anv: Use an anv_address in anv_buffer
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40 #include "common/gen_defines.h"
41
42 #include "genxml/gen7_pack.h"
43
44 static void
45 compiler_debug_log(void *data, const char *fmt, ...)
46 { }
47
48 static void
49 compiler_perf_log(void *data, const char *fmt, ...)
50 {
51 va_list args;
52 va_start(args, fmt);
53
54 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
55 intel_logd_v(fmt, args);
56
57 va_end(args);
58 }
59
60 static VkResult
61 anv_compute_heap_size(int fd, uint64_t gtt_size, uint64_t *heap_size)
62 {
63 /* Query the total ram from the system */
64 struct sysinfo info;
65 sysinfo(&info);
66
67 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
68
69 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
70 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
71 */
72 uint64_t available_ram;
73 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
74 available_ram = total_ram / 2;
75 else
76 available_ram = total_ram * 3 / 4;
77
78 /* We also want to leave some padding for things we allocate in the driver,
79 * so don't go over 3/4 of the GTT either.
80 */
81 uint64_t available_gtt = gtt_size * 3 / 4;
82
83 *heap_size = MIN2(available_ram, available_gtt);
84
85 return VK_SUCCESS;
86 }
87
88 static VkResult
89 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
90 {
91 uint64_t gtt_size;
92 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
93 &gtt_size) == -1) {
94 /* If, for whatever reason, we can't actually get the GTT size from the
95 * kernel (too old?) fall back to the aperture size.
96 */
97 anv_perf_warn(NULL, NULL,
98 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
99
100 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
101 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
102 "failed to get aperture size: %m");
103 }
104 }
105
106 device->supports_48bit_addresses = (device->info.gen >= 8) &&
107 gtt_size > (4ULL << 30 /* GiB */);
108
109 uint64_t heap_size = 0;
110 VkResult result = anv_compute_heap_size(fd, gtt_size, &heap_size);
111 if (result != VK_SUCCESS)
112 return result;
113
114 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
115 /* When running with an overridden PCI ID, we may get a GTT size from
116 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
117 * address support can still fail. Just clamp the address space size to
118 * 2 GiB if we don't have 48-bit support.
119 */
120 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
121 "not support for 48-bit addresses",
122 __FILE__, __LINE__);
123 heap_size = 2ull << 30;
124 }
125
126 if (heap_size <= 3ull * (1ull << 30)) {
127 /* In this case, everything fits nicely into the 32-bit address space,
128 * so there's no need for supporting 48bit addresses on client-allocated
129 * memory objects.
130 */
131 device->memory.heap_count = 1;
132 device->memory.heaps[0] = (struct anv_memory_heap) {
133 .size = heap_size,
134 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
135 .supports_48bit_addresses = false,
136 };
137 } else {
138 /* Not everything will fit nicely into a 32-bit address space. In this
139 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
140 * larger 48-bit heap. If we're in this case, then we have a total heap
141 * size larger than 3GiB which most likely means they have 8 GiB of
142 * video memory and so carving off 1 GiB for the 32-bit heap should be
143 * reasonable.
144 */
145 const uint64_t heap_size_32bit = 1ull << 30;
146 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
147
148 assert(device->supports_48bit_addresses);
149
150 device->memory.heap_count = 2;
151 device->memory.heaps[0] = (struct anv_memory_heap) {
152 .size = heap_size_48bit,
153 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
154 .supports_48bit_addresses = true,
155 };
156 device->memory.heaps[1] = (struct anv_memory_heap) {
157 .size = heap_size_32bit,
158 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
159 .supports_48bit_addresses = false,
160 };
161 }
162
163 uint32_t type_count = 0;
164 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
165 uint32_t valid_buffer_usage = ~0;
166
167 /* There appears to be a hardware issue in the VF cache where it only
168 * considers the bottom 32 bits of memory addresses. If you happen to
169 * have two vertex buffers which get placed exactly 4 GiB apart and use
170 * them in back-to-back draw calls, you can get collisions. In order to
171 * solve this problem, we require vertex and index buffers be bound to
172 * memory allocated out of the 32-bit heap.
173 */
174 if (device->memory.heaps[heap].supports_48bit_addresses) {
175 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
176 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
177 }
178
179 if (device->info.has_llc) {
180 /* Big core GPUs share LLC with the CPU and thus one memory type can be
181 * both cached and coherent at the same time.
182 */
183 device->memory.types[type_count++] = (struct anv_memory_type) {
184 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
185 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
186 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
187 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
188 .heapIndex = heap,
189 .valid_buffer_usage = valid_buffer_usage,
190 };
191 } else {
192 /* The spec requires that we expose a host-visible, coherent memory
193 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
194 * to give the application a choice between cached, but not coherent and
195 * coherent but uncached (WC though).
196 */
197 device->memory.types[type_count++] = (struct anv_memory_type) {
198 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
199 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
200 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
201 .heapIndex = heap,
202 .valid_buffer_usage = valid_buffer_usage,
203 };
204 device->memory.types[type_count++] = (struct anv_memory_type) {
205 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
206 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
207 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
208 .heapIndex = heap,
209 .valid_buffer_usage = valid_buffer_usage,
210 };
211 }
212 }
213 device->memory.type_count = type_count;
214
215 return VK_SUCCESS;
216 }
217
218 static VkResult
219 anv_physical_device_init_uuids(struct anv_physical_device *device)
220 {
221 const struct build_id_note *note =
222 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
223 if (!note) {
224 return vk_errorf(device->instance, device,
225 VK_ERROR_INITIALIZATION_FAILED,
226 "Failed to find build-id");
227 }
228
229 unsigned build_id_len = build_id_length(note);
230 if (build_id_len < 20) {
231 return vk_errorf(device->instance, device,
232 VK_ERROR_INITIALIZATION_FAILED,
233 "build-id too short. It needs to be a SHA");
234 }
235
236 struct mesa_sha1 sha1_ctx;
237 uint8_t sha1[20];
238 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
239
240 /* The pipeline cache UUID is used for determining when a pipeline cache is
241 * invalid. It needs both a driver build and the PCI ID of the device.
242 */
243 _mesa_sha1_init(&sha1_ctx);
244 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
245 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
246 sizeof(device->chipset_id));
247 _mesa_sha1_final(&sha1_ctx, sha1);
248 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
249
250 /* The driver UUID is used for determining sharability of images and memory
251 * between two Vulkan instances in separate processes. People who want to
252 * share memory need to also check the device UUID (below) so all this
253 * needs to be is the build-id.
254 */
255 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
256
257 /* The device UUID uniquely identifies the given device within the machine.
258 * Since we never have more than one device, this doesn't need to be a real
259 * UUID. However, on the off-chance that someone tries to use this to
260 * cache pre-tiled images or something of the like, we use the PCI ID and
261 * some bits of ISL info to ensure that this is safe.
262 */
263 _mesa_sha1_init(&sha1_ctx);
264 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
265 sizeof(device->chipset_id));
266 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
267 sizeof(device->isl_dev.has_bit6_swizzling));
268 _mesa_sha1_final(&sha1_ctx, sha1);
269 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
270
271 return VK_SUCCESS;
272 }
273
274 static VkResult
275 anv_physical_device_init(struct anv_physical_device *device,
276 struct anv_instance *instance,
277 const char *path)
278 {
279 VkResult result;
280 int fd;
281
282 brw_process_intel_debug_variable();
283
284 fd = open(path, O_RDWR | O_CLOEXEC);
285 if (fd < 0)
286 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
287
288 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
289 device->instance = instance;
290
291 assert(strlen(path) < ARRAY_SIZE(device->path));
292 strncpy(device->path, path, ARRAY_SIZE(device->path));
293
294 device->no_hw = getenv("INTEL_NO_HW") != NULL;
295
296 const int pci_id_override = gen_get_pci_device_id_override();
297 if (pci_id_override < 0) {
298 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
299 if (!device->chipset_id) {
300 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
301 goto fail;
302 }
303 } else {
304 device->chipset_id = pci_id_override;
305 device->no_hw = true;
306 }
307
308 device->name = gen_get_device_name(device->chipset_id);
309 if (!gen_get_device_info(device->chipset_id, &device->info)) {
310 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
311 goto fail;
312 }
313
314 if (device->info.is_haswell) {
315 intel_logw("Haswell Vulkan support is incomplete");
316 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
317 intel_logw("Ivy Bridge Vulkan support is incomplete");
318 } else if (device->info.gen == 7 && device->info.is_baytrail) {
319 intel_logw("Bay Trail Vulkan support is incomplete");
320 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
321 /* Gen8-10 fully supported */
322 } else if (device->info.gen == 11) {
323 intel_logw("Vulkan is not yet fully supported on gen11.");
324 } else {
325 result = vk_errorf(device->instance, device,
326 VK_ERROR_INCOMPATIBLE_DRIVER,
327 "Vulkan not yet supported on %s", device->name);
328 goto fail;
329 }
330
331 device->cmd_parser_version = -1;
332 if (device->info.gen == 7) {
333 device->cmd_parser_version =
334 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
335 if (device->cmd_parser_version == -1) {
336 result = vk_errorf(device->instance, device,
337 VK_ERROR_INITIALIZATION_FAILED,
338 "failed to get command parser version");
339 goto fail;
340 }
341 }
342
343 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
344 result = vk_errorf(device->instance, device,
345 VK_ERROR_INITIALIZATION_FAILED,
346 "kernel missing gem wait");
347 goto fail;
348 }
349
350 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
351 result = vk_errorf(device->instance, device,
352 VK_ERROR_INITIALIZATION_FAILED,
353 "kernel missing execbuf2");
354 goto fail;
355 }
356
357 if (!device->info.has_llc &&
358 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
359 result = vk_errorf(device->instance, device,
360 VK_ERROR_INITIALIZATION_FAILED,
361 "kernel missing wc mmap");
362 goto fail;
363 }
364
365 result = anv_physical_device_init_heaps(device, fd);
366 if (result != VK_SUCCESS)
367 goto fail;
368
369 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
370 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
371 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
372 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
373 device->has_syncobj_wait = device->has_syncobj &&
374 anv_gem_supports_syncobj_wait(fd);
375 device->has_context_priority = anv_gem_has_context_priority(fd);
376
377 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
378 && device->supports_48bit_addresses;
379
380 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
381
382 /* Starting with Gen10, the timestamp frequency of the command streamer may
383 * vary from one part to another. We can query the value from the kernel.
384 */
385 if (device->info.gen >= 10) {
386 int timestamp_frequency =
387 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
388
389 if (timestamp_frequency < 0)
390 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
391 else
392 device->info.timestamp_frequency = timestamp_frequency;
393 }
394
395 /* GENs prior to 8 do not support EU/Subslice info */
396 if (device->info.gen >= 8) {
397 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
398 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
399
400 /* Without this information, we cannot get the right Braswell
401 * brandstrings, and we have to use conservative numbers for GPGPU on
402 * many platforms, but otherwise, things will just work.
403 */
404 if (device->subslice_total < 1 || device->eu_total < 1) {
405 intel_logw("Kernel 4.1 required to properly query GPU properties");
406 }
407 } else if (device->info.gen == 7) {
408 device->subslice_total = 1 << (device->info.gt - 1);
409 }
410
411 if (device->info.is_cherryview &&
412 device->subslice_total > 0 && device->eu_total > 0) {
413 /* Logical CS threads = EUs per subslice * num threads per EU */
414 uint32_t max_cs_threads =
415 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
416
417 /* Fuse configurations may give more threads than expected, never less. */
418 if (max_cs_threads > device->info.max_cs_threads)
419 device->info.max_cs_threads = max_cs_threads;
420 }
421
422 device->compiler = brw_compiler_create(NULL, &device->info);
423 if (device->compiler == NULL) {
424 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
425 goto fail;
426 }
427 device->compiler->shader_debug_log = compiler_debug_log;
428 device->compiler->shader_perf_log = compiler_perf_log;
429 device->compiler->supports_pull_constants = false;
430 device->compiler->constant_buffer_0_is_relative = true;
431
432 isl_device_init(&device->isl_dev, &device->info, swizzled);
433
434 result = anv_physical_device_init_uuids(device);
435 if (result != VK_SUCCESS)
436 goto fail;
437
438 result = anv_init_wsi(device);
439 if (result != VK_SUCCESS) {
440 ralloc_free(device->compiler);
441 goto fail;
442 }
443
444 anv_physical_device_get_supported_extensions(device,
445 &device->supported_extensions);
446
447 device->local_fd = fd;
448 return VK_SUCCESS;
449
450 fail:
451 close(fd);
452 return result;
453 }
454
455 static void
456 anv_physical_device_finish(struct anv_physical_device *device)
457 {
458 anv_finish_wsi(device);
459 ralloc_free(device->compiler);
460 close(device->local_fd);
461 }
462
463 static void *
464 default_alloc_func(void *pUserData, size_t size, size_t align,
465 VkSystemAllocationScope allocationScope)
466 {
467 return malloc(size);
468 }
469
470 static void *
471 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
472 size_t align, VkSystemAllocationScope allocationScope)
473 {
474 return realloc(pOriginal, size);
475 }
476
477 static void
478 default_free_func(void *pUserData, void *pMemory)
479 {
480 free(pMemory);
481 }
482
483 static const VkAllocationCallbacks default_alloc = {
484 .pUserData = NULL,
485 .pfnAllocation = default_alloc_func,
486 .pfnReallocation = default_realloc_func,
487 .pfnFree = default_free_func,
488 };
489
490 VkResult anv_EnumerateInstanceExtensionProperties(
491 const char* pLayerName,
492 uint32_t* pPropertyCount,
493 VkExtensionProperties* pProperties)
494 {
495 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
496
497 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
498 if (anv_instance_extensions_supported.extensions[i]) {
499 vk_outarray_append(&out, prop) {
500 *prop = anv_instance_extensions[i];
501 }
502 }
503 }
504
505 return vk_outarray_status(&out);
506 }
507
508 VkResult anv_CreateInstance(
509 const VkInstanceCreateInfo* pCreateInfo,
510 const VkAllocationCallbacks* pAllocator,
511 VkInstance* pInstance)
512 {
513 struct anv_instance *instance;
514 VkResult result;
515
516 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
517
518 struct anv_instance_extension_table enabled_extensions = {};
519 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
520 int idx;
521 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
522 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
523 anv_instance_extensions[idx].extensionName) == 0)
524 break;
525 }
526
527 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
528 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
529
530 if (!anv_instance_extensions_supported.extensions[idx])
531 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
532
533 enabled_extensions.extensions[idx] = true;
534 }
535
536 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
537 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
538 if (!instance)
539 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
540
541 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
542
543 if (pAllocator)
544 instance->alloc = *pAllocator;
545 else
546 instance->alloc = default_alloc;
547
548 if (pCreateInfo->pApplicationInfo &&
549 pCreateInfo->pApplicationInfo->apiVersion != 0) {
550 instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
551 } else {
552 anv_EnumerateInstanceVersion(&instance->apiVersion);
553 }
554
555 instance->enabled_extensions = enabled_extensions;
556
557 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
558 /* Vulkan requires that entrypoints for extensions which have not been
559 * enabled must not be advertised.
560 */
561 if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
562 &instance->enabled_extensions, NULL)) {
563 instance->dispatch.entrypoints[i] = NULL;
564 } else if (anv_dispatch_table.entrypoints[i] != NULL) {
565 instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
566 } else {
567 instance->dispatch.entrypoints[i] =
568 anv_tramp_dispatch_table.entrypoints[i];
569 }
570 }
571
572 instance->physicalDeviceCount = -1;
573
574 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
575 if (result != VK_SUCCESS) {
576 vk_free2(&default_alloc, pAllocator, instance);
577 return vk_error(result);
578 }
579
580 _mesa_locale_init();
581
582 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
583
584 *pInstance = anv_instance_to_handle(instance);
585
586 return VK_SUCCESS;
587 }
588
589 void anv_DestroyInstance(
590 VkInstance _instance,
591 const VkAllocationCallbacks* pAllocator)
592 {
593 ANV_FROM_HANDLE(anv_instance, instance, _instance);
594
595 if (!instance)
596 return;
597
598 if (instance->physicalDeviceCount > 0) {
599 /* We support at most one physical device. */
600 assert(instance->physicalDeviceCount == 1);
601 anv_physical_device_finish(&instance->physicalDevice);
602 }
603
604 VG(VALGRIND_DESTROY_MEMPOOL(instance));
605
606 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
607
608 _mesa_locale_fini();
609
610 vk_free(&instance->alloc, instance);
611 }
612
613 static VkResult
614 anv_enumerate_devices(struct anv_instance *instance)
615 {
616 /* TODO: Check for more devices ? */
617 drmDevicePtr devices[8];
618 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
619 int max_devices;
620
621 instance->physicalDeviceCount = 0;
622
623 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
624 if (max_devices < 1)
625 return VK_ERROR_INCOMPATIBLE_DRIVER;
626
627 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
628 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
629 devices[i]->bustype == DRM_BUS_PCI &&
630 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
631
632 result = anv_physical_device_init(&instance->physicalDevice,
633 instance,
634 devices[i]->nodes[DRM_NODE_RENDER]);
635 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
636 break;
637 }
638 }
639 drmFreeDevices(devices, max_devices);
640
641 if (result == VK_SUCCESS)
642 instance->physicalDeviceCount = 1;
643
644 return result;
645 }
646
647 static VkResult
648 anv_instance_ensure_physical_device(struct anv_instance *instance)
649 {
650 if (instance->physicalDeviceCount < 0) {
651 VkResult result = anv_enumerate_devices(instance);
652 if (result != VK_SUCCESS &&
653 result != VK_ERROR_INCOMPATIBLE_DRIVER)
654 return result;
655 }
656
657 return VK_SUCCESS;
658 }
659
660 VkResult anv_EnumeratePhysicalDevices(
661 VkInstance _instance,
662 uint32_t* pPhysicalDeviceCount,
663 VkPhysicalDevice* pPhysicalDevices)
664 {
665 ANV_FROM_HANDLE(anv_instance, instance, _instance);
666 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
667
668 VkResult result = anv_instance_ensure_physical_device(instance);
669 if (result != VK_SUCCESS)
670 return result;
671
672 if (instance->physicalDeviceCount == 0)
673 return VK_SUCCESS;
674
675 assert(instance->physicalDeviceCount == 1);
676 vk_outarray_append(&out, i) {
677 *i = anv_physical_device_to_handle(&instance->physicalDevice);
678 }
679
680 return vk_outarray_status(&out);
681 }
682
683 VkResult anv_EnumeratePhysicalDeviceGroups(
684 VkInstance _instance,
685 uint32_t* pPhysicalDeviceGroupCount,
686 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
687 {
688 ANV_FROM_HANDLE(anv_instance, instance, _instance);
689 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
690 pPhysicalDeviceGroupCount);
691
692 VkResult result = anv_instance_ensure_physical_device(instance);
693 if (result != VK_SUCCESS)
694 return result;
695
696 if (instance->physicalDeviceCount == 0)
697 return VK_SUCCESS;
698
699 assert(instance->physicalDeviceCount == 1);
700
701 vk_outarray_append(&out, p) {
702 p->physicalDeviceCount = 1;
703 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
704 p->physicalDevices[0] =
705 anv_physical_device_to_handle(&instance->physicalDevice);
706 p->subsetAllocation = VK_FALSE;
707
708 vk_foreach_struct(ext, p->pNext)
709 anv_debug_ignored_stype(ext->sType);
710 }
711
712 return vk_outarray_status(&out);
713 }
714
715 void anv_GetPhysicalDeviceFeatures(
716 VkPhysicalDevice physicalDevice,
717 VkPhysicalDeviceFeatures* pFeatures)
718 {
719 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
720
721 *pFeatures = (VkPhysicalDeviceFeatures) {
722 .robustBufferAccess = true,
723 .fullDrawIndexUint32 = true,
724 .imageCubeArray = true,
725 .independentBlend = true,
726 .geometryShader = true,
727 .tessellationShader = true,
728 .sampleRateShading = true,
729 .dualSrcBlend = true,
730 .logicOp = true,
731 .multiDrawIndirect = true,
732 .drawIndirectFirstInstance = true,
733 .depthClamp = true,
734 .depthBiasClamp = true,
735 .fillModeNonSolid = true,
736 .depthBounds = false,
737 .wideLines = true,
738 .largePoints = true,
739 .alphaToOne = true,
740 .multiViewport = true,
741 .samplerAnisotropy = true,
742 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
743 pdevice->info.is_baytrail,
744 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
745 .textureCompressionBC = true,
746 .occlusionQueryPrecise = true,
747 .pipelineStatisticsQuery = true,
748 .fragmentStoresAndAtomics = true,
749 .shaderTessellationAndGeometryPointSize = true,
750 .shaderImageGatherExtended = true,
751 .shaderStorageImageExtendedFormats = true,
752 .shaderStorageImageMultisample = false,
753 .shaderStorageImageReadWithoutFormat = false,
754 .shaderStorageImageWriteWithoutFormat = true,
755 .shaderUniformBufferArrayDynamicIndexing = true,
756 .shaderSampledImageArrayDynamicIndexing = true,
757 .shaderStorageBufferArrayDynamicIndexing = true,
758 .shaderStorageImageArrayDynamicIndexing = true,
759 .shaderClipDistance = true,
760 .shaderCullDistance = true,
761 .shaderFloat64 = pdevice->info.gen >= 8 &&
762 pdevice->info.has_64bit_types,
763 .shaderInt64 = pdevice->info.gen >= 8 &&
764 pdevice->info.has_64bit_types,
765 .shaderInt16 = pdevice->info.gen >= 8,
766 .shaderResourceMinLod = false,
767 .variableMultisampleRate = true,
768 .inheritedQueries = true,
769 };
770
771 /* We can't do image stores in vec4 shaders */
772 pFeatures->vertexPipelineStoresAndAtomics =
773 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
774 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
775 }
776
777 void anv_GetPhysicalDeviceFeatures2(
778 VkPhysicalDevice physicalDevice,
779 VkPhysicalDeviceFeatures2* pFeatures)
780 {
781 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
782
783 vk_foreach_struct(ext, pFeatures->pNext) {
784 switch (ext->sType) {
785 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
786 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
787 features->protectedMemory = VK_FALSE;
788 break;
789 }
790
791 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
792 VkPhysicalDeviceMultiviewFeatures *features =
793 (VkPhysicalDeviceMultiviewFeatures *)ext;
794 features->multiview = true;
795 features->multiviewGeometryShader = true;
796 features->multiviewTessellationShader = true;
797 break;
798 }
799
800 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
801 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
802 features->variablePointersStorageBuffer = true;
803 features->variablePointers = true;
804 break;
805 }
806
807 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
808 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
809 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
810 features->samplerYcbcrConversion = true;
811 break;
812 }
813
814 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
815 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
816 features->shaderDrawParameters = true;
817 break;
818 }
819
820 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
821 VkPhysicalDevice16BitStorageFeaturesKHR *features =
822 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
823 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
824
825 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
826 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
827 features->storagePushConstant16 = pdevice->info.gen >= 8;
828 features->storageInputOutput16 = false;
829 break;
830 }
831
832 default:
833 anv_debug_ignored_stype(ext->sType);
834 break;
835 }
836 }
837 }
838
839 void anv_GetPhysicalDeviceProperties(
840 VkPhysicalDevice physicalDevice,
841 VkPhysicalDeviceProperties* pProperties)
842 {
843 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
844 const struct gen_device_info *devinfo = &pdevice->info;
845
846 /* See assertions made when programming the buffer surface state. */
847 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
848 (1ul << 30) : (1ul << 27);
849
850 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
851 128 : 16;
852
853 VkSampleCountFlags sample_counts =
854 isl_device_get_sample_counts(&pdevice->isl_dev);
855
856 VkPhysicalDeviceLimits limits = {
857 .maxImageDimension1D = (1 << 14),
858 .maxImageDimension2D = (1 << 14),
859 .maxImageDimension3D = (1 << 11),
860 .maxImageDimensionCube = (1 << 14),
861 .maxImageArrayLayers = (1 << 11),
862 .maxTexelBufferElements = 128 * 1024 * 1024,
863 .maxUniformBufferRange = (1ul << 27),
864 .maxStorageBufferRange = max_raw_buffer_sz,
865 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
866 .maxMemoryAllocationCount = UINT32_MAX,
867 .maxSamplerAllocationCount = 64 * 1024,
868 .bufferImageGranularity = 64, /* A cache line */
869 .sparseAddressSpaceSize = 0,
870 .maxBoundDescriptorSets = MAX_SETS,
871 .maxPerStageDescriptorSamplers = max_samplers,
872 .maxPerStageDescriptorUniformBuffers = 64,
873 .maxPerStageDescriptorStorageBuffers = 64,
874 .maxPerStageDescriptorSampledImages = max_samplers,
875 .maxPerStageDescriptorStorageImages = 64,
876 .maxPerStageDescriptorInputAttachments = 64,
877 .maxPerStageResources = 250,
878 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
879 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
880 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
881 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
882 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
883 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
884 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
885 .maxDescriptorSetInputAttachments = 256,
886 .maxVertexInputAttributes = MAX_VBS,
887 .maxVertexInputBindings = MAX_VBS,
888 .maxVertexInputAttributeOffset = 2047,
889 .maxVertexInputBindingStride = 2048,
890 .maxVertexOutputComponents = 128,
891 .maxTessellationGenerationLevel = 64,
892 .maxTessellationPatchSize = 32,
893 .maxTessellationControlPerVertexInputComponents = 128,
894 .maxTessellationControlPerVertexOutputComponents = 128,
895 .maxTessellationControlPerPatchOutputComponents = 128,
896 .maxTessellationControlTotalOutputComponents = 2048,
897 .maxTessellationEvaluationInputComponents = 128,
898 .maxTessellationEvaluationOutputComponents = 128,
899 .maxGeometryShaderInvocations = 32,
900 .maxGeometryInputComponents = 64,
901 .maxGeometryOutputComponents = 128,
902 .maxGeometryOutputVertices = 256,
903 .maxGeometryTotalOutputComponents = 1024,
904 .maxFragmentInputComponents = 128,
905 .maxFragmentOutputAttachments = 8,
906 .maxFragmentDualSrcAttachments = 1,
907 .maxFragmentCombinedOutputResources = 8,
908 .maxComputeSharedMemorySize = 32768,
909 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
910 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
911 .maxComputeWorkGroupSize = {
912 16 * devinfo->max_cs_threads,
913 16 * devinfo->max_cs_threads,
914 16 * devinfo->max_cs_threads,
915 },
916 .subPixelPrecisionBits = 4 /* FIXME */,
917 .subTexelPrecisionBits = 4 /* FIXME */,
918 .mipmapPrecisionBits = 4 /* FIXME */,
919 .maxDrawIndexedIndexValue = UINT32_MAX,
920 .maxDrawIndirectCount = UINT32_MAX,
921 .maxSamplerLodBias = 16,
922 .maxSamplerAnisotropy = 16,
923 .maxViewports = MAX_VIEWPORTS,
924 .maxViewportDimensions = { (1 << 14), (1 << 14) },
925 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
926 .viewportSubPixelBits = 13, /* We take a float? */
927 .minMemoryMapAlignment = 4096, /* A page */
928 .minTexelBufferOffsetAlignment = 1,
929 /* We need 16 for UBO block reads to work and 32 for push UBOs */
930 .minUniformBufferOffsetAlignment = 32,
931 .minStorageBufferOffsetAlignment = 4,
932 .minTexelOffset = -8,
933 .maxTexelOffset = 7,
934 .minTexelGatherOffset = -32,
935 .maxTexelGatherOffset = 31,
936 .minInterpolationOffset = -0.5,
937 .maxInterpolationOffset = 0.4375,
938 .subPixelInterpolationOffsetBits = 4,
939 .maxFramebufferWidth = (1 << 14),
940 .maxFramebufferHeight = (1 << 14),
941 .maxFramebufferLayers = (1 << 11),
942 .framebufferColorSampleCounts = sample_counts,
943 .framebufferDepthSampleCounts = sample_counts,
944 .framebufferStencilSampleCounts = sample_counts,
945 .framebufferNoAttachmentsSampleCounts = sample_counts,
946 .maxColorAttachments = MAX_RTS,
947 .sampledImageColorSampleCounts = sample_counts,
948 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
949 .sampledImageDepthSampleCounts = sample_counts,
950 .sampledImageStencilSampleCounts = sample_counts,
951 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
952 .maxSampleMaskWords = 1,
953 .timestampComputeAndGraphics = false,
954 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
955 .maxClipDistances = 8,
956 .maxCullDistances = 8,
957 .maxCombinedClipAndCullDistances = 8,
958 .discreteQueuePriorities = 1,
959 .pointSizeRange = { 0.125, 255.875 },
960 .lineWidthRange = { 0.0, 7.9921875 },
961 .pointSizeGranularity = (1.0 / 8.0),
962 .lineWidthGranularity = (1.0 / 128.0),
963 .strictLines = false, /* FINISHME */
964 .standardSampleLocations = true,
965 .optimalBufferCopyOffsetAlignment = 128,
966 .optimalBufferCopyRowPitchAlignment = 128,
967 .nonCoherentAtomSize = 64,
968 };
969
970 *pProperties = (VkPhysicalDeviceProperties) {
971 .apiVersion = anv_physical_device_api_version(pdevice),
972 .driverVersion = vk_get_driver_version(),
973 .vendorID = 0x8086,
974 .deviceID = pdevice->chipset_id,
975 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
976 .limits = limits,
977 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
978 };
979
980 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
981 "%s", pdevice->name);
982 memcpy(pProperties->pipelineCacheUUID,
983 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
984 }
985
986 void anv_GetPhysicalDeviceProperties2(
987 VkPhysicalDevice physicalDevice,
988 VkPhysicalDeviceProperties2* pProperties)
989 {
990 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
991
992 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
993
994 vk_foreach_struct(ext, pProperties->pNext) {
995 switch (ext->sType) {
996 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
997 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
998 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
999
1000 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1001 break;
1002 }
1003
1004 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1005 VkPhysicalDeviceIDProperties *id_props =
1006 (VkPhysicalDeviceIDProperties *)ext;
1007 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1008 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1009 /* The LUID is for Windows. */
1010 id_props->deviceLUIDValid = false;
1011 break;
1012 }
1013
1014 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1015 VkPhysicalDeviceMaintenance3Properties *props =
1016 (VkPhysicalDeviceMaintenance3Properties *)ext;
1017 /* This value doesn't matter for us today as our per-stage
1018 * descriptors are the real limit.
1019 */
1020 props->maxPerSetDescriptors = 1024;
1021 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1022 break;
1023 }
1024
1025 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1026 VkPhysicalDeviceMultiviewProperties *properties =
1027 (VkPhysicalDeviceMultiviewProperties *)ext;
1028 properties->maxMultiviewViewCount = 16;
1029 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1030 break;
1031 }
1032
1033 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1034 VkPhysicalDevicePointClippingProperties *properties =
1035 (VkPhysicalDevicePointClippingProperties *) ext;
1036 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1037 anv_finishme("Implement pop-free point clipping");
1038 break;
1039 }
1040
1041 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1042 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1043
1044 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1045
1046 VkShaderStageFlags scalar_stages = 0;
1047 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1048 if (pdevice->compiler->scalar_stage[stage])
1049 scalar_stages |= mesa_to_vk_shader_stage(stage);
1050 }
1051 properties->supportedStages = scalar_stages;
1052
1053 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1054 VK_SUBGROUP_FEATURE_VOTE_BIT |
1055 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1056 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1057 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1058 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1059 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1060 VK_SUBGROUP_FEATURE_QUAD_BIT;
1061 properties->quadOperationsInAllStages = VK_TRUE;
1062 break;
1063 }
1064
1065 default:
1066 anv_debug_ignored_stype(ext->sType);
1067 break;
1068 }
1069 }
1070 }
1071
1072 /* We support exactly one queue family. */
1073 static const VkQueueFamilyProperties
1074 anv_queue_family_properties = {
1075 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1076 VK_QUEUE_COMPUTE_BIT |
1077 VK_QUEUE_TRANSFER_BIT,
1078 .queueCount = 1,
1079 .timestampValidBits = 36, /* XXX: Real value here */
1080 .minImageTransferGranularity = { 1, 1, 1 },
1081 };
1082
1083 void anv_GetPhysicalDeviceQueueFamilyProperties(
1084 VkPhysicalDevice physicalDevice,
1085 uint32_t* pCount,
1086 VkQueueFamilyProperties* pQueueFamilyProperties)
1087 {
1088 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1089
1090 vk_outarray_append(&out, p) {
1091 *p = anv_queue_family_properties;
1092 }
1093 }
1094
1095 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1096 VkPhysicalDevice physicalDevice,
1097 uint32_t* pQueueFamilyPropertyCount,
1098 VkQueueFamilyProperties2* pQueueFamilyProperties)
1099 {
1100
1101 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1102
1103 vk_outarray_append(&out, p) {
1104 p->queueFamilyProperties = anv_queue_family_properties;
1105
1106 vk_foreach_struct(s, p->pNext) {
1107 anv_debug_ignored_stype(s->sType);
1108 }
1109 }
1110 }
1111
1112 void anv_GetPhysicalDeviceMemoryProperties(
1113 VkPhysicalDevice physicalDevice,
1114 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1115 {
1116 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1117
1118 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1119 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1120 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1121 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1122 .heapIndex = physical_device->memory.types[i].heapIndex,
1123 };
1124 }
1125
1126 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1127 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1128 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1129 .size = physical_device->memory.heaps[i].size,
1130 .flags = physical_device->memory.heaps[i].flags,
1131 };
1132 }
1133 }
1134
1135 void anv_GetPhysicalDeviceMemoryProperties2(
1136 VkPhysicalDevice physicalDevice,
1137 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1138 {
1139 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1140 &pMemoryProperties->memoryProperties);
1141
1142 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1143 switch (ext->sType) {
1144 default:
1145 anv_debug_ignored_stype(ext->sType);
1146 break;
1147 }
1148 }
1149 }
1150
1151 void
1152 anv_GetDeviceGroupPeerMemoryFeatures(
1153 VkDevice device,
1154 uint32_t heapIndex,
1155 uint32_t localDeviceIndex,
1156 uint32_t remoteDeviceIndex,
1157 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1158 {
1159 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1160 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1161 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1162 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1163 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1164 }
1165
1166 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1167 VkInstance _instance,
1168 const char* pName)
1169 {
1170 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1171
1172 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1173 * when we have to return valid function pointers, NULL, or it's left
1174 * undefined. See the table for exact details.
1175 */
1176 if (pName == NULL)
1177 return NULL;
1178
1179 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1180 if (strcmp(pName, "vk" #entrypoint) == 0) \
1181 return (PFN_vkVoidFunction)anv_##entrypoint
1182
1183 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1184 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1185 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1186 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1187
1188 #undef LOOKUP_ANV_ENTRYPOINT
1189
1190 if (instance == NULL)
1191 return NULL;
1192
1193 int idx = anv_get_entrypoint_index(pName);
1194 if (idx < 0)
1195 return NULL;
1196
1197 return instance->dispatch.entrypoints[idx];
1198 }
1199
1200 /* With version 1+ of the loader interface the ICD should expose
1201 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1202 */
1203 PUBLIC
1204 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1205 VkInstance instance,
1206 const char* pName);
1207
1208 PUBLIC
1209 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1210 VkInstance instance,
1211 const char* pName)
1212 {
1213 return anv_GetInstanceProcAddr(instance, pName);
1214 }
1215
1216 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1217 VkDevice _device,
1218 const char* pName)
1219 {
1220 ANV_FROM_HANDLE(anv_device, device, _device);
1221
1222 if (!device || !pName)
1223 return NULL;
1224
1225 int idx = anv_get_entrypoint_index(pName);
1226 if (idx < 0)
1227 return NULL;
1228
1229 return device->dispatch.entrypoints[idx];
1230 }
1231
1232 VkResult
1233 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1234 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1235 const VkAllocationCallbacks* pAllocator,
1236 VkDebugReportCallbackEXT* pCallback)
1237 {
1238 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1239 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1240 pCreateInfo, pAllocator, &instance->alloc,
1241 pCallback);
1242 }
1243
1244 void
1245 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1246 VkDebugReportCallbackEXT _callback,
1247 const VkAllocationCallbacks* pAllocator)
1248 {
1249 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1250 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1251 _callback, pAllocator, &instance->alloc);
1252 }
1253
1254 void
1255 anv_DebugReportMessageEXT(VkInstance _instance,
1256 VkDebugReportFlagsEXT flags,
1257 VkDebugReportObjectTypeEXT objectType,
1258 uint64_t object,
1259 size_t location,
1260 int32_t messageCode,
1261 const char* pLayerPrefix,
1262 const char* pMessage)
1263 {
1264 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1265 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1266 object, location, messageCode, pLayerPrefix, pMessage);
1267 }
1268
1269 static void
1270 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1271 {
1272 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1273 queue->device = device;
1274 queue->flags = 0;
1275 }
1276
1277 static void
1278 anv_queue_finish(struct anv_queue *queue)
1279 {
1280 }
1281
1282 static struct anv_state
1283 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1284 {
1285 struct anv_state state;
1286
1287 state = anv_state_pool_alloc(pool, size, align);
1288 memcpy(state.map, p, size);
1289
1290 anv_state_flush(pool->block_pool.device, state);
1291
1292 return state;
1293 }
1294
1295 struct gen8_border_color {
1296 union {
1297 float float32[4];
1298 uint32_t uint32[4];
1299 };
1300 /* Pad out to 64 bytes */
1301 uint32_t _pad[12];
1302 };
1303
1304 static void
1305 anv_device_init_border_colors(struct anv_device *device)
1306 {
1307 static const struct gen8_border_color border_colors[] = {
1308 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1309 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1310 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1311 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1312 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1313 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1314 };
1315
1316 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1317 sizeof(border_colors), 64,
1318 border_colors);
1319 }
1320
1321 static void
1322 anv_device_init_trivial_batch(struct anv_device *device)
1323 {
1324 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1325
1326 if (device->instance->physicalDevice.has_exec_async)
1327 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1328
1329 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1330 0, 4096, 0);
1331
1332 struct anv_batch batch = {
1333 .start = map,
1334 .next = map,
1335 .end = map + 4096,
1336 };
1337
1338 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1339 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1340
1341 if (!device->info.has_llc)
1342 gen_clflush_range(map, batch.next - map);
1343
1344 anv_gem_munmap(map, device->trivial_batch_bo.size);
1345 }
1346
1347 VkResult anv_EnumerateDeviceExtensionProperties(
1348 VkPhysicalDevice physicalDevice,
1349 const char* pLayerName,
1350 uint32_t* pPropertyCount,
1351 VkExtensionProperties* pProperties)
1352 {
1353 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1354 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1355 (void)device;
1356
1357 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1358 if (device->supported_extensions.extensions[i]) {
1359 vk_outarray_append(&out, prop) {
1360 *prop = anv_device_extensions[i];
1361 }
1362 }
1363 }
1364
1365 return vk_outarray_status(&out);
1366 }
1367
1368 static void
1369 anv_device_init_dispatch(struct anv_device *device)
1370 {
1371 const struct anv_dispatch_table *genX_table;
1372 switch (device->info.gen) {
1373 case 11:
1374 genX_table = &gen11_dispatch_table;
1375 break;
1376 case 10:
1377 genX_table = &gen10_dispatch_table;
1378 break;
1379 case 9:
1380 genX_table = &gen9_dispatch_table;
1381 break;
1382 case 8:
1383 genX_table = &gen8_dispatch_table;
1384 break;
1385 case 7:
1386 if (device->info.is_haswell)
1387 genX_table = &gen75_dispatch_table;
1388 else
1389 genX_table = &gen7_dispatch_table;
1390 break;
1391 default:
1392 unreachable("unsupported gen\n");
1393 }
1394
1395 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1396 /* Vulkan requires that entrypoints for extensions which have not been
1397 * enabled must not be advertised.
1398 */
1399 if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
1400 &device->instance->enabled_extensions,
1401 &device->enabled_extensions)) {
1402 device->dispatch.entrypoints[i] = NULL;
1403 } else if (genX_table->entrypoints[i]) {
1404 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1405 } else {
1406 device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
1407 }
1408 }
1409 }
1410
1411 static int
1412 vk_priority_to_gen(int priority)
1413 {
1414 switch (priority) {
1415 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1416 return GEN_CONTEXT_LOW_PRIORITY;
1417 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1418 return GEN_CONTEXT_MEDIUM_PRIORITY;
1419 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1420 return GEN_CONTEXT_HIGH_PRIORITY;
1421 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1422 return GEN_CONTEXT_REALTIME_PRIORITY;
1423 default:
1424 unreachable("Invalid priority");
1425 }
1426 }
1427
1428 static void
1429 anv_device_init_hiz_clear_batch(struct anv_device *device)
1430 {
1431 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1432 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1433 0, 4096, 0);
1434
1435 union isl_color_value hiz_clear = { .u32 = { 0, } };
1436 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1437
1438 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1439 anv_gem_munmap(map, device->hiz_clear_bo.size);
1440 }
1441
1442 VkResult anv_CreateDevice(
1443 VkPhysicalDevice physicalDevice,
1444 const VkDeviceCreateInfo* pCreateInfo,
1445 const VkAllocationCallbacks* pAllocator,
1446 VkDevice* pDevice)
1447 {
1448 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1449 VkResult result;
1450 struct anv_device *device;
1451
1452 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1453
1454 struct anv_device_extension_table enabled_extensions = { };
1455 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1456 int idx;
1457 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1458 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1459 anv_device_extensions[idx].extensionName) == 0)
1460 break;
1461 }
1462
1463 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1464 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1465
1466 if (!physical_device->supported_extensions.extensions[idx])
1467 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1468
1469 enabled_extensions.extensions[idx] = true;
1470 }
1471
1472 /* Check enabled features */
1473 if (pCreateInfo->pEnabledFeatures) {
1474 VkPhysicalDeviceFeatures supported_features;
1475 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1476 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1477 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1478 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1479 for (uint32_t i = 0; i < num_features; i++) {
1480 if (enabled_feature[i] && !supported_feature[i])
1481 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1482 }
1483 }
1484
1485 /* Check requested queues and fail if we are requested to create any
1486 * queues with flags we don't support.
1487 */
1488 assert(pCreateInfo->queueCreateInfoCount > 0);
1489 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1490 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1491 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1492 }
1493
1494 /* Check if client specified queue priority. */
1495 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1496 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1497 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1498
1499 VkQueueGlobalPriorityEXT priority =
1500 queue_priority ? queue_priority->globalPriority :
1501 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1502
1503 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1504 sizeof(*device), 8,
1505 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1506 if (!device)
1507 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1508
1509 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1510 device->instance = physical_device->instance;
1511 device->chipset_id = physical_device->chipset_id;
1512 device->no_hw = physical_device->no_hw;
1513 device->lost = false;
1514
1515 if (pAllocator)
1516 device->alloc = *pAllocator;
1517 else
1518 device->alloc = physical_device->instance->alloc;
1519
1520 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1521 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1522 if (device->fd == -1) {
1523 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1524 goto fail_device;
1525 }
1526
1527 device->context_id = anv_gem_create_context(device);
1528 if (device->context_id == -1) {
1529 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1530 goto fail_fd;
1531 }
1532
1533 if (physical_device->use_softpin) {
1534 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1535 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1536 goto fail_fd;
1537 }
1538
1539 /* keep the page with address zero out of the allocator */
1540 util_vma_heap_init(&device->vma_lo, LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
1541 device->vma_lo_available =
1542 physical_device->memory.heaps[physical_device->memory.heap_count - 1].size;
1543
1544 /* Leave the last 4GiB out of the high vma range, so that no state base
1545 * address + size can overflow 48 bits. For more information see the
1546 * comment about Wa32bitGeneralStateOffset in anv_allocator.c
1547 */
1548 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
1549 HIGH_HEAP_SIZE);
1550 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
1551 physical_device->memory.heaps[0].size;
1552 }
1553
1554 /* As per spec, the driver implementation may deny requests to acquire
1555 * a priority above the default priority (MEDIUM) if the caller does not
1556 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1557 * is returned.
1558 */
1559 if (physical_device->has_context_priority) {
1560 int err = anv_gem_set_context_param(device->fd, device->context_id,
1561 I915_CONTEXT_PARAM_PRIORITY,
1562 vk_priority_to_gen(priority));
1563 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1564 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1565 goto fail_fd;
1566 }
1567 }
1568
1569 device->info = physical_device->info;
1570 device->isl_dev = physical_device->isl_dev;
1571
1572 /* On Broadwell and later, we can use batch chaining to more efficiently
1573 * implement growing command buffers. Prior to Haswell, the kernel
1574 * command parser gets in the way and we have to fall back to growing
1575 * the batch.
1576 */
1577 device->can_chain_batches = device->info.gen >= 8;
1578
1579 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1580 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1581 device->enabled_extensions = enabled_extensions;
1582
1583 anv_device_init_dispatch(device);
1584
1585 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1586 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1587 goto fail_context_id;
1588 }
1589
1590 pthread_condattr_t condattr;
1591 if (pthread_condattr_init(&condattr) != 0) {
1592 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1593 goto fail_mutex;
1594 }
1595 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1596 pthread_condattr_destroy(&condattr);
1597 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1598 goto fail_mutex;
1599 }
1600 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1601 pthread_condattr_destroy(&condattr);
1602 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1603 goto fail_mutex;
1604 }
1605 pthread_condattr_destroy(&condattr);
1606
1607 uint64_t bo_flags =
1608 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1609 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1610 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1611
1612 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1613
1614 result = anv_bo_cache_init(&device->bo_cache);
1615 if (result != VK_SUCCESS)
1616 goto fail_batch_bo_pool;
1617
1618 /* For the state pools we explicitly disable 48bit. */
1619 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1620 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1621
1622 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1623 bo_flags);
1624 if (result != VK_SUCCESS)
1625 goto fail_bo_cache;
1626
1627 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1628 bo_flags);
1629 if (result != VK_SUCCESS)
1630 goto fail_dynamic_state_pool;
1631
1632 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1633 bo_flags);
1634 if (result != VK_SUCCESS)
1635 goto fail_instruction_state_pool;
1636
1637 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1638 if (result != VK_SUCCESS)
1639 goto fail_surface_state_pool;
1640
1641 anv_device_init_trivial_batch(device);
1642
1643 if (device->info.gen >= 10)
1644 anv_device_init_hiz_clear_batch(device);
1645
1646 anv_scratch_pool_init(device, &device->scratch_pool);
1647
1648 anv_queue_init(device, &device->queue);
1649
1650 switch (device->info.gen) {
1651 case 7:
1652 if (!device->info.is_haswell)
1653 result = gen7_init_device_state(device);
1654 else
1655 result = gen75_init_device_state(device);
1656 break;
1657 case 8:
1658 result = gen8_init_device_state(device);
1659 break;
1660 case 9:
1661 result = gen9_init_device_state(device);
1662 break;
1663 case 10:
1664 result = gen10_init_device_state(device);
1665 break;
1666 case 11:
1667 result = gen11_init_device_state(device);
1668 break;
1669 default:
1670 /* Shouldn't get here as we don't create physical devices for any other
1671 * gens. */
1672 unreachable("unhandled gen");
1673 }
1674 if (result != VK_SUCCESS)
1675 goto fail_workaround_bo;
1676
1677 anv_device_init_blorp(device);
1678
1679 anv_device_init_border_colors(device);
1680
1681 *pDevice = anv_device_to_handle(device);
1682
1683 return VK_SUCCESS;
1684
1685 fail_workaround_bo:
1686 anv_queue_finish(&device->queue);
1687 anv_scratch_pool_finish(device, &device->scratch_pool);
1688 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1689 anv_gem_close(device, device->workaround_bo.gem_handle);
1690 fail_surface_state_pool:
1691 anv_state_pool_finish(&device->surface_state_pool);
1692 fail_instruction_state_pool:
1693 anv_state_pool_finish(&device->instruction_state_pool);
1694 fail_dynamic_state_pool:
1695 anv_state_pool_finish(&device->dynamic_state_pool);
1696 fail_bo_cache:
1697 anv_bo_cache_finish(&device->bo_cache);
1698 fail_batch_bo_pool:
1699 anv_bo_pool_finish(&device->batch_bo_pool);
1700 pthread_cond_destroy(&device->queue_submit);
1701 fail_mutex:
1702 pthread_mutex_destroy(&device->mutex);
1703 fail_context_id:
1704 anv_gem_destroy_context(device, device->context_id);
1705 fail_fd:
1706 close(device->fd);
1707 fail_device:
1708 vk_free(&device->alloc, device);
1709
1710 return result;
1711 }
1712
1713 void anv_DestroyDevice(
1714 VkDevice _device,
1715 const VkAllocationCallbacks* pAllocator)
1716 {
1717 ANV_FROM_HANDLE(anv_device, device, _device);
1718
1719 if (!device)
1720 return;
1721
1722 anv_device_finish_blorp(device);
1723
1724 anv_queue_finish(&device->queue);
1725
1726 #ifdef HAVE_VALGRIND
1727 /* We only need to free these to prevent valgrind errors. The backing
1728 * BO will go away in a couple of lines so we don't actually leak.
1729 */
1730 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1731 #endif
1732
1733 anv_scratch_pool_finish(device, &device->scratch_pool);
1734
1735 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1736 anv_gem_close(device, device->workaround_bo.gem_handle);
1737
1738 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1739 if (device->info.gen >= 10)
1740 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
1741
1742 anv_state_pool_finish(&device->surface_state_pool);
1743 anv_state_pool_finish(&device->instruction_state_pool);
1744 anv_state_pool_finish(&device->dynamic_state_pool);
1745
1746 anv_bo_cache_finish(&device->bo_cache);
1747
1748 anv_bo_pool_finish(&device->batch_bo_pool);
1749
1750 pthread_cond_destroy(&device->queue_submit);
1751 pthread_mutex_destroy(&device->mutex);
1752
1753 anv_gem_destroy_context(device, device->context_id);
1754
1755 close(device->fd);
1756
1757 vk_free(&device->alloc, device);
1758 }
1759
1760 VkResult anv_EnumerateInstanceLayerProperties(
1761 uint32_t* pPropertyCount,
1762 VkLayerProperties* pProperties)
1763 {
1764 if (pProperties == NULL) {
1765 *pPropertyCount = 0;
1766 return VK_SUCCESS;
1767 }
1768
1769 /* None supported at this time */
1770 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1771 }
1772
1773 VkResult anv_EnumerateDeviceLayerProperties(
1774 VkPhysicalDevice physicalDevice,
1775 uint32_t* pPropertyCount,
1776 VkLayerProperties* pProperties)
1777 {
1778 if (pProperties == NULL) {
1779 *pPropertyCount = 0;
1780 return VK_SUCCESS;
1781 }
1782
1783 /* None supported at this time */
1784 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1785 }
1786
1787 void anv_GetDeviceQueue(
1788 VkDevice _device,
1789 uint32_t queueNodeIndex,
1790 uint32_t queueIndex,
1791 VkQueue* pQueue)
1792 {
1793 ANV_FROM_HANDLE(anv_device, device, _device);
1794
1795 assert(queueIndex == 0);
1796
1797 *pQueue = anv_queue_to_handle(&device->queue);
1798 }
1799
1800 void anv_GetDeviceQueue2(
1801 VkDevice _device,
1802 const VkDeviceQueueInfo2* pQueueInfo,
1803 VkQueue* pQueue)
1804 {
1805 ANV_FROM_HANDLE(anv_device, device, _device);
1806
1807 assert(pQueueInfo->queueIndex == 0);
1808
1809 if (pQueueInfo->flags == device->queue.flags)
1810 *pQueue = anv_queue_to_handle(&device->queue);
1811 else
1812 *pQueue = NULL;
1813 }
1814
1815 VkResult
1816 anv_device_query_status(struct anv_device *device)
1817 {
1818 /* This isn't likely as most of the callers of this function already check
1819 * for it. However, it doesn't hurt to check and it potentially lets us
1820 * avoid an ioctl.
1821 */
1822 if (unlikely(device->lost))
1823 return VK_ERROR_DEVICE_LOST;
1824
1825 uint32_t active, pending;
1826 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1827 if (ret == -1) {
1828 /* We don't know the real error. */
1829 device->lost = true;
1830 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1831 "get_reset_stats failed: %m");
1832 }
1833
1834 if (active) {
1835 device->lost = true;
1836 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1837 "GPU hung on one of our command buffers");
1838 } else if (pending) {
1839 device->lost = true;
1840 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1841 "GPU hung with commands in-flight");
1842 }
1843
1844 return VK_SUCCESS;
1845 }
1846
1847 VkResult
1848 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1849 {
1850 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1851 * Other usages of the BO (such as on different hardware) will not be
1852 * flagged as "busy" by this ioctl. Use with care.
1853 */
1854 int ret = anv_gem_busy(device, bo->gem_handle);
1855 if (ret == 1) {
1856 return VK_NOT_READY;
1857 } else if (ret == -1) {
1858 /* We don't know the real error. */
1859 device->lost = true;
1860 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1861 "gem wait failed: %m");
1862 }
1863
1864 /* Query for device status after the busy call. If the BO we're checking
1865 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1866 * client because it clearly doesn't have valid data. Yes, this most
1867 * likely means an ioctl, but we just did an ioctl to query the busy status
1868 * so it's no great loss.
1869 */
1870 return anv_device_query_status(device);
1871 }
1872
1873 VkResult
1874 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1875 int64_t timeout)
1876 {
1877 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1878 if (ret == -1 && errno == ETIME) {
1879 return VK_TIMEOUT;
1880 } else if (ret == -1) {
1881 /* We don't know the real error. */
1882 device->lost = true;
1883 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1884 "gem wait failed: %m");
1885 }
1886
1887 /* Query for device status after the wait. If the BO we're waiting on got
1888 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1889 * because it clearly doesn't have valid data. Yes, this most likely means
1890 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1891 */
1892 return anv_device_query_status(device);
1893 }
1894
1895 VkResult anv_DeviceWaitIdle(
1896 VkDevice _device)
1897 {
1898 ANV_FROM_HANDLE(anv_device, device, _device);
1899 if (unlikely(device->lost))
1900 return VK_ERROR_DEVICE_LOST;
1901
1902 struct anv_batch batch;
1903
1904 uint32_t cmds[8];
1905 batch.start = batch.next = cmds;
1906 batch.end = (void *) cmds + sizeof(cmds);
1907
1908 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1909 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1910
1911 return anv_device_submit_simple_batch(device, &batch);
1912 }
1913
1914 bool
1915 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
1916 {
1917 if (!(bo->flags & EXEC_OBJECT_PINNED))
1918 return true;
1919
1920 pthread_mutex_lock(&device->vma_mutex);
1921
1922 bo->offset = 0;
1923
1924 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
1925 device->vma_hi_available >= bo->size) {
1926 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
1927 if (addr) {
1928 bo->offset = gen_canonical_address(addr);
1929 assert(addr == gen_48b_address(bo->offset));
1930 device->vma_hi_available -= bo->size;
1931 }
1932 }
1933
1934 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
1935 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
1936 if (addr) {
1937 bo->offset = gen_canonical_address(addr);
1938 assert(addr == gen_48b_address(bo->offset));
1939 device->vma_lo_available -= bo->size;
1940 }
1941 }
1942
1943 pthread_mutex_unlock(&device->vma_mutex);
1944
1945 return bo->offset != 0;
1946 }
1947
1948 void
1949 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
1950 {
1951 if (!(bo->flags & EXEC_OBJECT_PINNED))
1952 return;
1953
1954 const uint64_t addr_48b = gen_48b_address(bo->offset);
1955
1956 pthread_mutex_lock(&device->vma_mutex);
1957
1958 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
1959 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
1960 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
1961 device->vma_lo_available += bo->size;
1962 } else {
1963 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS &&
1964 addr_48b <= HIGH_HEAP_MAX_ADDRESS);
1965 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
1966 device->vma_hi_available += bo->size;
1967 }
1968
1969 pthread_mutex_unlock(&device->vma_mutex);
1970
1971 bo->offset = 0;
1972 }
1973
1974 VkResult
1975 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1976 {
1977 uint32_t gem_handle = anv_gem_create(device, size);
1978 if (!gem_handle)
1979 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1980
1981 anv_bo_init(bo, gem_handle, size);
1982
1983 return VK_SUCCESS;
1984 }
1985
1986 VkResult anv_AllocateMemory(
1987 VkDevice _device,
1988 const VkMemoryAllocateInfo* pAllocateInfo,
1989 const VkAllocationCallbacks* pAllocator,
1990 VkDeviceMemory* pMem)
1991 {
1992 ANV_FROM_HANDLE(anv_device, device, _device);
1993 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1994 struct anv_device_memory *mem;
1995 VkResult result = VK_SUCCESS;
1996
1997 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1998
1999 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2000 assert(pAllocateInfo->allocationSize > 0);
2001
2002 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2003 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2004
2005 /* FINISHME: Fail if allocation request exceeds heap size. */
2006
2007 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2008 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2009 if (mem == NULL)
2010 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2011
2012 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2013 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2014 mem->map = NULL;
2015 mem->map_size = 0;
2016
2017 const VkImportMemoryFdInfoKHR *fd_info =
2018 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2019
2020 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2021 * ignored.
2022 */
2023 if (fd_info && fd_info->handleType) {
2024 /* At the moment, we support only the below handle types. */
2025 assert(fd_info->handleType ==
2026 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2027 fd_info->handleType ==
2028 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2029
2030 result = anv_bo_cache_import(device, &device->bo_cache,
2031 fd_info->fd, &mem->bo);
2032 if (result != VK_SUCCESS)
2033 goto fail;
2034
2035 VkDeviceSize aligned_alloc_size =
2036 align_u64(pAllocateInfo->allocationSize, 4096);
2037
2038 /* For security purposes, we reject importing the bo if it's smaller
2039 * than the requested allocation size. This prevents a malicious client
2040 * from passing a buffer to a trusted client, lying about the size, and
2041 * telling the trusted client to try and texture from an image that goes
2042 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2043 * in the trusted client. The trusted client can protect itself against
2044 * this sort of attack but only if it can trust the buffer size.
2045 */
2046 if (mem->bo->size < aligned_alloc_size) {
2047 result = vk_errorf(device->instance, device,
2048 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
2049 "aligned allocationSize too large for "
2050 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
2051 "%"PRIu64"B > %"PRIu64"B",
2052 aligned_alloc_size, mem->bo->size);
2053 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2054 goto fail;
2055 }
2056
2057 /* From the Vulkan spec:
2058 *
2059 * "Importing memory from a file descriptor transfers ownership of
2060 * the file descriptor from the application to the Vulkan
2061 * implementation. The application must not perform any operations on
2062 * the file descriptor after a successful import."
2063 *
2064 * If the import fails, we leave the file descriptor open.
2065 */
2066 close(fd_info->fd);
2067 } else {
2068 result = anv_bo_cache_alloc(device, &device->bo_cache,
2069 pAllocateInfo->allocationSize,
2070 &mem->bo);
2071 if (result != VK_SUCCESS)
2072 goto fail;
2073
2074 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
2075 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
2076 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2077 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2078
2079 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2080 * the BO. In this case, we have a dedicated allocation.
2081 */
2082 if (image->needs_set_tiling) {
2083 const uint32_t i915_tiling =
2084 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2085 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2086 image->planes[0].surface.isl.row_pitch,
2087 i915_tiling);
2088 if (ret) {
2089 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2090 return vk_errorf(device->instance, NULL,
2091 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2092 "failed to set BO tiling: %m");
2093 }
2094 }
2095 }
2096 }
2097
2098 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2099 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2100 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2101
2102 const struct wsi_memory_allocate_info *wsi_info =
2103 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2104 if (wsi_info && wsi_info->implicit_sync) {
2105 /* We need to set the WRITE flag on window system buffers so that GEM
2106 * will know we're writing to them and synchronize uses on other rings
2107 * (eg if the display server uses the blitter ring).
2108 */
2109 mem->bo->flags |= EXEC_OBJECT_WRITE;
2110 } else if (pdevice->has_exec_async) {
2111 mem->bo->flags |= EXEC_OBJECT_ASYNC;
2112 }
2113
2114 *pMem = anv_device_memory_to_handle(mem);
2115
2116 return VK_SUCCESS;
2117
2118 fail:
2119 vk_free2(&device->alloc, pAllocator, mem);
2120
2121 return result;
2122 }
2123
2124 VkResult anv_GetMemoryFdKHR(
2125 VkDevice device_h,
2126 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2127 int* pFd)
2128 {
2129 ANV_FROM_HANDLE(anv_device, dev, device_h);
2130 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2131
2132 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2133
2134 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2135 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2136
2137 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2138 }
2139
2140 VkResult anv_GetMemoryFdPropertiesKHR(
2141 VkDevice _device,
2142 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
2143 int fd,
2144 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2145 {
2146 ANV_FROM_HANDLE(anv_device, device, _device);
2147 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2148
2149 switch (handleType) {
2150 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2151 /* dma-buf can be imported as any memory type */
2152 pMemoryFdProperties->memoryTypeBits =
2153 (1 << pdevice->memory.type_count) - 1;
2154 return VK_SUCCESS;
2155
2156 default:
2157 /* The valid usage section for this function says:
2158 *
2159 * "handleType must not be one of the handle types defined as
2160 * opaque."
2161 *
2162 * So opaque handle types fall into the default "unsupported" case.
2163 */
2164 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2165 }
2166 }
2167
2168 void anv_FreeMemory(
2169 VkDevice _device,
2170 VkDeviceMemory _mem,
2171 const VkAllocationCallbacks* pAllocator)
2172 {
2173 ANV_FROM_HANDLE(anv_device, device, _device);
2174 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2175
2176 if (mem == NULL)
2177 return;
2178
2179 if (mem->map)
2180 anv_UnmapMemory(_device, _mem);
2181
2182 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2183
2184 vk_free2(&device->alloc, pAllocator, mem);
2185 }
2186
2187 VkResult anv_MapMemory(
2188 VkDevice _device,
2189 VkDeviceMemory _memory,
2190 VkDeviceSize offset,
2191 VkDeviceSize size,
2192 VkMemoryMapFlags flags,
2193 void** ppData)
2194 {
2195 ANV_FROM_HANDLE(anv_device, device, _device);
2196 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2197
2198 if (mem == NULL) {
2199 *ppData = NULL;
2200 return VK_SUCCESS;
2201 }
2202
2203 if (size == VK_WHOLE_SIZE)
2204 size = mem->bo->size - offset;
2205
2206 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2207 *
2208 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2209 * assert(size != 0);
2210 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2211 * equal to the size of the memory minus offset
2212 */
2213 assert(size > 0);
2214 assert(offset + size <= mem->bo->size);
2215
2216 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2217 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2218 * at a time is valid. We could just mmap up front and return an offset
2219 * pointer here, but that may exhaust virtual memory on 32 bit
2220 * userspace. */
2221
2222 uint32_t gem_flags = 0;
2223
2224 if (!device->info.has_llc &&
2225 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2226 gem_flags |= I915_MMAP_WC;
2227
2228 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2229 uint64_t map_offset = offset & ~4095ull;
2230 assert(offset >= map_offset);
2231 uint64_t map_size = (offset + size) - map_offset;
2232
2233 /* Let's map whole pages */
2234 map_size = align_u64(map_size, 4096);
2235
2236 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2237 map_offset, map_size, gem_flags);
2238 if (map == MAP_FAILED)
2239 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2240
2241 mem->map = map;
2242 mem->map_size = map_size;
2243
2244 *ppData = mem->map + (offset - map_offset);
2245
2246 return VK_SUCCESS;
2247 }
2248
2249 void anv_UnmapMemory(
2250 VkDevice _device,
2251 VkDeviceMemory _memory)
2252 {
2253 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2254
2255 if (mem == NULL)
2256 return;
2257
2258 anv_gem_munmap(mem->map, mem->map_size);
2259
2260 mem->map = NULL;
2261 mem->map_size = 0;
2262 }
2263
2264 static void
2265 clflush_mapped_ranges(struct anv_device *device,
2266 uint32_t count,
2267 const VkMappedMemoryRange *ranges)
2268 {
2269 for (uint32_t i = 0; i < count; i++) {
2270 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2271 if (ranges[i].offset >= mem->map_size)
2272 continue;
2273
2274 gen_clflush_range(mem->map + ranges[i].offset,
2275 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2276 }
2277 }
2278
2279 VkResult anv_FlushMappedMemoryRanges(
2280 VkDevice _device,
2281 uint32_t memoryRangeCount,
2282 const VkMappedMemoryRange* pMemoryRanges)
2283 {
2284 ANV_FROM_HANDLE(anv_device, device, _device);
2285
2286 if (device->info.has_llc)
2287 return VK_SUCCESS;
2288
2289 /* Make sure the writes we're flushing have landed. */
2290 __builtin_ia32_mfence();
2291
2292 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2293
2294 return VK_SUCCESS;
2295 }
2296
2297 VkResult anv_InvalidateMappedMemoryRanges(
2298 VkDevice _device,
2299 uint32_t memoryRangeCount,
2300 const VkMappedMemoryRange* pMemoryRanges)
2301 {
2302 ANV_FROM_HANDLE(anv_device, device, _device);
2303
2304 if (device->info.has_llc)
2305 return VK_SUCCESS;
2306
2307 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2308
2309 /* Make sure no reads get moved up above the invalidate. */
2310 __builtin_ia32_mfence();
2311
2312 return VK_SUCCESS;
2313 }
2314
2315 void anv_GetBufferMemoryRequirements(
2316 VkDevice _device,
2317 VkBuffer _buffer,
2318 VkMemoryRequirements* pMemoryRequirements)
2319 {
2320 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2321 ANV_FROM_HANDLE(anv_device, device, _device);
2322 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2323
2324 /* The Vulkan spec (git aaed022) says:
2325 *
2326 * memoryTypeBits is a bitfield and contains one bit set for every
2327 * supported memory type for the resource. The bit `1<<i` is set if and
2328 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2329 * structure for the physical device is supported.
2330 */
2331 uint32_t memory_types = 0;
2332 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2333 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2334 if ((valid_usage & buffer->usage) == buffer->usage)
2335 memory_types |= (1u << i);
2336 }
2337
2338 /* Base alignment requirement of a cache line */
2339 uint32_t alignment = 16;
2340
2341 /* We need an alignment of 32 for pushing UBOs */
2342 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2343 alignment = MAX2(alignment, 32);
2344
2345 pMemoryRequirements->size = buffer->size;
2346 pMemoryRequirements->alignment = alignment;
2347
2348 /* Storage and Uniform buffers should have their size aligned to
2349 * 32-bits to avoid boundary checks when last DWord is not complete.
2350 * This would ensure that not internal padding would be needed for
2351 * 16-bit types.
2352 */
2353 if (device->robust_buffer_access &&
2354 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2355 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2356 pMemoryRequirements->size = align_u64(buffer->size, 4);
2357
2358 pMemoryRequirements->memoryTypeBits = memory_types;
2359 }
2360
2361 void anv_GetBufferMemoryRequirements2(
2362 VkDevice _device,
2363 const VkBufferMemoryRequirementsInfo2* pInfo,
2364 VkMemoryRequirements2* pMemoryRequirements)
2365 {
2366 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2367 &pMemoryRequirements->memoryRequirements);
2368
2369 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2370 switch (ext->sType) {
2371 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2372 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2373 requirements->prefersDedicatedAllocation = VK_FALSE;
2374 requirements->requiresDedicatedAllocation = VK_FALSE;
2375 break;
2376 }
2377
2378 default:
2379 anv_debug_ignored_stype(ext->sType);
2380 break;
2381 }
2382 }
2383 }
2384
2385 void anv_GetImageMemoryRequirements(
2386 VkDevice _device,
2387 VkImage _image,
2388 VkMemoryRequirements* pMemoryRequirements)
2389 {
2390 ANV_FROM_HANDLE(anv_image, image, _image);
2391 ANV_FROM_HANDLE(anv_device, device, _device);
2392 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2393
2394 /* The Vulkan spec (git aaed022) says:
2395 *
2396 * memoryTypeBits is a bitfield and contains one bit set for every
2397 * supported memory type for the resource. The bit `1<<i` is set if and
2398 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2399 * structure for the physical device is supported.
2400 *
2401 * All types are currently supported for images.
2402 */
2403 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2404
2405 pMemoryRequirements->size = image->size;
2406 pMemoryRequirements->alignment = image->alignment;
2407 pMemoryRequirements->memoryTypeBits = memory_types;
2408 }
2409
2410 void anv_GetImageMemoryRequirements2(
2411 VkDevice _device,
2412 const VkImageMemoryRequirementsInfo2* pInfo,
2413 VkMemoryRequirements2* pMemoryRequirements)
2414 {
2415 ANV_FROM_HANDLE(anv_device, device, _device);
2416 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2417
2418 anv_GetImageMemoryRequirements(_device, pInfo->image,
2419 &pMemoryRequirements->memoryRequirements);
2420
2421 vk_foreach_struct_const(ext, pInfo->pNext) {
2422 switch (ext->sType) {
2423 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2424 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2425 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2426 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2427 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2428 plane_reqs->planeAspect);
2429
2430 assert(image->planes[plane].offset == 0);
2431
2432 /* The Vulkan spec (git aaed022) says:
2433 *
2434 * memoryTypeBits is a bitfield and contains one bit set for every
2435 * supported memory type for the resource. The bit `1<<i` is set
2436 * if and only if the memory type `i` in the
2437 * VkPhysicalDeviceMemoryProperties structure for the physical
2438 * device is supported.
2439 *
2440 * All types are currently supported for images.
2441 */
2442 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2443 (1ull << pdevice->memory.type_count) - 1;
2444
2445 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2446 pMemoryRequirements->memoryRequirements.alignment =
2447 image->planes[plane].alignment;
2448 break;
2449 }
2450
2451 default:
2452 anv_debug_ignored_stype(ext->sType);
2453 break;
2454 }
2455 }
2456
2457 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2458 switch (ext->sType) {
2459 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2460 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2461 if (image->needs_set_tiling) {
2462 /* If we need to set the tiling for external consumers, we need a
2463 * dedicated allocation.
2464 *
2465 * See also anv_AllocateMemory.
2466 */
2467 requirements->prefersDedicatedAllocation = VK_TRUE;
2468 requirements->requiresDedicatedAllocation = VK_TRUE;
2469 } else {
2470 requirements->prefersDedicatedAllocation = VK_FALSE;
2471 requirements->requiresDedicatedAllocation = VK_FALSE;
2472 }
2473 break;
2474 }
2475
2476 default:
2477 anv_debug_ignored_stype(ext->sType);
2478 break;
2479 }
2480 }
2481 }
2482
2483 void anv_GetImageSparseMemoryRequirements(
2484 VkDevice device,
2485 VkImage image,
2486 uint32_t* pSparseMemoryRequirementCount,
2487 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2488 {
2489 *pSparseMemoryRequirementCount = 0;
2490 }
2491
2492 void anv_GetImageSparseMemoryRequirements2(
2493 VkDevice device,
2494 const VkImageSparseMemoryRequirementsInfo2* pInfo,
2495 uint32_t* pSparseMemoryRequirementCount,
2496 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
2497 {
2498 *pSparseMemoryRequirementCount = 0;
2499 }
2500
2501 void anv_GetDeviceMemoryCommitment(
2502 VkDevice device,
2503 VkDeviceMemory memory,
2504 VkDeviceSize* pCommittedMemoryInBytes)
2505 {
2506 *pCommittedMemoryInBytes = 0;
2507 }
2508
2509 static void
2510 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
2511 {
2512 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2513 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2514
2515 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
2516
2517 if (mem) {
2518 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2519 buffer->address = (struct anv_address) {
2520 .bo = mem->bo,
2521 .offset = pBindInfo->memoryOffset,
2522 };
2523 } else {
2524 buffer->address = ANV_NULL_ADDRESS;
2525 }
2526 }
2527
2528 VkResult anv_BindBufferMemory(
2529 VkDevice device,
2530 VkBuffer buffer,
2531 VkDeviceMemory memory,
2532 VkDeviceSize memoryOffset)
2533 {
2534 anv_bind_buffer_memory(
2535 &(VkBindBufferMemoryInfo) {
2536 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2537 .buffer = buffer,
2538 .memory = memory,
2539 .memoryOffset = memoryOffset,
2540 });
2541
2542 return VK_SUCCESS;
2543 }
2544
2545 VkResult anv_BindBufferMemory2(
2546 VkDevice device,
2547 uint32_t bindInfoCount,
2548 const VkBindBufferMemoryInfo* pBindInfos)
2549 {
2550 for (uint32_t i = 0; i < bindInfoCount; i++)
2551 anv_bind_buffer_memory(&pBindInfos[i]);
2552
2553 return VK_SUCCESS;
2554 }
2555
2556 VkResult anv_QueueBindSparse(
2557 VkQueue _queue,
2558 uint32_t bindInfoCount,
2559 const VkBindSparseInfo* pBindInfo,
2560 VkFence fence)
2561 {
2562 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2563 if (unlikely(queue->device->lost))
2564 return VK_ERROR_DEVICE_LOST;
2565
2566 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2567 }
2568
2569 // Event functions
2570
2571 VkResult anv_CreateEvent(
2572 VkDevice _device,
2573 const VkEventCreateInfo* pCreateInfo,
2574 const VkAllocationCallbacks* pAllocator,
2575 VkEvent* pEvent)
2576 {
2577 ANV_FROM_HANDLE(anv_device, device, _device);
2578 struct anv_state state;
2579 struct anv_event *event;
2580
2581 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2582
2583 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2584 sizeof(*event), 8);
2585 event = state.map;
2586 event->state = state;
2587 event->semaphore = VK_EVENT_RESET;
2588
2589 if (!device->info.has_llc) {
2590 /* Make sure the writes we're flushing have landed. */
2591 __builtin_ia32_mfence();
2592 __builtin_ia32_clflush(event);
2593 }
2594
2595 *pEvent = anv_event_to_handle(event);
2596
2597 return VK_SUCCESS;
2598 }
2599
2600 void anv_DestroyEvent(
2601 VkDevice _device,
2602 VkEvent _event,
2603 const VkAllocationCallbacks* pAllocator)
2604 {
2605 ANV_FROM_HANDLE(anv_device, device, _device);
2606 ANV_FROM_HANDLE(anv_event, event, _event);
2607
2608 if (!event)
2609 return;
2610
2611 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2612 }
2613
2614 VkResult anv_GetEventStatus(
2615 VkDevice _device,
2616 VkEvent _event)
2617 {
2618 ANV_FROM_HANDLE(anv_device, device, _device);
2619 ANV_FROM_HANDLE(anv_event, event, _event);
2620
2621 if (unlikely(device->lost))
2622 return VK_ERROR_DEVICE_LOST;
2623
2624 if (!device->info.has_llc) {
2625 /* Invalidate read cache before reading event written by GPU. */
2626 __builtin_ia32_clflush(event);
2627 __builtin_ia32_mfence();
2628
2629 }
2630
2631 return event->semaphore;
2632 }
2633
2634 VkResult anv_SetEvent(
2635 VkDevice _device,
2636 VkEvent _event)
2637 {
2638 ANV_FROM_HANDLE(anv_device, device, _device);
2639 ANV_FROM_HANDLE(anv_event, event, _event);
2640
2641 event->semaphore = VK_EVENT_SET;
2642
2643 if (!device->info.has_llc) {
2644 /* Make sure the writes we're flushing have landed. */
2645 __builtin_ia32_mfence();
2646 __builtin_ia32_clflush(event);
2647 }
2648
2649 return VK_SUCCESS;
2650 }
2651
2652 VkResult anv_ResetEvent(
2653 VkDevice _device,
2654 VkEvent _event)
2655 {
2656 ANV_FROM_HANDLE(anv_device, device, _device);
2657 ANV_FROM_HANDLE(anv_event, event, _event);
2658
2659 event->semaphore = VK_EVENT_RESET;
2660
2661 if (!device->info.has_llc) {
2662 /* Make sure the writes we're flushing have landed. */
2663 __builtin_ia32_mfence();
2664 __builtin_ia32_clflush(event);
2665 }
2666
2667 return VK_SUCCESS;
2668 }
2669
2670 // Buffer functions
2671
2672 VkResult anv_CreateBuffer(
2673 VkDevice _device,
2674 const VkBufferCreateInfo* pCreateInfo,
2675 const VkAllocationCallbacks* pAllocator,
2676 VkBuffer* pBuffer)
2677 {
2678 ANV_FROM_HANDLE(anv_device, device, _device);
2679 struct anv_buffer *buffer;
2680
2681 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2682
2683 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2684 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2685 if (buffer == NULL)
2686 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2687
2688 buffer->size = pCreateInfo->size;
2689 buffer->usage = pCreateInfo->usage;
2690 buffer->address = ANV_NULL_ADDRESS;
2691
2692 *pBuffer = anv_buffer_to_handle(buffer);
2693
2694 return VK_SUCCESS;
2695 }
2696
2697 void anv_DestroyBuffer(
2698 VkDevice _device,
2699 VkBuffer _buffer,
2700 const VkAllocationCallbacks* pAllocator)
2701 {
2702 ANV_FROM_HANDLE(anv_device, device, _device);
2703 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2704
2705 if (!buffer)
2706 return;
2707
2708 vk_free2(&device->alloc, pAllocator, buffer);
2709 }
2710
2711 void
2712 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2713 enum isl_format format,
2714 struct anv_address address,
2715 uint32_t range, uint32_t stride)
2716 {
2717 isl_buffer_fill_state(&device->isl_dev, state.map,
2718 .address = anv_address_physical(address),
2719 .mocs = device->default_mocs,
2720 .size = range,
2721 .format = format,
2722 .stride = stride);
2723
2724 anv_state_flush(device, state);
2725 }
2726
2727 void anv_DestroySampler(
2728 VkDevice _device,
2729 VkSampler _sampler,
2730 const VkAllocationCallbacks* pAllocator)
2731 {
2732 ANV_FROM_HANDLE(anv_device, device, _device);
2733 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2734
2735 if (!sampler)
2736 return;
2737
2738 vk_free2(&device->alloc, pAllocator, sampler);
2739 }
2740
2741 VkResult anv_CreateFramebuffer(
2742 VkDevice _device,
2743 const VkFramebufferCreateInfo* pCreateInfo,
2744 const VkAllocationCallbacks* pAllocator,
2745 VkFramebuffer* pFramebuffer)
2746 {
2747 ANV_FROM_HANDLE(anv_device, device, _device);
2748 struct anv_framebuffer *framebuffer;
2749
2750 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2751
2752 size_t size = sizeof(*framebuffer) +
2753 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2754 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2755 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2756 if (framebuffer == NULL)
2757 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2758
2759 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2760 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2761 VkImageView _iview = pCreateInfo->pAttachments[i];
2762 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2763 }
2764
2765 framebuffer->width = pCreateInfo->width;
2766 framebuffer->height = pCreateInfo->height;
2767 framebuffer->layers = pCreateInfo->layers;
2768
2769 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2770
2771 return VK_SUCCESS;
2772 }
2773
2774 void anv_DestroyFramebuffer(
2775 VkDevice _device,
2776 VkFramebuffer _fb,
2777 const VkAllocationCallbacks* pAllocator)
2778 {
2779 ANV_FROM_HANDLE(anv_device, device, _device);
2780 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2781
2782 if (!fb)
2783 return;
2784
2785 vk_free2(&device->alloc, pAllocator, fb);
2786 }
2787
2788 /* vk_icd.h does not declare this function, so we declare it here to
2789 * suppress Wmissing-prototypes.
2790 */
2791 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2792 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2793
2794 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2795 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2796 {
2797 /* For the full details on loader interface versioning, see
2798 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2799 * What follows is a condensed summary, to help you navigate the large and
2800 * confusing official doc.
2801 *
2802 * - Loader interface v0 is incompatible with later versions. We don't
2803 * support it.
2804 *
2805 * - In loader interface v1:
2806 * - The first ICD entrypoint called by the loader is
2807 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2808 * entrypoint.
2809 * - The ICD must statically expose no other Vulkan symbol unless it is
2810 * linked with -Bsymbolic.
2811 * - Each dispatchable Vulkan handle created by the ICD must be
2812 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2813 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2814 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2815 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2816 * such loader-managed surfaces.
2817 *
2818 * - Loader interface v2 differs from v1 in:
2819 * - The first ICD entrypoint called by the loader is
2820 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2821 * statically expose this entrypoint.
2822 *
2823 * - Loader interface v3 differs from v2 in:
2824 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2825 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2826 * because the loader no longer does so.
2827 */
2828 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2829 return VK_SUCCESS;
2830 }