anv: use initialization routine for gen_device_info
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "git_sha1.h"
44 #include "vk_util.h"
45 #include "common/gen_defines.h"
46 #include "compiler/glsl_types.h"
47
48 #include "genxml/gen7_pack.h"
49
50 /* This is probably far to big but it reflects the max size used for messages
51 * in OpenGLs KHR_debug.
52 */
53 #define MAX_DEBUG_MESSAGE_LENGTH 4096
54
55 static void
56 compiler_debug_log(void *data, const char *fmt, ...)
57 {
58 char str[MAX_DEBUG_MESSAGE_LENGTH];
59 struct anv_device *device = (struct anv_device *)data;
60
61 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
62 return;
63
64 va_list args;
65 va_start(args, fmt);
66 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
67 va_end(args);
68
69 vk_debug_report(&device->instance->debug_report_callbacks,
70 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
71 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
72 0, 0, 0, "anv", str);
73 }
74
75 static void
76 compiler_perf_log(void *data, const char *fmt, ...)
77 {
78 va_list args;
79 va_start(args, fmt);
80
81 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
82 intel_logd_v(fmt, args);
83
84 va_end(args);
85 }
86
87 static uint64_t
88 anv_compute_heap_size(int fd, uint64_t gtt_size)
89 {
90 /* Query the total ram from the system */
91 struct sysinfo info;
92 sysinfo(&info);
93
94 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
95
96 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
97 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
98 */
99 uint64_t available_ram;
100 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
101 available_ram = total_ram / 2;
102 else
103 available_ram = total_ram * 3 / 4;
104
105 /* We also want to leave some padding for things we allocate in the driver,
106 * so don't go over 3/4 of the GTT either.
107 */
108 uint64_t available_gtt = gtt_size * 3 / 4;
109
110 return MIN2(available_ram, available_gtt);
111 }
112
113 static VkResult
114 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
115 {
116 uint64_t gtt_size;
117 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
118 &gtt_size) == -1) {
119 /* If, for whatever reason, we can't actually get the GTT size from the
120 * kernel (too old?) fall back to the aperture size.
121 */
122 anv_perf_warn(NULL, NULL,
123 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
124
125 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
126 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
127 "failed to get aperture size: %m");
128 }
129 }
130
131 device->supports_48bit_addresses = (device->info.gen >= 8) &&
132 gtt_size > (4ULL << 30 /* GiB */);
133
134 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
135
136 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
137 /* When running with an overridden PCI ID, we may get a GTT size from
138 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
139 * address support can still fail. Just clamp the address space size to
140 * 2 GiB if we don't have 48-bit support.
141 */
142 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
143 "not support for 48-bit addresses",
144 __FILE__, __LINE__);
145 heap_size = 2ull << 30;
146 }
147
148 if (heap_size <= 3ull * (1ull << 30)) {
149 /* In this case, everything fits nicely into the 32-bit address space,
150 * so there's no need for supporting 48bit addresses on client-allocated
151 * memory objects.
152 */
153 device->memory.heap_count = 1;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .vma_start = LOW_HEAP_MIN_ADDRESS,
156 .vma_size = LOW_HEAP_SIZE,
157 .size = heap_size,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 } else {
162 /* Not everything will fit nicely into a 32-bit address space. In this
163 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
164 * larger 48-bit heap. If we're in this case, then we have a total heap
165 * size larger than 3GiB which most likely means they have 8 GiB of
166 * video memory and so carving off 1 GiB for the 32-bit heap should be
167 * reasonable.
168 */
169 const uint64_t heap_size_32bit = 1ull << 30;
170 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
171
172 assert(device->supports_48bit_addresses);
173
174 device->memory.heap_count = 2;
175 device->memory.heaps[0] = (struct anv_memory_heap) {
176 .vma_start = HIGH_HEAP_MIN_ADDRESS,
177 /* Leave the last 4GiB out of the high vma range, so that no state
178 * base address + size can overflow 48 bits. For more information see
179 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
180 */
181 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
182 .size = heap_size_48bit,
183 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
184 .supports_48bit_addresses = true,
185 };
186 device->memory.heaps[1] = (struct anv_memory_heap) {
187 .vma_start = LOW_HEAP_MIN_ADDRESS,
188 .vma_size = LOW_HEAP_SIZE,
189 .size = heap_size_32bit,
190 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
191 .supports_48bit_addresses = false,
192 };
193 }
194
195 uint32_t type_count = 0;
196 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
197 uint32_t valid_buffer_usage = ~0;
198
199 /* There appears to be a hardware issue in the VF cache where it only
200 * considers the bottom 32 bits of memory addresses. If you happen to
201 * have two vertex buffers which get placed exactly 4 GiB apart and use
202 * them in back-to-back draw calls, you can get collisions. In order to
203 * solve this problem, we require vertex and index buffers be bound to
204 * memory allocated out of the 32-bit heap.
205 */
206 if (device->memory.heaps[heap].supports_48bit_addresses) {
207 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
208 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
209 }
210
211 if (device->info.has_llc) {
212 /* Big core GPUs share LLC with the CPU and thus one memory type can be
213 * both cached and coherent at the same time.
214 */
215 device->memory.types[type_count++] = (struct anv_memory_type) {
216 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
217 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
218 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
219 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
220 .heapIndex = heap,
221 .valid_buffer_usage = valid_buffer_usage,
222 };
223 } else {
224 /* The spec requires that we expose a host-visible, coherent memory
225 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
226 * to give the application a choice between cached, but not coherent and
227 * coherent but uncached (WC though).
228 */
229 device->memory.types[type_count++] = (struct anv_memory_type) {
230 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
231 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
232 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
233 .heapIndex = heap,
234 .valid_buffer_usage = valid_buffer_usage,
235 };
236 device->memory.types[type_count++] = (struct anv_memory_type) {
237 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
238 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
239 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
240 .heapIndex = heap,
241 .valid_buffer_usage = valid_buffer_usage,
242 };
243 }
244 }
245 device->memory.type_count = type_count;
246
247 return VK_SUCCESS;
248 }
249
250 static VkResult
251 anv_physical_device_init_uuids(struct anv_physical_device *device)
252 {
253 const struct build_id_note *note =
254 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
255 if (!note) {
256 return vk_errorf(device->instance, device,
257 VK_ERROR_INITIALIZATION_FAILED,
258 "Failed to find build-id");
259 }
260
261 unsigned build_id_len = build_id_length(note);
262 if (build_id_len < 20) {
263 return vk_errorf(device->instance, device,
264 VK_ERROR_INITIALIZATION_FAILED,
265 "build-id too short. It needs to be a SHA");
266 }
267
268 memcpy(device->driver_build_sha1, build_id_data(note), 20);
269
270 struct mesa_sha1 sha1_ctx;
271 uint8_t sha1[20];
272 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
273
274 /* The pipeline cache UUID is used for determining when a pipeline cache is
275 * invalid. It needs both a driver build and the PCI ID of the device.
276 */
277 _mesa_sha1_init(&sha1_ctx);
278 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
279 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
280 sizeof(device->chipset_id));
281 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
282 sizeof(device->always_use_bindless));
283 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
284 sizeof(device->has_a64_buffer_access));
285 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
286 sizeof(device->has_bindless_images));
287 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
288 sizeof(device->has_bindless_samplers));
289 _mesa_sha1_final(&sha1_ctx, sha1);
290 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
291
292 /* The driver UUID is used for determining sharability of images and memory
293 * between two Vulkan instances in separate processes. People who want to
294 * share memory need to also check the device UUID (below) so all this
295 * needs to be is the build-id.
296 */
297 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
298
299 /* The device UUID uniquely identifies the given device within the machine.
300 * Since we never have more than one device, this doesn't need to be a real
301 * UUID. However, on the off-chance that someone tries to use this to
302 * cache pre-tiled images or something of the like, we use the PCI ID and
303 * some bits of ISL info to ensure that this is safe.
304 */
305 _mesa_sha1_init(&sha1_ctx);
306 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
307 sizeof(device->chipset_id));
308 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
309 sizeof(device->isl_dev.has_bit6_swizzling));
310 _mesa_sha1_final(&sha1_ctx, sha1);
311 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
312
313 return VK_SUCCESS;
314 }
315
316 static void
317 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
318 {
319 #ifdef ENABLE_SHADER_CACHE
320 char renderer[10];
321 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
322 device->chipset_id);
323 assert(len == sizeof(renderer) - 2);
324
325 char timestamp[41];
326 _mesa_sha1_format(timestamp, device->driver_build_sha1);
327
328 const uint64_t driver_flags =
329 brw_get_compiler_config_value(device->compiler);
330 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
331 #else
332 device->disk_cache = NULL;
333 #endif
334 }
335
336 static void
337 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
338 {
339 #ifdef ENABLE_SHADER_CACHE
340 if (device->disk_cache)
341 disk_cache_destroy(device->disk_cache);
342 #else
343 assert(device->disk_cache == NULL);
344 #endif
345 }
346
347 static uint64_t
348 get_available_system_memory()
349 {
350 char *meminfo = os_read_file("/proc/meminfo");
351 if (!meminfo)
352 return 0;
353
354 char *str = strstr(meminfo, "MemAvailable:");
355 if (!str) {
356 free(meminfo);
357 return 0;
358 }
359
360 uint64_t kb_mem_available;
361 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
362 free(meminfo);
363 return kb_mem_available << 10;
364 }
365
366 free(meminfo);
367 return 0;
368 }
369
370 static VkResult
371 anv_physical_device_init(struct anv_physical_device *device,
372 struct anv_instance *instance,
373 drmDevicePtr drm_device)
374 {
375 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
376 const char *path = drm_device->nodes[DRM_NODE_RENDER];
377 VkResult result;
378 int fd;
379 int master_fd = -1;
380
381 brw_process_intel_debug_variable();
382
383 fd = open(path, O_RDWR | O_CLOEXEC);
384 if (fd < 0)
385 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
386
387 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
388 device->instance = instance;
389
390 assert(strlen(path) < ARRAY_SIZE(device->path));
391 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
392
393 if (!gen_get_device_info_from_fd(fd, &device->info)) {
394 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395 goto fail;
396 }
397 device->chipset_id = device->info.chipset_id;
398 device->no_hw = device->info.no_hw;
399
400 if (getenv("INTEL_NO_HW") != NULL)
401 device->no_hw = true;
402
403 device->pci_info.domain = drm_device->businfo.pci->domain;
404 device->pci_info.bus = drm_device->businfo.pci->bus;
405 device->pci_info.device = drm_device->businfo.pci->dev;
406 device->pci_info.function = drm_device->businfo.pci->func;
407
408 device->name = gen_get_device_name(device->chipset_id);
409
410 if (device->info.is_haswell) {
411 intel_logw("Haswell Vulkan support is incomplete");
412 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
413 intel_logw("Ivy Bridge Vulkan support is incomplete");
414 } else if (device->info.gen == 7 && device->info.is_baytrail) {
415 intel_logw("Bay Trail Vulkan support is incomplete");
416 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
417 /* Gen8-11 fully supported */
418 } else {
419 result = vk_errorf(device->instance, device,
420 VK_ERROR_INCOMPATIBLE_DRIVER,
421 "Vulkan not yet supported on %s", device->name);
422 goto fail;
423 }
424
425 device->cmd_parser_version = -1;
426 if (device->info.gen == 7) {
427 device->cmd_parser_version =
428 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
429 if (device->cmd_parser_version == -1) {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INITIALIZATION_FAILED,
432 "failed to get command parser version");
433 goto fail;
434 }
435 }
436
437 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
438 result = vk_errorf(device->instance, device,
439 VK_ERROR_INITIALIZATION_FAILED,
440 "kernel missing gem wait");
441 goto fail;
442 }
443
444 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
445 result = vk_errorf(device->instance, device,
446 VK_ERROR_INITIALIZATION_FAILED,
447 "kernel missing execbuf2");
448 goto fail;
449 }
450
451 if (!device->info.has_llc &&
452 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
453 result = vk_errorf(device->instance, device,
454 VK_ERROR_INITIALIZATION_FAILED,
455 "kernel missing wc mmap");
456 goto fail;
457 }
458
459 result = anv_physical_device_init_heaps(device, fd);
460 if (result != VK_SUCCESS)
461 goto fail;
462
463 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
464 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
465 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
466 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
467 device->has_syncobj_wait = device->has_syncobj &&
468 anv_gem_supports_syncobj_wait(fd);
469 device->has_context_priority = anv_gem_has_context_priority(fd);
470
471 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
472 && device->supports_48bit_addresses;
473
474 device->has_context_isolation =
475 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
476
477 device->always_use_bindless =
478 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
479
480 /* We first got the A64 messages on broadwell and we can only use them if
481 * we can pass addresses directly into the shader which requires softpin.
482 */
483 device->has_a64_buffer_access = device->info.gen >= 8 &&
484 device->use_softpin;
485
486 /* We first get bindless image access on Skylake and we can only really do
487 * it if we don't have any relocations so we need softpin.
488 */
489 device->has_bindless_images = device->info.gen >= 9 &&
490 device->use_softpin;
491
492 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
493 * because it's just a matter of setting the sampler address in the sample
494 * message header. However, we've not bothered to wire it up for vec4 so
495 * we leave it disabled on gen7.
496 */
497 device->has_bindless_samplers = device->info.gen >= 8;
498
499 device->has_mem_available = get_available_system_memory() != 0;
500
501 /* Starting with Gen10, the timestamp frequency of the command streamer may
502 * vary from one part to another. We can query the value from the kernel.
503 */
504 if (device->info.gen >= 10) {
505 int timestamp_frequency =
506 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
507
508 if (timestamp_frequency < 0)
509 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
510 else
511 device->info.timestamp_frequency = timestamp_frequency;
512 }
513
514 /* GENs prior to 8 do not support EU/Subslice info */
515 if (device->info.gen >= 8) {
516 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
517 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
518
519 /* Without this information, we cannot get the right Braswell
520 * brandstrings, and we have to use conservative numbers for GPGPU on
521 * many platforms, but otherwise, things will just work.
522 */
523 if (device->subslice_total < 1 || device->eu_total < 1) {
524 intel_logw("Kernel 4.1 required to properly query GPU properties");
525 }
526 } else if (device->info.gen == 7) {
527 device->subslice_total = 1 << (device->info.gt - 1);
528 }
529
530 if (device->info.is_cherryview &&
531 device->subslice_total > 0 && device->eu_total > 0) {
532 /* Logical CS threads = EUs per subslice * num threads per EU */
533 uint32_t max_cs_threads =
534 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
535
536 /* Fuse configurations may give more threads than expected, never less. */
537 if (max_cs_threads > device->info.max_cs_threads)
538 device->info.max_cs_threads = max_cs_threads;
539 }
540
541 device->compiler = brw_compiler_create(NULL, &device->info);
542 if (device->compiler == NULL) {
543 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
544 goto fail;
545 }
546 device->compiler->shader_debug_log = compiler_debug_log;
547 device->compiler->shader_perf_log = compiler_perf_log;
548 device->compiler->supports_pull_constants = false;
549 device->compiler->constant_buffer_0_is_relative =
550 device->info.gen < 8 || !device->has_context_isolation;
551 device->compiler->supports_shader_constants = true;
552
553 /* Broadwell PRM says:
554 *
555 * "Before Gen8, there was a historical configuration control field to
556 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
557 * different places: TILECTL[1:0], ARB_MODE[5:4], and
558 * DISP_ARB_CTL[14:13].
559 *
560 * For Gen8 and subsequent generations, the swizzle fields are all
561 * reserved, and the CPU's memory controller performs all address
562 * swizzling modifications."
563 */
564 bool swizzled =
565 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
566
567 isl_device_init(&device->isl_dev, &device->info, swizzled);
568
569 result = anv_physical_device_init_uuids(device);
570 if (result != VK_SUCCESS)
571 goto fail;
572
573 anv_physical_device_init_disk_cache(device);
574
575 if (instance->enabled_extensions.KHR_display) {
576 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
577 if (master_fd >= 0) {
578 /* prod the device with a GETPARAM call which will fail if
579 * we don't have permission to even render on this device
580 */
581 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
582 close(master_fd);
583 master_fd = -1;
584 }
585 }
586 }
587 device->master_fd = master_fd;
588
589 result = anv_init_wsi(device);
590 if (result != VK_SUCCESS) {
591 ralloc_free(device->compiler);
592 anv_physical_device_free_disk_cache(device);
593 goto fail;
594 }
595
596 anv_physical_device_get_supported_extensions(device,
597 &device->supported_extensions);
598
599
600 device->local_fd = fd;
601
602 return VK_SUCCESS;
603
604 fail:
605 close(fd);
606 if (master_fd != -1)
607 close(master_fd);
608 return result;
609 }
610
611 static void
612 anv_physical_device_finish(struct anv_physical_device *device)
613 {
614 anv_finish_wsi(device);
615 anv_physical_device_free_disk_cache(device);
616 ralloc_free(device->compiler);
617 close(device->local_fd);
618 if (device->master_fd >= 0)
619 close(device->master_fd);
620 }
621
622 static void *
623 default_alloc_func(void *pUserData, size_t size, size_t align,
624 VkSystemAllocationScope allocationScope)
625 {
626 return malloc(size);
627 }
628
629 static void *
630 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
631 size_t align, VkSystemAllocationScope allocationScope)
632 {
633 return realloc(pOriginal, size);
634 }
635
636 static void
637 default_free_func(void *pUserData, void *pMemory)
638 {
639 free(pMemory);
640 }
641
642 static const VkAllocationCallbacks default_alloc = {
643 .pUserData = NULL,
644 .pfnAllocation = default_alloc_func,
645 .pfnReallocation = default_realloc_func,
646 .pfnFree = default_free_func,
647 };
648
649 VkResult anv_EnumerateInstanceExtensionProperties(
650 const char* pLayerName,
651 uint32_t* pPropertyCount,
652 VkExtensionProperties* pProperties)
653 {
654 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
655
656 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
657 if (anv_instance_extensions_supported.extensions[i]) {
658 vk_outarray_append(&out, prop) {
659 *prop = anv_instance_extensions[i];
660 }
661 }
662 }
663
664 return vk_outarray_status(&out);
665 }
666
667 VkResult anv_CreateInstance(
668 const VkInstanceCreateInfo* pCreateInfo,
669 const VkAllocationCallbacks* pAllocator,
670 VkInstance* pInstance)
671 {
672 struct anv_instance *instance;
673 VkResult result;
674
675 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
676
677 struct anv_instance_extension_table enabled_extensions = {};
678 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
679 int idx;
680 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
681 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
682 anv_instance_extensions[idx].extensionName) == 0)
683 break;
684 }
685
686 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
687 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
688
689 if (!anv_instance_extensions_supported.extensions[idx])
690 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
691
692 enabled_extensions.extensions[idx] = true;
693 }
694
695 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
696 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
697 if (!instance)
698 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
699
700 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
701
702 if (pAllocator)
703 instance->alloc = *pAllocator;
704 else
705 instance->alloc = default_alloc;
706
707 instance->app_info = (struct anv_app_info) { .api_version = 0 };
708 if (pCreateInfo->pApplicationInfo) {
709 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
710
711 instance->app_info.app_name =
712 vk_strdup(&instance->alloc, app->pApplicationName,
713 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
714 instance->app_info.app_version = app->applicationVersion;
715
716 instance->app_info.engine_name =
717 vk_strdup(&instance->alloc, app->pEngineName,
718 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
719 instance->app_info.engine_version = app->engineVersion;
720
721 instance->app_info.api_version = app->apiVersion;
722 }
723
724 if (instance->app_info.api_version == 0)
725 instance->app_info.api_version = VK_API_VERSION_1_0;
726
727 instance->enabled_extensions = enabled_extensions;
728
729 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
730 /* Vulkan requires that entrypoints for extensions which have not been
731 * enabled must not be advertised.
732 */
733 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
734 &instance->enabled_extensions)) {
735 instance->dispatch.entrypoints[i] = NULL;
736 } else {
737 instance->dispatch.entrypoints[i] =
738 anv_instance_dispatch_table.entrypoints[i];
739 }
740 }
741
742 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
743 /* Vulkan requires that entrypoints for extensions which have not been
744 * enabled must not be advertised.
745 */
746 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
747 &instance->enabled_extensions, NULL)) {
748 instance->device_dispatch.entrypoints[i] = NULL;
749 } else {
750 instance->device_dispatch.entrypoints[i] =
751 anv_device_dispatch_table.entrypoints[i];
752 }
753 }
754
755 instance->physicalDeviceCount = -1;
756
757 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
758 if (result != VK_SUCCESS) {
759 vk_free2(&default_alloc, pAllocator, instance);
760 return vk_error(result);
761 }
762
763 instance->pipeline_cache_enabled =
764 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
765
766 _mesa_locale_init();
767 glsl_type_singleton_init_or_ref();
768
769 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
770
771 *pInstance = anv_instance_to_handle(instance);
772
773 return VK_SUCCESS;
774 }
775
776 void anv_DestroyInstance(
777 VkInstance _instance,
778 const VkAllocationCallbacks* pAllocator)
779 {
780 ANV_FROM_HANDLE(anv_instance, instance, _instance);
781
782 if (!instance)
783 return;
784
785 if (instance->physicalDeviceCount > 0) {
786 /* We support at most one physical device. */
787 assert(instance->physicalDeviceCount == 1);
788 anv_physical_device_finish(&instance->physicalDevice);
789 }
790
791 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
792 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
793
794 VG(VALGRIND_DESTROY_MEMPOOL(instance));
795
796 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
797
798 glsl_type_singleton_decref();
799 _mesa_locale_fini();
800
801 vk_free(&instance->alloc, instance);
802 }
803
804 static VkResult
805 anv_enumerate_devices(struct anv_instance *instance)
806 {
807 /* TODO: Check for more devices ? */
808 drmDevicePtr devices[8];
809 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
810 int max_devices;
811
812 instance->physicalDeviceCount = 0;
813
814 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
815 if (max_devices < 1)
816 return VK_ERROR_INCOMPATIBLE_DRIVER;
817
818 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
819 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
820 devices[i]->bustype == DRM_BUS_PCI &&
821 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
822
823 result = anv_physical_device_init(&instance->physicalDevice,
824 instance, devices[i]);
825 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
826 break;
827 }
828 }
829 drmFreeDevices(devices, max_devices);
830
831 if (result == VK_SUCCESS)
832 instance->physicalDeviceCount = 1;
833
834 return result;
835 }
836
837 static VkResult
838 anv_instance_ensure_physical_device(struct anv_instance *instance)
839 {
840 if (instance->physicalDeviceCount < 0) {
841 VkResult result = anv_enumerate_devices(instance);
842 if (result != VK_SUCCESS &&
843 result != VK_ERROR_INCOMPATIBLE_DRIVER)
844 return result;
845 }
846
847 return VK_SUCCESS;
848 }
849
850 VkResult anv_EnumeratePhysicalDevices(
851 VkInstance _instance,
852 uint32_t* pPhysicalDeviceCount,
853 VkPhysicalDevice* pPhysicalDevices)
854 {
855 ANV_FROM_HANDLE(anv_instance, instance, _instance);
856 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
857
858 VkResult result = anv_instance_ensure_physical_device(instance);
859 if (result != VK_SUCCESS)
860 return result;
861
862 if (instance->physicalDeviceCount == 0)
863 return VK_SUCCESS;
864
865 assert(instance->physicalDeviceCount == 1);
866 vk_outarray_append(&out, i) {
867 *i = anv_physical_device_to_handle(&instance->physicalDevice);
868 }
869
870 return vk_outarray_status(&out);
871 }
872
873 VkResult anv_EnumeratePhysicalDeviceGroups(
874 VkInstance _instance,
875 uint32_t* pPhysicalDeviceGroupCount,
876 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
877 {
878 ANV_FROM_HANDLE(anv_instance, instance, _instance);
879 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
880 pPhysicalDeviceGroupCount);
881
882 VkResult result = anv_instance_ensure_physical_device(instance);
883 if (result != VK_SUCCESS)
884 return result;
885
886 if (instance->physicalDeviceCount == 0)
887 return VK_SUCCESS;
888
889 assert(instance->physicalDeviceCount == 1);
890
891 vk_outarray_append(&out, p) {
892 p->physicalDeviceCount = 1;
893 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
894 p->physicalDevices[0] =
895 anv_physical_device_to_handle(&instance->physicalDevice);
896 p->subsetAllocation = false;
897
898 vk_foreach_struct(ext, p->pNext)
899 anv_debug_ignored_stype(ext->sType);
900 }
901
902 return vk_outarray_status(&out);
903 }
904
905 void anv_GetPhysicalDeviceFeatures(
906 VkPhysicalDevice physicalDevice,
907 VkPhysicalDeviceFeatures* pFeatures)
908 {
909 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
910
911 *pFeatures = (VkPhysicalDeviceFeatures) {
912 .robustBufferAccess = true,
913 .fullDrawIndexUint32 = true,
914 .imageCubeArray = true,
915 .independentBlend = true,
916 .geometryShader = true,
917 .tessellationShader = true,
918 .sampleRateShading = true,
919 .dualSrcBlend = true,
920 .logicOp = true,
921 .multiDrawIndirect = true,
922 .drawIndirectFirstInstance = true,
923 .depthClamp = true,
924 .depthBiasClamp = true,
925 .fillModeNonSolid = true,
926 .depthBounds = false,
927 .wideLines = true,
928 .largePoints = true,
929 .alphaToOne = true,
930 .multiViewport = true,
931 .samplerAnisotropy = true,
932 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
933 pdevice->info.is_baytrail,
934 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
935 .textureCompressionBC = true,
936 .occlusionQueryPrecise = true,
937 .pipelineStatisticsQuery = true,
938 .fragmentStoresAndAtomics = true,
939 .shaderTessellationAndGeometryPointSize = true,
940 .shaderImageGatherExtended = true,
941 .shaderStorageImageExtendedFormats = true,
942 .shaderStorageImageMultisample = false,
943 .shaderStorageImageReadWithoutFormat = false,
944 .shaderStorageImageWriteWithoutFormat = true,
945 .shaderUniformBufferArrayDynamicIndexing = true,
946 .shaderSampledImageArrayDynamicIndexing = true,
947 .shaderStorageBufferArrayDynamicIndexing = true,
948 .shaderStorageImageArrayDynamicIndexing = true,
949 .shaderClipDistance = true,
950 .shaderCullDistance = true,
951 .shaderFloat64 = pdevice->info.gen >= 8 &&
952 pdevice->info.has_64bit_types,
953 .shaderInt64 = pdevice->info.gen >= 8 &&
954 pdevice->info.has_64bit_types,
955 .shaderInt16 = pdevice->info.gen >= 8,
956 .shaderResourceMinLod = pdevice->info.gen >= 9,
957 .variableMultisampleRate = true,
958 .inheritedQueries = true,
959 };
960
961 /* We can't do image stores in vec4 shaders */
962 pFeatures->vertexPipelineStoresAndAtomics =
963 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
964 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
965
966 struct anv_app_info *app_info = &pdevice->instance->app_info;
967
968 /* The new DOOM and Wolfenstein games require depthBounds without
969 * checking for it. They seem to run fine without it so just claim it's
970 * there and accept the consequences.
971 */
972 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
973 pFeatures->depthBounds = true;
974 }
975
976 void anv_GetPhysicalDeviceFeatures2(
977 VkPhysicalDevice physicalDevice,
978 VkPhysicalDeviceFeatures2* pFeatures)
979 {
980 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
981 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
982
983 vk_foreach_struct(ext, pFeatures->pNext) {
984 switch (ext->sType) {
985 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
986 VkPhysicalDevice8BitStorageFeaturesKHR *features =
987 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
988 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
989 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
990 features->storagePushConstant8 = pdevice->info.gen >= 8;
991 break;
992 }
993
994 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
995 VkPhysicalDevice16BitStorageFeatures *features =
996 (VkPhysicalDevice16BitStorageFeatures *)ext;
997 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
998 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
999 features->storagePushConstant16 = pdevice->info.gen >= 8;
1000 features->storageInputOutput16 = false;
1001 break;
1002 }
1003
1004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1005 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1006 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1007 features->bufferDeviceAddressCaptureReplay = false;
1008 features->bufferDeviceAddressMultiDevice = false;
1009 break;
1010 }
1011
1012 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1013 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1014 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1015 features->computeDerivativeGroupQuads = true;
1016 features->computeDerivativeGroupLinear = true;
1017 break;
1018 }
1019
1020 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1021 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1022 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1023 features->conditionalRendering = pdevice->info.gen >= 8 ||
1024 pdevice->info.is_haswell;
1025 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1026 pdevice->info.is_haswell;
1027 break;
1028 }
1029
1030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1031 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1032 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1033 features->depthClipEnable = true;
1034 break;
1035 }
1036
1037 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1038 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1039 features->shaderFloat16 = pdevice->info.gen >= 8;
1040 features->shaderInt8 = pdevice->info.gen >= 8;
1041 break;
1042 }
1043
1044 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1045 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1046 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1047 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1048 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1049 features->fragmentShaderShadingRateInterlock = false;
1050 break;
1051 }
1052
1053 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1054 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1055 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1056 features->hostQueryReset = true;
1057 break;
1058 }
1059
1060 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1061 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1062 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1063 features->shaderInputAttachmentArrayDynamicIndexing = false;
1064 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1065 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1066 features->shaderUniformBufferArrayNonUniformIndexing = false;
1067 features->shaderSampledImageArrayNonUniformIndexing = true;
1068 features->shaderStorageBufferArrayNonUniformIndexing = true;
1069 features->shaderStorageImageArrayNonUniformIndexing = true;
1070 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1071 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1072 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1073 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1074 features->descriptorBindingSampledImageUpdateAfterBind = true;
1075 features->descriptorBindingStorageImageUpdateAfterBind = true;
1076 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1077 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1078 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1079 features->descriptorBindingUpdateUnusedWhilePending = true;
1080 features->descriptorBindingPartiallyBound = true;
1081 features->descriptorBindingVariableDescriptorCount = false;
1082 features->runtimeDescriptorArray = true;
1083 break;
1084 }
1085
1086 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1087 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1088 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1089 features->indexTypeUint8 = true;
1090 break;
1091 }
1092
1093 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1094 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1095 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1096 features->inlineUniformBlock = true;
1097 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1098 break;
1099 }
1100
1101 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1102 VkPhysicalDeviceMultiviewFeatures *features =
1103 (VkPhysicalDeviceMultiviewFeatures *)ext;
1104 features->multiview = true;
1105 features->multiviewGeometryShader = true;
1106 features->multiviewTessellationShader = true;
1107 break;
1108 }
1109
1110 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1111 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1112 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1113 features->imagelessFramebuffer = true;
1114 break;
1115 }
1116
1117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1118 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1119 features->protectedMemory = false;
1120 break;
1121 }
1122
1123 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1124 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1125 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1126 features->samplerYcbcrConversion = true;
1127 break;
1128 }
1129
1130 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1131 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1132 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1133 features->scalarBlockLayout = true;
1134 break;
1135 }
1136
1137 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1138 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1139 features->shaderBufferInt64Atomics =
1140 pdevice->info.gen >= 9 && pdevice->use_softpin;
1141 features->shaderSharedInt64Atomics = VK_FALSE;
1142 break;
1143 }
1144
1145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1146 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1147 features->shaderDemoteToHelperInvocation = true;
1148 break;
1149 }
1150
1151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1152 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1153 features->shaderDrawParameters = true;
1154 break;
1155 }
1156
1157 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1158 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1159 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1160 features->texelBufferAlignment = true;
1161 break;
1162 }
1163
1164 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1165 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1166 features->variablePointersStorageBuffer = true;
1167 features->variablePointers = true;
1168 break;
1169 }
1170
1171 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1172 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1173 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1174 features->transformFeedback = true;
1175 features->geometryStreams = true;
1176 break;
1177 }
1178
1179 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1180 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1181 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1182 features->uniformBufferStandardLayout = true;
1183 break;
1184 }
1185
1186 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1187 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1188 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1189 features->vertexAttributeInstanceRateDivisor = true;
1190 features->vertexAttributeInstanceRateZeroDivisor = true;
1191 break;
1192 }
1193
1194 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1195 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1196 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1197 features->ycbcrImageArrays = true;
1198 break;
1199 }
1200
1201 default:
1202 anv_debug_ignored_stype(ext->sType);
1203 break;
1204 }
1205 }
1206 }
1207
1208 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1209
1210 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1211 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1212
1213 void anv_GetPhysicalDeviceProperties(
1214 VkPhysicalDevice physicalDevice,
1215 VkPhysicalDeviceProperties* pProperties)
1216 {
1217 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1218 const struct gen_device_info *devinfo = &pdevice->info;
1219
1220 /* See assertions made when programming the buffer surface state. */
1221 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1222 (1ul << 30) : (1ul << 27);
1223
1224 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1225 const uint32_t max_textures =
1226 pdevice->has_bindless_images ? UINT16_MAX : 128;
1227 const uint32_t max_samplers =
1228 pdevice->has_bindless_samplers ? UINT16_MAX :
1229 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1230 const uint32_t max_images =
1231 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1232
1233 /* The moment we have anything bindless, claim a high per-stage limit */
1234 const uint32_t max_per_stage =
1235 pdevice->has_a64_buffer_access ? UINT32_MAX :
1236 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1237
1238 VkSampleCountFlags sample_counts =
1239 isl_device_get_sample_counts(&pdevice->isl_dev);
1240
1241
1242 VkPhysicalDeviceLimits limits = {
1243 .maxImageDimension1D = (1 << 14),
1244 .maxImageDimension2D = (1 << 14),
1245 .maxImageDimension3D = (1 << 11),
1246 .maxImageDimensionCube = (1 << 14),
1247 .maxImageArrayLayers = (1 << 11),
1248 .maxTexelBufferElements = 128 * 1024 * 1024,
1249 .maxUniformBufferRange = (1ul << 27),
1250 .maxStorageBufferRange = max_raw_buffer_sz,
1251 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1252 .maxMemoryAllocationCount = UINT32_MAX,
1253 .maxSamplerAllocationCount = 64 * 1024,
1254 .bufferImageGranularity = 64, /* A cache line */
1255 .sparseAddressSpaceSize = 0,
1256 .maxBoundDescriptorSets = MAX_SETS,
1257 .maxPerStageDescriptorSamplers = max_samplers,
1258 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1259 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1260 .maxPerStageDescriptorSampledImages = max_textures,
1261 .maxPerStageDescriptorStorageImages = max_images,
1262 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1263 .maxPerStageResources = max_per_stage,
1264 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1265 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1266 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1267 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1268 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1269 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1270 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1271 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1272 .maxVertexInputAttributes = MAX_VBS,
1273 .maxVertexInputBindings = MAX_VBS,
1274 .maxVertexInputAttributeOffset = 2047,
1275 .maxVertexInputBindingStride = 2048,
1276 .maxVertexOutputComponents = 128,
1277 .maxTessellationGenerationLevel = 64,
1278 .maxTessellationPatchSize = 32,
1279 .maxTessellationControlPerVertexInputComponents = 128,
1280 .maxTessellationControlPerVertexOutputComponents = 128,
1281 .maxTessellationControlPerPatchOutputComponents = 128,
1282 .maxTessellationControlTotalOutputComponents = 2048,
1283 .maxTessellationEvaluationInputComponents = 128,
1284 .maxTessellationEvaluationOutputComponents = 128,
1285 .maxGeometryShaderInvocations = 32,
1286 .maxGeometryInputComponents = 64,
1287 .maxGeometryOutputComponents = 128,
1288 .maxGeometryOutputVertices = 256,
1289 .maxGeometryTotalOutputComponents = 1024,
1290 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1291 .maxFragmentOutputAttachments = 8,
1292 .maxFragmentDualSrcAttachments = 1,
1293 .maxFragmentCombinedOutputResources = 8,
1294 .maxComputeSharedMemorySize = 64 * 1024,
1295 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1296 .maxComputeWorkGroupInvocations = 32 * devinfo->max_cs_threads,
1297 .maxComputeWorkGroupSize = {
1298 16 * devinfo->max_cs_threads,
1299 16 * devinfo->max_cs_threads,
1300 16 * devinfo->max_cs_threads,
1301 },
1302 .subPixelPrecisionBits = 8,
1303 .subTexelPrecisionBits = 8,
1304 .mipmapPrecisionBits = 8,
1305 .maxDrawIndexedIndexValue = UINT32_MAX,
1306 .maxDrawIndirectCount = UINT32_MAX,
1307 .maxSamplerLodBias = 16,
1308 .maxSamplerAnisotropy = 16,
1309 .maxViewports = MAX_VIEWPORTS,
1310 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1311 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1312 .viewportSubPixelBits = 13, /* We take a float? */
1313 .minMemoryMapAlignment = 4096, /* A page */
1314 /* The dataport requires texel alignment so we need to assume a worst
1315 * case of R32G32B32A32 which is 16 bytes.
1316 */
1317 .minTexelBufferOffsetAlignment = 16,
1318 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1319 .minUniformBufferOffsetAlignment = 32,
1320 .minStorageBufferOffsetAlignment = 4,
1321 .minTexelOffset = -8,
1322 .maxTexelOffset = 7,
1323 .minTexelGatherOffset = -32,
1324 .maxTexelGatherOffset = 31,
1325 .minInterpolationOffset = -0.5,
1326 .maxInterpolationOffset = 0.4375,
1327 .subPixelInterpolationOffsetBits = 4,
1328 .maxFramebufferWidth = (1 << 14),
1329 .maxFramebufferHeight = (1 << 14),
1330 .maxFramebufferLayers = (1 << 11),
1331 .framebufferColorSampleCounts = sample_counts,
1332 .framebufferDepthSampleCounts = sample_counts,
1333 .framebufferStencilSampleCounts = sample_counts,
1334 .framebufferNoAttachmentsSampleCounts = sample_counts,
1335 .maxColorAttachments = MAX_RTS,
1336 .sampledImageColorSampleCounts = sample_counts,
1337 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1338 .sampledImageDepthSampleCounts = sample_counts,
1339 .sampledImageStencilSampleCounts = sample_counts,
1340 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1341 .maxSampleMaskWords = 1,
1342 .timestampComputeAndGraphics = true,
1343 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1344 .maxClipDistances = 8,
1345 .maxCullDistances = 8,
1346 .maxCombinedClipAndCullDistances = 8,
1347 .discreteQueuePriorities = 2,
1348 .pointSizeRange = { 0.125, 255.875 },
1349 .lineWidthRange = { 0.0, 7.9921875 },
1350 .pointSizeGranularity = (1.0 / 8.0),
1351 .lineWidthGranularity = (1.0 / 128.0),
1352 .strictLines = false, /* FINISHME */
1353 .standardSampleLocations = true,
1354 .optimalBufferCopyOffsetAlignment = 128,
1355 .optimalBufferCopyRowPitchAlignment = 128,
1356 .nonCoherentAtomSize = 64,
1357 };
1358
1359 *pProperties = (VkPhysicalDeviceProperties) {
1360 .apiVersion = anv_physical_device_api_version(pdevice),
1361 .driverVersion = vk_get_driver_version(),
1362 .vendorID = 0x8086,
1363 .deviceID = pdevice->chipset_id,
1364 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1365 .limits = limits,
1366 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1367 };
1368
1369 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1370 "%s", pdevice->name);
1371 memcpy(pProperties->pipelineCacheUUID,
1372 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1373 }
1374
1375 void anv_GetPhysicalDeviceProperties2(
1376 VkPhysicalDevice physicalDevice,
1377 VkPhysicalDeviceProperties2* pProperties)
1378 {
1379 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1380
1381 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1382
1383 vk_foreach_struct(ext, pProperties->pNext) {
1384 switch (ext->sType) {
1385 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1386 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1387 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1388
1389 /* We support all of the depth resolve modes */
1390 props->supportedDepthResolveModes =
1391 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1392 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1393 VK_RESOLVE_MODE_MIN_BIT_KHR |
1394 VK_RESOLVE_MODE_MAX_BIT_KHR;
1395
1396 /* Average doesn't make sense for stencil so we don't support that */
1397 props->supportedStencilResolveModes =
1398 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1399 if (pdevice->info.gen >= 8) {
1400 /* The advanced stencil resolve modes currently require stencil
1401 * sampling be supported by the hardware.
1402 */
1403 props->supportedStencilResolveModes |=
1404 VK_RESOLVE_MODE_MIN_BIT_KHR |
1405 VK_RESOLVE_MODE_MAX_BIT_KHR;
1406 }
1407
1408 props->independentResolveNone = true;
1409 props->independentResolve = true;
1410 break;
1411 }
1412
1413 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1414 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1415 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1416
1417 /* It's a bit hard to exactly map our implementation to the limits
1418 * described here. The bindless surface handle in the extended
1419 * message descriptors is 20 bits and it's an index into the table of
1420 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1421 * address. Given that most things consume two surface states per
1422 * view (general/sampled for textures and write-only/read-write for
1423 * images), we claim 2^19 things.
1424 *
1425 * For SSBOs, we just use A64 messages so there is no real limit
1426 * there beyond the limit on the total size of a descriptor set.
1427 */
1428 const unsigned max_bindless_views = 1 << 19;
1429
1430 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1431 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1432 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1433 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1434 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1435 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1436 props->robustBufferAccessUpdateAfterBind = true;
1437 props->quadDivergentImplicitLod = false;
1438 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1439 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1440 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1441 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1442 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1443 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1444 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1445 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1446 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1447 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1448 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1449 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1450 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1451 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1452 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1453 break;
1454 }
1455
1456 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1457 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1458 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1459
1460 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1461 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1462 "Intel open-source Mesa driver");
1463
1464 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1465 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1466
1467 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1468 .major = 1,
1469 .minor = 1,
1470 .subminor = 2,
1471 .patch = 0,
1472 };
1473 break;
1474 }
1475
1476 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1477 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1478 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1479 /* Userptr needs page aligned memory. */
1480 props->minImportedHostPointerAlignment = 4096;
1481 break;
1482 }
1483
1484 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1485 VkPhysicalDeviceIDProperties *id_props =
1486 (VkPhysicalDeviceIDProperties *)ext;
1487 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1488 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1489 /* The LUID is for Windows. */
1490 id_props->deviceLUIDValid = false;
1491 break;
1492 }
1493
1494 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1495 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1496 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1497 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1498 props->maxPerStageDescriptorInlineUniformBlocks =
1499 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1500 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1501 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1502 props->maxDescriptorSetInlineUniformBlocks =
1503 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1504 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1505 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1506 break;
1507 }
1508
1509 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1510 VkPhysicalDeviceMaintenance3Properties *props =
1511 (VkPhysicalDeviceMaintenance3Properties *)ext;
1512 /* This value doesn't matter for us today as our per-stage
1513 * descriptors are the real limit.
1514 */
1515 props->maxPerSetDescriptors = 1024;
1516 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1517 break;
1518 }
1519
1520 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1521 VkPhysicalDeviceMultiviewProperties *properties =
1522 (VkPhysicalDeviceMultiviewProperties *)ext;
1523 properties->maxMultiviewViewCount = 16;
1524 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1525 break;
1526 }
1527
1528 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1529 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1530 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1531 properties->pciDomain = pdevice->pci_info.domain;
1532 properties->pciBus = pdevice->pci_info.bus;
1533 properties->pciDevice = pdevice->pci_info.device;
1534 properties->pciFunction = pdevice->pci_info.function;
1535 break;
1536 }
1537
1538 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1539 VkPhysicalDevicePointClippingProperties *properties =
1540 (VkPhysicalDevicePointClippingProperties *) ext;
1541 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1542 break;
1543 }
1544
1545 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1546 VkPhysicalDeviceProtectedMemoryProperties *props =
1547 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1548 props->protectedNoFault = false;
1549 break;
1550 }
1551
1552 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1553 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1554 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1555
1556 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1557 break;
1558 }
1559
1560 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1561 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1562 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1563 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1564 properties->filterMinmaxSingleComponentFormats = true;
1565 break;
1566 }
1567
1568 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1569 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1570
1571 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1572
1573 VkShaderStageFlags scalar_stages = 0;
1574 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1575 if (pdevice->compiler->scalar_stage[stage])
1576 scalar_stages |= mesa_to_vk_shader_stage(stage);
1577 }
1578 properties->supportedStages = scalar_stages;
1579
1580 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1581 VK_SUBGROUP_FEATURE_VOTE_BIT |
1582 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1583 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1584 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1585 VK_SUBGROUP_FEATURE_QUAD_BIT;
1586 if (pdevice->info.gen >= 8) {
1587 /* TODO: There's no technical reason why these can't be made to
1588 * work on gen7 but they don't at the moment so it's best to leave
1589 * the feature disabled than enabled and broken.
1590 */
1591 properties->supportedOperations |=
1592 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1593 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1594 }
1595 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1596 break;
1597 }
1598
1599 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1600 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1601 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1602 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1603 props->minSubgroupSize = 8;
1604 props->maxSubgroupSize = 32;
1605 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1606 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1607 break;
1608 }
1609
1610 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1611 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1612 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1613
1614 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1615 * Base Address:
1616 *
1617 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1618 * specifies the base address of the first element of the surface,
1619 * computed in software by adding the surface base address to the
1620 * byte offset of the element in the buffer. The base address must
1621 * be aligned to element size."
1622 *
1623 * The typed dataport messages require that things be texel aligned.
1624 * Otherwise, we may just load/store the wrong data or, in the worst
1625 * case, there may be hangs.
1626 */
1627 props->storageTexelBufferOffsetAlignmentBytes = 16;
1628 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1629
1630 /* The sampler, however, is much more forgiving and it can handle
1631 * arbitrary byte alignment for linear and buffer surfaces. It's
1632 * hard to find a good PRM citation for this but years of empirical
1633 * experience demonstrate that this is true.
1634 */
1635 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1636 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1637 break;
1638 }
1639
1640 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1641 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1642 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1643
1644 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1645 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1646 props->maxTransformFeedbackBufferSize = (1ull << 32);
1647 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1648 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1649 props->maxTransformFeedbackBufferDataStride = 2048;
1650 props->transformFeedbackQueries = true;
1651 props->transformFeedbackStreamsLinesTriangles = false;
1652 props->transformFeedbackRasterizationStreamSelect = false;
1653 props->transformFeedbackDraw = true;
1654 break;
1655 }
1656
1657 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1658 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1659 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1660 /* We have to restrict this a bit for multiview */
1661 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1662 break;
1663 }
1664
1665 default:
1666 anv_debug_ignored_stype(ext->sType);
1667 break;
1668 }
1669 }
1670 }
1671
1672 /* We support exactly one queue family. */
1673 static const VkQueueFamilyProperties
1674 anv_queue_family_properties = {
1675 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1676 VK_QUEUE_COMPUTE_BIT |
1677 VK_QUEUE_TRANSFER_BIT,
1678 .queueCount = 1,
1679 .timestampValidBits = 36, /* XXX: Real value here */
1680 .minImageTransferGranularity = { 1, 1, 1 },
1681 };
1682
1683 void anv_GetPhysicalDeviceQueueFamilyProperties(
1684 VkPhysicalDevice physicalDevice,
1685 uint32_t* pCount,
1686 VkQueueFamilyProperties* pQueueFamilyProperties)
1687 {
1688 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1689
1690 vk_outarray_append(&out, p) {
1691 *p = anv_queue_family_properties;
1692 }
1693 }
1694
1695 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1696 VkPhysicalDevice physicalDevice,
1697 uint32_t* pQueueFamilyPropertyCount,
1698 VkQueueFamilyProperties2* pQueueFamilyProperties)
1699 {
1700
1701 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1702
1703 vk_outarray_append(&out, p) {
1704 p->queueFamilyProperties = anv_queue_family_properties;
1705
1706 vk_foreach_struct(s, p->pNext) {
1707 anv_debug_ignored_stype(s->sType);
1708 }
1709 }
1710 }
1711
1712 void anv_GetPhysicalDeviceMemoryProperties(
1713 VkPhysicalDevice physicalDevice,
1714 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1715 {
1716 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1717
1718 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1719 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1720 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1721 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1722 .heapIndex = physical_device->memory.types[i].heapIndex,
1723 };
1724 }
1725
1726 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1727 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1728 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1729 .size = physical_device->memory.heaps[i].size,
1730 .flags = physical_device->memory.heaps[i].flags,
1731 };
1732 }
1733 }
1734
1735 static void
1736 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1737 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1738 {
1739 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1740 uint64_t sys_available = get_available_system_memory();
1741 assert(sys_available > 0);
1742
1743 VkDeviceSize total_heaps_size = 0;
1744 for (size_t i = 0; i < device->memory.heap_count; i++)
1745 total_heaps_size += device->memory.heaps[i].size;
1746
1747 for (size_t i = 0; i < device->memory.heap_count; i++) {
1748 VkDeviceSize heap_size = device->memory.heaps[i].size;
1749 VkDeviceSize heap_used = device->memory.heaps[i].used;
1750 VkDeviceSize heap_budget;
1751
1752 double heap_proportion = (double) heap_size / total_heaps_size;
1753 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1754
1755 /*
1756 * Let's not incite the app to starve the system: report at most 90% of
1757 * available system memory.
1758 */
1759 uint64_t heap_available = sys_available_prop * 9 / 10;
1760 heap_budget = MIN2(heap_size, heap_used + heap_available);
1761
1762 /*
1763 * Round down to the nearest MB
1764 */
1765 heap_budget &= ~((1ull << 20) - 1);
1766
1767 /*
1768 * The heapBudget value must be non-zero for array elements less than
1769 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1770 * value must be less than or equal to VkMemoryHeap::size for each heap.
1771 */
1772 assert(0 < heap_budget && heap_budget <= heap_size);
1773
1774 memoryBudget->heapUsage[i] = heap_used;
1775 memoryBudget->heapBudget[i] = heap_budget;
1776 }
1777
1778 /* The heapBudget and heapUsage values must be zero for array elements
1779 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1780 */
1781 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1782 memoryBudget->heapBudget[i] = 0;
1783 memoryBudget->heapUsage[i] = 0;
1784 }
1785 }
1786
1787 void anv_GetPhysicalDeviceMemoryProperties2(
1788 VkPhysicalDevice physicalDevice,
1789 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1790 {
1791 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1792 &pMemoryProperties->memoryProperties);
1793
1794 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1795 switch (ext->sType) {
1796 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1797 anv_get_memory_budget(physicalDevice, (void*)ext);
1798 break;
1799 default:
1800 anv_debug_ignored_stype(ext->sType);
1801 break;
1802 }
1803 }
1804 }
1805
1806 void
1807 anv_GetDeviceGroupPeerMemoryFeatures(
1808 VkDevice device,
1809 uint32_t heapIndex,
1810 uint32_t localDeviceIndex,
1811 uint32_t remoteDeviceIndex,
1812 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1813 {
1814 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1815 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1816 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1817 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1818 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1819 }
1820
1821 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1822 VkInstance _instance,
1823 const char* pName)
1824 {
1825 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1826
1827 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1828 * when we have to return valid function pointers, NULL, or it's left
1829 * undefined. See the table for exact details.
1830 */
1831 if (pName == NULL)
1832 return NULL;
1833
1834 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1835 if (strcmp(pName, "vk" #entrypoint) == 0) \
1836 return (PFN_vkVoidFunction)anv_##entrypoint
1837
1838 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1839 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1840 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1841 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1842
1843 #undef LOOKUP_ANV_ENTRYPOINT
1844
1845 if (instance == NULL)
1846 return NULL;
1847
1848 int idx = anv_get_instance_entrypoint_index(pName);
1849 if (idx >= 0)
1850 return instance->dispatch.entrypoints[idx];
1851
1852 idx = anv_get_device_entrypoint_index(pName);
1853 if (idx >= 0)
1854 return instance->device_dispatch.entrypoints[idx];
1855
1856 return NULL;
1857 }
1858
1859 /* With version 1+ of the loader interface the ICD should expose
1860 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1861 */
1862 PUBLIC
1863 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1864 VkInstance instance,
1865 const char* pName);
1866
1867 PUBLIC
1868 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1869 VkInstance instance,
1870 const char* pName)
1871 {
1872 return anv_GetInstanceProcAddr(instance, pName);
1873 }
1874
1875 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1876 VkDevice _device,
1877 const char* pName)
1878 {
1879 ANV_FROM_HANDLE(anv_device, device, _device);
1880
1881 if (!device || !pName)
1882 return NULL;
1883
1884 int idx = anv_get_device_entrypoint_index(pName);
1885 if (idx < 0)
1886 return NULL;
1887
1888 return device->dispatch.entrypoints[idx];
1889 }
1890
1891 VkResult
1892 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1893 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1894 const VkAllocationCallbacks* pAllocator,
1895 VkDebugReportCallbackEXT* pCallback)
1896 {
1897 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1898 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1899 pCreateInfo, pAllocator, &instance->alloc,
1900 pCallback);
1901 }
1902
1903 void
1904 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1905 VkDebugReportCallbackEXT _callback,
1906 const VkAllocationCallbacks* pAllocator)
1907 {
1908 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1909 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1910 _callback, pAllocator, &instance->alloc);
1911 }
1912
1913 void
1914 anv_DebugReportMessageEXT(VkInstance _instance,
1915 VkDebugReportFlagsEXT flags,
1916 VkDebugReportObjectTypeEXT objectType,
1917 uint64_t object,
1918 size_t location,
1919 int32_t messageCode,
1920 const char* pLayerPrefix,
1921 const char* pMessage)
1922 {
1923 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1924 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1925 object, location, messageCode, pLayerPrefix, pMessage);
1926 }
1927
1928 static void
1929 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1930 {
1931 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1932 queue->device = device;
1933 queue->flags = 0;
1934 }
1935
1936 static void
1937 anv_queue_finish(struct anv_queue *queue)
1938 {
1939 }
1940
1941 static struct anv_state
1942 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1943 {
1944 struct anv_state state;
1945
1946 state = anv_state_pool_alloc(pool, size, align);
1947 memcpy(state.map, p, size);
1948
1949 return state;
1950 }
1951
1952 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
1953 * straightforward 32-bit float color in the first 64 bytes. Instead of using
1954 * a nice float/integer union like Gen8+, Haswell specifies the integer border
1955 * color as a separate entry /after/ the float color. The layout of this entry
1956 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
1957 *
1958 * Since we don't know the format/bpp, we can't make any of the border colors
1959 * containing '1' work for all formats, as it would be in the wrong place for
1960 * some of them. We opt to make 32-bit integers work as this seems like the
1961 * most common option. Fortunately, transparent black works regardless, as
1962 * all zeroes is the same in every bit-size.
1963 */
1964 struct hsw_border_color {
1965 float float32[4];
1966 uint32_t _pad0[12];
1967 uint32_t uint32[4];
1968 uint32_t _pad1[108];
1969 };
1970
1971 struct gen8_border_color {
1972 union {
1973 float float32[4];
1974 uint32_t uint32[4];
1975 };
1976 /* Pad out to 64 bytes */
1977 uint32_t _pad[12];
1978 };
1979
1980 static void
1981 anv_device_init_border_colors(struct anv_device *device)
1982 {
1983 if (device->info.is_haswell) {
1984 static const struct hsw_border_color border_colors[] = {
1985 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1986 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1987 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1988 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1989 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1990 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1991 };
1992
1993 device->border_colors =
1994 anv_state_pool_emit_data(&device->dynamic_state_pool,
1995 sizeof(border_colors), 512, border_colors);
1996 } else {
1997 static const struct gen8_border_color border_colors[] = {
1998 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1999 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2000 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2001 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2002 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2003 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2004 };
2005
2006 device->border_colors =
2007 anv_state_pool_emit_data(&device->dynamic_state_pool,
2008 sizeof(border_colors), 64, border_colors);
2009 }
2010 }
2011
2012 static void
2013 anv_device_init_trivial_batch(struct anv_device *device)
2014 {
2015 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2016
2017 if (device->instance->physicalDevice.has_exec_async)
2018 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2019
2020 if (device->instance->physicalDevice.use_softpin)
2021 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2022
2023 anv_vma_alloc(device, &device->trivial_batch_bo);
2024
2025 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2026 0, 4096, 0);
2027
2028 struct anv_batch batch = {
2029 .start = map,
2030 .next = map,
2031 .end = map + 4096,
2032 };
2033
2034 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2035 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2036
2037 if (!device->info.has_llc)
2038 gen_clflush_range(map, batch.next - map);
2039
2040 anv_gem_munmap(map, device->trivial_batch_bo.size);
2041 }
2042
2043 VkResult anv_EnumerateDeviceExtensionProperties(
2044 VkPhysicalDevice physicalDevice,
2045 const char* pLayerName,
2046 uint32_t* pPropertyCount,
2047 VkExtensionProperties* pProperties)
2048 {
2049 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2050 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2051
2052 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2053 if (device->supported_extensions.extensions[i]) {
2054 vk_outarray_append(&out, prop) {
2055 *prop = anv_device_extensions[i];
2056 }
2057 }
2058 }
2059
2060 return vk_outarray_status(&out);
2061 }
2062
2063 static void
2064 anv_device_init_dispatch(struct anv_device *device)
2065 {
2066 const struct anv_device_dispatch_table *genX_table;
2067 switch (device->info.gen) {
2068 case 11:
2069 genX_table = &gen11_device_dispatch_table;
2070 break;
2071 case 10:
2072 genX_table = &gen10_device_dispatch_table;
2073 break;
2074 case 9:
2075 genX_table = &gen9_device_dispatch_table;
2076 break;
2077 case 8:
2078 genX_table = &gen8_device_dispatch_table;
2079 break;
2080 case 7:
2081 if (device->info.is_haswell)
2082 genX_table = &gen75_device_dispatch_table;
2083 else
2084 genX_table = &gen7_device_dispatch_table;
2085 break;
2086 default:
2087 unreachable("unsupported gen\n");
2088 }
2089
2090 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2091 /* Vulkan requires that entrypoints for extensions which have not been
2092 * enabled must not be advertised.
2093 */
2094 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2095 &device->instance->enabled_extensions,
2096 &device->enabled_extensions)) {
2097 device->dispatch.entrypoints[i] = NULL;
2098 } else if (genX_table->entrypoints[i]) {
2099 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2100 } else {
2101 device->dispatch.entrypoints[i] =
2102 anv_device_dispatch_table.entrypoints[i];
2103 }
2104 }
2105 }
2106
2107 static int
2108 vk_priority_to_gen(int priority)
2109 {
2110 switch (priority) {
2111 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2112 return GEN_CONTEXT_LOW_PRIORITY;
2113 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2114 return GEN_CONTEXT_MEDIUM_PRIORITY;
2115 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2116 return GEN_CONTEXT_HIGH_PRIORITY;
2117 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2118 return GEN_CONTEXT_REALTIME_PRIORITY;
2119 default:
2120 unreachable("Invalid priority");
2121 }
2122 }
2123
2124 static void
2125 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2126 {
2127 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2128
2129 if (device->instance->physicalDevice.has_exec_async)
2130 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2131
2132 if (device->instance->physicalDevice.use_softpin)
2133 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2134
2135 anv_vma_alloc(device, &device->hiz_clear_bo);
2136
2137 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2138 0, 4096, 0);
2139
2140 union isl_color_value hiz_clear = { .u32 = { 0, } };
2141 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2142
2143 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2144 anv_gem_munmap(map, device->hiz_clear_bo.size);
2145 }
2146
2147 static bool
2148 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2149 struct anv_block_pool *pool,
2150 uint64_t address)
2151 {
2152 for (uint32_t i = 0; i < pool->nbos; i++) {
2153 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2154 uint32_t bo_size = pool->bos[i].size;
2155 if (address >= bo_address && address < (bo_address + bo_size)) {
2156 *ret = (struct gen_batch_decode_bo) {
2157 .addr = bo_address,
2158 .size = bo_size,
2159 .map = pool->bos[i].map,
2160 };
2161 return true;
2162 }
2163 }
2164 return false;
2165 }
2166
2167 /* Finding a buffer for batch decoding */
2168 static struct gen_batch_decode_bo
2169 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2170 {
2171 struct anv_device *device = v_batch;
2172 struct gen_batch_decode_bo ret_bo = {};
2173
2174 assert(ppgtt);
2175
2176 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2177 return ret_bo;
2178 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2179 return ret_bo;
2180 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2181 return ret_bo;
2182 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2183 return ret_bo;
2184
2185 if (!device->cmd_buffer_being_decoded)
2186 return (struct gen_batch_decode_bo) { };
2187
2188 struct anv_batch_bo **bo;
2189
2190 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2191 /* The decoder zeroes out the top 16 bits, so we need to as well */
2192 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2193
2194 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2195 return (struct gen_batch_decode_bo) {
2196 .addr = bo_address,
2197 .size = (*bo)->bo.size,
2198 .map = (*bo)->bo.map,
2199 };
2200 }
2201 }
2202
2203 return (struct gen_batch_decode_bo) { };
2204 }
2205
2206 VkResult anv_CreateDevice(
2207 VkPhysicalDevice physicalDevice,
2208 const VkDeviceCreateInfo* pCreateInfo,
2209 const VkAllocationCallbacks* pAllocator,
2210 VkDevice* pDevice)
2211 {
2212 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2213 VkResult result;
2214 struct anv_device *device;
2215
2216 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2217
2218 struct anv_device_extension_table enabled_extensions = { };
2219 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2220 int idx;
2221 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2222 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2223 anv_device_extensions[idx].extensionName) == 0)
2224 break;
2225 }
2226
2227 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2228 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2229
2230 if (!physical_device->supported_extensions.extensions[idx])
2231 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2232
2233 enabled_extensions.extensions[idx] = true;
2234 }
2235
2236 /* Check enabled features */
2237 if (pCreateInfo->pEnabledFeatures) {
2238 VkPhysicalDeviceFeatures supported_features;
2239 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2240 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2241 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2242 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2243 for (uint32_t i = 0; i < num_features; i++) {
2244 if (enabled_feature[i] && !supported_feature[i])
2245 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2246 }
2247 }
2248
2249 /* Check requested queues and fail if we are requested to create any
2250 * queues with flags we don't support.
2251 */
2252 assert(pCreateInfo->queueCreateInfoCount > 0);
2253 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2254 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2255 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2256 }
2257
2258 /* Check if client specified queue priority. */
2259 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2260 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2261 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2262
2263 VkQueueGlobalPriorityEXT priority =
2264 queue_priority ? queue_priority->globalPriority :
2265 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2266
2267 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2268 sizeof(*device), 8,
2269 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2270 if (!device)
2271 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2272
2273 if (INTEL_DEBUG & DEBUG_BATCH) {
2274 const unsigned decode_flags =
2275 GEN_BATCH_DECODE_FULL |
2276 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2277 GEN_BATCH_DECODE_OFFSETS |
2278 GEN_BATCH_DECODE_FLOATS;
2279
2280 gen_batch_decode_ctx_init(&device->decoder_ctx,
2281 &physical_device->info,
2282 stderr, decode_flags, NULL,
2283 decode_get_bo, NULL, device);
2284 }
2285
2286 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2287 device->instance = physical_device->instance;
2288 device->chipset_id = physical_device->chipset_id;
2289 device->no_hw = physical_device->no_hw;
2290 device->_lost = false;
2291
2292 if (pAllocator)
2293 device->alloc = *pAllocator;
2294 else
2295 device->alloc = physical_device->instance->alloc;
2296
2297 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2298 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2299 if (device->fd == -1) {
2300 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2301 goto fail_device;
2302 }
2303
2304 device->context_id = anv_gem_create_context(device);
2305 if (device->context_id == -1) {
2306 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2307 goto fail_fd;
2308 }
2309
2310 if (physical_device->use_softpin) {
2311 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2312 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2313 goto fail_fd;
2314 }
2315
2316 /* keep the page with address zero out of the allocator */
2317 struct anv_memory_heap *low_heap =
2318 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2319 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2320 device->vma_lo_available = low_heap->size;
2321
2322 struct anv_memory_heap *high_heap =
2323 &physical_device->memory.heaps[0];
2324 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2325 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2326 high_heap->size;
2327 }
2328
2329 list_inithead(&device->memory_objects);
2330
2331 /* As per spec, the driver implementation may deny requests to acquire
2332 * a priority above the default priority (MEDIUM) if the caller does not
2333 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2334 * is returned.
2335 */
2336 if (physical_device->has_context_priority) {
2337 int err = anv_gem_set_context_param(device->fd, device->context_id,
2338 I915_CONTEXT_PARAM_PRIORITY,
2339 vk_priority_to_gen(priority));
2340 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2341 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2342 goto fail_fd;
2343 }
2344 }
2345
2346 device->info = physical_device->info;
2347 device->isl_dev = physical_device->isl_dev;
2348
2349 /* On Broadwell and later, we can use batch chaining to more efficiently
2350 * implement growing command buffers. Prior to Haswell, the kernel
2351 * command parser gets in the way and we have to fall back to growing
2352 * the batch.
2353 */
2354 device->can_chain_batches = device->info.gen >= 8;
2355
2356 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2357 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2358 device->enabled_extensions = enabled_extensions;
2359
2360 anv_device_init_dispatch(device);
2361
2362 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2363 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2364 goto fail_context_id;
2365 }
2366
2367 pthread_condattr_t condattr;
2368 if (pthread_condattr_init(&condattr) != 0) {
2369 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2370 goto fail_mutex;
2371 }
2372 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2373 pthread_condattr_destroy(&condattr);
2374 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2375 goto fail_mutex;
2376 }
2377 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2378 pthread_condattr_destroy(&condattr);
2379 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2380 goto fail_mutex;
2381 }
2382 pthread_condattr_destroy(&condattr);
2383
2384 uint64_t bo_flags =
2385 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2386 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2387 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2388 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2389
2390 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2391
2392 result = anv_bo_cache_init(&device->bo_cache);
2393 if (result != VK_SUCCESS)
2394 goto fail_batch_bo_pool;
2395
2396 if (!physical_device->use_softpin)
2397 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2398
2399 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2400 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2401 16384,
2402 bo_flags);
2403 if (result != VK_SUCCESS)
2404 goto fail_bo_cache;
2405
2406 result = anv_state_pool_init(&device->instruction_state_pool, device,
2407 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2408 16384,
2409 bo_flags);
2410 if (result != VK_SUCCESS)
2411 goto fail_dynamic_state_pool;
2412
2413 result = anv_state_pool_init(&device->surface_state_pool, device,
2414 SURFACE_STATE_POOL_MIN_ADDRESS,
2415 4096,
2416 bo_flags);
2417 if (result != VK_SUCCESS)
2418 goto fail_instruction_state_pool;
2419
2420 if (physical_device->use_softpin) {
2421 result = anv_state_pool_init(&device->binding_table_pool, device,
2422 BINDING_TABLE_POOL_MIN_ADDRESS,
2423 4096,
2424 bo_flags);
2425 if (result != VK_SUCCESS)
2426 goto fail_surface_state_pool;
2427 }
2428
2429 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2430 if (result != VK_SUCCESS)
2431 goto fail_binding_table_pool;
2432
2433 if (physical_device->use_softpin)
2434 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2435
2436 if (!anv_vma_alloc(device, &device->workaround_bo))
2437 goto fail_workaround_bo;
2438
2439 anv_device_init_trivial_batch(device);
2440
2441 if (device->info.gen >= 10)
2442 anv_device_init_hiz_clear_value_bo(device);
2443
2444 anv_scratch_pool_init(device, &device->scratch_pool);
2445
2446 anv_queue_init(device, &device->queue);
2447
2448 switch (device->info.gen) {
2449 case 7:
2450 if (!device->info.is_haswell)
2451 result = gen7_init_device_state(device);
2452 else
2453 result = gen75_init_device_state(device);
2454 break;
2455 case 8:
2456 result = gen8_init_device_state(device);
2457 break;
2458 case 9:
2459 result = gen9_init_device_state(device);
2460 break;
2461 case 10:
2462 result = gen10_init_device_state(device);
2463 break;
2464 case 11:
2465 result = gen11_init_device_state(device);
2466 break;
2467 default:
2468 /* Shouldn't get here as we don't create physical devices for any other
2469 * gens. */
2470 unreachable("unhandled gen");
2471 }
2472 if (result != VK_SUCCESS)
2473 goto fail_workaround_bo;
2474
2475 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2476
2477 anv_device_init_blorp(device);
2478
2479 anv_device_init_border_colors(device);
2480
2481 *pDevice = anv_device_to_handle(device);
2482
2483 return VK_SUCCESS;
2484
2485 fail_workaround_bo:
2486 anv_queue_finish(&device->queue);
2487 anv_scratch_pool_finish(device, &device->scratch_pool);
2488 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2489 anv_gem_close(device, device->workaround_bo.gem_handle);
2490 fail_binding_table_pool:
2491 if (physical_device->use_softpin)
2492 anv_state_pool_finish(&device->binding_table_pool);
2493 fail_surface_state_pool:
2494 anv_state_pool_finish(&device->surface_state_pool);
2495 fail_instruction_state_pool:
2496 anv_state_pool_finish(&device->instruction_state_pool);
2497 fail_dynamic_state_pool:
2498 anv_state_pool_finish(&device->dynamic_state_pool);
2499 fail_bo_cache:
2500 anv_bo_cache_finish(&device->bo_cache);
2501 fail_batch_bo_pool:
2502 anv_bo_pool_finish(&device->batch_bo_pool);
2503 pthread_cond_destroy(&device->queue_submit);
2504 fail_mutex:
2505 pthread_mutex_destroy(&device->mutex);
2506 fail_context_id:
2507 anv_gem_destroy_context(device, device->context_id);
2508 fail_fd:
2509 close(device->fd);
2510 fail_device:
2511 vk_free(&device->alloc, device);
2512
2513 return result;
2514 }
2515
2516 void anv_DestroyDevice(
2517 VkDevice _device,
2518 const VkAllocationCallbacks* pAllocator)
2519 {
2520 ANV_FROM_HANDLE(anv_device, device, _device);
2521 struct anv_physical_device *physical_device;
2522
2523 if (!device)
2524 return;
2525
2526 physical_device = &device->instance->physicalDevice;
2527
2528 anv_device_finish_blorp(device);
2529
2530 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2531
2532 anv_queue_finish(&device->queue);
2533
2534 #ifdef HAVE_VALGRIND
2535 /* We only need to free these to prevent valgrind errors. The backing
2536 * BO will go away in a couple of lines so we don't actually leak.
2537 */
2538 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2539 #endif
2540
2541 anv_scratch_pool_finish(device, &device->scratch_pool);
2542
2543 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2544 anv_vma_free(device, &device->workaround_bo);
2545 anv_gem_close(device, device->workaround_bo.gem_handle);
2546
2547 anv_vma_free(device, &device->trivial_batch_bo);
2548 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2549 if (device->info.gen >= 10)
2550 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2551
2552 if (physical_device->use_softpin)
2553 anv_state_pool_finish(&device->binding_table_pool);
2554 anv_state_pool_finish(&device->surface_state_pool);
2555 anv_state_pool_finish(&device->instruction_state_pool);
2556 anv_state_pool_finish(&device->dynamic_state_pool);
2557
2558 anv_bo_cache_finish(&device->bo_cache);
2559
2560 anv_bo_pool_finish(&device->batch_bo_pool);
2561
2562 pthread_cond_destroy(&device->queue_submit);
2563 pthread_mutex_destroy(&device->mutex);
2564
2565 anv_gem_destroy_context(device, device->context_id);
2566
2567 if (INTEL_DEBUG & DEBUG_BATCH)
2568 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2569
2570 close(device->fd);
2571
2572 vk_free(&device->alloc, device);
2573 }
2574
2575 VkResult anv_EnumerateInstanceLayerProperties(
2576 uint32_t* pPropertyCount,
2577 VkLayerProperties* pProperties)
2578 {
2579 if (pProperties == NULL) {
2580 *pPropertyCount = 0;
2581 return VK_SUCCESS;
2582 }
2583
2584 /* None supported at this time */
2585 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2586 }
2587
2588 VkResult anv_EnumerateDeviceLayerProperties(
2589 VkPhysicalDevice physicalDevice,
2590 uint32_t* pPropertyCount,
2591 VkLayerProperties* pProperties)
2592 {
2593 if (pProperties == NULL) {
2594 *pPropertyCount = 0;
2595 return VK_SUCCESS;
2596 }
2597
2598 /* None supported at this time */
2599 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2600 }
2601
2602 void anv_GetDeviceQueue(
2603 VkDevice _device,
2604 uint32_t queueNodeIndex,
2605 uint32_t queueIndex,
2606 VkQueue* pQueue)
2607 {
2608 ANV_FROM_HANDLE(anv_device, device, _device);
2609
2610 assert(queueIndex == 0);
2611
2612 *pQueue = anv_queue_to_handle(&device->queue);
2613 }
2614
2615 void anv_GetDeviceQueue2(
2616 VkDevice _device,
2617 const VkDeviceQueueInfo2* pQueueInfo,
2618 VkQueue* pQueue)
2619 {
2620 ANV_FROM_HANDLE(anv_device, device, _device);
2621
2622 assert(pQueueInfo->queueIndex == 0);
2623
2624 if (pQueueInfo->flags == device->queue.flags)
2625 *pQueue = anv_queue_to_handle(&device->queue);
2626 else
2627 *pQueue = NULL;
2628 }
2629
2630 VkResult
2631 _anv_device_set_lost(struct anv_device *device,
2632 const char *file, int line,
2633 const char *msg, ...)
2634 {
2635 VkResult err;
2636 va_list ap;
2637
2638 device->_lost = true;
2639
2640 va_start(ap, msg);
2641 err = __vk_errorv(device->instance, device,
2642 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2643 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2644 va_end(ap);
2645
2646 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2647 abort();
2648
2649 return err;
2650 }
2651
2652 VkResult
2653 anv_device_query_status(struct anv_device *device)
2654 {
2655 /* This isn't likely as most of the callers of this function already check
2656 * for it. However, it doesn't hurt to check and it potentially lets us
2657 * avoid an ioctl.
2658 */
2659 if (anv_device_is_lost(device))
2660 return VK_ERROR_DEVICE_LOST;
2661
2662 uint32_t active, pending;
2663 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2664 if (ret == -1) {
2665 /* We don't know the real error. */
2666 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2667 }
2668
2669 if (active) {
2670 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2671 } else if (pending) {
2672 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2673 }
2674
2675 return VK_SUCCESS;
2676 }
2677
2678 VkResult
2679 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2680 {
2681 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2682 * Other usages of the BO (such as on different hardware) will not be
2683 * flagged as "busy" by this ioctl. Use with care.
2684 */
2685 int ret = anv_gem_busy(device, bo->gem_handle);
2686 if (ret == 1) {
2687 return VK_NOT_READY;
2688 } else if (ret == -1) {
2689 /* We don't know the real error. */
2690 return anv_device_set_lost(device, "gem wait failed: %m");
2691 }
2692
2693 /* Query for device status after the busy call. If the BO we're checking
2694 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2695 * client because it clearly doesn't have valid data. Yes, this most
2696 * likely means an ioctl, but we just did an ioctl to query the busy status
2697 * so it's no great loss.
2698 */
2699 return anv_device_query_status(device);
2700 }
2701
2702 VkResult
2703 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2704 int64_t timeout)
2705 {
2706 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2707 if (ret == -1 && errno == ETIME) {
2708 return VK_TIMEOUT;
2709 } else if (ret == -1) {
2710 /* We don't know the real error. */
2711 return anv_device_set_lost(device, "gem wait failed: %m");
2712 }
2713
2714 /* Query for device status after the wait. If the BO we're waiting on got
2715 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2716 * because it clearly doesn't have valid data. Yes, this most likely means
2717 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2718 */
2719 return anv_device_query_status(device);
2720 }
2721
2722 VkResult anv_DeviceWaitIdle(
2723 VkDevice _device)
2724 {
2725 ANV_FROM_HANDLE(anv_device, device, _device);
2726 if (anv_device_is_lost(device))
2727 return VK_ERROR_DEVICE_LOST;
2728
2729 struct anv_batch batch;
2730
2731 uint32_t cmds[8];
2732 batch.start = batch.next = cmds;
2733 batch.end = (void *) cmds + sizeof(cmds);
2734
2735 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2736 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2737
2738 return anv_device_submit_simple_batch(device, &batch);
2739 }
2740
2741 bool
2742 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2743 {
2744 if (!(bo->flags & EXEC_OBJECT_PINNED))
2745 return true;
2746
2747 pthread_mutex_lock(&device->vma_mutex);
2748
2749 bo->offset = 0;
2750
2751 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2752 device->vma_hi_available >= bo->size) {
2753 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2754 if (addr) {
2755 bo->offset = gen_canonical_address(addr);
2756 assert(addr == gen_48b_address(bo->offset));
2757 device->vma_hi_available -= bo->size;
2758 }
2759 }
2760
2761 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2762 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2763 if (addr) {
2764 bo->offset = gen_canonical_address(addr);
2765 assert(addr == gen_48b_address(bo->offset));
2766 device->vma_lo_available -= bo->size;
2767 }
2768 }
2769
2770 pthread_mutex_unlock(&device->vma_mutex);
2771
2772 return bo->offset != 0;
2773 }
2774
2775 void
2776 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2777 {
2778 if (!(bo->flags & EXEC_OBJECT_PINNED))
2779 return;
2780
2781 const uint64_t addr_48b = gen_48b_address(bo->offset);
2782
2783 pthread_mutex_lock(&device->vma_mutex);
2784
2785 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2786 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2787 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2788 device->vma_lo_available += bo->size;
2789 } else {
2790 ASSERTED const struct anv_physical_device *physical_device =
2791 &device->instance->physicalDevice;
2792 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2793 addr_48b < (physical_device->memory.heaps[0].vma_start +
2794 physical_device->memory.heaps[0].vma_size));
2795 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2796 device->vma_hi_available += bo->size;
2797 }
2798
2799 pthread_mutex_unlock(&device->vma_mutex);
2800
2801 bo->offset = 0;
2802 }
2803
2804 VkResult
2805 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2806 {
2807 uint32_t gem_handle = anv_gem_create(device, size);
2808 if (!gem_handle)
2809 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2810
2811 anv_bo_init(bo, gem_handle, size);
2812
2813 return VK_SUCCESS;
2814 }
2815
2816 VkResult anv_AllocateMemory(
2817 VkDevice _device,
2818 const VkMemoryAllocateInfo* pAllocateInfo,
2819 const VkAllocationCallbacks* pAllocator,
2820 VkDeviceMemory* pMem)
2821 {
2822 ANV_FROM_HANDLE(anv_device, device, _device);
2823 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2824 struct anv_device_memory *mem;
2825 VkResult result = VK_SUCCESS;
2826
2827 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2828
2829 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2830 assert(pAllocateInfo->allocationSize > 0);
2831
2832 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2833 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2834
2835 /* FINISHME: Fail if allocation request exceeds heap size. */
2836
2837 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2838 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2839 if (mem == NULL)
2840 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2841
2842 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2843 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2844 mem->map = NULL;
2845 mem->map_size = 0;
2846 mem->ahw = NULL;
2847 mem->host_ptr = NULL;
2848
2849 uint64_t bo_flags = 0;
2850
2851 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2852 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2853 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2854
2855 const struct wsi_memory_allocate_info *wsi_info =
2856 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2857 if (wsi_info && wsi_info->implicit_sync) {
2858 /* We need to set the WRITE flag on window system buffers so that GEM
2859 * will know we're writing to them and synchronize uses on other rings
2860 * (eg if the display server uses the blitter ring).
2861 */
2862 bo_flags |= EXEC_OBJECT_WRITE;
2863 } else if (pdevice->has_exec_async) {
2864 bo_flags |= EXEC_OBJECT_ASYNC;
2865 }
2866
2867 if (pdevice->use_softpin)
2868 bo_flags |= EXEC_OBJECT_PINNED;
2869
2870 const VkExportMemoryAllocateInfo *export_info =
2871 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2872
2873 /* Check if we need to support Android HW buffer export. If so,
2874 * create AHardwareBuffer and import memory from it.
2875 */
2876 bool android_export = false;
2877 if (export_info && export_info->handleTypes &
2878 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2879 android_export = true;
2880
2881 /* Android memory import. */
2882 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2883 vk_find_struct_const(pAllocateInfo->pNext,
2884 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2885
2886 if (ahw_import_info) {
2887 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2888 if (result != VK_SUCCESS)
2889 goto fail;
2890
2891 goto success;
2892 } else if (android_export) {
2893 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2894 if (result != VK_SUCCESS)
2895 goto fail;
2896
2897 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2898 .buffer = mem->ahw,
2899 };
2900 result = anv_import_ahw_memory(_device, mem, &import_info);
2901 if (result != VK_SUCCESS)
2902 goto fail;
2903
2904 goto success;
2905 }
2906
2907 const VkImportMemoryFdInfoKHR *fd_info =
2908 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2909
2910 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2911 * ignored.
2912 */
2913 if (fd_info && fd_info->handleType) {
2914 /* At the moment, we support only the below handle types. */
2915 assert(fd_info->handleType ==
2916 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2917 fd_info->handleType ==
2918 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2919
2920 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2921 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2922 if (result != VK_SUCCESS)
2923 goto fail;
2924
2925 VkDeviceSize aligned_alloc_size =
2926 align_u64(pAllocateInfo->allocationSize, 4096);
2927
2928 /* For security purposes, we reject importing the bo if it's smaller
2929 * than the requested allocation size. This prevents a malicious client
2930 * from passing a buffer to a trusted client, lying about the size, and
2931 * telling the trusted client to try and texture from an image that goes
2932 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2933 * in the trusted client. The trusted client can protect itself against
2934 * this sort of attack but only if it can trust the buffer size.
2935 */
2936 if (mem->bo->size < aligned_alloc_size) {
2937 result = vk_errorf(device->instance, device,
2938 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2939 "aligned allocationSize too large for "
2940 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2941 "%"PRIu64"B > %"PRIu64"B",
2942 aligned_alloc_size, mem->bo->size);
2943 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2944 goto fail;
2945 }
2946
2947 /* From the Vulkan spec:
2948 *
2949 * "Importing memory from a file descriptor transfers ownership of
2950 * the file descriptor from the application to the Vulkan
2951 * implementation. The application must not perform any operations on
2952 * the file descriptor after a successful import."
2953 *
2954 * If the import fails, we leave the file descriptor open.
2955 */
2956 close(fd_info->fd);
2957 goto success;
2958 }
2959
2960 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2961 vk_find_struct_const(pAllocateInfo->pNext,
2962 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2963 if (host_ptr_info && host_ptr_info->handleType) {
2964 if (host_ptr_info->handleType ==
2965 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2966 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2967 goto fail;
2968 }
2969
2970 assert(host_ptr_info->handleType ==
2971 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2972
2973 result = anv_bo_cache_import_host_ptr(
2974 device, &device->bo_cache, host_ptr_info->pHostPointer,
2975 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2976
2977 if (result != VK_SUCCESS)
2978 goto fail;
2979
2980 mem->host_ptr = host_ptr_info->pHostPointer;
2981 goto success;
2982 }
2983
2984 /* Regular allocate (not importing memory). */
2985
2986 if (export_info && export_info->handleTypes)
2987 bo_flags |= ANV_BO_EXTERNAL;
2988
2989 result = anv_bo_cache_alloc(device, &device->bo_cache,
2990 pAllocateInfo->allocationSize, bo_flags,
2991 &mem->bo);
2992 if (result != VK_SUCCESS)
2993 goto fail;
2994
2995 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2996 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2997 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2998 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2999
3000 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3001 * the BO. In this case, we have a dedicated allocation.
3002 */
3003 if (image->needs_set_tiling) {
3004 const uint32_t i915_tiling =
3005 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3006 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3007 image->planes[0].surface.isl.row_pitch_B,
3008 i915_tiling);
3009 if (ret) {
3010 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3011 return vk_errorf(device->instance, NULL,
3012 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3013 "failed to set BO tiling: %m");
3014 }
3015 }
3016 }
3017
3018 success:
3019 pthread_mutex_lock(&device->mutex);
3020 list_addtail(&mem->link, &device->memory_objects);
3021 pthread_mutex_unlock(&device->mutex);
3022
3023 *pMem = anv_device_memory_to_handle(mem);
3024
3025 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3026 mem->bo->size);
3027
3028 return VK_SUCCESS;
3029
3030 fail:
3031 vk_free2(&device->alloc, pAllocator, mem);
3032
3033 return result;
3034 }
3035
3036 VkResult anv_GetMemoryFdKHR(
3037 VkDevice device_h,
3038 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3039 int* pFd)
3040 {
3041 ANV_FROM_HANDLE(anv_device, dev, device_h);
3042 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3043
3044 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3045
3046 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3047 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3048
3049 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3050 }
3051
3052 VkResult anv_GetMemoryFdPropertiesKHR(
3053 VkDevice _device,
3054 VkExternalMemoryHandleTypeFlagBits handleType,
3055 int fd,
3056 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3057 {
3058 ANV_FROM_HANDLE(anv_device, device, _device);
3059 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3060
3061 switch (handleType) {
3062 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3063 /* dma-buf can be imported as any memory type */
3064 pMemoryFdProperties->memoryTypeBits =
3065 (1 << pdevice->memory.type_count) - 1;
3066 return VK_SUCCESS;
3067
3068 default:
3069 /* The valid usage section for this function says:
3070 *
3071 * "handleType must not be one of the handle types defined as
3072 * opaque."
3073 *
3074 * So opaque handle types fall into the default "unsupported" case.
3075 */
3076 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3077 }
3078 }
3079
3080 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3081 VkDevice _device,
3082 VkExternalMemoryHandleTypeFlagBits handleType,
3083 const void* pHostPointer,
3084 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3085 {
3086 ANV_FROM_HANDLE(anv_device, device, _device);
3087
3088 assert(pMemoryHostPointerProperties->sType ==
3089 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3090
3091 switch (handleType) {
3092 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3093 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3094
3095 /* Host memory can be imported as any memory type. */
3096 pMemoryHostPointerProperties->memoryTypeBits =
3097 (1ull << pdevice->memory.type_count) - 1;
3098
3099 return VK_SUCCESS;
3100 }
3101 default:
3102 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3103 }
3104 }
3105
3106 void anv_FreeMemory(
3107 VkDevice _device,
3108 VkDeviceMemory _mem,
3109 const VkAllocationCallbacks* pAllocator)
3110 {
3111 ANV_FROM_HANDLE(anv_device, device, _device);
3112 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3113 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3114
3115 if (mem == NULL)
3116 return;
3117
3118 pthread_mutex_lock(&device->mutex);
3119 list_del(&mem->link);
3120 pthread_mutex_unlock(&device->mutex);
3121
3122 if (mem->map)
3123 anv_UnmapMemory(_device, _mem);
3124
3125 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3126 -mem->bo->size);
3127
3128 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3129
3130 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3131 if (mem->ahw)
3132 AHardwareBuffer_release(mem->ahw);
3133 #endif
3134
3135 vk_free2(&device->alloc, pAllocator, mem);
3136 }
3137
3138 VkResult anv_MapMemory(
3139 VkDevice _device,
3140 VkDeviceMemory _memory,
3141 VkDeviceSize offset,
3142 VkDeviceSize size,
3143 VkMemoryMapFlags flags,
3144 void** ppData)
3145 {
3146 ANV_FROM_HANDLE(anv_device, device, _device);
3147 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3148
3149 if (mem == NULL) {
3150 *ppData = NULL;
3151 return VK_SUCCESS;
3152 }
3153
3154 if (mem->host_ptr) {
3155 *ppData = mem->host_ptr + offset;
3156 return VK_SUCCESS;
3157 }
3158
3159 if (size == VK_WHOLE_SIZE)
3160 size = mem->bo->size - offset;
3161
3162 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3163 *
3164 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3165 * assert(size != 0);
3166 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3167 * equal to the size of the memory minus offset
3168 */
3169 assert(size > 0);
3170 assert(offset + size <= mem->bo->size);
3171
3172 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3173 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3174 * at a time is valid. We could just mmap up front and return an offset
3175 * pointer here, but that may exhaust virtual memory on 32 bit
3176 * userspace. */
3177
3178 uint32_t gem_flags = 0;
3179
3180 if (!device->info.has_llc &&
3181 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3182 gem_flags |= I915_MMAP_WC;
3183
3184 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3185 uint64_t map_offset = offset & ~4095ull;
3186 assert(offset >= map_offset);
3187 uint64_t map_size = (offset + size) - map_offset;
3188
3189 /* Let's map whole pages */
3190 map_size = align_u64(map_size, 4096);
3191
3192 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3193 map_offset, map_size, gem_flags);
3194 if (map == MAP_FAILED)
3195 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3196
3197 mem->map = map;
3198 mem->map_size = map_size;
3199
3200 *ppData = mem->map + (offset - map_offset);
3201
3202 return VK_SUCCESS;
3203 }
3204
3205 void anv_UnmapMemory(
3206 VkDevice _device,
3207 VkDeviceMemory _memory)
3208 {
3209 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3210
3211 if (mem == NULL || mem->host_ptr)
3212 return;
3213
3214 anv_gem_munmap(mem->map, mem->map_size);
3215
3216 mem->map = NULL;
3217 mem->map_size = 0;
3218 }
3219
3220 static void
3221 clflush_mapped_ranges(struct anv_device *device,
3222 uint32_t count,
3223 const VkMappedMemoryRange *ranges)
3224 {
3225 for (uint32_t i = 0; i < count; i++) {
3226 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3227 if (ranges[i].offset >= mem->map_size)
3228 continue;
3229
3230 gen_clflush_range(mem->map + ranges[i].offset,
3231 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3232 }
3233 }
3234
3235 VkResult anv_FlushMappedMemoryRanges(
3236 VkDevice _device,
3237 uint32_t memoryRangeCount,
3238 const VkMappedMemoryRange* pMemoryRanges)
3239 {
3240 ANV_FROM_HANDLE(anv_device, device, _device);
3241
3242 if (device->info.has_llc)
3243 return VK_SUCCESS;
3244
3245 /* Make sure the writes we're flushing have landed. */
3246 __builtin_ia32_mfence();
3247
3248 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3249
3250 return VK_SUCCESS;
3251 }
3252
3253 VkResult anv_InvalidateMappedMemoryRanges(
3254 VkDevice _device,
3255 uint32_t memoryRangeCount,
3256 const VkMappedMemoryRange* pMemoryRanges)
3257 {
3258 ANV_FROM_HANDLE(anv_device, device, _device);
3259
3260 if (device->info.has_llc)
3261 return VK_SUCCESS;
3262
3263 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3264
3265 /* Make sure no reads get moved up above the invalidate. */
3266 __builtin_ia32_mfence();
3267
3268 return VK_SUCCESS;
3269 }
3270
3271 void anv_GetBufferMemoryRequirements(
3272 VkDevice _device,
3273 VkBuffer _buffer,
3274 VkMemoryRequirements* pMemoryRequirements)
3275 {
3276 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3277 ANV_FROM_HANDLE(anv_device, device, _device);
3278 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3279
3280 /* The Vulkan spec (git aaed022) says:
3281 *
3282 * memoryTypeBits is a bitfield and contains one bit set for every
3283 * supported memory type for the resource. The bit `1<<i` is set if and
3284 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3285 * structure for the physical device is supported.
3286 */
3287 uint32_t memory_types = 0;
3288 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3289 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3290 if ((valid_usage & buffer->usage) == buffer->usage)
3291 memory_types |= (1u << i);
3292 }
3293
3294 /* Base alignment requirement of a cache line */
3295 uint32_t alignment = 16;
3296
3297 /* We need an alignment of 32 for pushing UBOs */
3298 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3299 alignment = MAX2(alignment, 32);
3300
3301 pMemoryRequirements->size = buffer->size;
3302 pMemoryRequirements->alignment = alignment;
3303
3304 /* Storage and Uniform buffers should have their size aligned to
3305 * 32-bits to avoid boundary checks when last DWord is not complete.
3306 * This would ensure that not internal padding would be needed for
3307 * 16-bit types.
3308 */
3309 if (device->robust_buffer_access &&
3310 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3311 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3312 pMemoryRequirements->size = align_u64(buffer->size, 4);
3313
3314 pMemoryRequirements->memoryTypeBits = memory_types;
3315 }
3316
3317 void anv_GetBufferMemoryRequirements2(
3318 VkDevice _device,
3319 const VkBufferMemoryRequirementsInfo2* pInfo,
3320 VkMemoryRequirements2* pMemoryRequirements)
3321 {
3322 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3323 &pMemoryRequirements->memoryRequirements);
3324
3325 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3326 switch (ext->sType) {
3327 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3328 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3329 requirements->prefersDedicatedAllocation = false;
3330 requirements->requiresDedicatedAllocation = false;
3331 break;
3332 }
3333
3334 default:
3335 anv_debug_ignored_stype(ext->sType);
3336 break;
3337 }
3338 }
3339 }
3340
3341 void anv_GetImageMemoryRequirements(
3342 VkDevice _device,
3343 VkImage _image,
3344 VkMemoryRequirements* pMemoryRequirements)
3345 {
3346 ANV_FROM_HANDLE(anv_image, image, _image);
3347 ANV_FROM_HANDLE(anv_device, device, _device);
3348 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3349
3350 /* The Vulkan spec (git aaed022) says:
3351 *
3352 * memoryTypeBits is a bitfield and contains one bit set for every
3353 * supported memory type for the resource. The bit `1<<i` is set if and
3354 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3355 * structure for the physical device is supported.
3356 *
3357 * All types are currently supported for images.
3358 */
3359 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3360
3361 /* We must have image allocated or imported at this point. According to the
3362 * specification, external images must have been bound to memory before
3363 * calling GetImageMemoryRequirements.
3364 */
3365 assert(image->size > 0);
3366
3367 pMemoryRequirements->size = image->size;
3368 pMemoryRequirements->alignment = image->alignment;
3369 pMemoryRequirements->memoryTypeBits = memory_types;
3370 }
3371
3372 void anv_GetImageMemoryRequirements2(
3373 VkDevice _device,
3374 const VkImageMemoryRequirementsInfo2* pInfo,
3375 VkMemoryRequirements2* pMemoryRequirements)
3376 {
3377 ANV_FROM_HANDLE(anv_device, device, _device);
3378 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3379
3380 anv_GetImageMemoryRequirements(_device, pInfo->image,
3381 &pMemoryRequirements->memoryRequirements);
3382
3383 vk_foreach_struct_const(ext, pInfo->pNext) {
3384 switch (ext->sType) {
3385 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3386 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3387 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3388 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3389 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3390 plane_reqs->planeAspect);
3391
3392 assert(image->planes[plane].offset == 0);
3393
3394 /* The Vulkan spec (git aaed022) says:
3395 *
3396 * memoryTypeBits is a bitfield and contains one bit set for every
3397 * supported memory type for the resource. The bit `1<<i` is set
3398 * if and only if the memory type `i` in the
3399 * VkPhysicalDeviceMemoryProperties structure for the physical
3400 * device is supported.
3401 *
3402 * All types are currently supported for images.
3403 */
3404 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3405 (1ull << pdevice->memory.type_count) - 1;
3406
3407 /* We must have image allocated or imported at this point. According to the
3408 * specification, external images must have been bound to memory before
3409 * calling GetImageMemoryRequirements.
3410 */
3411 assert(image->planes[plane].size > 0);
3412
3413 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3414 pMemoryRequirements->memoryRequirements.alignment =
3415 image->planes[plane].alignment;
3416 break;
3417 }
3418
3419 default:
3420 anv_debug_ignored_stype(ext->sType);
3421 break;
3422 }
3423 }
3424
3425 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3426 switch (ext->sType) {
3427 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3428 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3429 if (image->needs_set_tiling || image->external_format) {
3430 /* If we need to set the tiling for external consumers, we need a
3431 * dedicated allocation.
3432 *
3433 * See also anv_AllocateMemory.
3434 */
3435 requirements->prefersDedicatedAllocation = true;
3436 requirements->requiresDedicatedAllocation = true;
3437 } else {
3438 requirements->prefersDedicatedAllocation = false;
3439 requirements->requiresDedicatedAllocation = false;
3440 }
3441 break;
3442 }
3443
3444 default:
3445 anv_debug_ignored_stype(ext->sType);
3446 break;
3447 }
3448 }
3449 }
3450
3451 void anv_GetImageSparseMemoryRequirements(
3452 VkDevice device,
3453 VkImage image,
3454 uint32_t* pSparseMemoryRequirementCount,
3455 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3456 {
3457 *pSparseMemoryRequirementCount = 0;
3458 }
3459
3460 void anv_GetImageSparseMemoryRequirements2(
3461 VkDevice device,
3462 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3463 uint32_t* pSparseMemoryRequirementCount,
3464 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3465 {
3466 *pSparseMemoryRequirementCount = 0;
3467 }
3468
3469 void anv_GetDeviceMemoryCommitment(
3470 VkDevice device,
3471 VkDeviceMemory memory,
3472 VkDeviceSize* pCommittedMemoryInBytes)
3473 {
3474 *pCommittedMemoryInBytes = 0;
3475 }
3476
3477 static void
3478 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3479 {
3480 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3481 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3482
3483 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3484
3485 if (mem) {
3486 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3487 buffer->address = (struct anv_address) {
3488 .bo = mem->bo,
3489 .offset = pBindInfo->memoryOffset,
3490 };
3491 } else {
3492 buffer->address = ANV_NULL_ADDRESS;
3493 }
3494 }
3495
3496 VkResult anv_BindBufferMemory(
3497 VkDevice device,
3498 VkBuffer buffer,
3499 VkDeviceMemory memory,
3500 VkDeviceSize memoryOffset)
3501 {
3502 anv_bind_buffer_memory(
3503 &(VkBindBufferMemoryInfo) {
3504 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3505 .buffer = buffer,
3506 .memory = memory,
3507 .memoryOffset = memoryOffset,
3508 });
3509
3510 return VK_SUCCESS;
3511 }
3512
3513 VkResult anv_BindBufferMemory2(
3514 VkDevice device,
3515 uint32_t bindInfoCount,
3516 const VkBindBufferMemoryInfo* pBindInfos)
3517 {
3518 for (uint32_t i = 0; i < bindInfoCount; i++)
3519 anv_bind_buffer_memory(&pBindInfos[i]);
3520
3521 return VK_SUCCESS;
3522 }
3523
3524 VkResult anv_QueueBindSparse(
3525 VkQueue _queue,
3526 uint32_t bindInfoCount,
3527 const VkBindSparseInfo* pBindInfo,
3528 VkFence fence)
3529 {
3530 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3531 if (anv_device_is_lost(queue->device))
3532 return VK_ERROR_DEVICE_LOST;
3533
3534 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3535 }
3536
3537 // Event functions
3538
3539 VkResult anv_CreateEvent(
3540 VkDevice _device,
3541 const VkEventCreateInfo* pCreateInfo,
3542 const VkAllocationCallbacks* pAllocator,
3543 VkEvent* pEvent)
3544 {
3545 ANV_FROM_HANDLE(anv_device, device, _device);
3546 struct anv_state state;
3547 struct anv_event *event;
3548
3549 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3550
3551 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3552 sizeof(*event), 8);
3553 event = state.map;
3554 event->state = state;
3555 event->semaphore = VK_EVENT_RESET;
3556
3557 if (!device->info.has_llc) {
3558 /* Make sure the writes we're flushing have landed. */
3559 __builtin_ia32_mfence();
3560 __builtin_ia32_clflush(event);
3561 }
3562
3563 *pEvent = anv_event_to_handle(event);
3564
3565 return VK_SUCCESS;
3566 }
3567
3568 void anv_DestroyEvent(
3569 VkDevice _device,
3570 VkEvent _event,
3571 const VkAllocationCallbacks* pAllocator)
3572 {
3573 ANV_FROM_HANDLE(anv_device, device, _device);
3574 ANV_FROM_HANDLE(anv_event, event, _event);
3575
3576 if (!event)
3577 return;
3578
3579 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3580 }
3581
3582 VkResult anv_GetEventStatus(
3583 VkDevice _device,
3584 VkEvent _event)
3585 {
3586 ANV_FROM_HANDLE(anv_device, device, _device);
3587 ANV_FROM_HANDLE(anv_event, event, _event);
3588
3589 if (anv_device_is_lost(device))
3590 return VK_ERROR_DEVICE_LOST;
3591
3592 if (!device->info.has_llc) {
3593 /* Invalidate read cache before reading event written by GPU. */
3594 __builtin_ia32_clflush(event);
3595 __builtin_ia32_mfence();
3596
3597 }
3598
3599 return event->semaphore;
3600 }
3601
3602 VkResult anv_SetEvent(
3603 VkDevice _device,
3604 VkEvent _event)
3605 {
3606 ANV_FROM_HANDLE(anv_device, device, _device);
3607 ANV_FROM_HANDLE(anv_event, event, _event);
3608
3609 event->semaphore = VK_EVENT_SET;
3610
3611 if (!device->info.has_llc) {
3612 /* Make sure the writes we're flushing have landed. */
3613 __builtin_ia32_mfence();
3614 __builtin_ia32_clflush(event);
3615 }
3616
3617 return VK_SUCCESS;
3618 }
3619
3620 VkResult anv_ResetEvent(
3621 VkDevice _device,
3622 VkEvent _event)
3623 {
3624 ANV_FROM_HANDLE(anv_device, device, _device);
3625 ANV_FROM_HANDLE(anv_event, event, _event);
3626
3627 event->semaphore = VK_EVENT_RESET;
3628
3629 if (!device->info.has_llc) {
3630 /* Make sure the writes we're flushing have landed. */
3631 __builtin_ia32_mfence();
3632 __builtin_ia32_clflush(event);
3633 }
3634
3635 return VK_SUCCESS;
3636 }
3637
3638 // Buffer functions
3639
3640 VkResult anv_CreateBuffer(
3641 VkDevice _device,
3642 const VkBufferCreateInfo* pCreateInfo,
3643 const VkAllocationCallbacks* pAllocator,
3644 VkBuffer* pBuffer)
3645 {
3646 ANV_FROM_HANDLE(anv_device, device, _device);
3647 struct anv_buffer *buffer;
3648
3649 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3650
3651 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3652 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3653 if (buffer == NULL)
3654 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3655
3656 buffer->size = pCreateInfo->size;
3657 buffer->usage = pCreateInfo->usage;
3658 buffer->address = ANV_NULL_ADDRESS;
3659
3660 *pBuffer = anv_buffer_to_handle(buffer);
3661
3662 return VK_SUCCESS;
3663 }
3664
3665 void anv_DestroyBuffer(
3666 VkDevice _device,
3667 VkBuffer _buffer,
3668 const VkAllocationCallbacks* pAllocator)
3669 {
3670 ANV_FROM_HANDLE(anv_device, device, _device);
3671 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3672
3673 if (!buffer)
3674 return;
3675
3676 vk_free2(&device->alloc, pAllocator, buffer);
3677 }
3678
3679 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3680 VkDevice device,
3681 const VkBufferDeviceAddressInfoEXT* pInfo)
3682 {
3683 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3684
3685 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3686
3687 return anv_address_physical(buffer->address);
3688 }
3689
3690 void
3691 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3692 enum isl_format format,
3693 struct anv_address address,
3694 uint32_t range, uint32_t stride)
3695 {
3696 isl_buffer_fill_state(&device->isl_dev, state.map,
3697 .address = anv_address_physical(address),
3698 .mocs = device->default_mocs,
3699 .size_B = range,
3700 .format = format,
3701 .swizzle = ISL_SWIZZLE_IDENTITY,
3702 .stride_B = stride);
3703 }
3704
3705 void anv_DestroySampler(
3706 VkDevice _device,
3707 VkSampler _sampler,
3708 const VkAllocationCallbacks* pAllocator)
3709 {
3710 ANV_FROM_HANDLE(anv_device, device, _device);
3711 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3712
3713 if (!sampler)
3714 return;
3715
3716 if (sampler->bindless_state.map) {
3717 anv_state_pool_free(&device->dynamic_state_pool,
3718 sampler->bindless_state);
3719 }
3720
3721 vk_free2(&device->alloc, pAllocator, sampler);
3722 }
3723
3724 VkResult anv_CreateFramebuffer(
3725 VkDevice _device,
3726 const VkFramebufferCreateInfo* pCreateInfo,
3727 const VkAllocationCallbacks* pAllocator,
3728 VkFramebuffer* pFramebuffer)
3729 {
3730 ANV_FROM_HANDLE(anv_device, device, _device);
3731 struct anv_framebuffer *framebuffer;
3732
3733 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3734
3735 size_t size = sizeof(*framebuffer);
3736
3737 /* VK_KHR_imageless_framebuffer extension says:
3738 *
3739 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3740 * parameter pAttachments is ignored.
3741 */
3742 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3743 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3744 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3745 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3746 if (framebuffer == NULL)
3747 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3748
3749 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3750 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3751 framebuffer->attachments[i] = iview;
3752 }
3753 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3754 } else {
3755 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3756 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3757 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3758 if (framebuffer == NULL)
3759 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3760
3761 framebuffer->attachment_count = 0;
3762 }
3763
3764 framebuffer->width = pCreateInfo->width;
3765 framebuffer->height = pCreateInfo->height;
3766 framebuffer->layers = pCreateInfo->layers;
3767
3768 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3769
3770 return VK_SUCCESS;
3771 }
3772
3773 void anv_DestroyFramebuffer(
3774 VkDevice _device,
3775 VkFramebuffer _fb,
3776 const VkAllocationCallbacks* pAllocator)
3777 {
3778 ANV_FROM_HANDLE(anv_device, device, _device);
3779 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3780
3781 if (!fb)
3782 return;
3783
3784 vk_free2(&device->alloc, pAllocator, fb);
3785 }
3786
3787 static const VkTimeDomainEXT anv_time_domains[] = {
3788 VK_TIME_DOMAIN_DEVICE_EXT,
3789 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3790 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3791 };
3792
3793 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3794 VkPhysicalDevice physicalDevice,
3795 uint32_t *pTimeDomainCount,
3796 VkTimeDomainEXT *pTimeDomains)
3797 {
3798 int d;
3799 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3800
3801 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3802 vk_outarray_append(&out, i) {
3803 *i = anv_time_domains[d];
3804 }
3805 }
3806
3807 return vk_outarray_status(&out);
3808 }
3809
3810 static uint64_t
3811 anv_clock_gettime(clockid_t clock_id)
3812 {
3813 struct timespec current;
3814 int ret;
3815
3816 ret = clock_gettime(clock_id, &current);
3817 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3818 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3819 if (ret < 0)
3820 return 0;
3821
3822 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3823 }
3824
3825 #define TIMESTAMP 0x2358
3826
3827 VkResult anv_GetCalibratedTimestampsEXT(
3828 VkDevice _device,
3829 uint32_t timestampCount,
3830 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3831 uint64_t *pTimestamps,
3832 uint64_t *pMaxDeviation)
3833 {
3834 ANV_FROM_HANDLE(anv_device, device, _device);
3835 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3836 int ret;
3837 int d;
3838 uint64_t begin, end;
3839 uint64_t max_clock_period = 0;
3840
3841 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3842
3843 for (d = 0; d < timestampCount; d++) {
3844 switch (pTimestampInfos[d].timeDomain) {
3845 case VK_TIME_DOMAIN_DEVICE_EXT:
3846 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3847 &pTimestamps[d]);
3848
3849 if (ret != 0) {
3850 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3851 "register: %m");
3852 }
3853 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3854 max_clock_period = MAX2(max_clock_period, device_period);
3855 break;
3856 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3857 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3858 max_clock_period = MAX2(max_clock_period, 1);
3859 break;
3860
3861 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3862 pTimestamps[d] = begin;
3863 break;
3864 default:
3865 pTimestamps[d] = 0;
3866 break;
3867 }
3868 }
3869
3870 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3871
3872 /*
3873 * The maximum deviation is the sum of the interval over which we
3874 * perform the sampling and the maximum period of any sampled
3875 * clock. That's because the maximum skew between any two sampled
3876 * clock edges is when the sampled clock with the largest period is
3877 * sampled at the end of that period but right at the beginning of the
3878 * sampling interval and some other clock is sampled right at the
3879 * begining of its sampling period and right at the end of the
3880 * sampling interval. Let's assume the GPU has the longest clock
3881 * period and that the application is sampling GPU and monotonic:
3882 *
3883 * s e
3884 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3885 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3886 *
3887 * g
3888 * 0 1 2 3
3889 * GPU -----_____-----_____-----_____-----_____
3890 *
3891 * m
3892 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3893 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3894 *
3895 * Interval <----------------->
3896 * Deviation <-------------------------->
3897 *
3898 * s = read(raw) 2
3899 * g = read(GPU) 1
3900 * m = read(monotonic) 2
3901 * e = read(raw) b
3902 *
3903 * We round the sample interval up by one tick to cover sampling error
3904 * in the interval clock
3905 */
3906
3907 uint64_t sample_interval = end - begin + 1;
3908
3909 *pMaxDeviation = sample_interval + max_clock_period;
3910
3911 return VK_SUCCESS;
3912 }
3913
3914 /* vk_icd.h does not declare this function, so we declare it here to
3915 * suppress Wmissing-prototypes.
3916 */
3917 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3918 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3919
3920 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3921 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3922 {
3923 /* For the full details on loader interface versioning, see
3924 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3925 * What follows is a condensed summary, to help you navigate the large and
3926 * confusing official doc.
3927 *
3928 * - Loader interface v0 is incompatible with later versions. We don't
3929 * support it.
3930 *
3931 * - In loader interface v1:
3932 * - The first ICD entrypoint called by the loader is
3933 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3934 * entrypoint.
3935 * - The ICD must statically expose no other Vulkan symbol unless it is
3936 * linked with -Bsymbolic.
3937 * - Each dispatchable Vulkan handle created by the ICD must be
3938 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3939 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3940 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3941 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3942 * such loader-managed surfaces.
3943 *
3944 * - Loader interface v2 differs from v1 in:
3945 * - The first ICD entrypoint called by the loader is
3946 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3947 * statically expose this entrypoint.
3948 *
3949 * - Loader interface v3 differs from v2 in:
3950 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3951 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3952 * because the loader no longer does so.
3953 */
3954 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3955 return VK_SUCCESS;
3956 }