2277 VkImage _image,
2278 VkMemoryRequirements* pMemoryRequirements)
2279 {
2280 ANV_FROM_HANDLE(anv_image, image, _image);
2281 ANV_FROM_HANDLE(anv_device, device, _device);
2282 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2283
2284 /* The Vulkan spec (git aaed022) says:
2285 *
2286 * memoryTypeBits is a bitfield and contains one bit set for every
2287 * supported memory type for the resource. The bit `1<<i` is set if and
2288 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2289 * structure for the physical device is supported.
2290 *
2291 * All types are currently supported for images.
2292 */
2293 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2294
2295 pMemoryRequirements->size = image->size;
2296 pMemoryRequirements->alignment = image->alignment;
2297 pMemoryRequirements->memoryTypeBits = memory_types;
2298 }
2299
2300 void anv_GetImageMemoryRequirements2(
2301 VkDevice _device,
2302 const VkImageMemoryRequirementsInfo2* pInfo,
2303 VkMemoryRequirements2* pMemoryRequirements)
2304 {
2305 ANV_FROM_HANDLE(anv_device, device, _device);
2306 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2307
2308 anv_GetImageMemoryRequirements(_device, pInfo->image,
2309 &pMemoryRequirements->memoryRequirements);
2310
2311 vk_foreach_struct_const(ext, pInfo->pNext) {
2312 switch (ext->sType) {
2313 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2314 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2315 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2316 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2317 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2318 plane_reqs->planeAspect);
2319
2320 assert(image->planes[plane].offset == 0);
2321
2322 /* The Vulkan spec (git aaed022) says:
2323 *
2324 * memoryTypeBits is a bitfield and contains one bit set for every
2325 * supported memory type for the resource. The bit `1<<i` is set
2326 * if and only if the memory type `i` in the
2327 * VkPhysicalDeviceMemoryProperties structure for the physical
2328 * device is supported.
2329 *
2330 * All types are currently supported for images.
2331 */
2332 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2333 (1ull << pdevice->memory.type_count) - 1;
2334
2335 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2336 pMemoryRequirements->memoryRequirements.alignment =
2337 image->planes[plane].alignment;
2338 break;
2339 }
2340
2341 default:
2342 anv_debug_ignored_stype(ext->sType);
2343 break;
2344 }
2345 }
2346
2347 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2348 switch (ext->sType) {
2349 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2350 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2351 if (image->needs_set_tiling) {
2352 /* If we need to set the tiling for external consumers, we need a
2353 * dedicated allocation.
2354 *
2355 * See also anv_AllocateMemory.
2356 */
2357 requirements->prefersDedicatedAllocation = VK_TRUE;
2358 requirements->requiresDedicatedAllocation = VK_TRUE;
2359 } else {
2360 requirements->prefersDedicatedAllocation = VK_FALSE;
2361 requirements->requiresDedicatedAllocation = VK_FALSE;
2362 }
2363 break;
2364 }
2365
2366 default:
2367 anv_debug_ignored_stype(ext->sType);
2368 break;
2369 }
2370 }
2371 }
2372
2373 void anv_GetImageSparseMemoryRequirements(
2374 VkDevice device,
2375 VkImage image,
2376 uint32_t* pSparseMemoryRequirementCount,
2377 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2378 {
2379 *pSparseMemoryRequirementCount = 0;
2380 }
2381
2382 void anv_GetImageSparseMemoryRequirements2(
2383 VkDevice device,
2384 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2385 uint32_t* pSparseMemoryRequirementCount,
2386 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2387 {
2388 *pSparseMemoryRequirementCount = 0;
2389 }
2390
2391 void anv_GetDeviceMemoryCommitment(
2392 VkDevice device,
2393 VkDeviceMemory memory,
2394 VkDeviceSize* pCommittedMemoryInBytes)
2395 {
2396 *pCommittedMemoryInBytes = 0;
2397 }
2398
2399 static void
2400 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2401 {
2402 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2403 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2404
2405 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2406
2407 if (mem) {
2408 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2409 buffer->bo = mem->bo;
2410 buffer->offset = pBindInfo->memoryOffset;
2411 } else {
2412 buffer->bo = NULL;
2413 buffer->offset = 0;
2414 }
2415 }
2416
2417 VkResult anv_BindBufferMemory(
2418 VkDevice device,
2419 VkBuffer buffer,
2420 VkDeviceMemory memory,
2421 VkDeviceSize memoryOffset)
2422 {
2423 anv_bind_buffer_memory(
2424 &(VkBindBufferMemoryInfo) {
2425 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2426 .buffer = buffer,
2427 .memory = memory,
2428 .memoryOffset = memoryOffset,
2429 });
2430
2431 return VK_SUCCESS;
2432 }
2433
2434 VkResult anv_BindBufferMemory2(
2435 VkDevice device,
2436 uint32_t bindInfoCount,
2437 const VkBindBufferMemoryInfo* pBindInfos)
2438 {
2439 for (uint32_t i = 0; i < bindInfoCount; i++)
2440 anv_bind_buffer_memory(&pBindInfos[i]);
2441
2442 return VK_SUCCESS;
2443 }
2444
2445 VkResult anv_QueueBindSparse(
2446 VkQueue _queue,
2447 uint32_t bindInfoCount,
2448 const VkBindSparseInfo* pBindInfo,
2449 VkFence fence)
2450 {
2451 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2452 if (unlikely(queue->device->lost))
2453 return VK_ERROR_DEVICE_LOST;
2454
2455 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2456 }
2457
2458 // Event functions
2459
2460 VkResult anv_CreateEvent(
2461 VkDevice _device,
2462 const VkEventCreateInfo* pCreateInfo,
2463 const VkAllocationCallbacks* pAllocator,
2464 VkEvent* pEvent)
2465 {
2466 ANV_FROM_HANDLE(anv_device, device, _device);
2467 struct anv_state state;
2468 struct anv_event *event;
2469
2470 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2471
2472 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2473 sizeof(*event), 8);
2474 event = state.map;
2475 event->state = state;
2476 event->semaphore = VK_EVENT_RESET;
2477
2478 if (!device->info.has_llc) {
2479 /* Make sure the writes we're flushing have landed. */
2480 __builtin_ia32_mfence();
2481 __builtin_ia32_clflush(event);
2482 }
2483
2484 *pEvent = anv_event_to_handle(event);
2485
2486 return VK_SUCCESS;
2487 }
2488
2489 void anv_DestroyEvent(
2490 VkDevice _device,
2491 VkEvent _event,
2492 const VkAllocationCallbacks* pAllocator)
2493 {
2494 ANV_FROM_HANDLE(anv_device, device, _device);
2495 ANV_FROM_HANDLE(anv_event, event, _event);
2496
2497 if (!event)
2498 return;
2499
2500 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2501 }
2502
2503 VkResult anv_GetEventStatus(
2504 VkDevice _device,
2505 VkEvent _event)
2506 {
2507 ANV_FROM_HANDLE(anv_device, device, _device);
2508 ANV_FROM_HANDLE(anv_event, event, _event);
2509
2510 if (unlikely(device->lost))
2511 return VK_ERROR_DEVICE_LOST;
2512
2513 if (!device->info.has_llc) {
2514 /* Invalidate read cache before reading event written by GPU. */
2515 __builtin_ia32_clflush(event);
2516 __builtin_ia32_mfence();
2517
2518 }
2519
2520 return event->semaphore;
2521 }
2522
2523 VkResult anv_SetEvent(
2524 VkDevice _device,
2525 VkEvent _event)
2526 {
2527 ANV_FROM_HANDLE(anv_device, device, _device);
2528 ANV_FROM_HANDLE(anv_event, event, _event);
2529
2530 event->semaphore = VK_EVENT_SET;
2531
2532 if (!device->info.has_llc) {
2533 /* Make sure the writes we're flushing have landed. */
2534 __builtin_ia32_mfence();
2535 __builtin_ia32_clflush(event);
2536 }
2537
2538 return VK_SUCCESS;
2539 }
2540
2541 VkResult anv_ResetEvent(
2542 VkDevice _device,
2543 VkEvent _event)
2544 {
2545 ANV_FROM_HANDLE(anv_device, device, _device);
2546 ANV_FROM_HANDLE(anv_event, event, _event);
2547
2548 event->semaphore = VK_EVENT_RESET;
2549
2550 if (!device->info.has_llc) {
2551 /* Make sure the writes we're flushing have landed. */
2552 __builtin_ia32_mfence();
2553 __builtin_ia32_clflush(event);
2554 }
2555
2556 return VK_SUCCESS;
2557 }
2558
2559 // Buffer functions
2560
2561 VkResult anv_CreateBuffer(
2562 VkDevice _device,
2563 const VkBufferCreateInfo* pCreateInfo,
2564 const VkAllocationCallbacks* pAllocator,
2565 VkBuffer* pBuffer)
2566 {
2567 ANV_FROM_HANDLE(anv_device, device, _device);
2568 struct anv_buffer *buffer;
2569
2570 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2571
2572 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2573 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2574 if (buffer == NULL)
2575 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2576
2577 buffer->size = pCreateInfo->size;
2578 buffer->usage = pCreateInfo->usage;
2579 buffer->bo = NULL;
2580 buffer->offset = 0;
2581
2582 *pBuffer = anv_buffer_to_handle(buffer);
2583
2584 return VK_SUCCESS;
2585 }
2586
2587 void anv_DestroyBuffer(
2588 VkDevice _device,
2589 VkBuffer _buffer,
2590 const VkAllocationCallbacks* pAllocator)
2591 {
2592 ANV_FROM_HANDLE(anv_device, device, _device);
2593 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2594
2595 if (!buffer)
2596 return;
2597
2598 vk_free2(&device->alloc, pAllocator, buffer);
2599 }
2600
2601 void
2602 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2603 enum isl_format format,
2604 uint32_t offset, uint32_t range, uint32_t stride)
2605 {
2606 isl_buffer_fill_state(&device->isl_dev, state.map,
2607 .address = offset,
2608 .mocs = device->default_mocs,
2609 .size = range,
2610 .format = format,
2611 .stride = stride);
2612
2613 anv_state_flush(device, state);
2614 }
2615
2616 void anv_DestroySampler(
2617 VkDevice _device,
2618 VkSampler _sampler,
2619 const VkAllocationCallbacks* pAllocator)
2620 {
2621 ANV_FROM_HANDLE(anv_device, device, _device);
2622 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2623
2624 if (!sampler)
2625 return;
2626
2627 vk_free2(&device->alloc, pAllocator, sampler);
2628 }
2629
2630 VkResult anv_CreateFramebuffer(
2631 VkDevice _device,
2632 const VkFramebufferCreateInfo* pCreateInfo,
2633 const VkAllocationCallbacks* pAllocator,
2634 VkFramebuffer* pFramebuffer)
2635 {
2636 ANV_FROM_HANDLE(anv_device, device, _device);
2637 struct anv_framebuffer *framebuffer;
2638
2639 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2640
2641 size_t size = sizeof(*framebuffer) +
2642 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2643 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2644 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2645 if (framebuffer == NULL)
2646 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2647
2648 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2649 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2650 VkImageView _iview = pCreateInfo->pAttachments[i];
2651 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2652 }
2653
2654 framebuffer->width = pCreateInfo->width;
2655 framebuffer->height = pCreateInfo->height;
2656 framebuffer->layers = pCreateInfo->layers;
2657
2658 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2659
2660 return VK_SUCCESS;
2661 }
2662
2663 void anv_DestroyFramebuffer(
2664 VkDevice _device,
2665 VkFramebuffer _fb,
2666 const VkAllocationCallbacks* pAllocator)
2667 {
2668 ANV_FROM_HANDLE(anv_device, device, _device);
2669 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2670
2671 if (!fb)
2672 return;
2673
2674 vk_free2(&device->alloc, pAllocator, fb);
2675 }
2676
2677 /* vk_icd.h does not declare this function, so we declare it here to
2678 * suppress Wmissing-prototypes.
2679 */
2680 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2681 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2682
2683 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2684 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2685 {
2686 /* For the full details on loader interface versioning, see
2687 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2688 * What follows is a condensed summary, to help you navigate the large and
2689 * confusing official doc.
2690 *
2691 * - Loader interface v0 is incompatible with later versions. We don't
2692 * support it.
2693 *
2694 * - In loader interface v1:
2695 * - The first ICD entrypoint called by the loader is
2696 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2697 * entrypoint.
2698 * - The ICD must statically expose no other Vulkan symbol unless it is
2699 * linked with -Bsymbolic.
2700 * - Each dispatchable Vulkan handle created by the ICD must be
2701 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2702 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2703 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2704 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2705 * such loader-managed surfaces.
2706 *
2707 * - Loader interface v2 differs from v1 in:
2708 * - The first ICD entrypoint called by the loader is
2709 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2710 * statically expose this entrypoint.
2711 *
2712 * - Loader interface v3 differs from v2 in:
2713 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2714 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2715 * because the loader no longer does so.
2716 */
2717 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2718 return VK_SUCCESS;
2719 }