anv+tu+radv: delete unusable dev_icd.json
[mesa.git] / src / intel / vulkan / anv_image.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include "drm-uapi/drm_fourcc.h"
31
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35 #include "util/u_math.h"
36
37 #include "vk_format_info.h"
38
39 static isl_surf_usage_flags_t
40 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
41 VkImageUsageFlags vk_usage,
42 isl_surf_usage_flags_t isl_extra_usage,
43 VkImageAspectFlagBits aspect)
44 {
45 isl_surf_usage_flags_t isl_usage = isl_extra_usage;
46
47 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
48 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
49
50 if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
51 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
52
53 if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
54 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
55
56 if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
57 isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
58
59 /* Even if we're only using it for transfer operations, clears to depth and
60 * stencil images happen as depth and stencil so they need the right ISL
61 * usage bits or else things will fall apart.
62 */
63 switch (aspect) {
64 case VK_IMAGE_ASPECT_DEPTH_BIT:
65 isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
66 break;
67 case VK_IMAGE_ASPECT_STENCIL_BIT:
68 isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
69 break;
70 case VK_IMAGE_ASPECT_COLOR_BIT:
71 case VK_IMAGE_ASPECT_PLANE_0_BIT:
72 case VK_IMAGE_ASPECT_PLANE_1_BIT:
73 case VK_IMAGE_ASPECT_PLANE_2_BIT:
74 break;
75 default:
76 unreachable("bad VkImageAspect");
77 }
78
79 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
80 /* blorp implements transfers by sampling from the source image. */
81 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
82 }
83
84 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
85 aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
86 /* blorp implements transfers by rendering into the destination image.
87 * Only request this with color images, as we deal with depth/stencil
88 * formats differently. */
89 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
90 }
91
92 return isl_usage;
93 }
94
95 static isl_tiling_flags_t
96 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
97 const struct isl_drm_modifier_info *isl_mod_info,
98 bool legacy_scanout)
99 {
100 const VkImageCreateInfo *base_info = anv_info->vk_info;
101 isl_tiling_flags_t flags = 0;
102
103 switch (base_info->tiling) {
104 default:
105 unreachable("bad VkImageTiling");
106 case VK_IMAGE_TILING_OPTIMAL:
107 flags = ISL_TILING_ANY_MASK;
108 break;
109 case VK_IMAGE_TILING_LINEAR:
110 flags = ISL_TILING_LINEAR_BIT;
111 break;
112 }
113
114 if (anv_info->isl_tiling_flags)
115 flags &= anv_info->isl_tiling_flags;
116
117 if (legacy_scanout)
118 flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT;
119
120 if (isl_mod_info)
121 flags &= 1 << isl_mod_info->tiling;
122
123 assert(flags);
124
125 return flags;
126 }
127
128 static struct anv_surface *
129 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
130 {
131 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
132 return &image->planes[plane].surface;
133 }
134
135 static void
136 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
137 {
138 assert(surf->isl.size_B > 0); /* isl surface must be initialized */
139
140 if (image->disjoint) {
141 surf->offset = align_u32(image->planes[plane].size,
142 surf->isl.alignment_B);
143 /* Plane offset is always 0 when it's disjoint. */
144 } else {
145 surf->offset = align_u32(image->size, surf->isl.alignment_B);
146 /* Determine plane's offset only once when the first surface is added. */
147 if (image->planes[plane].size == 0)
148 image->planes[plane].offset = image->size;
149 }
150
151 image->size = surf->offset + surf->isl.size_B;
152 image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset;
153
154 image->alignment = MAX2(image->alignment, surf->isl.alignment_B);
155 image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
156 surf->isl.alignment_B);
157 }
158
159
160 static bool
161 all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
162 const VkImageFormatListCreateInfoKHR *fmt_list,
163 struct anv_image *image)
164 {
165 enum isl_format format =
166 anv_get_isl_format(devinfo, image->vk_format,
167 VK_IMAGE_ASPECT_COLOR_BIT, image->tiling);
168
169 if (!isl_format_supports_ccs_e(devinfo, format))
170 return false;
171
172 if (!(image->create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
173 return true;
174
175 if (!fmt_list || fmt_list->viewFormatCount == 0)
176 return false;
177
178 for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
179 enum isl_format view_format =
180 anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
181 VK_IMAGE_ASPECT_COLOR_BIT, image->tiling);
182
183 if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
184 return false;
185 }
186
187 return true;
188 }
189
190 /**
191 * For color images that have an auxiliary surface, request allocation for an
192 * additional buffer that mainly stores fast-clear values. Use of this buffer
193 * allows us to access the image's subresources while being aware of their
194 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
195 * which a fast clear has occurred).
196 *
197 * In order to avoid having multiple clear colors for a single plane of an
198 * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
199 * the first slice (level 0, layer 0). At the time of our testing (Jan 17,
200 * 2018), there were no known applications which would benefit from fast-
201 * clearing more than just the first slice.
202 *
203 * The fast clear portion of the image is laid out in the following order:
204 *
205 * * 1 or 4 dwords (depending on hardware generation) for the clear color
206 * * 1 dword for the anv_fast_clear_type of the clear color
207 * * On gen9+, 1 dword per level and layer of the image (3D levels count
208 * multiple layers) in level-major order for compression state.
209 *
210 * For the purpose of discoverability, the algorithm used to manage
211 * compression and fast-clears is described here:
212 *
213 * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
214 * all of the values in the fast clear portion of the image are initialized
215 * to default values.
216 *
217 * * On fast-clear, the clear value is written into surface state and also
218 * into the buffer and the fast clear type is set appropriately. Both
219 * setting the fast-clear value in the buffer and setting the fast-clear
220 * type happen from the GPU using MI commands.
221 *
222 * * Whenever a render or blorp operation is performed with CCS_E, we call
223 * genX(cmd_buffer_mark_image_written) to set the compression state to
224 * true (which is represented by UINT32_MAX).
225 *
226 * * On pipeline barrier transitions, the worst-case transition is computed
227 * from the image layouts. The command streamer inspects the fast clear
228 * type and compression state dwords and constructs a predicate. The
229 * worst-case resolve is performed with the given predicate and the fast
230 * clear and compression state is set accordingly.
231 *
232 * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
233 * details on exactly what is allowed in what layouts.
234 *
235 * On gen7-9, we do not have a concept of indirect clear colors in hardware.
236 * In order to deal with this, we have to do some clear color management.
237 *
238 * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
239 * value from the buffer into the surface state with MI commands.
240 *
241 * * For any blorp operations, we pass the address to the clear value into
242 * blorp and it knows to copy the clear color.
243 */
244 static void
245 add_aux_state_tracking_buffer(struct anv_image *image,
246 uint32_t plane,
247 const struct anv_device *device)
248 {
249 assert(image && device);
250 assert(image->planes[plane].aux_surface.isl.size_B > 0 &&
251 image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
252
253 /* Compressed images must be tiled and therefore everything should be 4K
254 * aligned. The CCS has the same alignment requirements. This is good
255 * because we need at least dword-alignment for MI_LOAD/STORE operations.
256 */
257 assert(image->alignment % 4 == 0);
258 assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
259
260 /* This buffer should be at the very end of the plane. */
261 if (image->disjoint) {
262 assert(image->planes[plane].size ==
263 (image->planes[plane].offset + image->planes[plane].size));
264 } else {
265 assert(image->size ==
266 (image->planes[plane].offset + image->planes[plane].size));
267 }
268
269 const unsigned clear_color_state_size = device->info.gen >= 10 ?
270 device->isl_dev.ss.clear_color_state_size :
271 device->isl_dev.ss.clear_value_size;
272
273 /* Clear color and fast clear type */
274 unsigned state_size = clear_color_state_size + 4;
275
276 /* We only need to track compression on CCS_E surfaces. */
277 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
278 if (image->type == VK_IMAGE_TYPE_3D) {
279 for (uint32_t l = 0; l < image->levels; l++)
280 state_size += anv_minify(image->extent.depth, l) * 4;
281 } else {
282 state_size += image->levels * image->array_size * 4;
283 }
284 }
285
286 image->planes[plane].fast_clear_state_offset =
287 image->planes[plane].offset + image->planes[plane].size;
288
289 image->planes[plane].size += state_size;
290 image->size += state_size;
291 }
292
293 /**
294 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
295 * image's memory requirements (that is, the image's size and alignment).
296 */
297 static VkResult
298 make_surface(const struct anv_device *dev,
299 struct anv_image *image,
300 uint32_t stride,
301 isl_tiling_flags_t tiling_flags,
302 isl_surf_usage_flags_t isl_extra_usage_flags,
303 VkImageAspectFlagBits aspect)
304 {
305 bool ok;
306
307 static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
308 [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
309 [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
310 [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
311 };
312
313 image->extent = anv_sanitize_image_extent(image->type, image->extent);
314
315 const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
316 const struct anv_format_plane plane_format =
317 anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
318 struct anv_surface *anv_surf = &image->planes[plane].surface;
319
320 const isl_surf_usage_flags_t usage =
321 choose_isl_surf_usage(image->create_flags, image->usage,
322 isl_extra_usage_flags, aspect);
323
324 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
325 * fall back to linear on Broadwell and earlier because we aren't
326 * guaranteed that we can handle offsets correctly. On Sky Lake, the
327 * horizontal and vertical alignments are sufficiently high that we can
328 * just use RENDER_SURFACE_STATE::X/Y Offset.
329 */
330 bool needs_shadow = false;
331 isl_surf_usage_flags_t shadow_usage = 0;
332 if (dev->info.gen <= 8 &&
333 (image->create_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
334 image->tiling == VK_IMAGE_TILING_OPTIMAL) {
335 assert(isl_format_is_compressed(plane_format.isl_format));
336 tiling_flags = ISL_TILING_LINEAR_BIT;
337 needs_shadow = true;
338 shadow_usage = ISL_SURF_USAGE_TEXTURE_BIT |
339 (usage & ISL_SURF_USAGE_CUBE_BIT);
340 }
341
342 if (dev->info.gen <= 7 &&
343 aspect == VK_IMAGE_ASPECT_STENCIL_BIT &&
344 (image->stencil_usage & VK_IMAGE_USAGE_SAMPLED_BIT)) {
345 needs_shadow = true;
346 shadow_usage = ISL_SURF_USAGE_TEXTURE_BIT |
347 (usage & ISL_SURF_USAGE_CUBE_BIT);
348 }
349
350 ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
351 .dim = vk_to_isl_surf_dim[image->type],
352 .format = plane_format.isl_format,
353 .width = image->extent.width / plane_format.denominator_scales[0],
354 .height = image->extent.height / plane_format.denominator_scales[1],
355 .depth = image->extent.depth,
356 .levels = image->levels,
357 .array_len = image->array_size,
358 .samples = image->samples,
359 .min_alignment_B = 0,
360 .row_pitch_B = stride,
361 .usage = usage,
362 .tiling_flags = tiling_flags);
363
364 if (!ok)
365 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
366
367 image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
368
369 add_surface(image, anv_surf, plane);
370
371 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
372 * create an identical tiled shadow surface for use while texturing so we
373 * don't get garbage performance. If we're on gen7 and the image contains
374 * stencil, then we need to maintain a shadow because we can't texture from
375 * W-tiled images.
376 */
377 if (needs_shadow) {
378 ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
379 .dim = vk_to_isl_surf_dim[image->type],
380 .format = plane_format.isl_format,
381 .width = image->extent.width,
382 .height = image->extent.height,
383 .depth = image->extent.depth,
384 .levels = image->levels,
385 .array_len = image->array_size,
386 .samples = image->samples,
387 .min_alignment_B = 0,
388 .row_pitch_B = stride,
389 .usage = shadow_usage,
390 .tiling_flags = ISL_TILING_ANY_MASK);
391
392 /* isl_surf_init() will fail only if provided invalid input. Invalid input
393 * is illegal in Vulkan.
394 */
395 assert(ok);
396
397 add_surface(image, &image->planes[plane].shadow_surface, plane);
398 }
399
400 /* Add a HiZ surface to a depth buffer that will be used for rendering.
401 */
402 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
403 /* We don't advertise that depth buffers could be used as storage
404 * images.
405 */
406 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
407
408 /* Allow the user to control HiZ enabling. Disable by default on gen7
409 * because resolves are not currently implemented pre-BDW.
410 */
411 if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
412 /* It will never be used as an attachment, HiZ is pointless. */
413 } else if (dev->info.gen == 7) {
414 anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
415 } else if (image->levels > 1) {
416 anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
417 } else if (image->array_size > 1) {
418 anv_perf_warn(dev->instance, image,
419 "Implement multi-arrayLayer HiZ clears and resolves");
420 } else if (dev->info.gen == 8 && image->samples > 1) {
421 anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
422 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
423 assert(image->planes[plane].aux_surface.isl.size_B == 0);
424 ok = isl_surf_get_hiz_surf(&dev->isl_dev,
425 &image->planes[plane].surface.isl,
426 &image->planes[plane].aux_surface.isl);
427 assert(ok);
428 add_surface(image, &image->planes[plane].aux_surface, plane);
429 image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
430 }
431 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples == 1) {
432 /* TODO: Disallow compression with :
433 *
434 * 1) non multiplanar images (We appear to hit a sampler bug with
435 * CCS & R16G16 format. Putting the clear state a page/4096bytes
436 * further fixes the issue).
437 *
438 * 2) alias images, because they might be aliases of images
439 * described in 1)
440 *
441 * 3) compression disabled by debug
442 */
443 const bool allow_compression =
444 image->n_planes == 1 &&
445 (image->create_flags & VK_IMAGE_CREATE_ALIAS_BIT) == 0 &&
446 likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
447
448 if (allow_compression) {
449 assert(image->planes[plane].aux_surface.isl.size_B == 0);
450 ok = isl_surf_get_ccs_surf(&dev->isl_dev,
451 &image->planes[plane].surface.isl,
452 &image->planes[plane].aux_surface.isl, 0);
453 if (ok) {
454
455 /* Disable CCS when it is not useful (i.e., when you can't render
456 * to the image with CCS enabled).
457 */
458 if (!isl_format_supports_rendering(&dev->info,
459 plane_format.isl_format)) {
460 /* While it may be technically possible to enable CCS for this
461 * image, we currently don't have things hooked up to get it
462 * working.
463 */
464 anv_perf_warn(dev->instance, image,
465 "This image format doesn't support rendering. "
466 "Not allocating an CCS buffer.");
467 image->planes[plane].aux_surface.isl.size_B = 0;
468 return VK_SUCCESS;
469 }
470
471 add_surface(image, &image->planes[plane].aux_surface, plane);
472 add_aux_state_tracking_buffer(image, plane, dev);
473
474 /* For images created without MUTABLE_FORMAT_BIT set, we know that
475 * they will always be used with the original format. In
476 * particular, they will always be used with a format that
477 * supports color compression. If it's never used as a storage
478 * image, then it will only be used through the sampler or the as
479 * a render target. This means that it's safe to just leave
480 * compression on at all times for these formats.
481 */
482 if (!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
483 image->ccs_e_compatible) {
484 image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
485 }
486 }
487 }
488 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples > 1) {
489 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
490 assert(image->planes[plane].aux_surface.isl.size_B == 0);
491 ok = isl_surf_get_mcs_surf(&dev->isl_dev,
492 &image->planes[plane].surface.isl,
493 &image->planes[plane].aux_surface.isl);
494 if (ok) {
495 add_surface(image, &image->planes[plane].aux_surface, plane);
496 add_aux_state_tracking_buffer(image, plane, dev);
497 image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
498 }
499 }
500
501 assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
502
503 /* Upper bound of the last surface should be smaller than the plane's
504 * size.
505 */
506 assert((MAX2(image->planes[plane].surface.offset,
507 image->planes[plane].aux_surface.offset) +
508 (image->planes[plane].aux_surface.isl.size_B > 0 ?
509 image->planes[plane].aux_surface.isl.size_B :
510 image->planes[plane].surface.isl.size_B)) <=
511 (image->planes[plane].offset + image->planes[plane].size));
512
513 if (image->planes[plane].aux_surface.isl.size_B) {
514 /* assert(image->planes[plane].fast_clear_state_offset == */
515 /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size_B)); */
516 assert(image->planes[plane].fast_clear_state_offset <
517 (image->planes[plane].offset + image->planes[plane].size));
518 }
519
520 return VK_SUCCESS;
521 }
522
523 static uint32_t
524 score_drm_format_mod(uint64_t modifier)
525 {
526 switch (modifier) {
527 case DRM_FORMAT_MOD_LINEAR: return 1;
528 case I915_FORMAT_MOD_X_TILED: return 2;
529 case I915_FORMAT_MOD_Y_TILED: return 3;
530 case I915_FORMAT_MOD_Y_TILED_CCS: return 4;
531 default: unreachable("bad DRM format modifier");
532 }
533 }
534
535 static const struct isl_drm_modifier_info *
536 choose_drm_format_mod(const struct anv_physical_device *device,
537 uint32_t modifier_count, const uint64_t *modifiers)
538 {
539 uint64_t best_mod = UINT64_MAX;
540 uint32_t best_score = 0;
541
542 for (uint32_t i = 0; i < modifier_count; ++i) {
543 uint32_t score = score_drm_format_mod(modifiers[i]);
544 if (score > best_score) {
545 best_mod = modifiers[i];
546 best_score = score;
547 }
548 }
549
550 if (best_score > 0)
551 return isl_drm_modifier_get_info(best_mod);
552 else
553 return NULL;
554 }
555
556 VkResult
557 anv_image_create(VkDevice _device,
558 const struct anv_image_create_info *create_info,
559 const VkAllocationCallbacks* alloc,
560 VkImage *pImage)
561 {
562 ANV_FROM_HANDLE(anv_device, device, _device);
563 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
564 const struct isl_drm_modifier_info *isl_mod_info = NULL;
565 struct anv_image *image = NULL;
566 VkResult r;
567
568 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
569
570 const struct wsi_image_create_info *wsi_info =
571 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
572 if (wsi_info && wsi_info->modifier_count > 0) {
573 isl_mod_info = choose_drm_format_mod(&device->instance->physicalDevice,
574 wsi_info->modifier_count,
575 wsi_info->modifiers);
576 assert(isl_mod_info);
577 }
578
579 anv_assert(pCreateInfo->mipLevels > 0);
580 anv_assert(pCreateInfo->arrayLayers > 0);
581 anv_assert(pCreateInfo->samples > 0);
582 anv_assert(pCreateInfo->extent.width > 0);
583 anv_assert(pCreateInfo->extent.height > 0);
584 anv_assert(pCreateInfo->extent.depth > 0);
585
586 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
587 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
588 if (!image)
589 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
590
591 image->type = pCreateInfo->imageType;
592 image->extent = pCreateInfo->extent;
593 image->vk_format = pCreateInfo->format;
594 image->format = anv_get_format(pCreateInfo->format);
595 image->aspects = vk_format_aspects(image->vk_format);
596 image->levels = pCreateInfo->mipLevels;
597 image->array_size = pCreateInfo->arrayLayers;
598 image->samples = pCreateInfo->samples;
599 image->usage = pCreateInfo->usage;
600 image->create_flags = pCreateInfo->flags;
601 image->tiling = pCreateInfo->tiling;
602 image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT;
603 image->needs_set_tiling = wsi_info && wsi_info->scanout;
604 image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
605 DRM_FORMAT_MOD_INVALID;
606
607 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
608 image->stencil_usage = pCreateInfo->usage;
609 const VkImageStencilUsageCreateInfoEXT *stencil_usage_info =
610 vk_find_struct_const(pCreateInfo->pNext,
611 IMAGE_STENCIL_USAGE_CREATE_INFO_EXT);
612 if (stencil_usage_info)
613 image->stencil_usage = stencil_usage_info->stencilUsage;
614 }
615
616 /* In case of external format, We don't know format yet,
617 * so skip the rest for now.
618 */
619 if (create_info->external_format) {
620 image->external_format = true;
621 *pImage = anv_image_to_handle(image);
622 return VK_SUCCESS;
623 }
624
625 const struct anv_format *format = anv_get_format(image->vk_format);
626 assert(format != NULL);
627
628 const isl_tiling_flags_t isl_tiling_flags =
629 choose_isl_tiling_flags(create_info, isl_mod_info,
630 image->needs_set_tiling);
631
632 image->n_planes = format->n_planes;
633
634 const VkImageFormatListCreateInfoKHR *fmt_list =
635 vk_find_struct_const(pCreateInfo->pNext,
636 IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
637
638 image->ccs_e_compatible =
639 all_formats_ccs_e_compatible(&device->info, fmt_list, image);
640
641 uint32_t b;
642 for_each_bit(b, image->aspects) {
643 r = make_surface(device, image, create_info->stride, isl_tiling_flags,
644 create_info->isl_extra_usage_flags, (1 << b));
645 if (r != VK_SUCCESS)
646 goto fail;
647 }
648
649 *pImage = anv_image_to_handle(image);
650
651 return VK_SUCCESS;
652
653 fail:
654 if (image)
655 vk_free2(&device->alloc, alloc, image);
656
657 return r;
658 }
659
660 static struct anv_image *
661 anv_swapchain_get_image(VkSwapchainKHR swapchain,
662 uint32_t index)
663 {
664 uint32_t n_images = index + 1;
665 VkImage *images = malloc(sizeof(*images) * n_images);
666 VkResult result = wsi_common_get_images(swapchain, &n_images, images);
667
668 if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
669 free(images);
670 return NULL;
671 }
672
673 ANV_FROM_HANDLE(anv_image, image, images[index]);
674 free(images);
675
676 return image;
677 }
678
679 static VkResult
680 anv_image_from_swapchain(VkDevice device,
681 const VkImageCreateInfo *pCreateInfo,
682 const VkImageSwapchainCreateInfoKHR *swapchain_info,
683 const VkAllocationCallbacks *pAllocator,
684 VkImage *pImage)
685 {
686 struct anv_image *swapchain_image = anv_swapchain_get_image(swapchain_info->swapchain, 0);
687 assert(swapchain_image);
688
689 assert(swapchain_image->type == pCreateInfo->imageType);
690 assert(swapchain_image->vk_format == pCreateInfo->format);
691 assert(swapchain_image->extent.width == pCreateInfo->extent.width);
692 assert(swapchain_image->extent.height == pCreateInfo->extent.height);
693 assert(swapchain_image->extent.depth == pCreateInfo->extent.depth);
694 assert(swapchain_image->array_size == pCreateInfo->arrayLayers);
695 /* Color attachment is added by the wsi code. */
696 assert(swapchain_image->usage == (pCreateInfo->usage | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT));
697
698 VkImageCreateInfo local_create_info;
699 local_create_info = *pCreateInfo;
700 local_create_info.pNext = NULL;
701 /* The following parameters are implictly selected by the wsi code. */
702 local_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
703 local_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
704 local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
705
706 /* If the image has a particular modifier, specify that modifier. */
707 struct wsi_image_create_info local_wsi_info = {
708 .sType = VK_STRUCTURE_TYPE_WSI_IMAGE_CREATE_INFO_MESA,
709 .modifier_count = 1,
710 .modifiers = &swapchain_image->drm_format_mod,
711 };
712 if (swapchain_image->drm_format_mod != DRM_FORMAT_MOD_INVALID)
713 __vk_append_struct(&local_create_info, &local_wsi_info);
714
715 return anv_image_create(device,
716 &(struct anv_image_create_info) {
717 .vk_info = &local_create_info,
718 .external_format = swapchain_image->external_format,
719 },
720 pAllocator,
721 pImage);
722 }
723
724 VkResult
725 anv_CreateImage(VkDevice device,
726 const VkImageCreateInfo *pCreateInfo,
727 const VkAllocationCallbacks *pAllocator,
728 VkImage *pImage)
729 {
730 const struct VkExternalMemoryImageCreateInfo *create_info =
731 vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO);
732
733 if (create_info && (create_info->handleTypes &
734 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))
735 return anv_image_from_external(device, pCreateInfo, create_info,
736 pAllocator, pImage);
737
738 const VkNativeBufferANDROID *gralloc_info =
739 vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
740 if (gralloc_info)
741 return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
742 pAllocator, pImage);
743
744 const VkImageSwapchainCreateInfoKHR *swapchain_info =
745 vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
746 if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
747 return anv_image_from_swapchain(device, pCreateInfo, swapchain_info,
748 pAllocator, pImage);
749
750 return anv_image_create(device,
751 &(struct anv_image_create_info) {
752 .vk_info = pCreateInfo,
753 },
754 pAllocator,
755 pImage);
756 }
757
758 void
759 anv_DestroyImage(VkDevice _device, VkImage _image,
760 const VkAllocationCallbacks *pAllocator)
761 {
762 ANV_FROM_HANDLE(anv_device, device, _device);
763 ANV_FROM_HANDLE(anv_image, image, _image);
764
765 if (!image)
766 return;
767
768 for (uint32_t p = 0; p < image->n_planes; ++p) {
769 if (image->planes[p].bo_is_owned) {
770 assert(image->planes[p].address.bo != NULL);
771 anv_bo_cache_release(device, &device->bo_cache,
772 image->planes[p].address.bo);
773 }
774 }
775
776 vk_free2(&device->alloc, pAllocator, image);
777 }
778
779 static void anv_image_bind_memory_plane(struct anv_device *device,
780 struct anv_image *image,
781 uint32_t plane,
782 struct anv_device_memory *memory,
783 uint32_t memory_offset)
784 {
785 assert(!image->planes[plane].bo_is_owned);
786
787 if (!memory) {
788 image->planes[plane].address = ANV_NULL_ADDRESS;
789 return;
790 }
791
792 image->planes[plane].address = (struct anv_address) {
793 .bo = memory->bo,
794 .offset = memory_offset,
795 };
796 }
797
798 /* We are binding AHardwareBuffer. Get a description, resolve the
799 * format and prepare anv_image properly.
800 */
801 static void
802 resolve_ahw_image(struct anv_device *device,
803 struct anv_image *image,
804 struct anv_device_memory *mem)
805 {
806 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
807 assert(mem->ahw);
808 AHardwareBuffer_Desc desc;
809 AHardwareBuffer_describe(mem->ahw, &desc);
810
811 /* Check tiling. */
812 int i915_tiling = anv_gem_get_tiling(device, mem->bo->gem_handle);
813 VkImageTiling vk_tiling;
814 isl_tiling_flags_t isl_tiling_flags = 0;
815
816 switch (i915_tiling) {
817 case I915_TILING_NONE:
818 vk_tiling = VK_IMAGE_TILING_LINEAR;
819 isl_tiling_flags = ISL_TILING_LINEAR_BIT;
820 break;
821 case I915_TILING_X:
822 vk_tiling = VK_IMAGE_TILING_OPTIMAL;
823 isl_tiling_flags = ISL_TILING_X_BIT;
824 break;
825 case I915_TILING_Y:
826 vk_tiling = VK_IMAGE_TILING_OPTIMAL;
827 isl_tiling_flags = ISL_TILING_Y0_BIT;
828 break;
829 case -1:
830 default:
831 unreachable("Invalid tiling flags.");
832 }
833
834 assert(vk_tiling == VK_IMAGE_TILING_LINEAR ||
835 vk_tiling == VK_IMAGE_TILING_OPTIMAL);
836
837 /* Check format. */
838 VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
839 enum isl_format isl_fmt = anv_get_isl_format(&device->info,
840 vk_format,
841 VK_IMAGE_ASPECT_COLOR_BIT,
842 vk_tiling);
843 assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);
844
845 /* Handle RGB(X)->RGBA fallback. */
846 switch (desc.format) {
847 case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
848 case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
849 if (isl_format_is_rgb(isl_fmt))
850 isl_fmt = isl_format_rgb_to_rgba(isl_fmt);
851 break;
852 }
853
854 /* Now we are able to fill anv_image fields properly and create
855 * isl_surface for it.
856 */
857 image->vk_format = vk_format;
858 image->format = anv_get_format(vk_format);
859 image->aspects = vk_format_aspects(image->vk_format);
860 image->n_planes = image->format->n_planes;
861 image->ccs_e_compatible = false;
862
863 uint32_t stride = desc.stride *
864 (isl_format_get_layout(isl_fmt)->bpb / 8);
865
866 uint32_t b;
867 for_each_bit(b, image->aspects) {
868 VkResult r = make_surface(device, image, stride, isl_tiling_flags,
869 ISL_SURF_USAGE_DISABLE_AUX_BIT, (1 << b));
870 assert(r == VK_SUCCESS);
871 }
872 #endif
873 }
874
875 VkResult anv_BindImageMemory(
876 VkDevice _device,
877 VkImage _image,
878 VkDeviceMemory _memory,
879 VkDeviceSize memoryOffset)
880 {
881 ANV_FROM_HANDLE(anv_device, device, _device);
882 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
883 ANV_FROM_HANDLE(anv_image, image, _image);
884
885 if (mem->ahw)
886 resolve_ahw_image(device, image, mem);
887
888 uint32_t aspect_bit;
889 anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
890 uint32_t plane =
891 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
892 anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
893 }
894
895 return VK_SUCCESS;
896 }
897
898 VkResult anv_BindImageMemory2(
899 VkDevice _device,
900 uint32_t bindInfoCount,
901 const VkBindImageMemoryInfo* pBindInfos)
902 {
903 ANV_FROM_HANDLE(anv_device, device, _device);
904
905 for (uint32_t i = 0; i < bindInfoCount; i++) {
906 const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
907 ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
908 ANV_FROM_HANDLE(anv_image, image, bind_info->image);
909
910 /* Resolve will alter the image's aspects, do this first. */
911 if (mem && mem->ahw)
912 resolve_ahw_image(device, image, mem);
913
914 VkImageAspectFlags aspects = image->aspects;
915 vk_foreach_struct_const(s, bind_info->pNext) {
916 switch (s->sType) {
917 case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
918 const VkBindImagePlaneMemoryInfo *plane_info =
919 (const VkBindImagePlaneMemoryInfo *) s;
920
921 aspects = plane_info->planeAspect;
922 break;
923 }
924 case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
925 const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
926 (const VkBindImageMemorySwapchainInfoKHR *) s;
927 struct anv_image *swapchain_image =
928 anv_swapchain_get_image(swapchain_info->swapchain,
929 swapchain_info->imageIndex);
930 assert(swapchain_image);
931 assert(image->aspects == swapchain_image->aspects);
932 assert(mem == NULL);
933
934 uint32_t aspect_bit;
935 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
936 uint32_t plane =
937 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
938 struct anv_device_memory mem = {
939 .bo = swapchain_image->planes[plane].address.bo,
940 };
941 anv_image_bind_memory_plane(device, image, plane,
942 &mem, bind_info->memoryOffset);
943 }
944 break;
945 }
946 default:
947 anv_debug_ignored_stype(s->sType);
948 break;
949 }
950 }
951
952 /* VkBindImageMemorySwapchainInfoKHR requires memory to be
953 * VK_NULL_HANDLE. In such case, just carry one with the next bind
954 * item.
955 */
956 if (!mem)
957 continue;
958
959 uint32_t aspect_bit;
960 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
961 uint32_t plane =
962 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
963 anv_image_bind_memory_plane(device, image, plane,
964 mem, bind_info->memoryOffset);
965 }
966 }
967
968 return VK_SUCCESS;
969 }
970
971 void anv_GetImageSubresourceLayout(
972 VkDevice device,
973 VkImage _image,
974 const VkImageSubresource* subresource,
975 VkSubresourceLayout* layout)
976 {
977 ANV_FROM_HANDLE(anv_image, image, _image);
978
979 const struct anv_surface *surface;
980 if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT &&
981 image->drm_format_mod != DRM_FORMAT_MOD_INVALID &&
982 isl_drm_modifier_has_aux(image->drm_format_mod))
983 surface = &image->planes[0].aux_surface;
984 else
985 surface = get_surface(image, subresource->aspectMask);
986
987 assert(__builtin_popcount(subresource->aspectMask) == 1);
988
989 layout->offset = surface->offset;
990 layout->rowPitch = surface->isl.row_pitch_B;
991 layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
992 layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
993
994 if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
995 assert(surface->isl.tiling == ISL_TILING_LINEAR);
996
997 uint32_t offset_B;
998 isl_surf_get_image_offset_B_tile_sa(&surface->isl,
999 subresource->mipLevel,
1000 subresource->arrayLayer,
1001 0 /* logical_z_offset_px */,
1002 &offset_B, NULL, NULL);
1003 layout->offset += offset_B;
1004 layout->size = layout->rowPitch * anv_minify(image->extent.height,
1005 subresource->mipLevel);
1006 } else {
1007 layout->size = surface->isl.size_B;
1008 }
1009 }
1010
1011 /**
1012 * This function determines the optimal buffer to use for a given
1013 * VkImageLayout and other pieces of information needed to make that
1014 * determination. This does not determine the optimal buffer to use
1015 * during a resolve operation.
1016 *
1017 * @param devinfo The device information of the Intel GPU.
1018 * @param image The image that may contain a collection of buffers.
1019 * @param aspect The aspect of the image to be accessed.
1020 * @param layout The current layout of the image aspect(s).
1021 *
1022 * @return The primary buffer that should be used for the given layout.
1023 */
1024 enum isl_aux_usage
1025 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
1026 const struct anv_image * const image,
1027 const VkImageAspectFlagBits aspect,
1028 const VkImageLayout layout)
1029 {
1030 /* Validate the inputs. */
1031
1032 /* The devinfo is needed as the optimal buffer varies across generations. */
1033 assert(devinfo != NULL);
1034
1035 /* The layout of a NULL image is not properly defined. */
1036 assert(image != NULL);
1037
1038 /* The aspect must be exactly one of the image aspects. */
1039 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
1040
1041 /* Determine the optimal buffer. */
1042
1043 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1044
1045 /* If there is no auxiliary surface allocated, we must use the one and only
1046 * main buffer.
1047 */
1048 if (image->planes[plane].aux_surface.isl.size_B == 0)
1049 return ISL_AUX_USAGE_NONE;
1050
1051 /* All images that use an auxiliary surface are required to be tiled. */
1052 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
1053
1054 /* Stencil has no aux */
1055 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
1056
1057 switch (layout) {
1058
1059 /* Invalid Layouts */
1060 case VK_IMAGE_LAYOUT_RANGE_SIZE:
1061 case VK_IMAGE_LAYOUT_MAX_ENUM:
1062 unreachable("Invalid image layout.");
1063
1064 /* Undefined layouts
1065 *
1066 * The pre-initialized layout is equivalent to the undefined layout for
1067 * optimally-tiled images. We can only do color compression (CCS or HiZ)
1068 * on tiled images.
1069 */
1070 case VK_IMAGE_LAYOUT_UNDEFINED:
1071 case VK_IMAGE_LAYOUT_PREINITIALIZED:
1072 return ISL_AUX_USAGE_NONE;
1073
1074
1075 /* Transfer Layouts
1076 */
1077 case VK_IMAGE_LAYOUT_GENERAL:
1078 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
1079 case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
1080 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1081 /* This buffer could be a depth buffer used in a transfer operation.
1082 * BLORP currently doesn't use HiZ for transfer operations so we must
1083 * use the main buffer for this layout. TODO: Enable HiZ in BLORP.
1084 */
1085 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ);
1086 return ISL_AUX_USAGE_NONE;
1087 } else {
1088 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1089 return image->planes[plane].aux_usage;
1090 }
1091
1092
1093 /* Sampling Layouts */
1094 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
1095 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
1096 assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1097 /* Fall-through */
1098 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
1099 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1100 if (anv_can_sample_with_hiz(devinfo, image))
1101 return ISL_AUX_USAGE_HIZ;
1102 else
1103 return ISL_AUX_USAGE_NONE;
1104 } else {
1105 return image->planes[plane].aux_usage;
1106 }
1107
1108
1109 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
1110 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1111
1112 /* When handing the image off to the presentation engine, we need to
1113 * ensure that things are properly resolved. For images with no
1114 * modifier, we assume that they follow the old rules and always need
1115 * a full resolve because the PE doesn't understand any form of
1116 * compression. For images with modifiers, we use the aux usage from
1117 * the modifier.
1118 */
1119 const struct isl_drm_modifier_info *mod_info =
1120 isl_drm_modifier_get_info(image->drm_format_mod);
1121 return mod_info ? mod_info->aux_usage : ISL_AUX_USAGE_NONE;
1122 }
1123
1124
1125 /* Rendering Layouts */
1126 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
1127 assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1128 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) {
1129 assert(image->samples == 1);
1130 return ISL_AUX_USAGE_CCS_D;
1131 } else {
1132 assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D);
1133 return image->planes[plane].aux_usage;
1134 }
1135
1136 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
1137 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
1138 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
1139 return ISL_AUX_USAGE_HIZ;
1140
1141 case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
1142 unreachable("VK_KHR_shared_presentable_image is unsupported");
1143
1144 case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT:
1145 unreachable("VK_EXT_fragment_density_map is unsupported");
1146
1147 case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV:
1148 unreachable("VK_NV_shading_rate_image is unsupported");
1149 }
1150
1151 /* If the layout isn't recognized in the exhaustive switch above, the
1152 * VkImageLayout value is not defined in vulkan.h.
1153 */
1154 unreachable("layout is not a VkImageLayout enumeration member.");
1155 }
1156
1157 /**
1158 * This function returns the level of unresolved fast-clear support of the
1159 * given image in the given VkImageLayout.
1160 *
1161 * @param devinfo The device information of the Intel GPU.
1162 * @param image The image that may contain a collection of buffers.
1163 * @param aspect The aspect of the image to be accessed.
1164 * @param layout The current layout of the image aspect(s).
1165 */
1166 enum anv_fast_clear_type
1167 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
1168 const struct anv_image * const image,
1169 const VkImageAspectFlagBits aspect,
1170 const VkImageLayout layout)
1171 {
1172 /* The aspect must be exactly one of the image aspects. */
1173 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
1174
1175 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1176
1177 /* If there is no auxiliary surface allocated, there are no fast-clears */
1178 if (image->planes[plane].aux_surface.isl.size_B == 0)
1179 return ANV_FAST_CLEAR_NONE;
1180
1181 /* All images that use an auxiliary surface are required to be tiled. */
1182 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
1183
1184 /* Stencil has no aux */
1185 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
1186
1187 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1188 /* For depth images (with HiZ), the layout supports fast-clears if and
1189 * only if it supports HiZ. However, we only support fast-clears to the
1190 * default depth value.
1191 */
1192 enum isl_aux_usage aux_usage =
1193 anv_layout_to_aux_usage(devinfo, image, aspect, layout);
1194 return aux_usage == ISL_AUX_USAGE_HIZ ?
1195 ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE;
1196 }
1197
1198 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1199
1200 /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
1201 * lack the MI ALU which we need to determine the predicates.
1202 */
1203 if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1)
1204 return ANV_FAST_CLEAR_NONE;
1205
1206 switch (layout) {
1207 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
1208 return ANV_FAST_CLEAR_ANY;
1209
1210 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
1211 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1212 #ifndef NDEBUG
1213 /* We do not yet support any modifiers which support clear color so we
1214 * just always return NONE. One day, this will change.
1215 */
1216 const struct isl_drm_modifier_info *mod_info =
1217 isl_drm_modifier_get_info(image->drm_format_mod);
1218 assert(!mod_info || !mod_info->supports_clear_color);
1219 #endif
1220 return ANV_FAST_CLEAR_NONE;
1221 }
1222
1223 default:
1224 /* If the image has MCS or CCS_E enabled all the time then we can use
1225 * fast-clear as long as the clear color is the default value of zero
1226 * since this is the default value we program into every surface state
1227 * used for texturing.
1228 */
1229 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
1230 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
1231 return ANV_FAST_CLEAR_DEFAULT_VALUE;
1232 else
1233 return ANV_FAST_CLEAR_NONE;
1234 }
1235 }
1236
1237
1238 static struct anv_state
1239 alloc_surface_state(struct anv_device *device)
1240 {
1241 return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1242 }
1243
1244 static enum isl_channel_select
1245 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
1246 struct isl_swizzle format_swizzle)
1247 {
1248 if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
1249 swizzle = component;
1250
1251 switch (swizzle) {
1252 case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
1253 case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
1254 case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
1255 case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
1256 case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
1257 case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
1258 default:
1259 unreachable("Invalid swizzle");
1260 }
1261 }
1262
1263 void
1264 anv_image_fill_surface_state(struct anv_device *device,
1265 const struct anv_image *image,
1266 VkImageAspectFlagBits aspect,
1267 const struct isl_view *view_in,
1268 isl_surf_usage_flags_t view_usage,
1269 enum isl_aux_usage aux_usage,
1270 const union isl_color_value *clear_color,
1271 enum anv_image_view_state_flags flags,
1272 struct anv_surface_state *state_inout,
1273 struct brw_image_param *image_param_out)
1274 {
1275 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1276
1277 const struct anv_surface *surface = &image->planes[plane].surface,
1278 *aux_surface = &image->planes[plane].aux_surface;
1279
1280 struct isl_view view = *view_in;
1281 view.usage |= view_usage;
1282
1283 /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
1284 * compressed surface with a shadow surface, we use the shadow instead of
1285 * the primary surface. The shadow surface will be tiled, unlike the main
1286 * surface, so it should get significantly better performance.
1287 */
1288 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1289 isl_format_is_compressed(view.format) &&
1290 (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
1291 assert(isl_format_is_compressed(surface->isl.format));
1292 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1293 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1294 surface = &image->planes[plane].shadow_surface;
1295 }
1296
1297 /* For texturing from stencil on gen7, we have to sample from a shadow
1298 * surface because we don't support W-tiling in the sampler.
1299 */
1300 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1301 aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
1302 assert(device->info.gen == 7);
1303 assert(view_usage & ISL_SURF_USAGE_TEXTURE_BIT);
1304 surface = &image->planes[plane].shadow_surface;
1305 }
1306
1307 if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
1308 view.swizzle = anv_swizzle_for_render(view.swizzle);
1309
1310 /* On Ivy Bridge and Bay Trail we do the swizzle in the shader */
1311 if (device->info.gen == 7 && !device->info.is_haswell)
1312 view.swizzle = ISL_SWIZZLE_IDENTITY;
1313
1314 /* If this is a HiZ buffer we can sample from with a programmable clear
1315 * value (SKL+), define the clear value to the optimal constant.
1316 */
1317 union isl_color_value default_clear_color = { .u32 = { 0, } };
1318 if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
1319 default_clear_color.f32[0] = ANV_HZ_FC_VAL;
1320 if (!clear_color)
1321 clear_color = &default_clear_color;
1322
1323 const struct anv_address address =
1324 anv_address_add(image->planes[plane].address, surface->offset);
1325
1326 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1327 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
1328 !isl_has_matching_typed_storage_image_format(&device->info,
1329 view.format)) {
1330 /* In this case, we are a writeable storage buffer which needs to be
1331 * lowered to linear. All tiling and offset calculations will be done in
1332 * the shader.
1333 */
1334 assert(aux_usage == ISL_AUX_USAGE_NONE);
1335 isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
1336 .address = anv_address_physical(address),
1337 .size_B = surface->isl.size_B,
1338 .format = ISL_FORMAT_RAW,
1339 .swizzle = ISL_SWIZZLE_IDENTITY,
1340 .stride_B = 1,
1341 .mocs = anv_mocs_for_bo(device, address.bo));
1342 state_inout->address = address,
1343 state_inout->aux_address = ANV_NULL_ADDRESS;
1344 state_inout->clear_address = ANV_NULL_ADDRESS;
1345 } else {
1346 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1347 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
1348 /* Typed surface reads support a very limited subset of the shader
1349 * image formats. Translate it into the closest format the hardware
1350 * supports.
1351 */
1352 assert(aux_usage == ISL_AUX_USAGE_NONE);
1353 view.format = isl_lower_storage_image_format(&device->info,
1354 view.format);
1355 }
1356
1357 const struct isl_surf *isl_surf = &surface->isl;
1358
1359 struct isl_surf tmp_surf;
1360 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1361 if (isl_format_is_compressed(surface->isl.format) &&
1362 !isl_format_is_compressed(view.format)) {
1363 /* We're creating an uncompressed view of a compressed surface. This
1364 * is allowed but only for a single level/layer.
1365 */
1366 assert(surface->isl.samples == 1);
1367 assert(view.levels == 1);
1368 assert(view.array_len == 1);
1369
1370 isl_surf_get_image_surf(&device->isl_dev, isl_surf,
1371 view.base_level,
1372 surface->isl.dim == ISL_SURF_DIM_3D ?
1373 0 : view.base_array_layer,
1374 surface->isl.dim == ISL_SURF_DIM_3D ?
1375 view.base_array_layer : 0,
1376 &tmp_surf,
1377 &offset_B, &tile_x_sa, &tile_y_sa);
1378
1379 /* The newly created image represents the one subimage we're
1380 * referencing with this view so it only has one array slice and
1381 * miplevel.
1382 */
1383 view.base_array_layer = 0;
1384 view.base_level = 0;
1385
1386 /* We're making an uncompressed view here. The image dimensions need
1387 * to be scaled down by the block size.
1388 */
1389 const struct isl_format_layout *fmtl =
1390 isl_format_get_layout(surface->isl.format);
1391 tmp_surf.logical_level0_px =
1392 isl_surf_get_logical_level0_el(&tmp_surf);
1393 tmp_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&tmp_surf);
1394 tmp_surf.format = view.format;
1395 tile_x_sa /= fmtl->bw;
1396 tile_y_sa /= fmtl->bh;
1397
1398 isl_surf = &tmp_surf;
1399
1400 if (device->info.gen <= 8) {
1401 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1402 assert(tile_x_sa == 0);
1403 assert(tile_y_sa == 0);
1404 }
1405 }
1406
1407 state_inout->address = anv_address_add(address, offset_B);
1408
1409 struct anv_address aux_address = ANV_NULL_ADDRESS;
1410 if (aux_usage != ISL_AUX_USAGE_NONE) {
1411 aux_address = anv_address_add(image->planes[plane].address,
1412 aux_surface->offset);
1413 }
1414 state_inout->aux_address = aux_address;
1415
1416 struct anv_address clear_address = ANV_NULL_ADDRESS;
1417 if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) {
1418 if (aux_usage == ISL_AUX_USAGE_HIZ) {
1419 clear_address = (struct anv_address) {
1420 .bo = &device->hiz_clear_bo,
1421 .offset = 0,
1422 };
1423 } else {
1424 clear_address = anv_image_get_clear_color_addr(device, image, aspect);
1425 }
1426 }
1427 state_inout->clear_address = clear_address;
1428
1429 isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1430 .surf = isl_surf,
1431 .view = &view,
1432 .address = anv_address_physical(state_inout->address),
1433 .clear_color = *clear_color,
1434 .aux_surf = &aux_surface->isl,
1435 .aux_usage = aux_usage,
1436 .aux_address = anv_address_physical(aux_address),
1437 .clear_address = anv_address_physical(clear_address),
1438 .use_clear_address = !anv_address_is_null(clear_address),
1439 .mocs = anv_mocs_for_bo(device,
1440 state_inout->address.bo),
1441 .x_offset_sa = tile_x_sa,
1442 .y_offset_sa = tile_y_sa);
1443
1444 /* With the exception of gen8, the bottom 12 bits of the MCS base address
1445 * are used to store other information. This should be ok, however,
1446 * because the surface buffer addresses are always 4K page aligned.
1447 */
1448 uint32_t *aux_addr_dw = state_inout->state.map +
1449 device->isl_dev.ss.aux_addr_offset;
1450 assert((aux_address.offset & 0xfff) == 0);
1451 state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
1452
1453 if (device->info.gen >= 10 && clear_address.bo) {
1454 uint32_t *clear_addr_dw = state_inout->state.map +
1455 device->isl_dev.ss.clear_color_state_offset;
1456 assert((clear_address.offset & 0x3f) == 0);
1457 state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
1458 }
1459 }
1460
1461 if (image_param_out) {
1462 assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1463 isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1464 &surface->isl, &view);
1465 }
1466 }
1467
1468 static VkImageAspectFlags
1469 remap_aspect_flags(VkImageAspectFlags view_aspects)
1470 {
1471 if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1472 if (util_bitcount(view_aspects) == 1)
1473 return VK_IMAGE_ASPECT_COLOR_BIT;
1474
1475 VkImageAspectFlags color_aspects = 0;
1476 for (uint32_t i = 0; i < util_bitcount(view_aspects); i++)
1477 color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i;
1478 return color_aspects;
1479 }
1480 /* No special remapping needed for depth & stencil aspects. */
1481 return view_aspects;
1482 }
1483
1484 static uint32_t
1485 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
1486 {
1487 uint32_t planes = 0;
1488
1489 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
1490 VK_IMAGE_ASPECT_DEPTH_BIT |
1491 VK_IMAGE_ASPECT_STENCIL_BIT |
1492 VK_IMAGE_ASPECT_PLANE_0_BIT))
1493 planes++;
1494 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT)
1495 planes++;
1496 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT)
1497 planes++;
1498
1499 if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 &&
1500 (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
1501 planes++;
1502
1503 return planes;
1504 }
1505
1506 VkResult
1507 anv_CreateImageView(VkDevice _device,
1508 const VkImageViewCreateInfo *pCreateInfo,
1509 const VkAllocationCallbacks *pAllocator,
1510 VkImageView *pView)
1511 {
1512 ANV_FROM_HANDLE(anv_device, device, _device);
1513 ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1514 struct anv_image_view *iview;
1515
1516 iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1517 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1518 if (iview == NULL)
1519 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1520
1521 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1522
1523 assert(range->layerCount > 0);
1524 assert(range->baseMipLevel < image->levels);
1525
1526 /* Check if a conversion info was passed. */
1527 const struct anv_format *conv_format = NULL;
1528 const struct VkSamplerYcbcrConversionInfo *conv_info =
1529 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
1530
1531 /* If image has an external format, the pNext chain must contain an instance of
1532 * VKSamplerYcbcrConversionInfo with a conversion object created with the same
1533 * external format as image."
1534 */
1535 assert(!image->external_format || conv_info);
1536
1537 if (conv_info) {
1538 ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion, conv_info->conversion);
1539 conv_format = conversion->format;
1540 }
1541
1542 VkImageUsageFlags image_usage = 0;
1543 if (range->aspectMask & ~VK_IMAGE_ASPECT_STENCIL_BIT)
1544 image_usage |= image->usage;
1545 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
1546 image_usage |= image->stencil_usage;
1547
1548 const VkImageViewUsageCreateInfo *usage_info =
1549 vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO);
1550 VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image_usage;
1551
1552 /* View usage should be a subset of image usage */
1553 assert((view_usage & ~image_usage) == 0);
1554 assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1555 VK_IMAGE_USAGE_STORAGE_BIT |
1556 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1557 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1558 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1559
1560 switch (image->type) {
1561 default:
1562 unreachable("bad VkImageType");
1563 case VK_IMAGE_TYPE_1D:
1564 case VK_IMAGE_TYPE_2D:
1565 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1566 break;
1567 case VK_IMAGE_TYPE_3D:
1568 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1569 <= anv_minify(image->extent.depth, range->baseMipLevel));
1570 break;
1571 }
1572
1573 /* First expand aspects to the image's ones (for example
1574 * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1575 * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT |
1576 * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format
1577 * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM.
1578 */
1579 VkImageAspectFlags expanded_aspects =
1580 anv_image_expand_aspects(image, range->aspectMask);
1581
1582 iview->image = image;
1583
1584 /* Remap the expanded aspects for the image view. For example if only
1585 * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will
1586 * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1587 * the image view, it only has a single plane.
1588 */
1589 iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1590 iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1591 iview->vk_format = pCreateInfo->format;
1592
1593 /* "If image has an external format, format must be VK_FORMAT_UNDEFINED." */
1594 assert(!image->external_format || pCreateInfo->format == VK_FORMAT_UNDEFINED);
1595
1596 /* Format is undefined, this can happen when using external formats. Set
1597 * view format from the passed conversion info.
1598 */
1599 if (iview->vk_format == VK_FORMAT_UNDEFINED && conv_format)
1600 iview->vk_format = conv_format->vk_format;
1601
1602 iview->extent = (VkExtent3D) {
1603 .width = anv_minify(image->extent.width , range->baseMipLevel),
1604 .height = anv_minify(image->extent.height, range->baseMipLevel),
1605 .depth = anv_minify(image->extent.depth , range->baseMipLevel),
1606 };
1607
1608 /* Now go through the underlying image selected planes (computed in
1609 * expanded_aspects) and map them to planes in the image view.
1610 */
1611 uint32_t iaspect_bit, vplane = 0;
1612 anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1613 uint32_t iplane =
1614 anv_image_aspect_to_plane(image->aspects, 1UL << iaspect_bit);
1615 VkImageAspectFlags vplane_aspect =
1616 anv_plane_to_aspect(iview->aspect_mask, vplane);
1617 struct anv_format_plane format =
1618 anv_get_format_plane(&device->info, iview->vk_format,
1619 vplane_aspect, image->tiling);
1620
1621 iview->planes[vplane].image_plane = iplane;
1622
1623 iview->planes[vplane].isl = (struct isl_view) {
1624 .format = format.isl_format,
1625 .base_level = range->baseMipLevel,
1626 .levels = anv_get_levelCount(image, range),
1627 .base_array_layer = range->baseArrayLayer,
1628 .array_len = anv_get_layerCount(image, range),
1629 .swizzle = {
1630 .r = remap_swizzle(pCreateInfo->components.r,
1631 VK_COMPONENT_SWIZZLE_R, format.swizzle),
1632 .g = remap_swizzle(pCreateInfo->components.g,
1633 VK_COMPONENT_SWIZZLE_G, format.swizzle),
1634 .b = remap_swizzle(pCreateInfo->components.b,
1635 VK_COMPONENT_SWIZZLE_B, format.swizzle),
1636 .a = remap_swizzle(pCreateInfo->components.a,
1637 VK_COMPONENT_SWIZZLE_A, format.swizzle),
1638 },
1639 };
1640
1641 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1642 iview->planes[vplane].isl.base_array_layer = 0;
1643 iview->planes[vplane].isl.array_len = iview->extent.depth;
1644 }
1645
1646 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1647 pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1648 iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1649 } else {
1650 iview->planes[vplane].isl.usage = 0;
1651 }
1652
1653 if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1654 (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1655 !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1656 iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1657 iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1658
1659 enum isl_aux_usage general_aux_usage =
1660 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1661 VK_IMAGE_LAYOUT_GENERAL);
1662 enum isl_aux_usage optimal_aux_usage =
1663 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1664 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1665
1666 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1667 &iview->planes[vplane].isl,
1668 ISL_SURF_USAGE_TEXTURE_BIT,
1669 optimal_aux_usage, NULL,
1670 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1671 &iview->planes[vplane].optimal_sampler_surface_state,
1672 NULL);
1673
1674 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1675 &iview->planes[vplane].isl,
1676 ISL_SURF_USAGE_TEXTURE_BIT,
1677 general_aux_usage, NULL,
1678 0,
1679 &iview->planes[vplane].general_sampler_surface_state,
1680 NULL);
1681 }
1682
1683 /* NOTE: This one needs to go last since it may stomp isl_view.format */
1684 if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1685 iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1686 iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1687
1688 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1689 &iview->planes[vplane].isl,
1690 ISL_SURF_USAGE_STORAGE_BIT,
1691 ISL_AUX_USAGE_NONE, NULL,
1692 0,
1693 &iview->planes[vplane].storage_surface_state,
1694 &iview->planes[vplane].storage_image_param);
1695
1696 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1697 &iview->planes[vplane].isl,
1698 ISL_SURF_USAGE_STORAGE_BIT,
1699 ISL_AUX_USAGE_NONE, NULL,
1700 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1701 &iview->planes[vplane].writeonly_storage_surface_state,
1702 NULL);
1703 }
1704
1705 vplane++;
1706 }
1707
1708 *pView = anv_image_view_to_handle(iview);
1709
1710 return VK_SUCCESS;
1711 }
1712
1713 void
1714 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1715 const VkAllocationCallbacks *pAllocator)
1716 {
1717 ANV_FROM_HANDLE(anv_device, device, _device);
1718 ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1719
1720 if (!iview)
1721 return;
1722
1723 for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1724 if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1725 anv_state_pool_free(&device->surface_state_pool,
1726 iview->planes[plane].optimal_sampler_surface_state.state);
1727 }
1728
1729 if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1730 anv_state_pool_free(&device->surface_state_pool,
1731 iview->planes[plane].general_sampler_surface_state.state);
1732 }
1733
1734 if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1735 anv_state_pool_free(&device->surface_state_pool,
1736 iview->planes[plane].storage_surface_state.state);
1737 }
1738
1739 if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1740 anv_state_pool_free(&device->surface_state_pool,
1741 iview->planes[plane].writeonly_storage_surface_state.state);
1742 }
1743 }
1744
1745 vk_free2(&device->alloc, pAllocator, iview);
1746 }
1747
1748
1749 VkResult
1750 anv_CreateBufferView(VkDevice _device,
1751 const VkBufferViewCreateInfo *pCreateInfo,
1752 const VkAllocationCallbacks *pAllocator,
1753 VkBufferView *pView)
1754 {
1755 ANV_FROM_HANDLE(anv_device, device, _device);
1756 ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1757 struct anv_buffer_view *view;
1758
1759 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1760 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1761 if (!view)
1762 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1763
1764 /* TODO: Handle the format swizzle? */
1765
1766 view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1767 VK_IMAGE_ASPECT_COLOR_BIT,
1768 VK_IMAGE_TILING_LINEAR);
1769 const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1770 view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1771 pCreateInfo->range);
1772 view->range = align_down_npot_u32(view->range, format_bs);
1773
1774 view->address = anv_address_add(buffer->address, pCreateInfo->offset);
1775
1776 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1777 view->surface_state = alloc_surface_state(device);
1778
1779 anv_fill_buffer_surface_state(device, view->surface_state,
1780 view->format,
1781 view->address, view->range, format_bs);
1782 } else {
1783 view->surface_state = (struct anv_state){ 0 };
1784 }
1785
1786 if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1787 view->storage_surface_state = alloc_surface_state(device);
1788 view->writeonly_storage_surface_state = alloc_surface_state(device);
1789
1790 enum isl_format storage_format =
1791 isl_has_matching_typed_storage_image_format(&device->info,
1792 view->format) ?
1793 isl_lower_storage_image_format(&device->info, view->format) :
1794 ISL_FORMAT_RAW;
1795
1796 anv_fill_buffer_surface_state(device, view->storage_surface_state,
1797 storage_format,
1798 view->address, view->range,
1799 (storage_format == ISL_FORMAT_RAW ? 1 :
1800 isl_format_get_layout(storage_format)->bpb / 8));
1801
1802 /* Write-only accesses should use the original format. */
1803 anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1804 view->format,
1805 view->address, view->range,
1806 isl_format_get_layout(view->format)->bpb / 8);
1807
1808 isl_buffer_fill_image_param(&device->isl_dev,
1809 &view->storage_image_param,
1810 view->format, view->range);
1811 } else {
1812 view->storage_surface_state = (struct anv_state){ 0 };
1813 view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1814 }
1815
1816 *pView = anv_buffer_view_to_handle(view);
1817
1818 return VK_SUCCESS;
1819 }
1820
1821 void
1822 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1823 const VkAllocationCallbacks *pAllocator)
1824 {
1825 ANV_FROM_HANDLE(anv_device, device, _device);
1826 ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1827
1828 if (!view)
1829 return;
1830
1831 if (view->surface_state.alloc_size > 0)
1832 anv_state_pool_free(&device->surface_state_pool,
1833 view->surface_state);
1834
1835 if (view->storage_surface_state.alloc_size > 0)
1836 anv_state_pool_free(&device->surface_state_pool,
1837 view->storage_surface_state);
1838
1839 if (view->writeonly_storage_surface_state.alloc_size > 0)
1840 anv_state_pool_free(&device->surface_state_pool,
1841 view->writeonly_storage_surface_state);
1842
1843 vk_free2(&device->alloc, pAllocator, view);
1844 }
1845
1846 const struct anv_surface *
1847 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1848 VkImageAspectFlags aspect_mask)
1849 {
1850 VkImageAspectFlags sanitized_mask;
1851
1852 switch (aspect_mask) {
1853 case VK_IMAGE_ASPECT_COLOR_BIT:
1854 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1855 sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1856 break;
1857 case VK_IMAGE_ASPECT_DEPTH_BIT:
1858 assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1859 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1860 break;
1861 case VK_IMAGE_ASPECT_STENCIL_BIT:
1862 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1863 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1864 break;
1865 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1866 /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1867 * combined depth stencil formats. Specifically, it states:
1868 *
1869 * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1870 * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1871 *
1872 * Image views with both depth and stencil aspects are only valid for
1873 * render target attachments, in which case
1874 * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1875 * stencil surfaces from the underlying surface.
1876 */
1877 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1878 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1879 } else {
1880 assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1881 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1882 }
1883 break;
1884 case VK_IMAGE_ASPECT_PLANE_0_BIT:
1885 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1886 sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT;
1887 break;
1888 case VK_IMAGE_ASPECT_PLANE_1_BIT:
1889 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1890 sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT;
1891 break;
1892 case VK_IMAGE_ASPECT_PLANE_2_BIT:
1893 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1894 sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT;
1895 break;
1896 default:
1897 unreachable("image does not have aspect");
1898 return NULL;
1899 }
1900
1901 uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1902 return &image->planes[plane].surface;
1903 }