anv: Store UUID in physical device.
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <unistd.h>
29 #include <fcntl.h>
30
31 #include "anv_private.h"
32 #include "anv_timestamp.h"
33 #include "util/strtod.h"
34 #include "util/debug.h"
35
36 #include "genxml/gen7_pack.h"
37
38 struct anv_dispatch_table dtable;
39
40 static void
41 compiler_debug_log(void *data, const char *fmt, ...)
42 { }
43
44 static void
45 compiler_perf_log(void *data, const char *fmt, ...)
46 {
47 va_list args;
48 va_start(args, fmt);
49
50 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
51 vfprintf(stderr, fmt, args);
52
53 va_end(args);
54 }
55
56 static void
57 anv_device_get_cache_uuid(void *uuid)
58 {
59 memset(uuid, 0, VK_UUID_SIZE);
60 snprintf(uuid, VK_UUID_SIZE, "anv-%s", ANV_TIMESTAMP);
61 }
62
63 static VkResult
64 anv_physical_device_init(struct anv_physical_device *device,
65 struct anv_instance *instance,
66 const char *path)
67 {
68 VkResult result;
69 int fd;
70
71 fd = open(path, O_RDWR | O_CLOEXEC);
72 if (fd < 0)
73 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
74
75 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
76 device->instance = instance;
77
78 assert(strlen(path) < ARRAY_SIZE(device->path));
79 strncpy(device->path, path, ARRAY_SIZE(device->path));
80
81 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
82 if (!device->chipset_id) {
83 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
84 goto fail;
85 }
86
87 device->name = gen_get_device_name(device->chipset_id);
88 if (!gen_get_device_info(device->chipset_id, &device->info)) {
89 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
90 goto fail;
91 }
92
93 if (device->info.is_haswell) {
94 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
95 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
96 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
97 } else if (device->info.gen == 7 && device->info.is_baytrail) {
98 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
99 } else if (device->info.gen >= 8) {
100 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
101 * supported as anything */
102 } else {
103 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
104 "Vulkan not yet supported on %s", device->name);
105 goto fail;
106 }
107
108 device->cmd_parser_version = -1;
109 if (device->info.gen == 7) {
110 device->cmd_parser_version =
111 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
112 if (device->cmd_parser_version == -1) {
113 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
114 "failed to get command parser version");
115 goto fail;
116 }
117 }
118
119 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
120 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
121 "failed to get aperture size: %m");
122 goto fail;
123 }
124
125 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
126 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
127 "kernel missing gem wait");
128 goto fail;
129 }
130
131 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
132 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
133 "kernel missing execbuf2");
134 goto fail;
135 }
136
137 if (!device->info.has_llc &&
138 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
139 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
140 "kernel missing wc mmap");
141 goto fail;
142 }
143
144 anv_device_get_cache_uuid(device->uuid);
145 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
146
147 /* GENs prior to 8 do not support EU/Subslice info */
148 if (device->info.gen >= 8) {
149 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
150 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
151
152 /* Without this information, we cannot get the right Braswell
153 * brandstrings, and we have to use conservative numbers for GPGPU on
154 * many platforms, but otherwise, things will just work.
155 */
156 if (device->subslice_total < 1 || device->eu_total < 1) {
157 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
158 " query GPU properties.\n");
159 }
160 } else if (device->info.gen == 7) {
161 device->subslice_total = 1 << (device->info.gt - 1);
162 }
163
164 if (device->info.is_cherryview &&
165 device->subslice_total > 0 && device->eu_total > 0) {
166 /* Logical CS threads = EUs per subslice * 7 threads per EU */
167 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
168
169 /* Fuse configurations may give more threads than expected, never less. */
170 if (max_cs_threads > device->info.max_cs_threads)
171 device->info.max_cs_threads = max_cs_threads;
172 }
173
174 close(fd);
175
176 brw_process_intel_debug_variable();
177
178 device->compiler = brw_compiler_create(NULL, &device->info);
179 if (device->compiler == NULL) {
180 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
181 goto fail;
182 }
183 device->compiler->shader_debug_log = compiler_debug_log;
184 device->compiler->shader_perf_log = compiler_perf_log;
185
186 result = anv_init_wsi(device);
187 if (result != VK_SUCCESS)
188 goto fail;
189
190 isl_device_init(&device->isl_dev, &device->info, swizzled);
191
192 return VK_SUCCESS;
193
194 fail:
195 close(fd);
196 return result;
197 }
198
199 static void
200 anv_physical_device_finish(struct anv_physical_device *device)
201 {
202 anv_finish_wsi(device);
203 ralloc_free(device->compiler);
204 }
205
206 static const VkExtensionProperties global_extensions[] = {
207 {
208 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
209 .specVersion = 25,
210 },
211 #ifdef VK_USE_PLATFORM_XCB_KHR
212 {
213 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
214 .specVersion = 6,
215 },
216 #endif
217 #ifdef VK_USE_PLATFORM_XLIB_KHR
218 {
219 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
220 .specVersion = 6,
221 },
222 #endif
223 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
224 {
225 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
226 .specVersion = 5,
227 },
228 #endif
229 };
230
231 static const VkExtensionProperties device_extensions[] = {
232 {
233 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
234 .specVersion = 68,
235 },
236 };
237
238 static void *
239 default_alloc_func(void *pUserData, size_t size, size_t align,
240 VkSystemAllocationScope allocationScope)
241 {
242 return malloc(size);
243 }
244
245 static void *
246 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
247 size_t align, VkSystemAllocationScope allocationScope)
248 {
249 return realloc(pOriginal, size);
250 }
251
252 static void
253 default_free_func(void *pUserData, void *pMemory)
254 {
255 free(pMemory);
256 }
257
258 static const VkAllocationCallbacks default_alloc = {
259 .pUserData = NULL,
260 .pfnAllocation = default_alloc_func,
261 .pfnReallocation = default_realloc_func,
262 .pfnFree = default_free_func,
263 };
264
265 VkResult anv_CreateInstance(
266 const VkInstanceCreateInfo* pCreateInfo,
267 const VkAllocationCallbacks* pAllocator,
268 VkInstance* pInstance)
269 {
270 struct anv_instance *instance;
271
272 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
273
274 uint32_t client_version;
275 if (pCreateInfo->pApplicationInfo &&
276 pCreateInfo->pApplicationInfo->apiVersion != 0) {
277 client_version = pCreateInfo->pApplicationInfo->apiVersion;
278 } else {
279 client_version = VK_MAKE_VERSION(1, 0, 0);
280 }
281
282 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
283 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
284 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
285 "Client requested version %d.%d.%d",
286 VK_VERSION_MAJOR(client_version),
287 VK_VERSION_MINOR(client_version),
288 VK_VERSION_PATCH(client_version));
289 }
290
291 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
292 bool found = false;
293 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
294 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
295 global_extensions[j].extensionName) == 0) {
296 found = true;
297 break;
298 }
299 }
300 if (!found)
301 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
302 }
303
304 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
305 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
306 if (!instance)
307 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
308
309 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
310
311 if (pAllocator)
312 instance->alloc = *pAllocator;
313 else
314 instance->alloc = default_alloc;
315
316 instance->apiVersion = client_version;
317 instance->physicalDeviceCount = -1;
318
319 _mesa_locale_init();
320
321 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
322
323 *pInstance = anv_instance_to_handle(instance);
324
325 return VK_SUCCESS;
326 }
327
328 void anv_DestroyInstance(
329 VkInstance _instance,
330 const VkAllocationCallbacks* pAllocator)
331 {
332 ANV_FROM_HANDLE(anv_instance, instance, _instance);
333
334 if (instance->physicalDeviceCount > 0) {
335 /* We support at most one physical device. */
336 assert(instance->physicalDeviceCount == 1);
337 anv_physical_device_finish(&instance->physicalDevice);
338 }
339
340 VG(VALGRIND_DESTROY_MEMPOOL(instance));
341
342 _mesa_locale_fini();
343
344 vk_free(&instance->alloc, instance);
345 }
346
347 VkResult anv_EnumeratePhysicalDevices(
348 VkInstance _instance,
349 uint32_t* pPhysicalDeviceCount,
350 VkPhysicalDevice* pPhysicalDevices)
351 {
352 ANV_FROM_HANDLE(anv_instance, instance, _instance);
353 VkResult result;
354
355 if (instance->physicalDeviceCount < 0) {
356 char path[20];
357 for (unsigned i = 0; i < 8; i++) {
358 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
359 result = anv_physical_device_init(&instance->physicalDevice,
360 instance, path);
361 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
362 break;
363 }
364
365 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
366 instance->physicalDeviceCount = 0;
367 } else if (result == VK_SUCCESS) {
368 instance->physicalDeviceCount = 1;
369 } else {
370 return result;
371 }
372 }
373
374 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
375 * otherwise it's an inout parameter.
376 *
377 * The Vulkan spec (git aaed022) says:
378 *
379 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
380 * that is initialized with the number of devices the application is
381 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
382 * an array of at least this many VkPhysicalDevice handles [...].
383 *
384 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
385 * overwrites the contents of the variable pointed to by
386 * pPhysicalDeviceCount with the number of physical devices in in the
387 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
388 * pPhysicalDeviceCount with the number of physical handles written to
389 * pPhysicalDevices.
390 */
391 if (!pPhysicalDevices) {
392 *pPhysicalDeviceCount = instance->physicalDeviceCount;
393 } else if (*pPhysicalDeviceCount >= 1) {
394 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
395 *pPhysicalDeviceCount = 1;
396 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
397 return VK_INCOMPLETE;
398 } else {
399 *pPhysicalDeviceCount = 0;
400 }
401
402 return VK_SUCCESS;
403 }
404
405 void anv_GetPhysicalDeviceFeatures(
406 VkPhysicalDevice physicalDevice,
407 VkPhysicalDeviceFeatures* pFeatures)
408 {
409 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
410
411 *pFeatures = (VkPhysicalDeviceFeatures) {
412 .robustBufferAccess = true,
413 .fullDrawIndexUint32 = true,
414 .imageCubeArray = false,
415 .independentBlend = true,
416 .geometryShader = true,
417 .tessellationShader = false,
418 .sampleRateShading = true,
419 .dualSrcBlend = true,
420 .logicOp = true,
421 .multiDrawIndirect = false,
422 .drawIndirectFirstInstance = false,
423 .depthClamp = true,
424 .depthBiasClamp = false,
425 .fillModeNonSolid = true,
426 .depthBounds = false,
427 .wideLines = true,
428 .largePoints = true,
429 .alphaToOne = true,
430 .multiViewport = true,
431 .samplerAnisotropy = true,
432 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
433 pdevice->info.is_baytrail,
434 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
435 .textureCompressionBC = true,
436 .occlusionQueryPrecise = true,
437 .pipelineStatisticsQuery = false,
438 .fragmentStoresAndAtomics = true,
439 .shaderTessellationAndGeometryPointSize = true,
440 .shaderImageGatherExtended = false,
441 .shaderStorageImageExtendedFormats = false,
442 .shaderStorageImageMultisample = false,
443 .shaderUniformBufferArrayDynamicIndexing = true,
444 .shaderSampledImageArrayDynamicIndexing = true,
445 .shaderStorageBufferArrayDynamicIndexing = true,
446 .shaderStorageImageArrayDynamicIndexing = true,
447 .shaderStorageImageReadWithoutFormat = false,
448 .shaderStorageImageWriteWithoutFormat = true,
449 .shaderClipDistance = true,
450 .shaderCullDistance = true,
451 .shaderFloat64 = false,
452 .shaderInt64 = false,
453 .shaderInt16 = false,
454 .alphaToOne = true,
455 .variableMultisampleRate = false,
456 .inheritedQueries = false,
457 };
458
459 /* We can't do image stores in vec4 shaders */
460 pFeatures->vertexPipelineStoresAndAtomics =
461 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
462 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
463 }
464
465 void anv_GetPhysicalDeviceProperties(
466 VkPhysicalDevice physicalDevice,
467 VkPhysicalDeviceProperties* pProperties)
468 {
469 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
470 const struct gen_device_info *devinfo = &pdevice->info;
471
472 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
473
474 /* See assertions made when programming the buffer surface state. */
475 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
476 (1ul << 30) : (1ul << 27);
477
478 VkSampleCountFlags sample_counts =
479 isl_device_get_sample_counts(&pdevice->isl_dev);
480
481 VkPhysicalDeviceLimits limits = {
482 .maxImageDimension1D = (1 << 14),
483 .maxImageDimension2D = (1 << 14),
484 .maxImageDimension3D = (1 << 11),
485 .maxImageDimensionCube = (1 << 14),
486 .maxImageArrayLayers = (1 << 11),
487 .maxTexelBufferElements = 128 * 1024 * 1024,
488 .maxUniformBufferRange = (1ul << 27),
489 .maxStorageBufferRange = max_raw_buffer_sz,
490 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
491 .maxMemoryAllocationCount = UINT32_MAX,
492 .maxSamplerAllocationCount = 64 * 1024,
493 .bufferImageGranularity = 64, /* A cache line */
494 .sparseAddressSpaceSize = 0,
495 .maxBoundDescriptorSets = MAX_SETS,
496 .maxPerStageDescriptorSamplers = 64,
497 .maxPerStageDescriptorUniformBuffers = 64,
498 .maxPerStageDescriptorStorageBuffers = 64,
499 .maxPerStageDescriptorSampledImages = 64,
500 .maxPerStageDescriptorStorageImages = 64,
501 .maxPerStageDescriptorInputAttachments = 64,
502 .maxPerStageResources = 128,
503 .maxDescriptorSetSamplers = 256,
504 .maxDescriptorSetUniformBuffers = 256,
505 .maxDescriptorSetUniformBuffersDynamic = 256,
506 .maxDescriptorSetStorageBuffers = 256,
507 .maxDescriptorSetStorageBuffersDynamic = 256,
508 .maxDescriptorSetSampledImages = 256,
509 .maxDescriptorSetStorageImages = 256,
510 .maxDescriptorSetInputAttachments = 256,
511 .maxVertexInputAttributes = 32,
512 .maxVertexInputBindings = 32,
513 .maxVertexInputAttributeOffset = 2047,
514 .maxVertexInputBindingStride = 2048,
515 .maxVertexOutputComponents = 128,
516 .maxTessellationGenerationLevel = 0,
517 .maxTessellationPatchSize = 0,
518 .maxTessellationControlPerVertexInputComponents = 0,
519 .maxTessellationControlPerVertexOutputComponents = 0,
520 .maxTessellationControlPerPatchOutputComponents = 0,
521 .maxTessellationControlTotalOutputComponents = 0,
522 .maxTessellationEvaluationInputComponents = 0,
523 .maxTessellationEvaluationOutputComponents = 0,
524 .maxGeometryShaderInvocations = 32,
525 .maxGeometryInputComponents = 64,
526 .maxGeometryOutputComponents = 128,
527 .maxGeometryOutputVertices = 256,
528 .maxGeometryTotalOutputComponents = 1024,
529 .maxFragmentInputComponents = 128,
530 .maxFragmentOutputAttachments = 8,
531 .maxFragmentDualSrcAttachments = 2,
532 .maxFragmentCombinedOutputResources = 8,
533 .maxComputeSharedMemorySize = 32768,
534 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
535 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
536 .maxComputeWorkGroupSize = {
537 16 * devinfo->max_cs_threads,
538 16 * devinfo->max_cs_threads,
539 16 * devinfo->max_cs_threads,
540 },
541 .subPixelPrecisionBits = 4 /* FIXME */,
542 .subTexelPrecisionBits = 4 /* FIXME */,
543 .mipmapPrecisionBits = 4 /* FIXME */,
544 .maxDrawIndexedIndexValue = UINT32_MAX,
545 .maxDrawIndirectCount = UINT32_MAX,
546 .maxSamplerLodBias = 16,
547 .maxSamplerAnisotropy = 16,
548 .maxViewports = MAX_VIEWPORTS,
549 .maxViewportDimensions = { (1 << 14), (1 << 14) },
550 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
551 .viewportSubPixelBits = 13, /* We take a float? */
552 .minMemoryMapAlignment = 4096, /* A page */
553 .minTexelBufferOffsetAlignment = 1,
554 .minUniformBufferOffsetAlignment = 1,
555 .minStorageBufferOffsetAlignment = 1,
556 .minTexelOffset = -8,
557 .maxTexelOffset = 7,
558 .minTexelGatherOffset = -8,
559 .maxTexelGatherOffset = 7,
560 .minInterpolationOffset = -0.5,
561 .maxInterpolationOffset = 0.4375,
562 .subPixelInterpolationOffsetBits = 4,
563 .maxFramebufferWidth = (1 << 14),
564 .maxFramebufferHeight = (1 << 14),
565 .maxFramebufferLayers = (1 << 10),
566 .framebufferColorSampleCounts = sample_counts,
567 .framebufferDepthSampleCounts = sample_counts,
568 .framebufferStencilSampleCounts = sample_counts,
569 .framebufferNoAttachmentsSampleCounts = sample_counts,
570 .maxColorAttachments = MAX_RTS,
571 .sampledImageColorSampleCounts = sample_counts,
572 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
573 .sampledImageDepthSampleCounts = sample_counts,
574 .sampledImageStencilSampleCounts = sample_counts,
575 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
576 .maxSampleMaskWords = 1,
577 .timestampComputeAndGraphics = false,
578 .timestampPeriod = time_stamp_base,
579 .maxClipDistances = 8,
580 .maxCullDistances = 8,
581 .maxCombinedClipAndCullDistances = 8,
582 .discreteQueuePriorities = 1,
583 .pointSizeRange = { 0.125, 255.875 },
584 .lineWidthRange = { 0.0, 7.9921875 },
585 .pointSizeGranularity = (1.0 / 8.0),
586 .lineWidthGranularity = (1.0 / 128.0),
587 .strictLines = false, /* FINISHME */
588 .standardSampleLocations = true,
589 .optimalBufferCopyOffsetAlignment = 128,
590 .optimalBufferCopyRowPitchAlignment = 128,
591 .nonCoherentAtomSize = 64,
592 };
593
594 *pProperties = (VkPhysicalDeviceProperties) {
595 .apiVersion = VK_MAKE_VERSION(1, 0, 5),
596 .driverVersion = 1,
597 .vendorID = 0x8086,
598 .deviceID = pdevice->chipset_id,
599 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
600 .limits = limits,
601 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
602 };
603
604 strcpy(pProperties->deviceName, pdevice->name);
605 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
606 }
607
608 void anv_GetPhysicalDeviceQueueFamilyProperties(
609 VkPhysicalDevice physicalDevice,
610 uint32_t* pCount,
611 VkQueueFamilyProperties* pQueueFamilyProperties)
612 {
613 if (pQueueFamilyProperties == NULL) {
614 *pCount = 1;
615 return;
616 }
617
618 assert(*pCount >= 1);
619
620 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
621 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
622 VK_QUEUE_COMPUTE_BIT |
623 VK_QUEUE_TRANSFER_BIT,
624 .queueCount = 1,
625 .timestampValidBits = 36, /* XXX: Real value here */
626 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
627 };
628 }
629
630 void anv_GetPhysicalDeviceMemoryProperties(
631 VkPhysicalDevice physicalDevice,
632 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
633 {
634 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
635 VkDeviceSize heap_size;
636
637 /* Reserve some wiggle room for the driver by exposing only 75% of the
638 * aperture to the heap.
639 */
640 heap_size = 3 * physical_device->aperture_size / 4;
641
642 if (physical_device->info.has_llc) {
643 /* Big core GPUs share LLC with the CPU and thus one memory type can be
644 * both cached and coherent at the same time.
645 */
646 pMemoryProperties->memoryTypeCount = 1;
647 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
648 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
649 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
650 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
651 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
652 .heapIndex = 0,
653 };
654 } else {
655 /* The spec requires that we expose a host-visible, coherent memory
656 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
657 * to give the application a choice between cached, but not coherent and
658 * coherent but uncached (WC though).
659 */
660 pMemoryProperties->memoryTypeCount = 2;
661 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
662 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
663 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
664 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
665 .heapIndex = 0,
666 };
667 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
668 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
669 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
670 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
671 .heapIndex = 0,
672 };
673 }
674
675 pMemoryProperties->memoryHeapCount = 1;
676 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
677 .size = heap_size,
678 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
679 };
680 }
681
682 PFN_vkVoidFunction anv_GetInstanceProcAddr(
683 VkInstance instance,
684 const char* pName)
685 {
686 return anv_lookup_entrypoint(NULL, pName);
687 }
688
689 /* With version 1+ of the loader interface the ICD should expose
690 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
691 */
692 PUBLIC
693 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
694 VkInstance instance,
695 const char* pName);
696
697 PUBLIC
698 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
699 VkInstance instance,
700 const char* pName)
701 {
702 return anv_GetInstanceProcAddr(instance, pName);
703 }
704
705 PFN_vkVoidFunction anv_GetDeviceProcAddr(
706 VkDevice _device,
707 const char* pName)
708 {
709 ANV_FROM_HANDLE(anv_device, device, _device);
710 return anv_lookup_entrypoint(&device->info, pName);
711 }
712
713 static VkResult
714 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
715 {
716 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
717 queue->device = device;
718 queue->pool = &device->surface_state_pool;
719
720 return VK_SUCCESS;
721 }
722
723 static void
724 anv_queue_finish(struct anv_queue *queue)
725 {
726 }
727
728 static struct anv_state
729 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
730 {
731 struct anv_state state;
732
733 state = anv_state_pool_alloc(pool, size, align);
734 memcpy(state.map, p, size);
735
736 if (!pool->block_pool->device->info.has_llc)
737 anv_state_clflush(state);
738
739 return state;
740 }
741
742 struct gen8_border_color {
743 union {
744 float float32[4];
745 uint32_t uint32[4];
746 };
747 /* Pad out to 64 bytes */
748 uint32_t _pad[12];
749 };
750
751 static void
752 anv_device_init_border_colors(struct anv_device *device)
753 {
754 static const struct gen8_border_color border_colors[] = {
755 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
756 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
757 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
758 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
759 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
760 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
761 };
762
763 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
764 sizeof(border_colors), 64,
765 border_colors);
766 }
767
768 VkResult
769 anv_device_submit_simple_batch(struct anv_device *device,
770 struct anv_batch *batch)
771 {
772 struct drm_i915_gem_execbuffer2 execbuf;
773 struct drm_i915_gem_exec_object2 exec2_objects[1];
774 struct anv_bo bo, *exec_bos[1];
775 VkResult result = VK_SUCCESS;
776 uint32_t size;
777 int64_t timeout;
778 int ret;
779
780 /* Kernel driver requires 8 byte aligned batch length */
781 size = align_u32(batch->next - batch->start, 8);
782 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
783 if (result != VK_SUCCESS)
784 return result;
785
786 memcpy(bo.map, batch->start, size);
787 if (!device->info.has_llc)
788 anv_clflush_range(bo.map, size);
789
790 exec_bos[0] = &bo;
791 exec2_objects[0].handle = bo.gem_handle;
792 exec2_objects[0].relocation_count = 0;
793 exec2_objects[0].relocs_ptr = 0;
794 exec2_objects[0].alignment = 0;
795 exec2_objects[0].offset = bo.offset;
796 exec2_objects[0].flags = 0;
797 exec2_objects[0].rsvd1 = 0;
798 exec2_objects[0].rsvd2 = 0;
799
800 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
801 execbuf.buffer_count = 1;
802 execbuf.batch_start_offset = 0;
803 execbuf.batch_len = size;
804 execbuf.cliprects_ptr = 0;
805 execbuf.num_cliprects = 0;
806 execbuf.DR1 = 0;
807 execbuf.DR4 = 0;
808
809 execbuf.flags =
810 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
811 execbuf.rsvd1 = device->context_id;
812 execbuf.rsvd2 = 0;
813
814 result = anv_device_execbuf(device, &execbuf, exec_bos);
815 if (result != VK_SUCCESS)
816 goto fail;
817
818 timeout = INT64_MAX;
819 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
820 if (ret != 0) {
821 /* We don't know the real error. */
822 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
823 goto fail;
824 }
825
826 fail:
827 anv_bo_pool_free(&device->batch_bo_pool, &bo);
828
829 return result;
830 }
831
832 VkResult anv_CreateDevice(
833 VkPhysicalDevice physicalDevice,
834 const VkDeviceCreateInfo* pCreateInfo,
835 const VkAllocationCallbacks* pAllocator,
836 VkDevice* pDevice)
837 {
838 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
839 VkResult result;
840 struct anv_device *device;
841
842 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
843
844 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
845 bool found = false;
846 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
847 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
848 device_extensions[j].extensionName) == 0) {
849 found = true;
850 break;
851 }
852 }
853 if (!found)
854 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
855 }
856
857 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
858 sizeof(*device), 8,
859 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
860 if (!device)
861 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
862
863 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
864 device->instance = physical_device->instance;
865 device->chipset_id = physical_device->chipset_id;
866
867 if (pAllocator)
868 device->alloc = *pAllocator;
869 else
870 device->alloc = physical_device->instance->alloc;
871
872 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
873 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
874 if (device->fd == -1) {
875 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
876 goto fail_device;
877 }
878
879 device->context_id = anv_gem_create_context(device);
880 if (device->context_id == -1) {
881 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
882 goto fail_fd;
883 }
884
885 device->info = physical_device->info;
886 device->isl_dev = physical_device->isl_dev;
887
888 /* On Broadwell and later, we can use batch chaining to more efficiently
889 * implement growing command buffers. Prior to Haswell, the kernel
890 * command parser gets in the way and we have to fall back to growing
891 * the batch.
892 */
893 device->can_chain_batches = device->info.gen >= 8;
894
895 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
896 pCreateInfo->pEnabledFeatures->robustBufferAccess;
897
898 pthread_mutex_init(&device->mutex, NULL);
899
900 pthread_condattr_t condattr;
901 pthread_condattr_init(&condattr);
902 pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC);
903 pthread_cond_init(&device->queue_submit, NULL);
904 pthread_condattr_destroy(&condattr);
905
906 anv_bo_pool_init(&device->batch_bo_pool, device);
907
908 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
909
910 anv_state_pool_init(&device->dynamic_state_pool,
911 &device->dynamic_state_block_pool);
912
913 anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
914 anv_state_pool_init(&device->instruction_state_pool,
915 &device->instruction_block_pool);
916
917 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
918
919 anv_state_pool_init(&device->surface_state_pool,
920 &device->surface_state_block_pool);
921
922 anv_bo_init_new(&device->workaround_bo, device, 1024);
923
924 anv_scratch_pool_init(device, &device->scratch_pool);
925
926 anv_queue_init(device, &device->queue);
927
928 switch (device->info.gen) {
929 case 7:
930 if (!device->info.is_haswell)
931 result = gen7_init_device_state(device);
932 else
933 result = gen75_init_device_state(device);
934 break;
935 case 8:
936 result = gen8_init_device_state(device);
937 break;
938 case 9:
939 result = gen9_init_device_state(device);
940 break;
941 default:
942 /* Shouldn't get here as we don't create physical devices for any other
943 * gens. */
944 unreachable("unhandled gen");
945 }
946 if (result != VK_SUCCESS)
947 goto fail_fd;
948
949 anv_device_init_blorp(device);
950
951 anv_device_init_border_colors(device);
952
953 *pDevice = anv_device_to_handle(device);
954
955 return VK_SUCCESS;
956
957 fail_fd:
958 close(device->fd);
959 fail_device:
960 vk_free(&device->alloc, device);
961
962 return result;
963 }
964
965 void anv_DestroyDevice(
966 VkDevice _device,
967 const VkAllocationCallbacks* pAllocator)
968 {
969 ANV_FROM_HANDLE(anv_device, device, _device);
970
971 anv_queue_finish(&device->queue);
972
973 anv_device_finish_blorp(device);
974
975 #ifdef HAVE_VALGRIND
976 /* We only need to free these to prevent valgrind errors. The backing
977 * BO will go away in a couple of lines so we don't actually leak.
978 */
979 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
980 #endif
981
982 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
983 anv_gem_close(device, device->workaround_bo.gem_handle);
984
985 anv_bo_pool_finish(&device->batch_bo_pool);
986 anv_state_pool_finish(&device->dynamic_state_pool);
987 anv_block_pool_finish(&device->dynamic_state_block_pool);
988 anv_state_pool_finish(&device->instruction_state_pool);
989 anv_block_pool_finish(&device->instruction_block_pool);
990 anv_state_pool_finish(&device->surface_state_pool);
991 anv_block_pool_finish(&device->surface_state_block_pool);
992 anv_scratch_pool_finish(device, &device->scratch_pool);
993
994 close(device->fd);
995
996 pthread_mutex_destroy(&device->mutex);
997
998 vk_free(&device->alloc, device);
999 }
1000
1001 VkResult anv_EnumerateInstanceExtensionProperties(
1002 const char* pLayerName,
1003 uint32_t* pPropertyCount,
1004 VkExtensionProperties* pProperties)
1005 {
1006 if (pProperties == NULL) {
1007 *pPropertyCount = ARRAY_SIZE(global_extensions);
1008 return VK_SUCCESS;
1009 }
1010
1011 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1012 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1013
1014 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1015 return VK_INCOMPLETE;
1016
1017 return VK_SUCCESS;
1018 }
1019
1020 VkResult anv_EnumerateDeviceExtensionProperties(
1021 VkPhysicalDevice physicalDevice,
1022 const char* pLayerName,
1023 uint32_t* pPropertyCount,
1024 VkExtensionProperties* pProperties)
1025 {
1026 if (pProperties == NULL) {
1027 *pPropertyCount = ARRAY_SIZE(device_extensions);
1028 return VK_SUCCESS;
1029 }
1030
1031 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1032 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1033
1034 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1035 return VK_INCOMPLETE;
1036
1037 return VK_SUCCESS;
1038 }
1039
1040 VkResult anv_EnumerateInstanceLayerProperties(
1041 uint32_t* pPropertyCount,
1042 VkLayerProperties* pProperties)
1043 {
1044 if (pProperties == NULL) {
1045 *pPropertyCount = 0;
1046 return VK_SUCCESS;
1047 }
1048
1049 /* None supported at this time */
1050 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1051 }
1052
1053 VkResult anv_EnumerateDeviceLayerProperties(
1054 VkPhysicalDevice physicalDevice,
1055 uint32_t* pPropertyCount,
1056 VkLayerProperties* pProperties)
1057 {
1058 if (pProperties == NULL) {
1059 *pPropertyCount = 0;
1060 return VK_SUCCESS;
1061 }
1062
1063 /* None supported at this time */
1064 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1065 }
1066
1067 void anv_GetDeviceQueue(
1068 VkDevice _device,
1069 uint32_t queueNodeIndex,
1070 uint32_t queueIndex,
1071 VkQueue* pQueue)
1072 {
1073 ANV_FROM_HANDLE(anv_device, device, _device);
1074
1075 assert(queueIndex == 0);
1076
1077 *pQueue = anv_queue_to_handle(&device->queue);
1078 }
1079
1080 VkResult
1081 anv_device_execbuf(struct anv_device *device,
1082 struct drm_i915_gem_execbuffer2 *execbuf,
1083 struct anv_bo **execbuf_bos)
1084 {
1085 int ret = anv_gem_execbuffer(device, execbuf);
1086 if (ret != 0) {
1087 /* We don't know the real error. */
1088 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1089 }
1090
1091 struct drm_i915_gem_exec_object2 *objects =
1092 (void *)(uintptr_t)execbuf->buffers_ptr;
1093 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1094 execbuf_bos[k]->offset = objects[k].offset;
1095
1096 return VK_SUCCESS;
1097 }
1098
1099 VkResult anv_QueueSubmit(
1100 VkQueue _queue,
1101 uint32_t submitCount,
1102 const VkSubmitInfo* pSubmits,
1103 VkFence _fence)
1104 {
1105 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1106 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1107 struct anv_device *device = queue->device;
1108 VkResult result = VK_SUCCESS;
1109
1110 /* We lock around QueueSubmit for three main reasons:
1111 *
1112 * 1) When a block pool is resized, we create a new gem handle with a
1113 * different size and, in the case of surface states, possibly a
1114 * different center offset but we re-use the same anv_bo struct when
1115 * we do so. If this happens in the middle of setting up an execbuf,
1116 * we could end up with our list of BOs out of sync with our list of
1117 * gem handles.
1118 *
1119 * 2) The algorithm we use for building the list of unique buffers isn't
1120 * thread-safe. While the client is supposed to syncronize around
1121 * QueueSubmit, this would be extremely difficult to debug if it ever
1122 * came up in the wild due to a broken app. It's better to play it
1123 * safe and just lock around QueueSubmit.
1124 *
1125 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
1126 * userspace. Due to the fact that the surface state buffer is shared
1127 * between batches, we can't afford to have that happen from multiple
1128 * threads at the same time. Even though the user is supposed to
1129 * ensure this doesn't happen, we play it safe as in (2) above.
1130 *
1131 * Since the only other things that ever take the device lock such as block
1132 * pool resize only rarely happen, this will almost never be contended so
1133 * taking a lock isn't really an expensive operation in this case.
1134 */
1135 pthread_mutex_lock(&device->mutex);
1136
1137 for (uint32_t i = 0; i < submitCount; i++) {
1138 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1139 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1140 pSubmits[i].pCommandBuffers[j]);
1141 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1142
1143 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1144 if (result != VK_SUCCESS)
1145 goto out;
1146 }
1147 }
1148
1149 if (fence) {
1150 struct anv_bo *fence_bo = &fence->bo;
1151 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1152 if (result != VK_SUCCESS)
1153 goto out;
1154
1155 /* Update the fence and wake up any waiters */
1156 assert(fence->state == ANV_FENCE_STATE_RESET);
1157 fence->state = ANV_FENCE_STATE_SUBMITTED;
1158 pthread_cond_broadcast(&device->queue_submit);
1159 }
1160
1161 out:
1162 pthread_mutex_unlock(&device->mutex);
1163
1164 return result;
1165 }
1166
1167 VkResult anv_QueueWaitIdle(
1168 VkQueue _queue)
1169 {
1170 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1171
1172 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1173 }
1174
1175 VkResult anv_DeviceWaitIdle(
1176 VkDevice _device)
1177 {
1178 ANV_FROM_HANDLE(anv_device, device, _device);
1179 struct anv_batch batch;
1180
1181 uint32_t cmds[8];
1182 batch.start = batch.next = cmds;
1183 batch.end = (void *) cmds + sizeof(cmds);
1184
1185 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1186 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1187
1188 return anv_device_submit_simple_batch(device, &batch);
1189 }
1190
1191 VkResult
1192 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1193 {
1194 uint32_t gem_handle = anv_gem_create(device, size);
1195 if (!gem_handle)
1196 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1197
1198 anv_bo_init(bo, gem_handle, size);
1199
1200 return VK_SUCCESS;
1201 }
1202
1203 VkResult anv_AllocateMemory(
1204 VkDevice _device,
1205 const VkMemoryAllocateInfo* pAllocateInfo,
1206 const VkAllocationCallbacks* pAllocator,
1207 VkDeviceMemory* pMem)
1208 {
1209 ANV_FROM_HANDLE(anv_device, device, _device);
1210 struct anv_device_memory *mem;
1211 VkResult result;
1212
1213 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1214
1215 if (pAllocateInfo->allocationSize == 0) {
1216 /* Apparently, this is allowed */
1217 *pMem = VK_NULL_HANDLE;
1218 return VK_SUCCESS;
1219 }
1220
1221 /* We support exactly one memory heap. */
1222 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1223 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1224
1225 /* FINISHME: Fail if allocation request exceeds heap size. */
1226
1227 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1228 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1229 if (mem == NULL)
1230 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1231
1232 /* The kernel is going to give us whole pages anyway */
1233 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1234
1235 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1236 if (result != VK_SUCCESS)
1237 goto fail;
1238
1239 mem->type_index = pAllocateInfo->memoryTypeIndex;
1240
1241 mem->map = NULL;
1242 mem->map_size = 0;
1243
1244 *pMem = anv_device_memory_to_handle(mem);
1245
1246 return VK_SUCCESS;
1247
1248 fail:
1249 vk_free2(&device->alloc, pAllocator, mem);
1250
1251 return result;
1252 }
1253
1254 void anv_FreeMemory(
1255 VkDevice _device,
1256 VkDeviceMemory _mem,
1257 const VkAllocationCallbacks* pAllocator)
1258 {
1259 ANV_FROM_HANDLE(anv_device, device, _device);
1260 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1261
1262 if (mem == NULL)
1263 return;
1264
1265 if (mem->map)
1266 anv_UnmapMemory(_device, _mem);
1267
1268 if (mem->bo.map)
1269 anv_gem_munmap(mem->bo.map, mem->bo.size);
1270
1271 if (mem->bo.gem_handle != 0)
1272 anv_gem_close(device, mem->bo.gem_handle);
1273
1274 vk_free2(&device->alloc, pAllocator, mem);
1275 }
1276
1277 VkResult anv_MapMemory(
1278 VkDevice _device,
1279 VkDeviceMemory _memory,
1280 VkDeviceSize offset,
1281 VkDeviceSize size,
1282 VkMemoryMapFlags flags,
1283 void** ppData)
1284 {
1285 ANV_FROM_HANDLE(anv_device, device, _device);
1286 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1287
1288 if (mem == NULL) {
1289 *ppData = NULL;
1290 return VK_SUCCESS;
1291 }
1292
1293 if (size == VK_WHOLE_SIZE)
1294 size = mem->bo.size - offset;
1295
1296 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1297 *
1298 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1299 * assert(size != 0);
1300 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1301 * equal to the size of the memory minus offset
1302 */
1303 assert(size > 0);
1304 assert(offset + size <= mem->bo.size);
1305
1306 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1307 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1308 * at a time is valid. We could just mmap up front and return an offset
1309 * pointer here, but that may exhaust virtual memory on 32 bit
1310 * userspace. */
1311
1312 uint32_t gem_flags = 0;
1313 if (!device->info.has_llc && mem->type_index == 0)
1314 gem_flags |= I915_MMAP_WC;
1315
1316 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1317 uint64_t map_offset = offset & ~4095ull;
1318 assert(offset >= map_offset);
1319 uint64_t map_size = (offset + size) - map_offset;
1320
1321 /* Let's map whole pages */
1322 map_size = align_u64(map_size, 4096);
1323
1324 void *map = anv_gem_mmap(device, mem->bo.gem_handle,
1325 map_offset, map_size, gem_flags);
1326 if (map == MAP_FAILED)
1327 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1328
1329 mem->map = map;
1330 mem->map_size = map_size;
1331
1332 *ppData = mem->map + (offset - map_offset);
1333
1334 return VK_SUCCESS;
1335 }
1336
1337 void anv_UnmapMemory(
1338 VkDevice _device,
1339 VkDeviceMemory _memory)
1340 {
1341 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1342
1343 if (mem == NULL)
1344 return;
1345
1346 anv_gem_munmap(mem->map, mem->map_size);
1347
1348 mem->map = NULL;
1349 mem->map_size = 0;
1350 }
1351
1352 static void
1353 clflush_mapped_ranges(struct anv_device *device,
1354 uint32_t count,
1355 const VkMappedMemoryRange *ranges)
1356 {
1357 for (uint32_t i = 0; i < count; i++) {
1358 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1359 void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
1360 void *end;
1361
1362 if (ranges[i].offset + ranges[i].size > mem->map_size)
1363 end = mem->map + mem->map_size;
1364 else
1365 end = mem->map + ranges[i].offset + ranges[i].size;
1366
1367 while (p < end) {
1368 __builtin_ia32_clflush(p);
1369 p += CACHELINE_SIZE;
1370 }
1371 }
1372 }
1373
1374 VkResult anv_FlushMappedMemoryRanges(
1375 VkDevice _device,
1376 uint32_t memoryRangeCount,
1377 const VkMappedMemoryRange* pMemoryRanges)
1378 {
1379 ANV_FROM_HANDLE(anv_device, device, _device);
1380
1381 if (device->info.has_llc)
1382 return VK_SUCCESS;
1383
1384 /* Make sure the writes we're flushing have landed. */
1385 __builtin_ia32_mfence();
1386
1387 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1388
1389 return VK_SUCCESS;
1390 }
1391
1392 VkResult anv_InvalidateMappedMemoryRanges(
1393 VkDevice _device,
1394 uint32_t memoryRangeCount,
1395 const VkMappedMemoryRange* pMemoryRanges)
1396 {
1397 ANV_FROM_HANDLE(anv_device, device, _device);
1398
1399 if (device->info.has_llc)
1400 return VK_SUCCESS;
1401
1402 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1403
1404 /* Make sure no reads get moved up above the invalidate. */
1405 __builtin_ia32_mfence();
1406
1407 return VK_SUCCESS;
1408 }
1409
1410 void anv_GetBufferMemoryRequirements(
1411 VkDevice device,
1412 VkBuffer _buffer,
1413 VkMemoryRequirements* pMemoryRequirements)
1414 {
1415 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1416
1417 /* The Vulkan spec (git aaed022) says:
1418 *
1419 * memoryTypeBits is a bitfield and contains one bit set for every
1420 * supported memory type for the resource. The bit `1<<i` is set if and
1421 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1422 * structure for the physical device is supported.
1423 *
1424 * We support exactly one memory type.
1425 */
1426 pMemoryRequirements->memoryTypeBits = 1;
1427
1428 pMemoryRequirements->size = buffer->size;
1429 pMemoryRequirements->alignment = 16;
1430 }
1431
1432 void anv_GetImageMemoryRequirements(
1433 VkDevice device,
1434 VkImage _image,
1435 VkMemoryRequirements* pMemoryRequirements)
1436 {
1437 ANV_FROM_HANDLE(anv_image, image, _image);
1438
1439 /* The Vulkan spec (git aaed022) says:
1440 *
1441 * memoryTypeBits is a bitfield and contains one bit set for every
1442 * supported memory type for the resource. The bit `1<<i` is set if and
1443 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1444 * structure for the physical device is supported.
1445 *
1446 * We support exactly one memory type.
1447 */
1448 pMemoryRequirements->memoryTypeBits = 1;
1449
1450 pMemoryRequirements->size = image->size;
1451 pMemoryRequirements->alignment = image->alignment;
1452 }
1453
1454 void anv_GetImageSparseMemoryRequirements(
1455 VkDevice device,
1456 VkImage image,
1457 uint32_t* pSparseMemoryRequirementCount,
1458 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1459 {
1460 stub();
1461 }
1462
1463 void anv_GetDeviceMemoryCommitment(
1464 VkDevice device,
1465 VkDeviceMemory memory,
1466 VkDeviceSize* pCommittedMemoryInBytes)
1467 {
1468 *pCommittedMemoryInBytes = 0;
1469 }
1470
1471 VkResult anv_BindBufferMemory(
1472 VkDevice device,
1473 VkBuffer _buffer,
1474 VkDeviceMemory _memory,
1475 VkDeviceSize memoryOffset)
1476 {
1477 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1478 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1479
1480 if (mem) {
1481 buffer->bo = &mem->bo;
1482 buffer->offset = memoryOffset;
1483 } else {
1484 buffer->bo = NULL;
1485 buffer->offset = 0;
1486 }
1487
1488 return VK_SUCCESS;
1489 }
1490
1491 VkResult anv_QueueBindSparse(
1492 VkQueue queue,
1493 uint32_t bindInfoCount,
1494 const VkBindSparseInfo* pBindInfo,
1495 VkFence fence)
1496 {
1497 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1498 }
1499
1500 VkResult anv_CreateFence(
1501 VkDevice _device,
1502 const VkFenceCreateInfo* pCreateInfo,
1503 const VkAllocationCallbacks* pAllocator,
1504 VkFence* pFence)
1505 {
1506 ANV_FROM_HANDLE(anv_device, device, _device);
1507 struct anv_bo fence_bo;
1508 struct anv_fence *fence;
1509 struct anv_batch batch;
1510 VkResult result;
1511
1512 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1513
1514 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1515 if (result != VK_SUCCESS)
1516 return result;
1517
1518 /* Fences are small. Just store the CPU data structure in the BO. */
1519 fence = fence_bo.map;
1520 fence->bo = fence_bo;
1521
1522 /* Place the batch after the CPU data but on its own cache line. */
1523 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1524 batch.next = batch.start = fence->bo.map + batch_offset;
1525 batch.end = fence->bo.map + fence->bo.size;
1526 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1527 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1528
1529 if (!device->info.has_llc) {
1530 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1531 assert(batch.next - batch.start <= CACHELINE_SIZE);
1532 __builtin_ia32_mfence();
1533 __builtin_ia32_clflush(batch.start);
1534 }
1535
1536 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1537 fence->exec2_objects[0].relocation_count = 0;
1538 fence->exec2_objects[0].relocs_ptr = 0;
1539 fence->exec2_objects[0].alignment = 0;
1540 fence->exec2_objects[0].offset = fence->bo.offset;
1541 fence->exec2_objects[0].flags = 0;
1542 fence->exec2_objects[0].rsvd1 = 0;
1543 fence->exec2_objects[0].rsvd2 = 0;
1544
1545 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1546 fence->execbuf.buffer_count = 1;
1547 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1548 fence->execbuf.batch_len = batch.next - batch.start;
1549 fence->execbuf.cliprects_ptr = 0;
1550 fence->execbuf.num_cliprects = 0;
1551 fence->execbuf.DR1 = 0;
1552 fence->execbuf.DR4 = 0;
1553
1554 fence->execbuf.flags =
1555 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1556 fence->execbuf.rsvd1 = device->context_id;
1557 fence->execbuf.rsvd2 = 0;
1558
1559 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
1560 fence->state = ANV_FENCE_STATE_SIGNALED;
1561 } else {
1562 fence->state = ANV_FENCE_STATE_RESET;
1563 }
1564
1565 *pFence = anv_fence_to_handle(fence);
1566
1567 return VK_SUCCESS;
1568 }
1569
1570 void anv_DestroyFence(
1571 VkDevice _device,
1572 VkFence _fence,
1573 const VkAllocationCallbacks* pAllocator)
1574 {
1575 ANV_FROM_HANDLE(anv_device, device, _device);
1576 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1577
1578 if (!fence)
1579 return;
1580
1581 assert(fence->bo.map == fence);
1582 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1583 }
1584
1585 VkResult anv_ResetFences(
1586 VkDevice _device,
1587 uint32_t fenceCount,
1588 const VkFence* pFences)
1589 {
1590 for (uint32_t i = 0; i < fenceCount; i++) {
1591 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1592 fence->state = ANV_FENCE_STATE_RESET;
1593 }
1594
1595 return VK_SUCCESS;
1596 }
1597
1598 VkResult anv_GetFenceStatus(
1599 VkDevice _device,
1600 VkFence _fence)
1601 {
1602 ANV_FROM_HANDLE(anv_device, device, _device);
1603 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1604 int64_t t = 0;
1605 int ret;
1606
1607 switch (fence->state) {
1608 case ANV_FENCE_STATE_RESET:
1609 /* If it hasn't even been sent off to the GPU yet, it's not ready */
1610 return VK_NOT_READY;
1611
1612 case ANV_FENCE_STATE_SIGNALED:
1613 /* It's been signaled, return success */
1614 return VK_SUCCESS;
1615
1616 case ANV_FENCE_STATE_SUBMITTED:
1617 /* It's been submitted to the GPU but we don't know if it's done yet. */
1618 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1619 if (ret == 0) {
1620 fence->state = ANV_FENCE_STATE_SIGNALED;
1621 return VK_SUCCESS;
1622 } else {
1623 return VK_NOT_READY;
1624 }
1625 default:
1626 unreachable("Invalid fence status");
1627 }
1628 }
1629
1630 #define NSEC_PER_SEC 1000000000
1631 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
1632
1633 VkResult anv_WaitForFences(
1634 VkDevice _device,
1635 uint32_t fenceCount,
1636 const VkFence* pFences,
1637 VkBool32 waitAll,
1638 uint64_t _timeout)
1639 {
1640 ANV_FROM_HANDLE(anv_device, device, _device);
1641 int ret;
1642
1643 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1644 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1645 * for a couple of kernel releases. Since there's no way to know
1646 * whether or not the kernel we're using is one of the broken ones, the
1647 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1648 * maximum timeout from 584 years to 292 years - likely not a big deal.
1649 */
1650 int64_t timeout = MIN2(_timeout, INT64_MAX);
1651
1652 uint32_t pending_fences = fenceCount;
1653 while (pending_fences) {
1654 pending_fences = 0;
1655 bool signaled_fences = false;
1656 for (uint32_t i = 0; i < fenceCount; i++) {
1657 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1658 switch (fence->state) {
1659 case ANV_FENCE_STATE_RESET:
1660 /* This fence hasn't been submitted yet, we'll catch it the next
1661 * time around. Yes, this may mean we dead-loop but, short of
1662 * lots of locking and a condition variable, there's not much that
1663 * we can do about that.
1664 */
1665 pending_fences++;
1666 continue;
1667
1668 case ANV_FENCE_STATE_SIGNALED:
1669 /* This fence is not pending. If waitAll isn't set, we can return
1670 * early. Otherwise, we have to keep going.
1671 */
1672 if (!waitAll)
1673 return VK_SUCCESS;
1674 continue;
1675
1676 case ANV_FENCE_STATE_SUBMITTED:
1677 /* These are the fences we really care about. Go ahead and wait
1678 * on it until we hit a timeout.
1679 */
1680 ret = anv_gem_wait(device, fence->bo.gem_handle, &timeout);
1681 if (ret == -1 && errno == ETIME) {
1682 return VK_TIMEOUT;
1683 } else if (ret == -1) {
1684 /* We don't know the real error. */
1685 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1686 } else {
1687 fence->state = ANV_FENCE_STATE_SIGNALED;
1688 signaled_fences = true;
1689 if (!waitAll)
1690 return VK_SUCCESS;
1691 continue;
1692 }
1693 }
1694 }
1695
1696 if (pending_fences && !signaled_fences) {
1697 /* If we've hit this then someone decided to vkWaitForFences before
1698 * they've actually submitted any of them to a queue. This is a
1699 * fairly pessimal case, so it's ok to lock here and use a standard
1700 * pthreads condition variable.
1701 */
1702 pthread_mutex_lock(&device->mutex);
1703
1704 /* It's possible that some of the fences have changed state since the
1705 * last time we checked. Now that we have the lock, check for
1706 * pending fences again and don't wait if it's changed.
1707 */
1708 uint32_t now_pending_fences = 0;
1709 for (uint32_t i = 0; i < fenceCount; i++) {
1710 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1711 if (fence->state == ANV_FENCE_STATE_RESET)
1712 now_pending_fences++;
1713 }
1714 assert(now_pending_fences <= pending_fences);
1715
1716 if (now_pending_fences == pending_fences) {
1717 struct timespec before;
1718 clock_gettime(CLOCK_MONOTONIC, &before);
1719
1720 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
1721 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
1722 (timeout / NSEC_PER_SEC);
1723 abs_nsec %= NSEC_PER_SEC;
1724
1725 /* Avoid roll-over in tv_sec on 32-bit systems if the user
1726 * provided timeout is UINT64_MAX
1727 */
1728 struct timespec abstime;
1729 abstime.tv_nsec = abs_nsec;
1730 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
1731
1732 ret = pthread_cond_timedwait(&device->queue_submit,
1733 &device->mutex, &abstime);
1734 assert(ret != EINVAL);
1735
1736 struct timespec after;
1737 clock_gettime(CLOCK_MONOTONIC, &after);
1738 uint64_t time_elapsed =
1739 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
1740 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
1741
1742 if (time_elapsed >= timeout) {
1743 pthread_mutex_unlock(&device->mutex);
1744 return VK_TIMEOUT;
1745 }
1746
1747 timeout -= time_elapsed;
1748 }
1749
1750 pthread_mutex_unlock(&device->mutex);
1751 }
1752 }
1753
1754 return VK_SUCCESS;
1755 }
1756
1757 // Queue semaphore functions
1758
1759 VkResult anv_CreateSemaphore(
1760 VkDevice device,
1761 const VkSemaphoreCreateInfo* pCreateInfo,
1762 const VkAllocationCallbacks* pAllocator,
1763 VkSemaphore* pSemaphore)
1764 {
1765 /* The DRM execbuffer ioctl always execute in-oder, even between different
1766 * rings. As such, there's nothing to do for the user space semaphore.
1767 */
1768
1769 *pSemaphore = (VkSemaphore)1;
1770
1771 return VK_SUCCESS;
1772 }
1773
1774 void anv_DestroySemaphore(
1775 VkDevice device,
1776 VkSemaphore semaphore,
1777 const VkAllocationCallbacks* pAllocator)
1778 {
1779 }
1780
1781 // Event functions
1782
1783 VkResult anv_CreateEvent(
1784 VkDevice _device,
1785 const VkEventCreateInfo* pCreateInfo,
1786 const VkAllocationCallbacks* pAllocator,
1787 VkEvent* pEvent)
1788 {
1789 ANV_FROM_HANDLE(anv_device, device, _device);
1790 struct anv_state state;
1791 struct anv_event *event;
1792
1793 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1794
1795 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1796 sizeof(*event), 8);
1797 event = state.map;
1798 event->state = state;
1799 event->semaphore = VK_EVENT_RESET;
1800
1801 if (!device->info.has_llc) {
1802 /* Make sure the writes we're flushing have landed. */
1803 __builtin_ia32_mfence();
1804 __builtin_ia32_clflush(event);
1805 }
1806
1807 *pEvent = anv_event_to_handle(event);
1808
1809 return VK_SUCCESS;
1810 }
1811
1812 void anv_DestroyEvent(
1813 VkDevice _device,
1814 VkEvent _event,
1815 const VkAllocationCallbacks* pAllocator)
1816 {
1817 ANV_FROM_HANDLE(anv_device, device, _device);
1818 ANV_FROM_HANDLE(anv_event, event, _event);
1819
1820 if (!event)
1821 return;
1822
1823 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1824 }
1825
1826 VkResult anv_GetEventStatus(
1827 VkDevice _device,
1828 VkEvent _event)
1829 {
1830 ANV_FROM_HANDLE(anv_device, device, _device);
1831 ANV_FROM_HANDLE(anv_event, event, _event);
1832
1833 if (!device->info.has_llc) {
1834 /* Invalidate read cache before reading event written by GPU. */
1835 __builtin_ia32_clflush(event);
1836 __builtin_ia32_mfence();
1837
1838 }
1839
1840 return event->semaphore;
1841 }
1842
1843 VkResult anv_SetEvent(
1844 VkDevice _device,
1845 VkEvent _event)
1846 {
1847 ANV_FROM_HANDLE(anv_device, device, _device);
1848 ANV_FROM_HANDLE(anv_event, event, _event);
1849
1850 event->semaphore = VK_EVENT_SET;
1851
1852 if (!device->info.has_llc) {
1853 /* Make sure the writes we're flushing have landed. */
1854 __builtin_ia32_mfence();
1855 __builtin_ia32_clflush(event);
1856 }
1857
1858 return VK_SUCCESS;
1859 }
1860
1861 VkResult anv_ResetEvent(
1862 VkDevice _device,
1863 VkEvent _event)
1864 {
1865 ANV_FROM_HANDLE(anv_device, device, _device);
1866 ANV_FROM_HANDLE(anv_event, event, _event);
1867
1868 event->semaphore = VK_EVENT_RESET;
1869
1870 if (!device->info.has_llc) {
1871 /* Make sure the writes we're flushing have landed. */
1872 __builtin_ia32_mfence();
1873 __builtin_ia32_clflush(event);
1874 }
1875
1876 return VK_SUCCESS;
1877 }
1878
1879 // Buffer functions
1880
1881 VkResult anv_CreateBuffer(
1882 VkDevice _device,
1883 const VkBufferCreateInfo* pCreateInfo,
1884 const VkAllocationCallbacks* pAllocator,
1885 VkBuffer* pBuffer)
1886 {
1887 ANV_FROM_HANDLE(anv_device, device, _device);
1888 struct anv_buffer *buffer;
1889
1890 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1891
1892 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1893 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1894 if (buffer == NULL)
1895 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1896
1897 buffer->size = pCreateInfo->size;
1898 buffer->usage = pCreateInfo->usage;
1899 buffer->bo = NULL;
1900 buffer->offset = 0;
1901
1902 *pBuffer = anv_buffer_to_handle(buffer);
1903
1904 return VK_SUCCESS;
1905 }
1906
1907 void anv_DestroyBuffer(
1908 VkDevice _device,
1909 VkBuffer _buffer,
1910 const VkAllocationCallbacks* pAllocator)
1911 {
1912 ANV_FROM_HANDLE(anv_device, device, _device);
1913 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1914
1915 if (!buffer)
1916 return;
1917
1918 vk_free2(&device->alloc, pAllocator, buffer);
1919 }
1920
1921 void
1922 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
1923 enum isl_format format,
1924 uint32_t offset, uint32_t range, uint32_t stride)
1925 {
1926 isl_buffer_fill_state(&device->isl_dev, state.map,
1927 .address = offset,
1928 .mocs = device->default_mocs,
1929 .size = range,
1930 .format = format,
1931 .stride = stride);
1932
1933 if (!device->info.has_llc)
1934 anv_state_clflush(state);
1935 }
1936
1937 void anv_DestroySampler(
1938 VkDevice _device,
1939 VkSampler _sampler,
1940 const VkAllocationCallbacks* pAllocator)
1941 {
1942 ANV_FROM_HANDLE(anv_device, device, _device);
1943 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
1944
1945 if (!sampler)
1946 return;
1947
1948 vk_free2(&device->alloc, pAllocator, sampler);
1949 }
1950
1951 VkResult anv_CreateFramebuffer(
1952 VkDevice _device,
1953 const VkFramebufferCreateInfo* pCreateInfo,
1954 const VkAllocationCallbacks* pAllocator,
1955 VkFramebuffer* pFramebuffer)
1956 {
1957 ANV_FROM_HANDLE(anv_device, device, _device);
1958 struct anv_framebuffer *framebuffer;
1959
1960 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1961
1962 size_t size = sizeof(*framebuffer) +
1963 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
1964 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
1965 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1966 if (framebuffer == NULL)
1967 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1968
1969 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1970 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1971 VkImageView _iview = pCreateInfo->pAttachments[i];
1972 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
1973 }
1974
1975 framebuffer->width = pCreateInfo->width;
1976 framebuffer->height = pCreateInfo->height;
1977 framebuffer->layers = pCreateInfo->layers;
1978
1979 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
1980
1981 return VK_SUCCESS;
1982 }
1983
1984 void anv_DestroyFramebuffer(
1985 VkDevice _device,
1986 VkFramebuffer _fb,
1987 const VkAllocationCallbacks* pAllocator)
1988 {
1989 ANV_FROM_HANDLE(anv_device, device, _device);
1990 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
1991
1992 if (!fb)
1993 return;
1994
1995 vk_free2(&device->alloc, pAllocator, fb);
1996 }