anv: Use bindless handles for images
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/u_string.h"
41 #include "git_sha1.h"
42 #include "vk_util.h"
43 #include "common/gen_defines.h"
44 #include "compiler/glsl_types.h"
45
46 #include "genxml/gen7_pack.h"
47
48 /* This is probably far to big but it reflects the max size used for messages
49 * in OpenGLs KHR_debug.
50 */
51 #define MAX_DEBUG_MESSAGE_LENGTH 4096
52
53 static void
54 compiler_debug_log(void *data, const char *fmt, ...)
55 {
56 char str[MAX_DEBUG_MESSAGE_LENGTH];
57 struct anv_device *device = (struct anv_device *)data;
58
59 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
60 return;
61
62 va_list args;
63 va_start(args, fmt);
64 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
65 va_end(args);
66
67 vk_debug_report(&device->instance->debug_report_callbacks,
68 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
69 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
70 0, 0, 0, "anv", str);
71 }
72
73 static void
74 compiler_perf_log(void *data, const char *fmt, ...)
75 {
76 va_list args;
77 va_start(args, fmt);
78
79 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
80 intel_logd_v(fmt, args);
81
82 va_end(args);
83 }
84
85 static uint64_t
86 anv_compute_heap_size(int fd, uint64_t gtt_size)
87 {
88 /* Query the total ram from the system */
89 struct sysinfo info;
90 sysinfo(&info);
91
92 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
93
94 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
95 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
96 */
97 uint64_t available_ram;
98 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
99 available_ram = total_ram / 2;
100 else
101 available_ram = total_ram * 3 / 4;
102
103 /* We also want to leave some padding for things we allocate in the driver,
104 * so don't go over 3/4 of the GTT either.
105 */
106 uint64_t available_gtt = gtt_size * 3 / 4;
107
108 return MIN2(available_ram, available_gtt);
109 }
110
111 static VkResult
112 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
113 {
114 uint64_t gtt_size;
115 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
116 &gtt_size) == -1) {
117 /* If, for whatever reason, we can't actually get the GTT size from the
118 * kernel (too old?) fall back to the aperture size.
119 */
120 anv_perf_warn(NULL, NULL,
121 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
122
123 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
124 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
125 "failed to get aperture size: %m");
126 }
127 }
128
129 device->supports_48bit_addresses = (device->info.gen >= 8) &&
130 gtt_size > (4ULL << 30 /* GiB */);
131
132 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
133
134 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
135 /* When running with an overridden PCI ID, we may get a GTT size from
136 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
137 * address support can still fail. Just clamp the address space size to
138 * 2 GiB if we don't have 48-bit support.
139 */
140 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
141 "not support for 48-bit addresses",
142 __FILE__, __LINE__);
143 heap_size = 2ull << 30;
144 }
145
146 if (heap_size <= 3ull * (1ull << 30)) {
147 /* In this case, everything fits nicely into the 32-bit address space,
148 * so there's no need for supporting 48bit addresses on client-allocated
149 * memory objects.
150 */
151 device->memory.heap_count = 1;
152 device->memory.heaps[0] = (struct anv_memory_heap) {
153 .vma_start = LOW_HEAP_MIN_ADDRESS,
154 .vma_size = LOW_HEAP_SIZE,
155 .size = heap_size,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = false,
158 };
159 } else {
160 /* Not everything will fit nicely into a 32-bit address space. In this
161 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
162 * larger 48-bit heap. If we're in this case, then we have a total heap
163 * size larger than 3GiB which most likely means they have 8 GiB of
164 * video memory and so carving off 1 GiB for the 32-bit heap should be
165 * reasonable.
166 */
167 const uint64_t heap_size_32bit = 1ull << 30;
168 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
169
170 assert(device->supports_48bit_addresses);
171
172 device->memory.heap_count = 2;
173 device->memory.heaps[0] = (struct anv_memory_heap) {
174 .vma_start = HIGH_HEAP_MIN_ADDRESS,
175 /* Leave the last 4GiB out of the high vma range, so that no state
176 * base address + size can overflow 48 bits. For more information see
177 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
178 */
179 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
180 .size = heap_size_48bit,
181 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
182 .supports_48bit_addresses = true,
183 };
184 device->memory.heaps[1] = (struct anv_memory_heap) {
185 .vma_start = LOW_HEAP_MIN_ADDRESS,
186 .vma_size = LOW_HEAP_SIZE,
187 .size = heap_size_32bit,
188 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
189 .supports_48bit_addresses = false,
190 };
191 }
192
193 uint32_t type_count = 0;
194 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
195 uint32_t valid_buffer_usage = ~0;
196
197 /* There appears to be a hardware issue in the VF cache where it only
198 * considers the bottom 32 bits of memory addresses. If you happen to
199 * have two vertex buffers which get placed exactly 4 GiB apart and use
200 * them in back-to-back draw calls, you can get collisions. In order to
201 * solve this problem, we require vertex and index buffers be bound to
202 * memory allocated out of the 32-bit heap.
203 */
204 if (device->memory.heaps[heap].supports_48bit_addresses) {
205 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
206 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
207 }
208
209 if (device->info.has_llc) {
210 /* Big core GPUs share LLC with the CPU and thus one memory type can be
211 * both cached and coherent at the same time.
212 */
213 device->memory.types[type_count++] = (struct anv_memory_type) {
214 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
215 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
216 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
217 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
218 .heapIndex = heap,
219 .valid_buffer_usage = valid_buffer_usage,
220 };
221 } else {
222 /* The spec requires that we expose a host-visible, coherent memory
223 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
224 * to give the application a choice between cached, but not coherent and
225 * coherent but uncached (WC though).
226 */
227 device->memory.types[type_count++] = (struct anv_memory_type) {
228 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
229 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
230 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
231 .heapIndex = heap,
232 .valid_buffer_usage = valid_buffer_usage,
233 };
234 device->memory.types[type_count++] = (struct anv_memory_type) {
235 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
236 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
237 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
238 .heapIndex = heap,
239 .valid_buffer_usage = valid_buffer_usage,
240 };
241 }
242 }
243 device->memory.type_count = type_count;
244
245 return VK_SUCCESS;
246 }
247
248 static VkResult
249 anv_physical_device_init_uuids(struct anv_physical_device *device)
250 {
251 const struct build_id_note *note =
252 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
253 if (!note) {
254 return vk_errorf(device->instance, device,
255 VK_ERROR_INITIALIZATION_FAILED,
256 "Failed to find build-id");
257 }
258
259 unsigned build_id_len = build_id_length(note);
260 if (build_id_len < 20) {
261 return vk_errorf(device->instance, device,
262 VK_ERROR_INITIALIZATION_FAILED,
263 "build-id too short. It needs to be a SHA");
264 }
265
266 memcpy(device->driver_build_sha1, build_id_data(note), 20);
267
268 struct mesa_sha1 sha1_ctx;
269 uint8_t sha1[20];
270 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
271
272 /* The pipeline cache UUID is used for determining when a pipeline cache is
273 * invalid. It needs both a driver build and the PCI ID of the device.
274 */
275 _mesa_sha1_init(&sha1_ctx);
276 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
277 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
278 sizeof(device->chipset_id));
279 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
280 sizeof(device->always_use_bindless));
281 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
282 sizeof(device->has_a64_buffer_access));
283 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
284 sizeof(device->has_bindless_images));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
286 sizeof(device->has_bindless_samplers));
287 _mesa_sha1_final(&sha1_ctx, sha1);
288 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
289
290 /* The driver UUID is used for determining sharability of images and memory
291 * between two Vulkan instances in separate processes. People who want to
292 * share memory need to also check the device UUID (below) so all this
293 * needs to be is the build-id.
294 */
295 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
296
297 /* The device UUID uniquely identifies the given device within the machine.
298 * Since we never have more than one device, this doesn't need to be a real
299 * UUID. However, on the off-chance that someone tries to use this to
300 * cache pre-tiled images or something of the like, we use the PCI ID and
301 * some bits of ISL info to ensure that this is safe.
302 */
303 _mesa_sha1_init(&sha1_ctx);
304 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
305 sizeof(device->chipset_id));
306 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
307 sizeof(device->isl_dev.has_bit6_swizzling));
308 _mesa_sha1_final(&sha1_ctx, sha1);
309 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
310
311 return VK_SUCCESS;
312 }
313
314 static void
315 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
316 {
317 #ifdef ENABLE_SHADER_CACHE
318 char renderer[10];
319 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
320 device->chipset_id);
321 assert(len == sizeof(renderer) - 2);
322
323 char timestamp[41];
324 _mesa_sha1_format(timestamp, device->driver_build_sha1);
325
326 const uint64_t driver_flags =
327 brw_get_compiler_config_value(device->compiler);
328 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
329 #else
330 device->disk_cache = NULL;
331 #endif
332 }
333
334 static void
335 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
336 {
337 #ifdef ENABLE_SHADER_CACHE
338 if (device->disk_cache)
339 disk_cache_destroy(device->disk_cache);
340 #else
341 assert(device->disk_cache == NULL);
342 #endif
343 }
344
345 static VkResult
346 anv_physical_device_init(struct anv_physical_device *device,
347 struct anv_instance *instance,
348 drmDevicePtr drm_device)
349 {
350 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
351 const char *path = drm_device->nodes[DRM_NODE_RENDER];
352 VkResult result;
353 int fd;
354 int master_fd = -1;
355
356 brw_process_intel_debug_variable();
357
358 fd = open(path, O_RDWR | O_CLOEXEC);
359 if (fd < 0)
360 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
361
362 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
363 device->instance = instance;
364
365 assert(strlen(path) < ARRAY_SIZE(device->path));
366 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
367
368 device->no_hw = getenv("INTEL_NO_HW") != NULL;
369
370 const int pci_id_override = gen_get_pci_device_id_override();
371 if (pci_id_override < 0) {
372 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
373 if (!device->chipset_id) {
374 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
375 goto fail;
376 }
377 } else {
378 device->chipset_id = pci_id_override;
379 device->no_hw = true;
380 }
381
382 device->pci_info.domain = drm_device->businfo.pci->domain;
383 device->pci_info.bus = drm_device->businfo.pci->bus;
384 device->pci_info.device = drm_device->businfo.pci->dev;
385 device->pci_info.function = drm_device->businfo.pci->func;
386
387 device->name = gen_get_device_name(device->chipset_id);
388 if (!gen_get_device_info(device->chipset_id, &device->info)) {
389 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
390 goto fail;
391 }
392
393 if (device->info.is_haswell) {
394 intel_logw("Haswell Vulkan support is incomplete");
395 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
396 intel_logw("Ivy Bridge Vulkan support is incomplete");
397 } else if (device->info.gen == 7 && device->info.is_baytrail) {
398 intel_logw("Bay Trail Vulkan support is incomplete");
399 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
400 /* Gen8-10 fully supported */
401 } else if (device->info.gen == 11) {
402 intel_logw("Vulkan is not yet fully supported on gen11.");
403 } else {
404 result = vk_errorf(device->instance, device,
405 VK_ERROR_INCOMPATIBLE_DRIVER,
406 "Vulkan not yet supported on %s", device->name);
407 goto fail;
408 }
409
410 device->cmd_parser_version = -1;
411 if (device->info.gen == 7) {
412 device->cmd_parser_version =
413 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
414 if (device->cmd_parser_version == -1) {
415 result = vk_errorf(device->instance, device,
416 VK_ERROR_INITIALIZATION_FAILED,
417 "failed to get command parser version");
418 goto fail;
419 }
420 }
421
422 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
423 result = vk_errorf(device->instance, device,
424 VK_ERROR_INITIALIZATION_FAILED,
425 "kernel missing gem wait");
426 goto fail;
427 }
428
429 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "kernel missing execbuf2");
433 goto fail;
434 }
435
436 if (!device->info.has_llc &&
437 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "kernel missing wc mmap");
441 goto fail;
442 }
443
444 result = anv_physical_device_init_heaps(device, fd);
445 if (result != VK_SUCCESS)
446 goto fail;
447
448 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
449 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
450 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
451 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
452 device->has_syncobj_wait = device->has_syncobj &&
453 anv_gem_supports_syncobj_wait(fd);
454 device->has_context_priority = anv_gem_has_context_priority(fd);
455
456 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
457 && device->supports_48bit_addresses;
458
459 device->has_context_isolation =
460 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
461
462 device->always_use_bindless =
463 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
464
465 /* We first got the A64 messages on broadwell and we can only use them if
466 * we can pass addresses directly into the shader which requires softpin.
467 */
468 device->has_a64_buffer_access = device->info.gen >= 8 &&
469 device->use_softpin;
470
471 /* We first get bindless image access on Skylake and we can only really do
472 * it if we don't have any relocations so we need softpin.
473 */
474 device->has_bindless_images = device->info.gen >= 9 &&
475 device->use_softpin;
476
477 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
478 * because it's just a matter of setting the sampler address in the sample
479 * message header. However, we've not bothered to wire it up for vec4 so
480 * we leave it disabled on gen7.
481 */
482 device->has_bindless_samplers = device->info.gen >= 8;
483
484 /* Starting with Gen10, the timestamp frequency of the command streamer may
485 * vary from one part to another. We can query the value from the kernel.
486 */
487 if (device->info.gen >= 10) {
488 int timestamp_frequency =
489 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
490
491 if (timestamp_frequency < 0)
492 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
493 else
494 device->info.timestamp_frequency = timestamp_frequency;
495 }
496
497 /* GENs prior to 8 do not support EU/Subslice info */
498 if (device->info.gen >= 8) {
499 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
500 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
501
502 /* Without this information, we cannot get the right Braswell
503 * brandstrings, and we have to use conservative numbers for GPGPU on
504 * many platforms, but otherwise, things will just work.
505 */
506 if (device->subslice_total < 1 || device->eu_total < 1) {
507 intel_logw("Kernel 4.1 required to properly query GPU properties");
508 }
509 } else if (device->info.gen == 7) {
510 device->subslice_total = 1 << (device->info.gt - 1);
511 }
512
513 if (device->info.is_cherryview &&
514 device->subslice_total > 0 && device->eu_total > 0) {
515 /* Logical CS threads = EUs per subslice * num threads per EU */
516 uint32_t max_cs_threads =
517 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
518
519 /* Fuse configurations may give more threads than expected, never less. */
520 if (max_cs_threads > device->info.max_cs_threads)
521 device->info.max_cs_threads = max_cs_threads;
522 }
523
524 device->compiler = brw_compiler_create(NULL, &device->info);
525 if (device->compiler == NULL) {
526 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
527 goto fail;
528 }
529 device->compiler->shader_debug_log = compiler_debug_log;
530 device->compiler->shader_perf_log = compiler_perf_log;
531 device->compiler->supports_pull_constants = false;
532 device->compiler->constant_buffer_0_is_relative =
533 device->info.gen < 8 || !device->has_context_isolation;
534 device->compiler->supports_shader_constants = true;
535
536 /* Broadwell PRM says:
537 *
538 * "Before Gen8, there was a historical configuration control field to
539 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
540 * different places: TILECTL[1:0], ARB_MODE[5:4], and
541 * DISP_ARB_CTL[14:13].
542 *
543 * For Gen8 and subsequent generations, the swizzle fields are all
544 * reserved, and the CPU's memory controller performs all address
545 * swizzling modifications."
546 */
547 bool swizzled =
548 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
549
550 isl_device_init(&device->isl_dev, &device->info, swizzled);
551
552 result = anv_physical_device_init_uuids(device);
553 if (result != VK_SUCCESS)
554 goto fail;
555
556 anv_physical_device_init_disk_cache(device);
557
558 if (instance->enabled_extensions.KHR_display) {
559 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
560 if (master_fd >= 0) {
561 /* prod the device with a GETPARAM call which will fail if
562 * we don't have permission to even render on this device
563 */
564 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
565 close(master_fd);
566 master_fd = -1;
567 }
568 }
569 }
570 device->master_fd = master_fd;
571
572 result = anv_init_wsi(device);
573 if (result != VK_SUCCESS) {
574 ralloc_free(device->compiler);
575 anv_physical_device_free_disk_cache(device);
576 goto fail;
577 }
578
579 anv_physical_device_get_supported_extensions(device,
580 &device->supported_extensions);
581
582
583 device->local_fd = fd;
584
585 return VK_SUCCESS;
586
587 fail:
588 close(fd);
589 if (master_fd != -1)
590 close(master_fd);
591 return result;
592 }
593
594 static void
595 anv_physical_device_finish(struct anv_physical_device *device)
596 {
597 anv_finish_wsi(device);
598 anv_physical_device_free_disk_cache(device);
599 ralloc_free(device->compiler);
600 close(device->local_fd);
601 if (device->master_fd >= 0)
602 close(device->master_fd);
603 }
604
605 static void *
606 default_alloc_func(void *pUserData, size_t size, size_t align,
607 VkSystemAllocationScope allocationScope)
608 {
609 return malloc(size);
610 }
611
612 static void *
613 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
614 size_t align, VkSystemAllocationScope allocationScope)
615 {
616 return realloc(pOriginal, size);
617 }
618
619 static void
620 default_free_func(void *pUserData, void *pMemory)
621 {
622 free(pMemory);
623 }
624
625 static const VkAllocationCallbacks default_alloc = {
626 .pUserData = NULL,
627 .pfnAllocation = default_alloc_func,
628 .pfnReallocation = default_realloc_func,
629 .pfnFree = default_free_func,
630 };
631
632 VkResult anv_EnumerateInstanceExtensionProperties(
633 const char* pLayerName,
634 uint32_t* pPropertyCount,
635 VkExtensionProperties* pProperties)
636 {
637 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
638
639 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
640 if (anv_instance_extensions_supported.extensions[i]) {
641 vk_outarray_append(&out, prop) {
642 *prop = anv_instance_extensions[i];
643 }
644 }
645 }
646
647 return vk_outarray_status(&out);
648 }
649
650 VkResult anv_CreateInstance(
651 const VkInstanceCreateInfo* pCreateInfo,
652 const VkAllocationCallbacks* pAllocator,
653 VkInstance* pInstance)
654 {
655 struct anv_instance *instance;
656 VkResult result;
657
658 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
659
660 struct anv_instance_extension_table enabled_extensions = {};
661 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
662 int idx;
663 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
664 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
665 anv_instance_extensions[idx].extensionName) == 0)
666 break;
667 }
668
669 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
670 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
671
672 if (!anv_instance_extensions_supported.extensions[idx])
673 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
674
675 enabled_extensions.extensions[idx] = true;
676 }
677
678 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
679 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
680 if (!instance)
681 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
682
683 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
684
685 if (pAllocator)
686 instance->alloc = *pAllocator;
687 else
688 instance->alloc = default_alloc;
689
690 instance->app_info = (struct anv_app_info) { .api_version = 0 };
691 if (pCreateInfo->pApplicationInfo) {
692 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
693
694 instance->app_info.app_name =
695 vk_strdup(&instance->alloc, app->pApplicationName,
696 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
697 instance->app_info.app_version = app->applicationVersion;
698
699 instance->app_info.engine_name =
700 vk_strdup(&instance->alloc, app->pEngineName,
701 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
702 instance->app_info.engine_version = app->engineVersion;
703
704 instance->app_info.api_version = app->apiVersion;
705 }
706
707 if (instance->app_info.api_version == 0)
708 instance->app_info.api_version = VK_API_VERSION_1_0;
709
710 instance->enabled_extensions = enabled_extensions;
711
712 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
713 /* Vulkan requires that entrypoints for extensions which have not been
714 * enabled must not be advertised.
715 */
716 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
717 &instance->enabled_extensions)) {
718 instance->dispatch.entrypoints[i] = NULL;
719 } else {
720 instance->dispatch.entrypoints[i] =
721 anv_instance_dispatch_table.entrypoints[i];
722 }
723 }
724
725 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
726 /* Vulkan requires that entrypoints for extensions which have not been
727 * enabled must not be advertised.
728 */
729 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
730 &instance->enabled_extensions, NULL)) {
731 instance->device_dispatch.entrypoints[i] = NULL;
732 } else {
733 instance->device_dispatch.entrypoints[i] =
734 anv_device_dispatch_table.entrypoints[i];
735 }
736 }
737
738 instance->physicalDeviceCount = -1;
739
740 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
741 if (result != VK_SUCCESS) {
742 vk_free2(&default_alloc, pAllocator, instance);
743 return vk_error(result);
744 }
745
746 instance->pipeline_cache_enabled =
747 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
748
749 _mesa_locale_init();
750 glsl_type_singleton_init_or_ref();
751
752 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
753
754 *pInstance = anv_instance_to_handle(instance);
755
756 return VK_SUCCESS;
757 }
758
759 void anv_DestroyInstance(
760 VkInstance _instance,
761 const VkAllocationCallbacks* pAllocator)
762 {
763 ANV_FROM_HANDLE(anv_instance, instance, _instance);
764
765 if (!instance)
766 return;
767
768 if (instance->physicalDeviceCount > 0) {
769 /* We support at most one physical device. */
770 assert(instance->physicalDeviceCount == 1);
771 anv_physical_device_finish(&instance->physicalDevice);
772 }
773
774 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
775 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
776
777 VG(VALGRIND_DESTROY_MEMPOOL(instance));
778
779 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
780
781 glsl_type_singleton_decref();
782 _mesa_locale_fini();
783
784 vk_free(&instance->alloc, instance);
785 }
786
787 static VkResult
788 anv_enumerate_devices(struct anv_instance *instance)
789 {
790 /* TODO: Check for more devices ? */
791 drmDevicePtr devices[8];
792 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
793 int max_devices;
794
795 instance->physicalDeviceCount = 0;
796
797 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
798 if (max_devices < 1)
799 return VK_ERROR_INCOMPATIBLE_DRIVER;
800
801 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
802 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
803 devices[i]->bustype == DRM_BUS_PCI &&
804 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
805
806 result = anv_physical_device_init(&instance->physicalDevice,
807 instance, devices[i]);
808 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
809 break;
810 }
811 }
812 drmFreeDevices(devices, max_devices);
813
814 if (result == VK_SUCCESS)
815 instance->physicalDeviceCount = 1;
816
817 return result;
818 }
819
820 static VkResult
821 anv_instance_ensure_physical_device(struct anv_instance *instance)
822 {
823 if (instance->physicalDeviceCount < 0) {
824 VkResult result = anv_enumerate_devices(instance);
825 if (result != VK_SUCCESS &&
826 result != VK_ERROR_INCOMPATIBLE_DRIVER)
827 return result;
828 }
829
830 return VK_SUCCESS;
831 }
832
833 VkResult anv_EnumeratePhysicalDevices(
834 VkInstance _instance,
835 uint32_t* pPhysicalDeviceCount,
836 VkPhysicalDevice* pPhysicalDevices)
837 {
838 ANV_FROM_HANDLE(anv_instance, instance, _instance);
839 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
840
841 VkResult result = anv_instance_ensure_physical_device(instance);
842 if (result != VK_SUCCESS)
843 return result;
844
845 if (instance->physicalDeviceCount == 0)
846 return VK_SUCCESS;
847
848 assert(instance->physicalDeviceCount == 1);
849 vk_outarray_append(&out, i) {
850 *i = anv_physical_device_to_handle(&instance->physicalDevice);
851 }
852
853 return vk_outarray_status(&out);
854 }
855
856 VkResult anv_EnumeratePhysicalDeviceGroups(
857 VkInstance _instance,
858 uint32_t* pPhysicalDeviceGroupCount,
859 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
860 {
861 ANV_FROM_HANDLE(anv_instance, instance, _instance);
862 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
863 pPhysicalDeviceGroupCount);
864
865 VkResult result = anv_instance_ensure_physical_device(instance);
866 if (result != VK_SUCCESS)
867 return result;
868
869 if (instance->physicalDeviceCount == 0)
870 return VK_SUCCESS;
871
872 assert(instance->physicalDeviceCount == 1);
873
874 vk_outarray_append(&out, p) {
875 p->physicalDeviceCount = 1;
876 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
877 p->physicalDevices[0] =
878 anv_physical_device_to_handle(&instance->physicalDevice);
879 p->subsetAllocation = false;
880
881 vk_foreach_struct(ext, p->pNext)
882 anv_debug_ignored_stype(ext->sType);
883 }
884
885 return vk_outarray_status(&out);
886 }
887
888 void anv_GetPhysicalDeviceFeatures(
889 VkPhysicalDevice physicalDevice,
890 VkPhysicalDeviceFeatures* pFeatures)
891 {
892 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
893
894 *pFeatures = (VkPhysicalDeviceFeatures) {
895 .robustBufferAccess = true,
896 .fullDrawIndexUint32 = true,
897 .imageCubeArray = true,
898 .independentBlend = true,
899 .geometryShader = true,
900 .tessellationShader = true,
901 .sampleRateShading = true,
902 .dualSrcBlend = true,
903 .logicOp = true,
904 .multiDrawIndirect = true,
905 .drawIndirectFirstInstance = true,
906 .depthClamp = true,
907 .depthBiasClamp = true,
908 .fillModeNonSolid = true,
909 .depthBounds = false,
910 .wideLines = true,
911 .largePoints = true,
912 .alphaToOne = true,
913 .multiViewport = true,
914 .samplerAnisotropy = true,
915 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
916 pdevice->info.is_baytrail,
917 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
918 .textureCompressionBC = true,
919 .occlusionQueryPrecise = true,
920 .pipelineStatisticsQuery = true,
921 .fragmentStoresAndAtomics = true,
922 .shaderTessellationAndGeometryPointSize = true,
923 .shaderImageGatherExtended = true,
924 .shaderStorageImageExtendedFormats = true,
925 .shaderStorageImageMultisample = false,
926 .shaderStorageImageReadWithoutFormat = false,
927 .shaderStorageImageWriteWithoutFormat = true,
928 .shaderUniformBufferArrayDynamicIndexing = true,
929 .shaderSampledImageArrayDynamicIndexing = true,
930 .shaderStorageBufferArrayDynamicIndexing = true,
931 .shaderStorageImageArrayDynamicIndexing = true,
932 .shaderClipDistance = true,
933 .shaderCullDistance = true,
934 .shaderFloat64 = pdevice->info.gen >= 8 &&
935 pdevice->info.has_64bit_types,
936 .shaderInt64 = pdevice->info.gen >= 8 &&
937 pdevice->info.has_64bit_types,
938 .shaderInt16 = pdevice->info.gen >= 8,
939 .shaderResourceMinLod = pdevice->info.gen >= 9,
940 .variableMultisampleRate = true,
941 .inheritedQueries = true,
942 };
943
944 /* We can't do image stores in vec4 shaders */
945 pFeatures->vertexPipelineStoresAndAtomics =
946 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
947 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
948
949 struct anv_app_info *app_info = &pdevice->instance->app_info;
950
951 /* The new DOOM and Wolfenstein games require depthBounds without
952 * checking for it. They seem to run fine without it so just claim it's
953 * there and accept the consequences.
954 */
955 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
956 pFeatures->depthBounds = true;
957 }
958
959 void anv_GetPhysicalDeviceFeatures2(
960 VkPhysicalDevice physicalDevice,
961 VkPhysicalDeviceFeatures2* pFeatures)
962 {
963 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
964 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
965
966 vk_foreach_struct(ext, pFeatures->pNext) {
967 switch (ext->sType) {
968 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
969 VkPhysicalDevice8BitStorageFeaturesKHR *features =
970 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
971 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
972 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
973 features->storagePushConstant8 = pdevice->info.gen >= 8;
974 break;
975 }
976
977 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
978 VkPhysicalDevice16BitStorageFeatures *features =
979 (VkPhysicalDevice16BitStorageFeatures *)ext;
980 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
981 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
982 features->storagePushConstant16 = pdevice->info.gen >= 8;
983 features->storageInputOutput16 = false;
984 break;
985 }
986
987 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
988 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
989 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
990 features->bufferDeviceAddressCaptureReplay = false;
991 features->bufferDeviceAddressMultiDevice = false;
992 break;
993 }
994
995 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
996 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
997 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
998 features->computeDerivativeGroupQuads = true;
999 features->computeDerivativeGroupLinear = true;
1000 break;
1001 }
1002
1003 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1004 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1005 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1006 features->conditionalRendering = pdevice->info.gen >= 8 ||
1007 pdevice->info.is_haswell;
1008 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1009 pdevice->info.is_haswell;
1010 break;
1011 }
1012
1013 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1014 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1015 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1016 features->depthClipEnable = true;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1021 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1022 features->shaderFloat16 = pdevice->info.gen >= 8;
1023 features->shaderInt8 = pdevice->info.gen >= 8;
1024 break;
1025 }
1026
1027 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1028 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1029 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1030 features->hostQueryReset = true;
1031 break;
1032 }
1033
1034 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1035 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1036 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1037 features->inlineUniformBlock = true;
1038 features->descriptorBindingInlineUniformBlockUpdateAfterBind = false;
1039 break;
1040 }
1041
1042 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1043 VkPhysicalDeviceMultiviewFeatures *features =
1044 (VkPhysicalDeviceMultiviewFeatures *)ext;
1045 features->multiview = true;
1046 features->multiviewGeometryShader = true;
1047 features->multiviewTessellationShader = true;
1048 break;
1049 }
1050
1051 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1052 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1053 features->protectedMemory = false;
1054 break;
1055 }
1056
1057 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1058 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1059 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1060 features->samplerYcbcrConversion = true;
1061 break;
1062 }
1063
1064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1065 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1066 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1067 features->scalarBlockLayout = true;
1068 break;
1069 }
1070
1071 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1072 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1073 features->shaderBufferInt64Atomics =
1074 pdevice->info.gen >= 9 && pdevice->use_softpin;
1075 features->shaderSharedInt64Atomics = VK_FALSE;
1076 break;
1077 }
1078
1079 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1080 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1081 features->shaderDrawParameters = true;
1082 break;
1083 }
1084
1085 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1086 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1087 features->variablePointersStorageBuffer = true;
1088 features->variablePointers = true;
1089 break;
1090 }
1091
1092 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1093 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1094 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1095 features->transformFeedback = true;
1096 features->geometryStreams = true;
1097 break;
1098 }
1099
1100 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1101 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1102 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1103 features->vertexAttributeInstanceRateDivisor = true;
1104 features->vertexAttributeInstanceRateZeroDivisor = true;
1105 break;
1106 }
1107
1108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1109 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1110 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1111 features->ycbcrImageArrays = true;
1112 break;
1113 }
1114
1115 default:
1116 anv_debug_ignored_stype(ext->sType);
1117 break;
1118 }
1119 }
1120 }
1121
1122 void anv_GetPhysicalDeviceProperties(
1123 VkPhysicalDevice physicalDevice,
1124 VkPhysicalDeviceProperties* pProperties)
1125 {
1126 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1127 const struct gen_device_info *devinfo = &pdevice->info;
1128
1129 /* See assertions made when programming the buffer surface state. */
1130 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1131 (1ul << 30) : (1ul << 27);
1132
1133 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1134 const uint32_t max_textures =
1135 pdevice->has_bindless_images ? UINT16_MAX : 128;
1136 const uint32_t max_samplers =
1137 pdevice->has_bindless_samplers ? UINT16_MAX :
1138 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1139 const uint32_t max_images =
1140 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1141
1142 /* The moment we have anything bindless, claim a high per-stage limit */
1143 const uint32_t max_per_stage =
1144 pdevice->has_a64_buffer_access ? UINT32_MAX :
1145 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1146
1147 VkSampleCountFlags sample_counts =
1148 isl_device_get_sample_counts(&pdevice->isl_dev);
1149
1150
1151 VkPhysicalDeviceLimits limits = {
1152 .maxImageDimension1D = (1 << 14),
1153 .maxImageDimension2D = (1 << 14),
1154 .maxImageDimension3D = (1 << 11),
1155 .maxImageDimensionCube = (1 << 14),
1156 .maxImageArrayLayers = (1 << 11),
1157 .maxTexelBufferElements = 128 * 1024 * 1024,
1158 .maxUniformBufferRange = (1ul << 27),
1159 .maxStorageBufferRange = max_raw_buffer_sz,
1160 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1161 .maxMemoryAllocationCount = UINT32_MAX,
1162 .maxSamplerAllocationCount = 64 * 1024,
1163 .bufferImageGranularity = 64, /* A cache line */
1164 .sparseAddressSpaceSize = 0,
1165 .maxBoundDescriptorSets = MAX_SETS,
1166 .maxPerStageDescriptorSamplers = max_samplers,
1167 .maxPerStageDescriptorUniformBuffers = 64,
1168 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1169 .maxPerStageDescriptorSampledImages = max_textures,
1170 .maxPerStageDescriptorStorageImages = max_images,
1171 .maxPerStageDescriptorInputAttachments = 64,
1172 .maxPerStageResources = max_per_stage,
1173 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1174 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1175 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1176 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1177 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1178 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1179 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1180 .maxDescriptorSetInputAttachments = 256,
1181 .maxVertexInputAttributes = MAX_VBS,
1182 .maxVertexInputBindings = MAX_VBS,
1183 .maxVertexInputAttributeOffset = 2047,
1184 .maxVertexInputBindingStride = 2048,
1185 .maxVertexOutputComponents = 128,
1186 .maxTessellationGenerationLevel = 64,
1187 .maxTessellationPatchSize = 32,
1188 .maxTessellationControlPerVertexInputComponents = 128,
1189 .maxTessellationControlPerVertexOutputComponents = 128,
1190 .maxTessellationControlPerPatchOutputComponents = 128,
1191 .maxTessellationControlTotalOutputComponents = 2048,
1192 .maxTessellationEvaluationInputComponents = 128,
1193 .maxTessellationEvaluationOutputComponents = 128,
1194 .maxGeometryShaderInvocations = 32,
1195 .maxGeometryInputComponents = 64,
1196 .maxGeometryOutputComponents = 128,
1197 .maxGeometryOutputVertices = 256,
1198 .maxGeometryTotalOutputComponents = 1024,
1199 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
1200 .maxFragmentOutputAttachments = 8,
1201 .maxFragmentDualSrcAttachments = 1,
1202 .maxFragmentCombinedOutputResources = 8,
1203 .maxComputeSharedMemorySize = 32768,
1204 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1205 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1206 .maxComputeWorkGroupSize = {
1207 16 * devinfo->max_cs_threads,
1208 16 * devinfo->max_cs_threads,
1209 16 * devinfo->max_cs_threads,
1210 },
1211 .subPixelPrecisionBits = 8,
1212 .subTexelPrecisionBits = 8,
1213 .mipmapPrecisionBits = 8,
1214 .maxDrawIndexedIndexValue = UINT32_MAX,
1215 .maxDrawIndirectCount = UINT32_MAX,
1216 .maxSamplerLodBias = 16,
1217 .maxSamplerAnisotropy = 16,
1218 .maxViewports = MAX_VIEWPORTS,
1219 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1220 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1221 .viewportSubPixelBits = 13, /* We take a float? */
1222 .minMemoryMapAlignment = 4096, /* A page */
1223 .minTexelBufferOffsetAlignment = 1,
1224 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1225 .minUniformBufferOffsetAlignment = 32,
1226 .minStorageBufferOffsetAlignment = 4,
1227 .minTexelOffset = -8,
1228 .maxTexelOffset = 7,
1229 .minTexelGatherOffset = -32,
1230 .maxTexelGatherOffset = 31,
1231 .minInterpolationOffset = -0.5,
1232 .maxInterpolationOffset = 0.4375,
1233 .subPixelInterpolationOffsetBits = 4,
1234 .maxFramebufferWidth = (1 << 14),
1235 .maxFramebufferHeight = (1 << 14),
1236 .maxFramebufferLayers = (1 << 11),
1237 .framebufferColorSampleCounts = sample_counts,
1238 .framebufferDepthSampleCounts = sample_counts,
1239 .framebufferStencilSampleCounts = sample_counts,
1240 .framebufferNoAttachmentsSampleCounts = sample_counts,
1241 .maxColorAttachments = MAX_RTS,
1242 .sampledImageColorSampleCounts = sample_counts,
1243 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1244 .sampledImageDepthSampleCounts = sample_counts,
1245 .sampledImageStencilSampleCounts = sample_counts,
1246 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1247 .maxSampleMaskWords = 1,
1248 .timestampComputeAndGraphics = false,
1249 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1250 .maxClipDistances = 8,
1251 .maxCullDistances = 8,
1252 .maxCombinedClipAndCullDistances = 8,
1253 .discreteQueuePriorities = 2,
1254 .pointSizeRange = { 0.125, 255.875 },
1255 .lineWidthRange = { 0.0, 7.9921875 },
1256 .pointSizeGranularity = (1.0 / 8.0),
1257 .lineWidthGranularity = (1.0 / 128.0),
1258 .strictLines = false, /* FINISHME */
1259 .standardSampleLocations = true,
1260 .optimalBufferCopyOffsetAlignment = 128,
1261 .optimalBufferCopyRowPitchAlignment = 128,
1262 .nonCoherentAtomSize = 64,
1263 };
1264
1265 *pProperties = (VkPhysicalDeviceProperties) {
1266 .apiVersion = anv_physical_device_api_version(pdevice),
1267 .driverVersion = vk_get_driver_version(),
1268 .vendorID = 0x8086,
1269 .deviceID = pdevice->chipset_id,
1270 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1271 .limits = limits,
1272 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1273 };
1274
1275 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1276 "%s", pdevice->name);
1277 memcpy(pProperties->pipelineCacheUUID,
1278 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1279 }
1280
1281 void anv_GetPhysicalDeviceProperties2(
1282 VkPhysicalDevice physicalDevice,
1283 VkPhysicalDeviceProperties2* pProperties)
1284 {
1285 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1286
1287 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1288
1289 vk_foreach_struct(ext, pProperties->pNext) {
1290 switch (ext->sType) {
1291 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1292 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1293 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1294
1295 /* We support all of the depth resolve modes */
1296 props->supportedDepthResolveModes =
1297 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1298 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1299 VK_RESOLVE_MODE_MIN_BIT_KHR |
1300 VK_RESOLVE_MODE_MAX_BIT_KHR;
1301
1302 /* Average doesn't make sense for stencil so we don't support that */
1303 props->supportedStencilResolveModes =
1304 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1305 if (pdevice->info.gen >= 8) {
1306 /* The advanced stencil resolve modes currently require stencil
1307 * sampling be supported by the hardware.
1308 */
1309 props->supportedStencilResolveModes |=
1310 VK_RESOLVE_MODE_MIN_BIT_KHR |
1311 VK_RESOLVE_MODE_MAX_BIT_KHR;
1312 }
1313
1314 props->independentResolveNone = true;
1315 props->independentResolve = true;
1316 break;
1317 }
1318
1319 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1320 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1321 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1322
1323 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1324 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1325 "Intel open-source Mesa driver");
1326
1327 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1328 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1329
1330 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1331 .major = 1,
1332 .minor = 1,
1333 .subminor = 2,
1334 .patch = 0,
1335 };
1336 break;
1337 }
1338
1339 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1340 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1341 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1342 /* Userptr needs page aligned memory. */
1343 props->minImportedHostPointerAlignment = 4096;
1344 break;
1345 }
1346
1347 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1348 VkPhysicalDeviceIDProperties *id_props =
1349 (VkPhysicalDeviceIDProperties *)ext;
1350 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1351 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1352 /* The LUID is for Windows. */
1353 id_props->deviceLUIDValid = false;
1354 break;
1355 }
1356
1357 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1358 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1359 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1360 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1361 props->maxPerStageDescriptorInlineUniformBlocks =
1362 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1363 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1364 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1365 props->maxDescriptorSetInlineUniformBlocks =
1366 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1367 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1368 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1369 break;
1370 }
1371
1372 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1373 VkPhysicalDeviceMaintenance3Properties *props =
1374 (VkPhysicalDeviceMaintenance3Properties *)ext;
1375 /* This value doesn't matter for us today as our per-stage
1376 * descriptors are the real limit.
1377 */
1378 props->maxPerSetDescriptors = 1024;
1379 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1380 break;
1381 }
1382
1383 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1384 VkPhysicalDeviceMultiviewProperties *properties =
1385 (VkPhysicalDeviceMultiviewProperties *)ext;
1386 properties->maxMultiviewViewCount = 16;
1387 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1388 break;
1389 }
1390
1391 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1392 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1393 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1394 properties->pciDomain = pdevice->pci_info.domain;
1395 properties->pciBus = pdevice->pci_info.bus;
1396 properties->pciDevice = pdevice->pci_info.device;
1397 properties->pciFunction = pdevice->pci_info.function;
1398 break;
1399 }
1400
1401 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1402 VkPhysicalDevicePointClippingProperties *properties =
1403 (VkPhysicalDevicePointClippingProperties *) ext;
1404 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1405 anv_finishme("Implement pop-free point clipping");
1406 break;
1407 }
1408
1409 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1410 VkPhysicalDeviceProtectedMemoryProperties *props =
1411 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1412 props->protectedNoFault = false;
1413 break;
1414 }
1415
1416 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1417 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1418 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1419
1420 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1421 break;
1422 }
1423
1424 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1425 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1426 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1427 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1428 properties->filterMinmaxSingleComponentFormats = true;
1429 break;
1430 }
1431
1432 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1433 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1434
1435 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1436
1437 VkShaderStageFlags scalar_stages = 0;
1438 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1439 if (pdevice->compiler->scalar_stage[stage])
1440 scalar_stages |= mesa_to_vk_shader_stage(stage);
1441 }
1442 properties->supportedStages = scalar_stages;
1443
1444 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1445 VK_SUBGROUP_FEATURE_VOTE_BIT |
1446 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1447 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1448 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1449 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1450 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1451 VK_SUBGROUP_FEATURE_QUAD_BIT;
1452 properties->quadOperationsInAllStages = true;
1453 break;
1454 }
1455
1456 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1457 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1458 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1459
1460 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1461 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1462 props->maxTransformFeedbackBufferSize = (1ull << 32);
1463 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1464 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1465 props->maxTransformFeedbackBufferDataStride = 2048;
1466 props->transformFeedbackQueries = true;
1467 props->transformFeedbackStreamsLinesTriangles = false;
1468 props->transformFeedbackRasterizationStreamSelect = false;
1469 props->transformFeedbackDraw = true;
1470 break;
1471 }
1472
1473 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1474 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1475 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1476 /* We have to restrict this a bit for multiview */
1477 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1478 break;
1479 }
1480
1481 default:
1482 anv_debug_ignored_stype(ext->sType);
1483 break;
1484 }
1485 }
1486 }
1487
1488 /* We support exactly one queue family. */
1489 static const VkQueueFamilyProperties
1490 anv_queue_family_properties = {
1491 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1492 VK_QUEUE_COMPUTE_BIT |
1493 VK_QUEUE_TRANSFER_BIT,
1494 .queueCount = 1,
1495 .timestampValidBits = 36, /* XXX: Real value here */
1496 .minImageTransferGranularity = { 1, 1, 1 },
1497 };
1498
1499 void anv_GetPhysicalDeviceQueueFamilyProperties(
1500 VkPhysicalDevice physicalDevice,
1501 uint32_t* pCount,
1502 VkQueueFamilyProperties* pQueueFamilyProperties)
1503 {
1504 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1505
1506 vk_outarray_append(&out, p) {
1507 *p = anv_queue_family_properties;
1508 }
1509 }
1510
1511 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1512 VkPhysicalDevice physicalDevice,
1513 uint32_t* pQueueFamilyPropertyCount,
1514 VkQueueFamilyProperties2* pQueueFamilyProperties)
1515 {
1516
1517 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1518
1519 vk_outarray_append(&out, p) {
1520 p->queueFamilyProperties = anv_queue_family_properties;
1521
1522 vk_foreach_struct(s, p->pNext) {
1523 anv_debug_ignored_stype(s->sType);
1524 }
1525 }
1526 }
1527
1528 void anv_GetPhysicalDeviceMemoryProperties(
1529 VkPhysicalDevice physicalDevice,
1530 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1531 {
1532 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1533
1534 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1535 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1536 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1537 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1538 .heapIndex = physical_device->memory.types[i].heapIndex,
1539 };
1540 }
1541
1542 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1543 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1544 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1545 .size = physical_device->memory.heaps[i].size,
1546 .flags = physical_device->memory.heaps[i].flags,
1547 };
1548 }
1549 }
1550
1551 void anv_GetPhysicalDeviceMemoryProperties2(
1552 VkPhysicalDevice physicalDevice,
1553 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1554 {
1555 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1556 &pMemoryProperties->memoryProperties);
1557
1558 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1559 switch (ext->sType) {
1560 default:
1561 anv_debug_ignored_stype(ext->sType);
1562 break;
1563 }
1564 }
1565 }
1566
1567 void
1568 anv_GetDeviceGroupPeerMemoryFeatures(
1569 VkDevice device,
1570 uint32_t heapIndex,
1571 uint32_t localDeviceIndex,
1572 uint32_t remoteDeviceIndex,
1573 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1574 {
1575 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1576 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1577 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1578 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1579 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1580 }
1581
1582 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1583 VkInstance _instance,
1584 const char* pName)
1585 {
1586 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1587
1588 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1589 * when we have to return valid function pointers, NULL, or it's left
1590 * undefined. See the table for exact details.
1591 */
1592 if (pName == NULL)
1593 return NULL;
1594
1595 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1596 if (strcmp(pName, "vk" #entrypoint) == 0) \
1597 return (PFN_vkVoidFunction)anv_##entrypoint
1598
1599 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1600 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1601 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1602 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1603
1604 #undef LOOKUP_ANV_ENTRYPOINT
1605
1606 if (instance == NULL)
1607 return NULL;
1608
1609 int idx = anv_get_instance_entrypoint_index(pName);
1610 if (idx >= 0)
1611 return instance->dispatch.entrypoints[idx];
1612
1613 idx = anv_get_device_entrypoint_index(pName);
1614 if (idx >= 0)
1615 return instance->device_dispatch.entrypoints[idx];
1616
1617 return NULL;
1618 }
1619
1620 /* With version 1+ of the loader interface the ICD should expose
1621 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1622 */
1623 PUBLIC
1624 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1625 VkInstance instance,
1626 const char* pName);
1627
1628 PUBLIC
1629 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1630 VkInstance instance,
1631 const char* pName)
1632 {
1633 return anv_GetInstanceProcAddr(instance, pName);
1634 }
1635
1636 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1637 VkDevice _device,
1638 const char* pName)
1639 {
1640 ANV_FROM_HANDLE(anv_device, device, _device);
1641
1642 if (!device || !pName)
1643 return NULL;
1644
1645 int idx = anv_get_device_entrypoint_index(pName);
1646 if (idx < 0)
1647 return NULL;
1648
1649 return device->dispatch.entrypoints[idx];
1650 }
1651
1652 VkResult
1653 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1654 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1655 const VkAllocationCallbacks* pAllocator,
1656 VkDebugReportCallbackEXT* pCallback)
1657 {
1658 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1659 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1660 pCreateInfo, pAllocator, &instance->alloc,
1661 pCallback);
1662 }
1663
1664 void
1665 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1666 VkDebugReportCallbackEXT _callback,
1667 const VkAllocationCallbacks* pAllocator)
1668 {
1669 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1670 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1671 _callback, pAllocator, &instance->alloc);
1672 }
1673
1674 void
1675 anv_DebugReportMessageEXT(VkInstance _instance,
1676 VkDebugReportFlagsEXT flags,
1677 VkDebugReportObjectTypeEXT objectType,
1678 uint64_t object,
1679 size_t location,
1680 int32_t messageCode,
1681 const char* pLayerPrefix,
1682 const char* pMessage)
1683 {
1684 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1685 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1686 object, location, messageCode, pLayerPrefix, pMessage);
1687 }
1688
1689 static void
1690 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1691 {
1692 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1693 queue->device = device;
1694 queue->flags = 0;
1695 }
1696
1697 static void
1698 anv_queue_finish(struct anv_queue *queue)
1699 {
1700 }
1701
1702 static struct anv_state
1703 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1704 {
1705 struct anv_state state;
1706
1707 state = anv_state_pool_alloc(pool, size, align);
1708 memcpy(state.map, p, size);
1709
1710 return state;
1711 }
1712
1713 struct gen8_border_color {
1714 union {
1715 float float32[4];
1716 uint32_t uint32[4];
1717 };
1718 /* Pad out to 64 bytes */
1719 uint32_t _pad[12];
1720 };
1721
1722 static void
1723 anv_device_init_border_colors(struct anv_device *device)
1724 {
1725 static const struct gen8_border_color border_colors[] = {
1726 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1727 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1728 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1729 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1730 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1731 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1732 };
1733
1734 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1735 sizeof(border_colors), 64,
1736 border_colors);
1737 }
1738
1739 static void
1740 anv_device_init_trivial_batch(struct anv_device *device)
1741 {
1742 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1743
1744 if (device->instance->physicalDevice.has_exec_async)
1745 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1746
1747 if (device->instance->physicalDevice.use_softpin)
1748 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1749
1750 anv_vma_alloc(device, &device->trivial_batch_bo);
1751
1752 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1753 0, 4096, 0);
1754
1755 struct anv_batch batch = {
1756 .start = map,
1757 .next = map,
1758 .end = map + 4096,
1759 };
1760
1761 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1762 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1763
1764 if (!device->info.has_llc)
1765 gen_clflush_range(map, batch.next - map);
1766
1767 anv_gem_munmap(map, device->trivial_batch_bo.size);
1768 }
1769
1770 VkResult anv_EnumerateDeviceExtensionProperties(
1771 VkPhysicalDevice physicalDevice,
1772 const char* pLayerName,
1773 uint32_t* pPropertyCount,
1774 VkExtensionProperties* pProperties)
1775 {
1776 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1777 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1778
1779 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1780 if (device->supported_extensions.extensions[i]) {
1781 vk_outarray_append(&out, prop) {
1782 *prop = anv_device_extensions[i];
1783 }
1784 }
1785 }
1786
1787 return vk_outarray_status(&out);
1788 }
1789
1790 static void
1791 anv_device_init_dispatch(struct anv_device *device)
1792 {
1793 const struct anv_device_dispatch_table *genX_table;
1794 switch (device->info.gen) {
1795 case 11:
1796 genX_table = &gen11_device_dispatch_table;
1797 break;
1798 case 10:
1799 genX_table = &gen10_device_dispatch_table;
1800 break;
1801 case 9:
1802 genX_table = &gen9_device_dispatch_table;
1803 break;
1804 case 8:
1805 genX_table = &gen8_device_dispatch_table;
1806 break;
1807 case 7:
1808 if (device->info.is_haswell)
1809 genX_table = &gen75_device_dispatch_table;
1810 else
1811 genX_table = &gen7_device_dispatch_table;
1812 break;
1813 default:
1814 unreachable("unsupported gen\n");
1815 }
1816
1817 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1818 /* Vulkan requires that entrypoints for extensions which have not been
1819 * enabled must not be advertised.
1820 */
1821 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1822 &device->instance->enabled_extensions,
1823 &device->enabled_extensions)) {
1824 device->dispatch.entrypoints[i] = NULL;
1825 } else if (genX_table->entrypoints[i]) {
1826 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1827 } else {
1828 device->dispatch.entrypoints[i] =
1829 anv_device_dispatch_table.entrypoints[i];
1830 }
1831 }
1832 }
1833
1834 static int
1835 vk_priority_to_gen(int priority)
1836 {
1837 switch (priority) {
1838 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1839 return GEN_CONTEXT_LOW_PRIORITY;
1840 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1841 return GEN_CONTEXT_MEDIUM_PRIORITY;
1842 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1843 return GEN_CONTEXT_HIGH_PRIORITY;
1844 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1845 return GEN_CONTEXT_REALTIME_PRIORITY;
1846 default:
1847 unreachable("Invalid priority");
1848 }
1849 }
1850
1851 static void
1852 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
1853 {
1854 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1855
1856 if (device->instance->physicalDevice.has_exec_async)
1857 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
1858
1859 if (device->instance->physicalDevice.use_softpin)
1860 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
1861
1862 anv_vma_alloc(device, &device->hiz_clear_bo);
1863
1864 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1865 0, 4096, 0);
1866
1867 union isl_color_value hiz_clear = { .u32 = { 0, } };
1868 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1869
1870 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1871 anv_gem_munmap(map, device->hiz_clear_bo.size);
1872 }
1873
1874 static bool
1875 get_bo_from_pool(struct gen_batch_decode_bo *ret,
1876 struct anv_block_pool *pool,
1877 uint64_t address)
1878 {
1879 for (uint32_t i = 0; i < pool->nbos; i++) {
1880 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
1881 uint32_t bo_size = pool->bos[i].size;
1882 if (address >= bo_address && address < (bo_address + bo_size)) {
1883 *ret = (struct gen_batch_decode_bo) {
1884 .addr = bo_address,
1885 .size = bo_size,
1886 .map = pool->bos[i].map,
1887 };
1888 return true;
1889 }
1890 }
1891 return false;
1892 }
1893
1894 /* Finding a buffer for batch decoding */
1895 static struct gen_batch_decode_bo
1896 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
1897 {
1898 struct anv_device *device = v_batch;
1899 struct gen_batch_decode_bo ret_bo = {};
1900
1901 assert(ppgtt);
1902
1903 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
1904 return ret_bo;
1905 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
1906 return ret_bo;
1907 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
1908 return ret_bo;
1909 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
1910 return ret_bo;
1911
1912 if (!device->cmd_buffer_being_decoded)
1913 return (struct gen_batch_decode_bo) { };
1914
1915 struct anv_batch_bo **bo;
1916
1917 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
1918 /* The decoder zeroes out the top 16 bits, so we need to as well */
1919 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
1920
1921 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
1922 return (struct gen_batch_decode_bo) {
1923 .addr = bo_address,
1924 .size = (*bo)->bo.size,
1925 .map = (*bo)->bo.map,
1926 };
1927 }
1928 }
1929
1930 return (struct gen_batch_decode_bo) { };
1931 }
1932
1933 VkResult anv_CreateDevice(
1934 VkPhysicalDevice physicalDevice,
1935 const VkDeviceCreateInfo* pCreateInfo,
1936 const VkAllocationCallbacks* pAllocator,
1937 VkDevice* pDevice)
1938 {
1939 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1940 VkResult result;
1941 struct anv_device *device;
1942
1943 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1944
1945 struct anv_device_extension_table enabled_extensions = { };
1946 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1947 int idx;
1948 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1949 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1950 anv_device_extensions[idx].extensionName) == 0)
1951 break;
1952 }
1953
1954 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1955 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1956
1957 if (!physical_device->supported_extensions.extensions[idx])
1958 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1959
1960 enabled_extensions.extensions[idx] = true;
1961 }
1962
1963 /* Check enabled features */
1964 if (pCreateInfo->pEnabledFeatures) {
1965 VkPhysicalDeviceFeatures supported_features;
1966 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1967 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1968 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1969 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1970 for (uint32_t i = 0; i < num_features; i++) {
1971 if (enabled_feature[i] && !supported_feature[i])
1972 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1973 }
1974 }
1975
1976 /* Check requested queues and fail if we are requested to create any
1977 * queues with flags we don't support.
1978 */
1979 assert(pCreateInfo->queueCreateInfoCount > 0);
1980 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1981 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1982 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1983 }
1984
1985 /* Check if client specified queue priority. */
1986 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1987 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1988 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1989
1990 VkQueueGlobalPriorityEXT priority =
1991 queue_priority ? queue_priority->globalPriority :
1992 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1993
1994 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1995 sizeof(*device), 8,
1996 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1997 if (!device)
1998 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1999
2000 const unsigned decode_flags =
2001 GEN_BATCH_DECODE_FULL |
2002 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2003 GEN_BATCH_DECODE_OFFSETS |
2004 GEN_BATCH_DECODE_FLOATS;
2005
2006 gen_batch_decode_ctx_init(&device->decoder_ctx,
2007 &physical_device->info,
2008 stderr, decode_flags, NULL,
2009 decode_get_bo, NULL, device);
2010
2011 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2012 device->instance = physical_device->instance;
2013 device->chipset_id = physical_device->chipset_id;
2014 device->no_hw = physical_device->no_hw;
2015 device->_lost = false;
2016
2017 if (pAllocator)
2018 device->alloc = *pAllocator;
2019 else
2020 device->alloc = physical_device->instance->alloc;
2021
2022 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2023 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2024 if (device->fd == -1) {
2025 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2026 goto fail_device;
2027 }
2028
2029 device->context_id = anv_gem_create_context(device);
2030 if (device->context_id == -1) {
2031 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2032 goto fail_fd;
2033 }
2034
2035 if (physical_device->use_softpin) {
2036 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2037 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2038 goto fail_fd;
2039 }
2040
2041 /* keep the page with address zero out of the allocator */
2042 struct anv_memory_heap *low_heap =
2043 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2044 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2045 device->vma_lo_available = low_heap->size;
2046
2047 struct anv_memory_heap *high_heap =
2048 &physical_device->memory.heaps[0];
2049 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2050 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2051 high_heap->size;
2052 }
2053
2054 list_inithead(&device->memory_objects);
2055
2056 /* As per spec, the driver implementation may deny requests to acquire
2057 * a priority above the default priority (MEDIUM) if the caller does not
2058 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2059 * is returned.
2060 */
2061 if (physical_device->has_context_priority) {
2062 int err = anv_gem_set_context_param(device->fd, device->context_id,
2063 I915_CONTEXT_PARAM_PRIORITY,
2064 vk_priority_to_gen(priority));
2065 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2066 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2067 goto fail_fd;
2068 }
2069 }
2070
2071 device->info = physical_device->info;
2072 device->isl_dev = physical_device->isl_dev;
2073
2074 /* On Broadwell and later, we can use batch chaining to more efficiently
2075 * implement growing command buffers. Prior to Haswell, the kernel
2076 * command parser gets in the way and we have to fall back to growing
2077 * the batch.
2078 */
2079 device->can_chain_batches = device->info.gen >= 8;
2080
2081 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2082 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2083 device->enabled_extensions = enabled_extensions;
2084
2085 anv_device_init_dispatch(device);
2086
2087 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2088 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2089 goto fail_context_id;
2090 }
2091
2092 pthread_condattr_t condattr;
2093 if (pthread_condattr_init(&condattr) != 0) {
2094 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2095 goto fail_mutex;
2096 }
2097 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2098 pthread_condattr_destroy(&condattr);
2099 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2100 goto fail_mutex;
2101 }
2102 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2103 pthread_condattr_destroy(&condattr);
2104 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2105 goto fail_mutex;
2106 }
2107 pthread_condattr_destroy(&condattr);
2108
2109 uint64_t bo_flags =
2110 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2111 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2112 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2113 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2114
2115 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2116
2117 result = anv_bo_cache_init(&device->bo_cache);
2118 if (result != VK_SUCCESS)
2119 goto fail_batch_bo_pool;
2120
2121 if (!physical_device->use_softpin)
2122 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2123
2124 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2125 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2126 16384,
2127 bo_flags);
2128 if (result != VK_SUCCESS)
2129 goto fail_bo_cache;
2130
2131 result = anv_state_pool_init(&device->instruction_state_pool, device,
2132 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2133 16384,
2134 bo_flags);
2135 if (result != VK_SUCCESS)
2136 goto fail_dynamic_state_pool;
2137
2138 result = anv_state_pool_init(&device->surface_state_pool, device,
2139 SURFACE_STATE_POOL_MIN_ADDRESS,
2140 4096,
2141 bo_flags);
2142 if (result != VK_SUCCESS)
2143 goto fail_instruction_state_pool;
2144
2145 if (physical_device->use_softpin) {
2146 result = anv_state_pool_init(&device->binding_table_pool, device,
2147 BINDING_TABLE_POOL_MIN_ADDRESS,
2148 4096,
2149 bo_flags);
2150 if (result != VK_SUCCESS)
2151 goto fail_surface_state_pool;
2152 }
2153
2154 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2155 if (result != VK_SUCCESS)
2156 goto fail_binding_table_pool;
2157
2158 if (physical_device->use_softpin)
2159 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2160
2161 if (!anv_vma_alloc(device, &device->workaround_bo))
2162 goto fail_workaround_bo;
2163
2164 anv_device_init_trivial_batch(device);
2165
2166 if (device->info.gen >= 10)
2167 anv_device_init_hiz_clear_value_bo(device);
2168
2169 anv_scratch_pool_init(device, &device->scratch_pool);
2170
2171 anv_queue_init(device, &device->queue);
2172
2173 switch (device->info.gen) {
2174 case 7:
2175 if (!device->info.is_haswell)
2176 result = gen7_init_device_state(device);
2177 else
2178 result = gen75_init_device_state(device);
2179 break;
2180 case 8:
2181 result = gen8_init_device_state(device);
2182 break;
2183 case 9:
2184 result = gen9_init_device_state(device);
2185 break;
2186 case 10:
2187 result = gen10_init_device_state(device);
2188 break;
2189 case 11:
2190 result = gen11_init_device_state(device);
2191 break;
2192 default:
2193 /* Shouldn't get here as we don't create physical devices for any other
2194 * gens. */
2195 unreachable("unhandled gen");
2196 }
2197 if (result != VK_SUCCESS)
2198 goto fail_workaround_bo;
2199
2200 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2201
2202 anv_device_init_blorp(device);
2203
2204 anv_device_init_border_colors(device);
2205
2206 *pDevice = anv_device_to_handle(device);
2207
2208 return VK_SUCCESS;
2209
2210 fail_workaround_bo:
2211 anv_queue_finish(&device->queue);
2212 anv_scratch_pool_finish(device, &device->scratch_pool);
2213 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2214 anv_gem_close(device, device->workaround_bo.gem_handle);
2215 fail_binding_table_pool:
2216 if (physical_device->use_softpin)
2217 anv_state_pool_finish(&device->binding_table_pool);
2218 fail_surface_state_pool:
2219 anv_state_pool_finish(&device->surface_state_pool);
2220 fail_instruction_state_pool:
2221 anv_state_pool_finish(&device->instruction_state_pool);
2222 fail_dynamic_state_pool:
2223 anv_state_pool_finish(&device->dynamic_state_pool);
2224 fail_bo_cache:
2225 anv_bo_cache_finish(&device->bo_cache);
2226 fail_batch_bo_pool:
2227 anv_bo_pool_finish(&device->batch_bo_pool);
2228 pthread_cond_destroy(&device->queue_submit);
2229 fail_mutex:
2230 pthread_mutex_destroy(&device->mutex);
2231 fail_context_id:
2232 anv_gem_destroy_context(device, device->context_id);
2233 fail_fd:
2234 close(device->fd);
2235 fail_device:
2236 vk_free(&device->alloc, device);
2237
2238 return result;
2239 }
2240
2241 void anv_DestroyDevice(
2242 VkDevice _device,
2243 const VkAllocationCallbacks* pAllocator)
2244 {
2245 ANV_FROM_HANDLE(anv_device, device, _device);
2246 struct anv_physical_device *physical_device;
2247
2248 if (!device)
2249 return;
2250
2251 physical_device = &device->instance->physicalDevice;
2252
2253 anv_device_finish_blorp(device);
2254
2255 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2256
2257 anv_queue_finish(&device->queue);
2258
2259 #ifdef HAVE_VALGRIND
2260 /* We only need to free these to prevent valgrind errors. The backing
2261 * BO will go away in a couple of lines so we don't actually leak.
2262 */
2263 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2264 #endif
2265
2266 anv_scratch_pool_finish(device, &device->scratch_pool);
2267
2268 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2269 anv_vma_free(device, &device->workaround_bo);
2270 anv_gem_close(device, device->workaround_bo.gem_handle);
2271
2272 anv_vma_free(device, &device->trivial_batch_bo);
2273 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2274 if (device->info.gen >= 10)
2275 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2276
2277 if (physical_device->use_softpin)
2278 anv_state_pool_finish(&device->binding_table_pool);
2279 anv_state_pool_finish(&device->surface_state_pool);
2280 anv_state_pool_finish(&device->instruction_state_pool);
2281 anv_state_pool_finish(&device->dynamic_state_pool);
2282
2283 anv_bo_cache_finish(&device->bo_cache);
2284
2285 anv_bo_pool_finish(&device->batch_bo_pool);
2286
2287 pthread_cond_destroy(&device->queue_submit);
2288 pthread_mutex_destroy(&device->mutex);
2289
2290 anv_gem_destroy_context(device, device->context_id);
2291
2292 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2293
2294 close(device->fd);
2295
2296 vk_free(&device->alloc, device);
2297 }
2298
2299 VkResult anv_EnumerateInstanceLayerProperties(
2300 uint32_t* pPropertyCount,
2301 VkLayerProperties* pProperties)
2302 {
2303 if (pProperties == NULL) {
2304 *pPropertyCount = 0;
2305 return VK_SUCCESS;
2306 }
2307
2308 /* None supported at this time */
2309 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2310 }
2311
2312 VkResult anv_EnumerateDeviceLayerProperties(
2313 VkPhysicalDevice physicalDevice,
2314 uint32_t* pPropertyCount,
2315 VkLayerProperties* pProperties)
2316 {
2317 if (pProperties == NULL) {
2318 *pPropertyCount = 0;
2319 return VK_SUCCESS;
2320 }
2321
2322 /* None supported at this time */
2323 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2324 }
2325
2326 void anv_GetDeviceQueue(
2327 VkDevice _device,
2328 uint32_t queueNodeIndex,
2329 uint32_t queueIndex,
2330 VkQueue* pQueue)
2331 {
2332 ANV_FROM_HANDLE(anv_device, device, _device);
2333
2334 assert(queueIndex == 0);
2335
2336 *pQueue = anv_queue_to_handle(&device->queue);
2337 }
2338
2339 void anv_GetDeviceQueue2(
2340 VkDevice _device,
2341 const VkDeviceQueueInfo2* pQueueInfo,
2342 VkQueue* pQueue)
2343 {
2344 ANV_FROM_HANDLE(anv_device, device, _device);
2345
2346 assert(pQueueInfo->queueIndex == 0);
2347
2348 if (pQueueInfo->flags == device->queue.flags)
2349 *pQueue = anv_queue_to_handle(&device->queue);
2350 else
2351 *pQueue = NULL;
2352 }
2353
2354 VkResult
2355 _anv_device_set_lost(struct anv_device *device,
2356 const char *file, int line,
2357 const char *msg, ...)
2358 {
2359 VkResult err;
2360 va_list ap;
2361
2362 device->_lost = true;
2363
2364 va_start(ap, msg);
2365 err = __vk_errorv(device->instance, device,
2366 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2367 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2368 va_end(ap);
2369
2370 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2371 abort();
2372
2373 return err;
2374 }
2375
2376 VkResult
2377 anv_device_query_status(struct anv_device *device)
2378 {
2379 /* This isn't likely as most of the callers of this function already check
2380 * for it. However, it doesn't hurt to check and it potentially lets us
2381 * avoid an ioctl.
2382 */
2383 if (anv_device_is_lost(device))
2384 return VK_ERROR_DEVICE_LOST;
2385
2386 uint32_t active, pending;
2387 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2388 if (ret == -1) {
2389 /* We don't know the real error. */
2390 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2391 }
2392
2393 if (active) {
2394 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2395 } else if (pending) {
2396 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2397 }
2398
2399 return VK_SUCCESS;
2400 }
2401
2402 VkResult
2403 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2404 {
2405 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2406 * Other usages of the BO (such as on different hardware) will not be
2407 * flagged as "busy" by this ioctl. Use with care.
2408 */
2409 int ret = anv_gem_busy(device, bo->gem_handle);
2410 if (ret == 1) {
2411 return VK_NOT_READY;
2412 } else if (ret == -1) {
2413 /* We don't know the real error. */
2414 return anv_device_set_lost(device, "gem wait failed: %m");
2415 }
2416
2417 /* Query for device status after the busy call. If the BO we're checking
2418 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2419 * client because it clearly doesn't have valid data. Yes, this most
2420 * likely means an ioctl, but we just did an ioctl to query the busy status
2421 * so it's no great loss.
2422 */
2423 return anv_device_query_status(device);
2424 }
2425
2426 VkResult
2427 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2428 int64_t timeout)
2429 {
2430 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2431 if (ret == -1 && errno == ETIME) {
2432 return VK_TIMEOUT;
2433 } else if (ret == -1) {
2434 /* We don't know the real error. */
2435 return anv_device_set_lost(device, "gem wait failed: %m");
2436 }
2437
2438 /* Query for device status after the wait. If the BO we're waiting on got
2439 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2440 * because it clearly doesn't have valid data. Yes, this most likely means
2441 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2442 */
2443 return anv_device_query_status(device);
2444 }
2445
2446 VkResult anv_DeviceWaitIdle(
2447 VkDevice _device)
2448 {
2449 ANV_FROM_HANDLE(anv_device, device, _device);
2450 if (anv_device_is_lost(device))
2451 return VK_ERROR_DEVICE_LOST;
2452
2453 struct anv_batch batch;
2454
2455 uint32_t cmds[8];
2456 batch.start = batch.next = cmds;
2457 batch.end = (void *) cmds + sizeof(cmds);
2458
2459 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2460 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2461
2462 return anv_device_submit_simple_batch(device, &batch);
2463 }
2464
2465 bool
2466 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2467 {
2468 if (!(bo->flags & EXEC_OBJECT_PINNED))
2469 return true;
2470
2471 pthread_mutex_lock(&device->vma_mutex);
2472
2473 bo->offset = 0;
2474
2475 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2476 device->vma_hi_available >= bo->size) {
2477 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2478 if (addr) {
2479 bo->offset = gen_canonical_address(addr);
2480 assert(addr == gen_48b_address(bo->offset));
2481 device->vma_hi_available -= bo->size;
2482 }
2483 }
2484
2485 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2486 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2487 if (addr) {
2488 bo->offset = gen_canonical_address(addr);
2489 assert(addr == gen_48b_address(bo->offset));
2490 device->vma_lo_available -= bo->size;
2491 }
2492 }
2493
2494 pthread_mutex_unlock(&device->vma_mutex);
2495
2496 return bo->offset != 0;
2497 }
2498
2499 void
2500 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2501 {
2502 if (!(bo->flags & EXEC_OBJECT_PINNED))
2503 return;
2504
2505 const uint64_t addr_48b = gen_48b_address(bo->offset);
2506
2507 pthread_mutex_lock(&device->vma_mutex);
2508
2509 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2510 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2511 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2512 device->vma_lo_available += bo->size;
2513 } else {
2514 MAYBE_UNUSED const struct anv_physical_device *physical_device =
2515 &device->instance->physicalDevice;
2516 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2517 addr_48b < (physical_device->memory.heaps[0].vma_start +
2518 physical_device->memory.heaps[0].vma_size));
2519 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2520 device->vma_hi_available += bo->size;
2521 }
2522
2523 pthread_mutex_unlock(&device->vma_mutex);
2524
2525 bo->offset = 0;
2526 }
2527
2528 VkResult
2529 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2530 {
2531 uint32_t gem_handle = anv_gem_create(device, size);
2532 if (!gem_handle)
2533 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2534
2535 anv_bo_init(bo, gem_handle, size);
2536
2537 return VK_SUCCESS;
2538 }
2539
2540 VkResult anv_AllocateMemory(
2541 VkDevice _device,
2542 const VkMemoryAllocateInfo* pAllocateInfo,
2543 const VkAllocationCallbacks* pAllocator,
2544 VkDeviceMemory* pMem)
2545 {
2546 ANV_FROM_HANDLE(anv_device, device, _device);
2547 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2548 struct anv_device_memory *mem;
2549 VkResult result = VK_SUCCESS;
2550
2551 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2552
2553 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2554 assert(pAllocateInfo->allocationSize > 0);
2555
2556 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2557 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2558
2559 /* FINISHME: Fail if allocation request exceeds heap size. */
2560
2561 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2562 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2563 if (mem == NULL)
2564 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2565
2566 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2567 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2568 mem->map = NULL;
2569 mem->map_size = 0;
2570 mem->ahw = NULL;
2571 mem->host_ptr = NULL;
2572
2573 uint64_t bo_flags = 0;
2574
2575 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2576 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2577 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2578
2579 const struct wsi_memory_allocate_info *wsi_info =
2580 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2581 if (wsi_info && wsi_info->implicit_sync) {
2582 /* We need to set the WRITE flag on window system buffers so that GEM
2583 * will know we're writing to them and synchronize uses on other rings
2584 * (eg if the display server uses the blitter ring).
2585 */
2586 bo_flags |= EXEC_OBJECT_WRITE;
2587 } else if (pdevice->has_exec_async) {
2588 bo_flags |= EXEC_OBJECT_ASYNC;
2589 }
2590
2591 if (pdevice->use_softpin)
2592 bo_flags |= EXEC_OBJECT_PINNED;
2593
2594 const VkExportMemoryAllocateInfo *export_info =
2595 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2596
2597 /* Check if we need to support Android HW buffer export. If so,
2598 * create AHardwareBuffer and import memory from it.
2599 */
2600 bool android_export = false;
2601 if (export_info && export_info->handleTypes &
2602 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2603 android_export = true;
2604
2605 /* Android memory import. */
2606 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2607 vk_find_struct_const(pAllocateInfo->pNext,
2608 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2609
2610 if (ahw_import_info) {
2611 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2612 if (result != VK_SUCCESS)
2613 goto fail;
2614
2615 goto success;
2616 } else if (android_export) {
2617 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2618 if (result != VK_SUCCESS)
2619 goto fail;
2620
2621 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2622 .buffer = mem->ahw,
2623 };
2624 result = anv_import_ahw_memory(_device, mem, &import_info);
2625 if (result != VK_SUCCESS)
2626 goto fail;
2627
2628 goto success;
2629 }
2630
2631 const VkImportMemoryFdInfoKHR *fd_info =
2632 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2633
2634 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2635 * ignored.
2636 */
2637 if (fd_info && fd_info->handleType) {
2638 /* At the moment, we support only the below handle types. */
2639 assert(fd_info->handleType ==
2640 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2641 fd_info->handleType ==
2642 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2643
2644 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2645 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2646 if (result != VK_SUCCESS)
2647 goto fail;
2648
2649 VkDeviceSize aligned_alloc_size =
2650 align_u64(pAllocateInfo->allocationSize, 4096);
2651
2652 /* For security purposes, we reject importing the bo if it's smaller
2653 * than the requested allocation size. This prevents a malicious client
2654 * from passing a buffer to a trusted client, lying about the size, and
2655 * telling the trusted client to try and texture from an image that goes
2656 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2657 * in the trusted client. The trusted client can protect itself against
2658 * this sort of attack but only if it can trust the buffer size.
2659 */
2660 if (mem->bo->size < aligned_alloc_size) {
2661 result = vk_errorf(device->instance, device,
2662 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2663 "aligned allocationSize too large for "
2664 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2665 "%"PRIu64"B > %"PRIu64"B",
2666 aligned_alloc_size, mem->bo->size);
2667 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2668 goto fail;
2669 }
2670
2671 /* From the Vulkan spec:
2672 *
2673 * "Importing memory from a file descriptor transfers ownership of
2674 * the file descriptor from the application to the Vulkan
2675 * implementation. The application must not perform any operations on
2676 * the file descriptor after a successful import."
2677 *
2678 * If the import fails, we leave the file descriptor open.
2679 */
2680 close(fd_info->fd);
2681 goto success;
2682 }
2683
2684 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2685 vk_find_struct_const(pAllocateInfo->pNext,
2686 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2687 if (host_ptr_info && host_ptr_info->handleType) {
2688 if (host_ptr_info->handleType ==
2689 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2690 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2691 goto fail;
2692 }
2693
2694 assert(host_ptr_info->handleType ==
2695 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2696
2697 result = anv_bo_cache_import_host_ptr(
2698 device, &device->bo_cache, host_ptr_info->pHostPointer,
2699 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2700
2701 if (result != VK_SUCCESS)
2702 goto fail;
2703
2704 mem->host_ptr = host_ptr_info->pHostPointer;
2705 goto success;
2706 }
2707
2708 /* Regular allocate (not importing memory). */
2709
2710 if (export_info && export_info->handleTypes)
2711 bo_flags |= ANV_BO_EXTERNAL;
2712
2713 result = anv_bo_cache_alloc(device, &device->bo_cache,
2714 pAllocateInfo->allocationSize, bo_flags,
2715 &mem->bo);
2716 if (result != VK_SUCCESS)
2717 goto fail;
2718
2719 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2720 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2721 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2722 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2723
2724 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2725 * the BO. In this case, we have a dedicated allocation.
2726 */
2727 if (image->needs_set_tiling) {
2728 const uint32_t i915_tiling =
2729 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2730 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2731 image->planes[0].surface.isl.row_pitch_B,
2732 i915_tiling);
2733 if (ret) {
2734 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2735 return vk_errorf(device->instance, NULL,
2736 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2737 "failed to set BO tiling: %m");
2738 }
2739 }
2740 }
2741
2742 success:
2743 pthread_mutex_lock(&device->mutex);
2744 list_addtail(&mem->link, &device->memory_objects);
2745 pthread_mutex_unlock(&device->mutex);
2746
2747 *pMem = anv_device_memory_to_handle(mem);
2748
2749 return VK_SUCCESS;
2750
2751 fail:
2752 vk_free2(&device->alloc, pAllocator, mem);
2753
2754 return result;
2755 }
2756
2757 VkResult anv_GetMemoryFdKHR(
2758 VkDevice device_h,
2759 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2760 int* pFd)
2761 {
2762 ANV_FROM_HANDLE(anv_device, dev, device_h);
2763 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2764
2765 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2766
2767 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2768 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2769
2770 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2771 }
2772
2773 VkResult anv_GetMemoryFdPropertiesKHR(
2774 VkDevice _device,
2775 VkExternalMemoryHandleTypeFlagBits handleType,
2776 int fd,
2777 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2778 {
2779 ANV_FROM_HANDLE(anv_device, device, _device);
2780 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2781
2782 switch (handleType) {
2783 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2784 /* dma-buf can be imported as any memory type */
2785 pMemoryFdProperties->memoryTypeBits =
2786 (1 << pdevice->memory.type_count) - 1;
2787 return VK_SUCCESS;
2788
2789 default:
2790 /* The valid usage section for this function says:
2791 *
2792 * "handleType must not be one of the handle types defined as
2793 * opaque."
2794 *
2795 * So opaque handle types fall into the default "unsupported" case.
2796 */
2797 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2798 }
2799 }
2800
2801 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2802 VkDevice _device,
2803 VkExternalMemoryHandleTypeFlagBits handleType,
2804 const void* pHostPointer,
2805 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2806 {
2807 ANV_FROM_HANDLE(anv_device, device, _device);
2808
2809 assert(pMemoryHostPointerProperties->sType ==
2810 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2811
2812 switch (handleType) {
2813 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2814 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2815
2816 /* Host memory can be imported as any memory type. */
2817 pMemoryHostPointerProperties->memoryTypeBits =
2818 (1ull << pdevice->memory.type_count) - 1;
2819
2820 return VK_SUCCESS;
2821 }
2822 default:
2823 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2824 }
2825 }
2826
2827 void anv_FreeMemory(
2828 VkDevice _device,
2829 VkDeviceMemory _mem,
2830 const VkAllocationCallbacks* pAllocator)
2831 {
2832 ANV_FROM_HANDLE(anv_device, device, _device);
2833 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2834
2835 if (mem == NULL)
2836 return;
2837
2838 pthread_mutex_lock(&device->mutex);
2839 list_del(&mem->link);
2840 pthread_mutex_unlock(&device->mutex);
2841
2842 if (mem->map)
2843 anv_UnmapMemory(_device, _mem);
2844
2845 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2846
2847 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
2848 if (mem->ahw)
2849 AHardwareBuffer_release(mem->ahw);
2850 #endif
2851
2852 vk_free2(&device->alloc, pAllocator, mem);
2853 }
2854
2855 VkResult anv_MapMemory(
2856 VkDevice _device,
2857 VkDeviceMemory _memory,
2858 VkDeviceSize offset,
2859 VkDeviceSize size,
2860 VkMemoryMapFlags flags,
2861 void** ppData)
2862 {
2863 ANV_FROM_HANDLE(anv_device, device, _device);
2864 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2865
2866 if (mem == NULL) {
2867 *ppData = NULL;
2868 return VK_SUCCESS;
2869 }
2870
2871 if (mem->host_ptr) {
2872 *ppData = mem->host_ptr + offset;
2873 return VK_SUCCESS;
2874 }
2875
2876 if (size == VK_WHOLE_SIZE)
2877 size = mem->bo->size - offset;
2878
2879 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2880 *
2881 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2882 * assert(size != 0);
2883 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2884 * equal to the size of the memory minus offset
2885 */
2886 assert(size > 0);
2887 assert(offset + size <= mem->bo->size);
2888
2889 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2890 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2891 * at a time is valid. We could just mmap up front and return an offset
2892 * pointer here, but that may exhaust virtual memory on 32 bit
2893 * userspace. */
2894
2895 uint32_t gem_flags = 0;
2896
2897 if (!device->info.has_llc &&
2898 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2899 gem_flags |= I915_MMAP_WC;
2900
2901 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2902 uint64_t map_offset = offset & ~4095ull;
2903 assert(offset >= map_offset);
2904 uint64_t map_size = (offset + size) - map_offset;
2905
2906 /* Let's map whole pages */
2907 map_size = align_u64(map_size, 4096);
2908
2909 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2910 map_offset, map_size, gem_flags);
2911 if (map == MAP_FAILED)
2912 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2913
2914 mem->map = map;
2915 mem->map_size = map_size;
2916
2917 *ppData = mem->map + (offset - map_offset);
2918
2919 return VK_SUCCESS;
2920 }
2921
2922 void anv_UnmapMemory(
2923 VkDevice _device,
2924 VkDeviceMemory _memory)
2925 {
2926 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2927
2928 if (mem == NULL || mem->host_ptr)
2929 return;
2930
2931 anv_gem_munmap(mem->map, mem->map_size);
2932
2933 mem->map = NULL;
2934 mem->map_size = 0;
2935 }
2936
2937 static void
2938 clflush_mapped_ranges(struct anv_device *device,
2939 uint32_t count,
2940 const VkMappedMemoryRange *ranges)
2941 {
2942 for (uint32_t i = 0; i < count; i++) {
2943 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2944 if (ranges[i].offset >= mem->map_size)
2945 continue;
2946
2947 gen_clflush_range(mem->map + ranges[i].offset,
2948 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2949 }
2950 }
2951
2952 VkResult anv_FlushMappedMemoryRanges(
2953 VkDevice _device,
2954 uint32_t memoryRangeCount,
2955 const VkMappedMemoryRange* pMemoryRanges)
2956 {
2957 ANV_FROM_HANDLE(anv_device, device, _device);
2958
2959 if (device->info.has_llc)
2960 return VK_SUCCESS;
2961
2962 /* Make sure the writes we're flushing have landed. */
2963 __builtin_ia32_mfence();
2964
2965 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2966
2967 return VK_SUCCESS;
2968 }
2969
2970 VkResult anv_InvalidateMappedMemoryRanges(
2971 VkDevice _device,
2972 uint32_t memoryRangeCount,
2973 const VkMappedMemoryRange* pMemoryRanges)
2974 {
2975 ANV_FROM_HANDLE(anv_device, device, _device);
2976
2977 if (device->info.has_llc)
2978 return VK_SUCCESS;
2979
2980 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2981
2982 /* Make sure no reads get moved up above the invalidate. */
2983 __builtin_ia32_mfence();
2984
2985 return VK_SUCCESS;
2986 }
2987
2988 void anv_GetBufferMemoryRequirements(
2989 VkDevice _device,
2990 VkBuffer _buffer,
2991 VkMemoryRequirements* pMemoryRequirements)
2992 {
2993 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2994 ANV_FROM_HANDLE(anv_device, device, _device);
2995 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2996
2997 /* The Vulkan spec (git aaed022) says:
2998 *
2999 * memoryTypeBits is a bitfield and contains one bit set for every
3000 * supported memory type for the resource. The bit `1<<i` is set if and
3001 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3002 * structure for the physical device is supported.
3003 */
3004 uint32_t memory_types = 0;
3005 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3006 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3007 if ((valid_usage & buffer->usage) == buffer->usage)
3008 memory_types |= (1u << i);
3009 }
3010
3011 /* Base alignment requirement of a cache line */
3012 uint32_t alignment = 16;
3013
3014 /* We need an alignment of 32 for pushing UBOs */
3015 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3016 alignment = MAX2(alignment, 32);
3017
3018 pMemoryRequirements->size = buffer->size;
3019 pMemoryRequirements->alignment = alignment;
3020
3021 /* Storage and Uniform buffers should have their size aligned to
3022 * 32-bits to avoid boundary checks when last DWord is not complete.
3023 * This would ensure that not internal padding would be needed for
3024 * 16-bit types.
3025 */
3026 if (device->robust_buffer_access &&
3027 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3028 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3029 pMemoryRequirements->size = align_u64(buffer->size, 4);
3030
3031 pMemoryRequirements->memoryTypeBits = memory_types;
3032 }
3033
3034 void anv_GetBufferMemoryRequirements2(
3035 VkDevice _device,
3036 const VkBufferMemoryRequirementsInfo2* pInfo,
3037 VkMemoryRequirements2* pMemoryRequirements)
3038 {
3039 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3040 &pMemoryRequirements->memoryRequirements);
3041
3042 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3043 switch (ext->sType) {
3044 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3045 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3046 requirements->prefersDedicatedAllocation = false;
3047 requirements->requiresDedicatedAllocation = false;
3048 break;
3049 }
3050
3051 default:
3052 anv_debug_ignored_stype(ext->sType);
3053 break;
3054 }
3055 }
3056 }
3057
3058 void anv_GetImageMemoryRequirements(
3059 VkDevice _device,
3060 VkImage _image,
3061 VkMemoryRequirements* pMemoryRequirements)
3062 {
3063 ANV_FROM_HANDLE(anv_image, image, _image);
3064 ANV_FROM_HANDLE(anv_device, device, _device);
3065 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3066
3067 /* The Vulkan spec (git aaed022) says:
3068 *
3069 * memoryTypeBits is a bitfield and contains one bit set for every
3070 * supported memory type for the resource. The bit `1<<i` is set if and
3071 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3072 * structure for the physical device is supported.
3073 *
3074 * All types are currently supported for images.
3075 */
3076 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3077
3078 /* We must have image allocated or imported at this point. According to the
3079 * specification, external images must have been bound to memory before
3080 * calling GetImageMemoryRequirements.
3081 */
3082 assert(image->size > 0);
3083
3084 pMemoryRequirements->size = image->size;
3085 pMemoryRequirements->alignment = image->alignment;
3086 pMemoryRequirements->memoryTypeBits = memory_types;
3087 }
3088
3089 void anv_GetImageMemoryRequirements2(
3090 VkDevice _device,
3091 const VkImageMemoryRequirementsInfo2* pInfo,
3092 VkMemoryRequirements2* pMemoryRequirements)
3093 {
3094 ANV_FROM_HANDLE(anv_device, device, _device);
3095 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3096
3097 anv_GetImageMemoryRequirements(_device, pInfo->image,
3098 &pMemoryRequirements->memoryRequirements);
3099
3100 vk_foreach_struct_const(ext, pInfo->pNext) {
3101 switch (ext->sType) {
3102 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3103 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3104 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3105 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3106 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3107 plane_reqs->planeAspect);
3108
3109 assert(image->planes[plane].offset == 0);
3110
3111 /* The Vulkan spec (git aaed022) says:
3112 *
3113 * memoryTypeBits is a bitfield and contains one bit set for every
3114 * supported memory type for the resource. The bit `1<<i` is set
3115 * if and only if the memory type `i` in the
3116 * VkPhysicalDeviceMemoryProperties structure for the physical
3117 * device is supported.
3118 *
3119 * All types are currently supported for images.
3120 */
3121 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3122 (1ull << pdevice->memory.type_count) - 1;
3123
3124 /* We must have image allocated or imported at this point. According to the
3125 * specification, external images must have been bound to memory before
3126 * calling GetImageMemoryRequirements.
3127 */
3128 assert(image->planes[plane].size > 0);
3129
3130 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3131 pMemoryRequirements->memoryRequirements.alignment =
3132 image->planes[plane].alignment;
3133 break;
3134 }
3135
3136 default:
3137 anv_debug_ignored_stype(ext->sType);
3138 break;
3139 }
3140 }
3141
3142 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3143 switch (ext->sType) {
3144 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3145 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3146 if (image->needs_set_tiling || image->external_format) {
3147 /* If we need to set the tiling for external consumers, we need a
3148 * dedicated allocation.
3149 *
3150 * See also anv_AllocateMemory.
3151 */
3152 requirements->prefersDedicatedAllocation = true;
3153 requirements->requiresDedicatedAllocation = true;
3154 } else {
3155 requirements->prefersDedicatedAllocation = false;
3156 requirements->requiresDedicatedAllocation = false;
3157 }
3158 break;
3159 }
3160
3161 default:
3162 anv_debug_ignored_stype(ext->sType);
3163 break;
3164 }
3165 }
3166 }
3167
3168 void anv_GetImageSparseMemoryRequirements(
3169 VkDevice device,
3170 VkImage image,
3171 uint32_t* pSparseMemoryRequirementCount,
3172 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3173 {
3174 *pSparseMemoryRequirementCount = 0;
3175 }
3176
3177 void anv_GetImageSparseMemoryRequirements2(
3178 VkDevice device,
3179 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3180 uint32_t* pSparseMemoryRequirementCount,
3181 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3182 {
3183 *pSparseMemoryRequirementCount = 0;
3184 }
3185
3186 void anv_GetDeviceMemoryCommitment(
3187 VkDevice device,
3188 VkDeviceMemory memory,
3189 VkDeviceSize* pCommittedMemoryInBytes)
3190 {
3191 *pCommittedMemoryInBytes = 0;
3192 }
3193
3194 static void
3195 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3196 {
3197 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3198 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3199
3200 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3201
3202 if (mem) {
3203 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3204 buffer->address = (struct anv_address) {
3205 .bo = mem->bo,
3206 .offset = pBindInfo->memoryOffset,
3207 };
3208 } else {
3209 buffer->address = ANV_NULL_ADDRESS;
3210 }
3211 }
3212
3213 VkResult anv_BindBufferMemory(
3214 VkDevice device,
3215 VkBuffer buffer,
3216 VkDeviceMemory memory,
3217 VkDeviceSize memoryOffset)
3218 {
3219 anv_bind_buffer_memory(
3220 &(VkBindBufferMemoryInfo) {
3221 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3222 .buffer = buffer,
3223 .memory = memory,
3224 .memoryOffset = memoryOffset,
3225 });
3226
3227 return VK_SUCCESS;
3228 }
3229
3230 VkResult anv_BindBufferMemory2(
3231 VkDevice device,
3232 uint32_t bindInfoCount,
3233 const VkBindBufferMemoryInfo* pBindInfos)
3234 {
3235 for (uint32_t i = 0; i < bindInfoCount; i++)
3236 anv_bind_buffer_memory(&pBindInfos[i]);
3237
3238 return VK_SUCCESS;
3239 }
3240
3241 VkResult anv_QueueBindSparse(
3242 VkQueue _queue,
3243 uint32_t bindInfoCount,
3244 const VkBindSparseInfo* pBindInfo,
3245 VkFence fence)
3246 {
3247 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3248 if (anv_device_is_lost(queue->device))
3249 return VK_ERROR_DEVICE_LOST;
3250
3251 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3252 }
3253
3254 // Event functions
3255
3256 VkResult anv_CreateEvent(
3257 VkDevice _device,
3258 const VkEventCreateInfo* pCreateInfo,
3259 const VkAllocationCallbacks* pAllocator,
3260 VkEvent* pEvent)
3261 {
3262 ANV_FROM_HANDLE(anv_device, device, _device);
3263 struct anv_state state;
3264 struct anv_event *event;
3265
3266 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3267
3268 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3269 sizeof(*event), 8);
3270 event = state.map;
3271 event->state = state;
3272 event->semaphore = VK_EVENT_RESET;
3273
3274 if (!device->info.has_llc) {
3275 /* Make sure the writes we're flushing have landed. */
3276 __builtin_ia32_mfence();
3277 __builtin_ia32_clflush(event);
3278 }
3279
3280 *pEvent = anv_event_to_handle(event);
3281
3282 return VK_SUCCESS;
3283 }
3284
3285 void anv_DestroyEvent(
3286 VkDevice _device,
3287 VkEvent _event,
3288 const VkAllocationCallbacks* pAllocator)
3289 {
3290 ANV_FROM_HANDLE(anv_device, device, _device);
3291 ANV_FROM_HANDLE(anv_event, event, _event);
3292
3293 if (!event)
3294 return;
3295
3296 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3297 }
3298
3299 VkResult anv_GetEventStatus(
3300 VkDevice _device,
3301 VkEvent _event)
3302 {
3303 ANV_FROM_HANDLE(anv_device, device, _device);
3304 ANV_FROM_HANDLE(anv_event, event, _event);
3305
3306 if (anv_device_is_lost(device))
3307 return VK_ERROR_DEVICE_LOST;
3308
3309 if (!device->info.has_llc) {
3310 /* Invalidate read cache before reading event written by GPU. */
3311 __builtin_ia32_clflush(event);
3312 __builtin_ia32_mfence();
3313
3314 }
3315
3316 return event->semaphore;
3317 }
3318
3319 VkResult anv_SetEvent(
3320 VkDevice _device,
3321 VkEvent _event)
3322 {
3323 ANV_FROM_HANDLE(anv_device, device, _device);
3324 ANV_FROM_HANDLE(anv_event, event, _event);
3325
3326 event->semaphore = VK_EVENT_SET;
3327
3328 if (!device->info.has_llc) {
3329 /* Make sure the writes we're flushing have landed. */
3330 __builtin_ia32_mfence();
3331 __builtin_ia32_clflush(event);
3332 }
3333
3334 return VK_SUCCESS;
3335 }
3336
3337 VkResult anv_ResetEvent(
3338 VkDevice _device,
3339 VkEvent _event)
3340 {
3341 ANV_FROM_HANDLE(anv_device, device, _device);
3342 ANV_FROM_HANDLE(anv_event, event, _event);
3343
3344 event->semaphore = VK_EVENT_RESET;
3345
3346 if (!device->info.has_llc) {
3347 /* Make sure the writes we're flushing have landed. */
3348 __builtin_ia32_mfence();
3349 __builtin_ia32_clflush(event);
3350 }
3351
3352 return VK_SUCCESS;
3353 }
3354
3355 // Buffer functions
3356
3357 VkResult anv_CreateBuffer(
3358 VkDevice _device,
3359 const VkBufferCreateInfo* pCreateInfo,
3360 const VkAllocationCallbacks* pAllocator,
3361 VkBuffer* pBuffer)
3362 {
3363 ANV_FROM_HANDLE(anv_device, device, _device);
3364 struct anv_buffer *buffer;
3365
3366 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3367
3368 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3369 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3370 if (buffer == NULL)
3371 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3372
3373 buffer->size = pCreateInfo->size;
3374 buffer->usage = pCreateInfo->usage;
3375 buffer->address = ANV_NULL_ADDRESS;
3376
3377 *pBuffer = anv_buffer_to_handle(buffer);
3378
3379 return VK_SUCCESS;
3380 }
3381
3382 void anv_DestroyBuffer(
3383 VkDevice _device,
3384 VkBuffer _buffer,
3385 const VkAllocationCallbacks* pAllocator)
3386 {
3387 ANV_FROM_HANDLE(anv_device, device, _device);
3388 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3389
3390 if (!buffer)
3391 return;
3392
3393 vk_free2(&device->alloc, pAllocator, buffer);
3394 }
3395
3396 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3397 VkDevice device,
3398 const VkBufferDeviceAddressInfoEXT* pInfo)
3399 {
3400 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3401
3402 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3403
3404 return anv_address_physical(buffer->address);
3405 }
3406
3407 void
3408 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3409 enum isl_format format,
3410 struct anv_address address,
3411 uint32_t range, uint32_t stride)
3412 {
3413 isl_buffer_fill_state(&device->isl_dev, state.map,
3414 .address = anv_address_physical(address),
3415 .mocs = device->default_mocs,
3416 .size_B = range,
3417 .format = format,
3418 .swizzle = ISL_SWIZZLE_IDENTITY,
3419 .stride_B = stride);
3420 }
3421
3422 void anv_DestroySampler(
3423 VkDevice _device,
3424 VkSampler _sampler,
3425 const VkAllocationCallbacks* pAllocator)
3426 {
3427 ANV_FROM_HANDLE(anv_device, device, _device);
3428 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3429
3430 if (!sampler)
3431 return;
3432
3433 if (sampler->bindless_state.map) {
3434 anv_state_pool_free(&device->dynamic_state_pool,
3435 sampler->bindless_state);
3436 }
3437
3438 vk_free2(&device->alloc, pAllocator, sampler);
3439 }
3440
3441 VkResult anv_CreateFramebuffer(
3442 VkDevice _device,
3443 const VkFramebufferCreateInfo* pCreateInfo,
3444 const VkAllocationCallbacks* pAllocator,
3445 VkFramebuffer* pFramebuffer)
3446 {
3447 ANV_FROM_HANDLE(anv_device, device, _device);
3448 struct anv_framebuffer *framebuffer;
3449
3450 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3451
3452 size_t size = sizeof(*framebuffer) +
3453 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3454 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3455 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3456 if (framebuffer == NULL)
3457 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3458
3459 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3460 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3461 VkImageView _iview = pCreateInfo->pAttachments[i];
3462 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3463 }
3464
3465 framebuffer->width = pCreateInfo->width;
3466 framebuffer->height = pCreateInfo->height;
3467 framebuffer->layers = pCreateInfo->layers;
3468
3469 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3470
3471 return VK_SUCCESS;
3472 }
3473
3474 void anv_DestroyFramebuffer(
3475 VkDevice _device,
3476 VkFramebuffer _fb,
3477 const VkAllocationCallbacks* pAllocator)
3478 {
3479 ANV_FROM_HANDLE(anv_device, device, _device);
3480 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3481
3482 if (!fb)
3483 return;
3484
3485 vk_free2(&device->alloc, pAllocator, fb);
3486 }
3487
3488 static const VkTimeDomainEXT anv_time_domains[] = {
3489 VK_TIME_DOMAIN_DEVICE_EXT,
3490 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3491 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3492 };
3493
3494 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3495 VkPhysicalDevice physicalDevice,
3496 uint32_t *pTimeDomainCount,
3497 VkTimeDomainEXT *pTimeDomains)
3498 {
3499 int d;
3500 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3501
3502 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3503 vk_outarray_append(&out, i) {
3504 *i = anv_time_domains[d];
3505 }
3506 }
3507
3508 return vk_outarray_status(&out);
3509 }
3510
3511 static uint64_t
3512 anv_clock_gettime(clockid_t clock_id)
3513 {
3514 struct timespec current;
3515 int ret;
3516
3517 ret = clock_gettime(clock_id, &current);
3518 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3519 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3520 if (ret < 0)
3521 return 0;
3522
3523 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3524 }
3525
3526 #define TIMESTAMP 0x2358
3527
3528 VkResult anv_GetCalibratedTimestampsEXT(
3529 VkDevice _device,
3530 uint32_t timestampCount,
3531 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3532 uint64_t *pTimestamps,
3533 uint64_t *pMaxDeviation)
3534 {
3535 ANV_FROM_HANDLE(anv_device, device, _device);
3536 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3537 int ret;
3538 int d;
3539 uint64_t begin, end;
3540 uint64_t max_clock_period = 0;
3541
3542 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3543
3544 for (d = 0; d < timestampCount; d++) {
3545 switch (pTimestampInfos[d].timeDomain) {
3546 case VK_TIME_DOMAIN_DEVICE_EXT:
3547 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3548 &pTimestamps[d]);
3549
3550 if (ret != 0) {
3551 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3552 "register: %m");
3553 }
3554 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3555 max_clock_period = MAX2(max_clock_period, device_period);
3556 break;
3557 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3558 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3559 max_clock_period = MAX2(max_clock_period, 1);
3560 break;
3561
3562 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3563 pTimestamps[d] = begin;
3564 break;
3565 default:
3566 pTimestamps[d] = 0;
3567 break;
3568 }
3569 }
3570
3571 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3572
3573 /*
3574 * The maximum deviation is the sum of the interval over which we
3575 * perform the sampling and the maximum period of any sampled
3576 * clock. That's because the maximum skew between any two sampled
3577 * clock edges is when the sampled clock with the largest period is
3578 * sampled at the end of that period but right at the beginning of the
3579 * sampling interval and some other clock is sampled right at the
3580 * begining of its sampling period and right at the end of the
3581 * sampling interval. Let's assume the GPU has the longest clock
3582 * period and that the application is sampling GPU and monotonic:
3583 *
3584 * s e
3585 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3586 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3587 *
3588 * g
3589 * 0 1 2 3
3590 * GPU -----_____-----_____-----_____-----_____
3591 *
3592 * m
3593 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3594 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3595 *
3596 * Interval <----------------->
3597 * Deviation <-------------------------->
3598 *
3599 * s = read(raw) 2
3600 * g = read(GPU) 1
3601 * m = read(monotonic) 2
3602 * e = read(raw) b
3603 *
3604 * We round the sample interval up by one tick to cover sampling error
3605 * in the interval clock
3606 */
3607
3608 uint64_t sample_interval = end - begin + 1;
3609
3610 *pMaxDeviation = sample_interval + max_clock_period;
3611
3612 return VK_SUCCESS;
3613 }
3614
3615 /* vk_icd.h does not declare this function, so we declare it here to
3616 * suppress Wmissing-prototypes.
3617 */
3618 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3619 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3620
3621 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3622 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3623 {
3624 /* For the full details on loader interface versioning, see
3625 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3626 * What follows is a condensed summary, to help you navigate the large and
3627 * confusing official doc.
3628 *
3629 * - Loader interface v0 is incompatible with later versions. We don't
3630 * support it.
3631 *
3632 * - In loader interface v1:
3633 * - The first ICD entrypoint called by the loader is
3634 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3635 * entrypoint.
3636 * - The ICD must statically expose no other Vulkan symbol unless it is
3637 * linked with -Bsymbolic.
3638 * - Each dispatchable Vulkan handle created by the ICD must be
3639 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3640 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3641 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3642 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3643 * such loader-managed surfaces.
3644 *
3645 * - Loader interface v2 differs from v1 in:
3646 * - The first ICD entrypoint called by the loader is
3647 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3648 * statically expose this entrypoint.
3649 *
3650 * - Loader interface v3 differs from v2 in:
3651 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3652 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3653 * because the loader no longer does so.
3654 */
3655 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3656 return VK_SUCCESS;
3657 }