anv: Enable SPV_INTEL_shader_integer_functions2 and VK_INTEL_shader_integer_functions2
[mesa.git] / src / intel / vulkan / anv_image.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include "drm-uapi/drm_fourcc.h"
31
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35 #include "util/u_math.h"
36
37 #include "common/gen_aux_map.h"
38
39 #include "vk_format_info.h"
40
41 static isl_surf_usage_flags_t
42 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
43 VkImageUsageFlags vk_usage,
44 isl_surf_usage_flags_t isl_extra_usage,
45 VkImageAspectFlagBits aspect)
46 {
47 isl_surf_usage_flags_t isl_usage = isl_extra_usage;
48
49 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
50 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
51
52 if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
53 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
54
55 if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
56 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
57
58 if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
59 isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
60
61 /* Even if we're only using it for transfer operations, clears to depth and
62 * stencil images happen as depth and stencil so they need the right ISL
63 * usage bits or else things will fall apart.
64 */
65 switch (aspect) {
66 case VK_IMAGE_ASPECT_DEPTH_BIT:
67 isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
68 break;
69 case VK_IMAGE_ASPECT_STENCIL_BIT:
70 isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
71 break;
72 case VK_IMAGE_ASPECT_COLOR_BIT:
73 case VK_IMAGE_ASPECT_PLANE_0_BIT:
74 case VK_IMAGE_ASPECT_PLANE_1_BIT:
75 case VK_IMAGE_ASPECT_PLANE_2_BIT:
76 break;
77 default:
78 unreachable("bad VkImageAspect");
79 }
80
81 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
82 /* blorp implements transfers by sampling from the source image. */
83 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
84 }
85
86 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
87 aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
88 /* blorp implements transfers by rendering into the destination image.
89 * Only request this with color images, as we deal with depth/stencil
90 * formats differently. */
91 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
92 }
93
94 return isl_usage;
95 }
96
97 static isl_tiling_flags_t
98 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
99 const struct isl_drm_modifier_info *isl_mod_info,
100 bool legacy_scanout)
101 {
102 const VkImageCreateInfo *base_info = anv_info->vk_info;
103 isl_tiling_flags_t flags = 0;
104
105 switch (base_info->tiling) {
106 default:
107 unreachable("bad VkImageTiling");
108 case VK_IMAGE_TILING_OPTIMAL:
109 flags = ISL_TILING_ANY_MASK;
110 break;
111 case VK_IMAGE_TILING_LINEAR:
112 flags = ISL_TILING_LINEAR_BIT;
113 break;
114 case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT:
115 assert(isl_mod_info);
116 flags = 1 << isl_mod_info->tiling;
117 }
118
119 if (anv_info->isl_tiling_flags)
120 flags &= anv_info->isl_tiling_flags;
121
122 if (legacy_scanout)
123 flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT;
124
125 assert(flags);
126
127 return flags;
128 }
129
130 static struct anv_surface *
131 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
132 {
133 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
134 return &image->planes[plane].surface;
135 }
136
137 static void
138 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
139 {
140 assert(surf->isl.size_B > 0); /* isl surface must be initialized */
141
142 if (image->disjoint) {
143 surf->offset = align_u32(image->planes[plane].size,
144 surf->isl.alignment_B);
145 /* Plane offset is always 0 when it's disjoint. */
146 } else {
147 surf->offset = align_u32(image->size, surf->isl.alignment_B);
148 /* Determine plane's offset only once when the first surface is added. */
149 if (image->planes[plane].size == 0)
150 image->planes[plane].offset = image->size;
151 }
152
153 image->size = surf->offset + surf->isl.size_B;
154 image->planes[plane].size = (surf->offset + surf->isl.size_B) - image->planes[plane].offset;
155
156 image->alignment = MAX2(image->alignment, surf->isl.alignment_B);
157 image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
158 surf->isl.alignment_B);
159 }
160
161
162 bool
163 anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
164 VkImageCreateFlags create_flags,
165 VkFormat vk_format,
166 VkImageTiling vk_tiling,
167 const VkImageFormatListCreateInfoKHR *fmt_list)
168 {
169 enum isl_format format =
170 anv_get_isl_format(devinfo, vk_format,
171 VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling);
172
173 if (!isl_format_supports_ccs_e(devinfo, format))
174 return false;
175
176 if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
177 return true;
178
179 if (!fmt_list || fmt_list->viewFormatCount == 0)
180 return false;
181
182 for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
183 enum isl_format view_format =
184 anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
185 VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling);
186
187 if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
188 return false;
189 }
190
191 return true;
192 }
193
194 /**
195 * For color images that have an auxiliary surface, request allocation for an
196 * additional buffer that mainly stores fast-clear values. Use of this buffer
197 * allows us to access the image's subresources while being aware of their
198 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
199 * which a fast clear has occurred).
200 *
201 * In order to avoid having multiple clear colors for a single plane of an
202 * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
203 * the first slice (level 0, layer 0). At the time of our testing (Jan 17,
204 * 2018), there were no known applications which would benefit from fast-
205 * clearing more than just the first slice.
206 *
207 * The fast clear portion of the image is laid out in the following order:
208 *
209 * * 1 or 4 dwords (depending on hardware generation) for the clear color
210 * * 1 dword for the anv_fast_clear_type of the clear color
211 * * On gen9+, 1 dword per level and layer of the image (3D levels count
212 * multiple layers) in level-major order for compression state.
213 *
214 * For the purpose of discoverability, the algorithm used to manage
215 * compression and fast-clears is described here:
216 *
217 * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
218 * all of the values in the fast clear portion of the image are initialized
219 * to default values.
220 *
221 * * On fast-clear, the clear value is written into surface state and also
222 * into the buffer and the fast clear type is set appropriately. Both
223 * setting the fast-clear value in the buffer and setting the fast-clear
224 * type happen from the GPU using MI commands.
225 *
226 * * Whenever a render or blorp operation is performed with CCS_E, we call
227 * genX(cmd_buffer_mark_image_written) to set the compression state to
228 * true (which is represented by UINT32_MAX).
229 *
230 * * On pipeline barrier transitions, the worst-case transition is computed
231 * from the image layouts. The command streamer inspects the fast clear
232 * type and compression state dwords and constructs a predicate. The
233 * worst-case resolve is performed with the given predicate and the fast
234 * clear and compression state is set accordingly.
235 *
236 * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
237 * details on exactly what is allowed in what layouts.
238 *
239 * On gen7-9, we do not have a concept of indirect clear colors in hardware.
240 * In order to deal with this, we have to do some clear color management.
241 *
242 * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
243 * value from the buffer into the surface state with MI commands.
244 *
245 * * For any blorp operations, we pass the address to the clear value into
246 * blorp and it knows to copy the clear color.
247 */
248 static void
249 add_aux_state_tracking_buffer(struct anv_image *image,
250 uint32_t plane,
251 const struct anv_device *device)
252 {
253 assert(image && device);
254 assert(image->planes[plane].aux_surface.isl.size_B > 0 &&
255 image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
256
257 /* Compressed images must be tiled and therefore everything should be 4K
258 * aligned. The CCS has the same alignment requirements. This is good
259 * because we need at least dword-alignment for MI_LOAD/STORE operations.
260 */
261 assert(image->alignment % 4 == 0);
262 assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
263
264 /* This buffer should be at the very end of the plane. */
265 if (image->disjoint) {
266 assert(image->planes[plane].size ==
267 (image->planes[plane].offset + image->planes[plane].size));
268 } else {
269 assert(image->size ==
270 (image->planes[plane].offset + image->planes[plane].size));
271 }
272
273 const unsigned clear_color_state_size = device->info.gen >= 10 ?
274 device->isl_dev.ss.clear_color_state_size :
275 device->isl_dev.ss.clear_value_size;
276
277 /* Clear color and fast clear type */
278 unsigned state_size = clear_color_state_size + 4;
279
280 /* We only need to track compression on CCS_E surfaces. */
281 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
282 if (image->type == VK_IMAGE_TYPE_3D) {
283 for (uint32_t l = 0; l < image->levels; l++)
284 state_size += anv_minify(image->extent.depth, l) * 4;
285 } else {
286 state_size += image->levels * image->array_size * 4;
287 }
288 }
289
290 /* Add some padding to make sure the fast clear color state buffer starts at
291 * a 4K alignment. We believe that 256B might be enough, but due to lack of
292 * testing we will leave this as 4K for now.
293 */
294 image->planes[plane].size = ALIGN(image->planes[plane].size, 4096);
295 image->size = ALIGN(image->size, 4096);
296
297 assert(image->planes[plane].offset % 4096 == 0);
298
299 image->planes[plane].fast_clear_state_offset =
300 image->planes[plane].offset + image->planes[plane].size;
301
302 image->planes[plane].size += state_size;
303 image->size += state_size;
304 }
305
306 /**
307 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
308 * image's memory requirements (that is, the image's size and alignment).
309 */
310 static VkResult
311 make_surface(struct anv_device *dev,
312 struct anv_image *image,
313 uint32_t stride,
314 isl_tiling_flags_t tiling_flags,
315 isl_surf_usage_flags_t isl_extra_usage_flags,
316 VkImageAspectFlagBits aspect)
317 {
318 bool ok;
319
320 static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
321 [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
322 [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
323 [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
324 };
325
326 image->extent = anv_sanitize_image_extent(image->type, image->extent);
327
328 const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
329 const struct anv_format_plane plane_format =
330 anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
331 struct anv_surface *anv_surf = &image->planes[plane].surface;
332
333 const isl_surf_usage_flags_t usage =
334 choose_isl_surf_usage(image->create_flags, image->usage,
335 isl_extra_usage_flags, aspect);
336
337 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
338 * fall back to linear on Broadwell and earlier because we aren't
339 * guaranteed that we can handle offsets correctly. On Sky Lake, the
340 * horizontal and vertical alignments are sufficiently high that we can
341 * just use RENDER_SURFACE_STATE::X/Y Offset.
342 */
343 bool needs_shadow = false;
344 isl_surf_usage_flags_t shadow_usage = 0;
345 if (dev->info.gen <= 8 &&
346 (image->create_flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
347 image->tiling == VK_IMAGE_TILING_OPTIMAL) {
348 assert(isl_format_is_compressed(plane_format.isl_format));
349 tiling_flags = ISL_TILING_LINEAR_BIT;
350 needs_shadow = true;
351 shadow_usage = ISL_SURF_USAGE_TEXTURE_BIT |
352 (usage & ISL_SURF_USAGE_CUBE_BIT);
353 }
354
355 if (dev->info.gen <= 7 &&
356 aspect == VK_IMAGE_ASPECT_STENCIL_BIT &&
357 (image->stencil_usage & VK_IMAGE_USAGE_SAMPLED_BIT)) {
358 needs_shadow = true;
359 shadow_usage = ISL_SURF_USAGE_TEXTURE_BIT |
360 (usage & ISL_SURF_USAGE_CUBE_BIT);
361 }
362
363 ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
364 .dim = vk_to_isl_surf_dim[image->type],
365 .format = plane_format.isl_format,
366 .width = image->extent.width / plane_format.denominator_scales[0],
367 .height = image->extent.height / plane_format.denominator_scales[1],
368 .depth = image->extent.depth,
369 .levels = image->levels,
370 .array_len = image->array_size,
371 .samples = image->samples,
372 .min_alignment_B = 0,
373 .row_pitch_B = stride,
374 .usage = usage,
375 .tiling_flags = tiling_flags);
376
377 if (!ok)
378 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
379
380 image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
381
382 add_surface(image, anv_surf, plane);
383
384 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
385 * create an identical tiled shadow surface for use while texturing so we
386 * don't get garbage performance. If we're on gen7 and the image contains
387 * stencil, then we need to maintain a shadow because we can't texture from
388 * W-tiled images.
389 */
390 if (needs_shadow) {
391 ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
392 .dim = vk_to_isl_surf_dim[image->type],
393 .format = plane_format.isl_format,
394 .width = image->extent.width,
395 .height = image->extent.height,
396 .depth = image->extent.depth,
397 .levels = image->levels,
398 .array_len = image->array_size,
399 .samples = image->samples,
400 .min_alignment_B = 0,
401 .row_pitch_B = stride,
402 .usage = shadow_usage,
403 .tiling_flags = ISL_TILING_ANY_MASK);
404
405 /* isl_surf_init() will fail only if provided invalid input. Invalid input
406 * is illegal in Vulkan.
407 */
408 assert(ok);
409
410 add_surface(image, &image->planes[plane].shadow_surface, plane);
411 }
412
413 /* Add a HiZ surface to a depth buffer that will be used for rendering.
414 */
415 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
416 /* We don't advertise that depth buffers could be used as storage
417 * images.
418 */
419 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
420
421 /* Allow the user to control HiZ enabling. Disable by default on gen7
422 * because resolves are not currently implemented pre-BDW.
423 */
424 if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
425 /* It will never be used as an attachment, HiZ is pointless. */
426 } else if (dev->info.gen == 7) {
427 anv_perf_warn(dev, image, "Implement gen7 HiZ");
428 } else if (image->levels > 1) {
429 anv_perf_warn(dev, image, "Enable multi-LOD HiZ");
430 } else if (image->array_size > 1) {
431 anv_perf_warn(dev, image,
432 "Implement multi-arrayLayer HiZ clears and resolves");
433 } else if (dev->info.gen == 8 && image->samples > 1) {
434 anv_perf_warn(dev, image, "Enable gen8 multisampled HiZ");
435 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
436 assert(image->planes[plane].aux_surface.isl.size_B == 0);
437 ok = isl_surf_get_hiz_surf(&dev->isl_dev,
438 &image->planes[plane].surface.isl,
439 &image->planes[plane].aux_surface.isl);
440 assert(ok);
441 add_surface(image, &image->planes[plane].aux_surface, plane);
442 image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
443 }
444 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples == 1) {
445 /* TODO: Disallow compression with :
446 *
447 * 1) non multiplanar images (We appear to hit a sampler bug with
448 * CCS & R16G16 format. Putting the clear state a page/4096bytes
449 * further fixes the issue).
450 *
451 * 2) alias images, because they might be aliases of images
452 * described in 1)
453 *
454 * 3) compression disabled by debug
455 */
456 const bool allow_compression =
457 image->n_planes == 1 &&
458 (image->create_flags & VK_IMAGE_CREATE_ALIAS_BIT) == 0 &&
459 likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
460
461 if (allow_compression) {
462 assert(image->planes[plane].aux_surface.isl.size_B == 0);
463 ok = isl_surf_get_ccs_surf(&dev->isl_dev,
464 &image->planes[plane].surface.isl,
465 &image->planes[plane].aux_surface.isl,
466 NULL, 0);
467 if (ok) {
468
469 /* Disable CCS when it is not useful (i.e., when you can't render
470 * to the image with CCS enabled).
471 */
472 if (!isl_format_supports_rendering(&dev->info,
473 plane_format.isl_format)) {
474 /* While it may be technically possible to enable CCS for this
475 * image, we currently don't have things hooked up to get it
476 * working.
477 */
478 anv_perf_warn(dev, image,
479 "This image format doesn't support rendering. "
480 "Not allocating an CCS buffer.");
481 image->planes[plane].aux_surface.isl.size_B = 0;
482 return VK_SUCCESS;
483 }
484
485 /* For images created without MUTABLE_FORMAT_BIT set, we know that
486 * they will always be used with the original format. In
487 * particular, they will always be used with a format that
488 * supports color compression. If it's never used as a storage
489 * image, then it will only be used through the sampler or the as
490 * a render target. This means that it's safe to just leave
491 * compression on at all times for these formats.
492 */
493 if (!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
494 image->ccs_e_compatible) {
495 image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
496 } else if (dev->info.gen >= 12) {
497 anv_perf_warn(dev, image,
498 "The CCS_D aux mode is not yet handled on "
499 "Gen12+. Not allocating a CCS buffer.");
500 image->planes[plane].aux_surface.isl.size_B = 0;
501 return VK_SUCCESS;
502 }
503
504 add_surface(image, &image->planes[plane].aux_surface, plane);
505 add_aux_state_tracking_buffer(image, plane, dev);
506 }
507 }
508 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->samples > 1) {
509 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
510 assert(image->planes[plane].aux_surface.isl.size_B == 0);
511 ok = isl_surf_get_mcs_surf(&dev->isl_dev,
512 &image->planes[plane].surface.isl,
513 &image->planes[plane].aux_surface.isl);
514 if (ok) {
515 add_surface(image, &image->planes[plane].aux_surface, plane);
516 add_aux_state_tracking_buffer(image, plane, dev);
517 image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
518 }
519 }
520
521 assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
522
523 /* Upper bound of the last surface should be smaller than the plane's
524 * size.
525 */
526 assert((MAX2(image->planes[plane].surface.offset,
527 image->planes[plane].aux_surface.offset) +
528 (image->planes[plane].aux_surface.isl.size_B > 0 ?
529 image->planes[plane].aux_surface.isl.size_B :
530 image->planes[plane].surface.isl.size_B)) <=
531 (image->planes[plane].offset + image->planes[plane].size));
532
533 if (image->planes[plane].aux_surface.isl.size_B) {
534 /* assert(image->planes[plane].fast_clear_state_offset == */
535 /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size_B)); */
536 assert(image->planes[plane].fast_clear_state_offset <
537 (image->planes[plane].offset + image->planes[plane].size));
538 }
539
540 return VK_SUCCESS;
541 }
542
543 static uint32_t
544 score_drm_format_mod(uint64_t modifier)
545 {
546 switch (modifier) {
547 case DRM_FORMAT_MOD_LINEAR: return 1;
548 case I915_FORMAT_MOD_X_TILED: return 2;
549 case I915_FORMAT_MOD_Y_TILED: return 3;
550 case I915_FORMAT_MOD_Y_TILED_CCS: return 4;
551 default: unreachable("bad DRM format modifier");
552 }
553 }
554
555 static const struct isl_drm_modifier_info *
556 choose_drm_format_mod(const struct anv_physical_device *device,
557 uint32_t modifier_count, const uint64_t *modifiers)
558 {
559 uint64_t best_mod = UINT64_MAX;
560 uint32_t best_score = 0;
561
562 for (uint32_t i = 0; i < modifier_count; ++i) {
563 uint32_t score = score_drm_format_mod(modifiers[i]);
564 if (score > best_score) {
565 best_mod = modifiers[i];
566 best_score = score;
567 }
568 }
569
570 if (best_score > 0)
571 return isl_drm_modifier_get_info(best_mod);
572 else
573 return NULL;
574 }
575
576 VkResult
577 anv_image_create(VkDevice _device,
578 const struct anv_image_create_info *create_info,
579 const VkAllocationCallbacks* alloc,
580 VkImage *pImage)
581 {
582 ANV_FROM_HANDLE(anv_device, device, _device);
583 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
584 const struct isl_drm_modifier_info *isl_mod_info = NULL;
585 struct anv_image *image = NULL;
586 VkResult r;
587
588 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
589
590 const struct wsi_image_create_info *wsi_info =
591 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
592
593 if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
594 const VkImageDrmFormatModifierListCreateInfoEXT *mod_info =
595 vk_find_struct_const(pCreateInfo->pNext,
596 IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
597 isl_mod_info = choose_drm_format_mod(device->physical,
598 mod_info->drmFormatModifierCount,
599 mod_info->pDrmFormatModifiers);
600 assert(isl_mod_info);
601 }
602
603 anv_assert(pCreateInfo->mipLevels > 0);
604 anv_assert(pCreateInfo->arrayLayers > 0);
605 anv_assert(pCreateInfo->samples > 0);
606 anv_assert(pCreateInfo->extent.width > 0);
607 anv_assert(pCreateInfo->extent.height > 0);
608 anv_assert(pCreateInfo->extent.depth > 0);
609
610 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
611 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
612 if (!image)
613 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
614
615 image->type = pCreateInfo->imageType;
616 image->extent = pCreateInfo->extent;
617 image->vk_format = pCreateInfo->format;
618 image->format = anv_get_format(pCreateInfo->format);
619 image->aspects = vk_format_aspects(image->vk_format);
620 image->levels = pCreateInfo->mipLevels;
621 image->array_size = pCreateInfo->arrayLayers;
622 image->samples = pCreateInfo->samples;
623 image->usage = pCreateInfo->usage;
624 image->create_flags = pCreateInfo->flags;
625 image->tiling = pCreateInfo->tiling;
626 image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT;
627 image->needs_set_tiling = wsi_info && wsi_info->scanout;
628 image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
629 DRM_FORMAT_MOD_INVALID;
630
631 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
632 image->stencil_usage = pCreateInfo->usage;
633 const VkImageStencilUsageCreateInfoEXT *stencil_usage_info =
634 vk_find_struct_const(pCreateInfo->pNext,
635 IMAGE_STENCIL_USAGE_CREATE_INFO_EXT);
636 if (stencil_usage_info)
637 image->stencil_usage = stencil_usage_info->stencilUsage;
638 }
639
640 /* In case of external format, We don't know format yet,
641 * so skip the rest for now.
642 */
643 if (create_info->external_format) {
644 image->external_format = true;
645 *pImage = anv_image_to_handle(image);
646 return VK_SUCCESS;
647 }
648
649 const struct anv_format *format = anv_get_format(image->vk_format);
650 assert(format != NULL);
651
652 const isl_tiling_flags_t isl_tiling_flags =
653 choose_isl_tiling_flags(create_info, isl_mod_info,
654 image->needs_set_tiling);
655
656 image->n_planes = format->n_planes;
657
658 const VkImageFormatListCreateInfoKHR *fmt_list =
659 vk_find_struct_const(pCreateInfo->pNext,
660 IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
661
662 image->ccs_e_compatible =
663 anv_formats_ccs_e_compatible(&device->info, image->create_flags,
664 image->vk_format, image->tiling, fmt_list);
665
666 uint32_t b;
667 for_each_bit(b, image->aspects) {
668 r = make_surface(device, image, create_info->stride, isl_tiling_flags,
669 create_info->isl_extra_usage_flags, (1 << b));
670 if (r != VK_SUCCESS)
671 goto fail;
672 }
673
674 *pImage = anv_image_to_handle(image);
675
676 return VK_SUCCESS;
677
678 fail:
679 if (image)
680 vk_free2(&device->alloc, alloc, image);
681
682 return r;
683 }
684
685 static struct anv_image *
686 anv_swapchain_get_image(VkSwapchainKHR swapchain,
687 uint32_t index)
688 {
689 uint32_t n_images = index + 1;
690 VkImage *images = malloc(sizeof(*images) * n_images);
691 VkResult result = wsi_common_get_images(swapchain, &n_images, images);
692
693 if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
694 free(images);
695 return NULL;
696 }
697
698 ANV_FROM_HANDLE(anv_image, image, images[index]);
699 free(images);
700
701 return image;
702 }
703
704 static VkResult
705 anv_image_from_swapchain(VkDevice device,
706 const VkImageCreateInfo *pCreateInfo,
707 const VkImageSwapchainCreateInfoKHR *swapchain_info,
708 const VkAllocationCallbacks *pAllocator,
709 VkImage *pImage)
710 {
711 struct anv_image *swapchain_image = anv_swapchain_get_image(swapchain_info->swapchain, 0);
712 assert(swapchain_image);
713
714 assert(swapchain_image->type == pCreateInfo->imageType);
715 assert(swapchain_image->vk_format == pCreateInfo->format);
716 assert(swapchain_image->extent.width == pCreateInfo->extent.width);
717 assert(swapchain_image->extent.height == pCreateInfo->extent.height);
718 assert(swapchain_image->extent.depth == pCreateInfo->extent.depth);
719 assert(swapchain_image->array_size == pCreateInfo->arrayLayers);
720 /* Color attachment is added by the wsi code. */
721 assert(swapchain_image->usage == (pCreateInfo->usage | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT));
722
723 VkImageCreateInfo local_create_info;
724 local_create_info = *pCreateInfo;
725 local_create_info.pNext = NULL;
726 /* The following parameters are implictly selected by the wsi code. */
727 local_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
728 local_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
729 local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
730
731 /* If the image has a particular modifier, specify that modifier. */
732 VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = {
733 .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
734 .drmFormatModifierCount = 1,
735 .pDrmFormatModifiers = &swapchain_image->drm_format_mod,
736 };
737 if (swapchain_image->drm_format_mod != DRM_FORMAT_MOD_INVALID)
738 __vk_append_struct(&local_create_info, &local_modifier_info);
739
740 return anv_image_create(device,
741 &(struct anv_image_create_info) {
742 .vk_info = &local_create_info,
743 .external_format = swapchain_image->external_format,
744 },
745 pAllocator,
746 pImage);
747 }
748
749 VkResult
750 anv_CreateImage(VkDevice device,
751 const VkImageCreateInfo *pCreateInfo,
752 const VkAllocationCallbacks *pAllocator,
753 VkImage *pImage)
754 {
755 const VkExternalMemoryImageCreateInfo *create_info =
756 vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_IMAGE_CREATE_INFO);
757
758 if (create_info && (create_info->handleTypes &
759 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))
760 return anv_image_from_external(device, pCreateInfo, create_info,
761 pAllocator, pImage);
762
763 bool use_external_format = false;
764 const VkExternalFormatANDROID *ext_format =
765 vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_FORMAT_ANDROID);
766
767 /* "If externalFormat is zero, the effect is as if the
768 * VkExternalFormatANDROID structure was not present. Otherwise, the image
769 * will have the specified external format."
770 */
771 if (ext_format && ext_format->externalFormat != 0)
772 use_external_format = true;
773
774 const VkNativeBufferANDROID *gralloc_info =
775 vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
776 if (gralloc_info)
777 return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
778 pAllocator, pImage);
779
780 const VkImageSwapchainCreateInfoKHR *swapchain_info =
781 vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
782 if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
783 return anv_image_from_swapchain(device, pCreateInfo, swapchain_info,
784 pAllocator, pImage);
785
786 return anv_image_create(device,
787 &(struct anv_image_create_info) {
788 .vk_info = pCreateInfo,
789 .external_format = use_external_format,
790 },
791 pAllocator,
792 pImage);
793 }
794
795 void
796 anv_DestroyImage(VkDevice _device, VkImage _image,
797 const VkAllocationCallbacks *pAllocator)
798 {
799 ANV_FROM_HANDLE(anv_device, device, _device);
800 ANV_FROM_HANDLE(anv_image, image, _image);
801
802 if (!image)
803 return;
804
805 for (uint32_t p = 0; p < image->n_planes; ++p) {
806 if (anv_image_plane_uses_aux_map(device, image, p) &&
807 image->planes[p].address.bo) {
808 gen_aux_map_unmap_range(device->aux_map_ctx,
809 image->planes[p].aux_map_surface_address,
810 image->planes[p].surface.isl.size_B);
811 }
812 if (image->planes[p].bo_is_owned) {
813 assert(image->planes[p].address.bo != NULL);
814 anv_device_release_bo(device, image->planes[p].address.bo);
815 }
816 }
817
818 vk_free2(&device->alloc, pAllocator, image);
819 }
820
821 static void anv_image_bind_memory_plane(struct anv_device *device,
822 struct anv_image *image,
823 uint32_t plane,
824 struct anv_device_memory *memory,
825 uint32_t memory_offset)
826 {
827 assert(!image->planes[plane].bo_is_owned);
828
829 if (!memory) {
830 if (anv_image_plane_uses_aux_map(device, image, plane) &&
831 image->planes[plane].address.bo) {
832 gen_aux_map_unmap_range(device->aux_map_ctx,
833 image->planes[plane].aux_map_surface_address,
834 image->planes[plane].surface.isl.size_B);
835 }
836 image->planes[plane].address = ANV_NULL_ADDRESS;
837 return;
838 }
839
840 image->planes[plane].address = (struct anv_address) {
841 .bo = memory->bo,
842 .offset = memory_offset,
843 };
844
845 if (anv_image_plane_uses_aux_map(device, image, plane)) {
846 image->planes[plane].aux_map_surface_address =
847 anv_address_physical(
848 anv_address_add(image->planes[plane].address,
849 image->planes[plane].surface.offset));
850
851 gen_aux_map_add_image(device->aux_map_ctx,
852 &image->planes[plane].surface.isl,
853 image->planes[plane].aux_map_surface_address,
854 anv_address_physical(
855 anv_address_add(image->planes[plane].address,
856 image->planes[plane].aux_surface.offset)));
857 }
858 }
859
860 /* We are binding AHardwareBuffer. Get a description, resolve the
861 * format and prepare anv_image properly.
862 */
863 static void
864 resolve_ahw_image(struct anv_device *device,
865 struct anv_image *image,
866 struct anv_device_memory *mem)
867 {
868 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
869 assert(mem->ahw);
870 AHardwareBuffer_Desc desc;
871 AHardwareBuffer_describe(mem->ahw, &desc);
872
873 /* Check tiling. */
874 int i915_tiling = anv_gem_get_tiling(device, mem->bo->gem_handle);
875 VkImageTiling vk_tiling;
876 isl_tiling_flags_t isl_tiling_flags = 0;
877
878 switch (i915_tiling) {
879 case I915_TILING_NONE:
880 vk_tiling = VK_IMAGE_TILING_LINEAR;
881 isl_tiling_flags = ISL_TILING_LINEAR_BIT;
882 break;
883 case I915_TILING_X:
884 vk_tiling = VK_IMAGE_TILING_OPTIMAL;
885 isl_tiling_flags = ISL_TILING_X_BIT;
886 break;
887 case I915_TILING_Y:
888 vk_tiling = VK_IMAGE_TILING_OPTIMAL;
889 isl_tiling_flags = ISL_TILING_Y0_BIT;
890 break;
891 case -1:
892 default:
893 unreachable("Invalid tiling flags.");
894 }
895
896 assert(vk_tiling == VK_IMAGE_TILING_LINEAR ||
897 vk_tiling == VK_IMAGE_TILING_OPTIMAL);
898
899 /* Check format. */
900 VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
901 enum isl_format isl_fmt = anv_get_isl_format(&device->info,
902 vk_format,
903 VK_IMAGE_ASPECT_COLOR_BIT,
904 vk_tiling);
905 assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);
906
907 /* Handle RGB(X)->RGBA fallback. */
908 switch (desc.format) {
909 case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
910 case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
911 if (isl_format_is_rgb(isl_fmt))
912 isl_fmt = isl_format_rgb_to_rgba(isl_fmt);
913 break;
914 }
915
916 /* Now we are able to fill anv_image fields properly and create
917 * isl_surface for it.
918 */
919 image->vk_format = vk_format;
920 image->format = anv_get_format(vk_format);
921 image->aspects = vk_format_aspects(image->vk_format);
922 image->n_planes = image->format->n_planes;
923 image->ccs_e_compatible = false;
924
925 uint32_t stride = desc.stride *
926 (isl_format_get_layout(isl_fmt)->bpb / 8);
927
928 uint32_t b;
929 for_each_bit(b, image->aspects) {
930 VkResult r = make_surface(device, image, stride, isl_tiling_flags,
931 ISL_SURF_USAGE_DISABLE_AUX_BIT, (1 << b));
932 assert(r == VK_SUCCESS);
933 }
934 #endif
935 }
936
937 VkResult anv_BindImageMemory(
938 VkDevice _device,
939 VkImage _image,
940 VkDeviceMemory _memory,
941 VkDeviceSize memoryOffset)
942 {
943 ANV_FROM_HANDLE(anv_device, device, _device);
944 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
945 ANV_FROM_HANDLE(anv_image, image, _image);
946
947 if (mem->ahw)
948 resolve_ahw_image(device, image, mem);
949
950 uint32_t aspect_bit;
951 anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
952 uint32_t plane =
953 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
954 anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
955 }
956
957 return VK_SUCCESS;
958 }
959
960 VkResult anv_BindImageMemory2(
961 VkDevice _device,
962 uint32_t bindInfoCount,
963 const VkBindImageMemoryInfo* pBindInfos)
964 {
965 ANV_FROM_HANDLE(anv_device, device, _device);
966
967 for (uint32_t i = 0; i < bindInfoCount; i++) {
968 const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
969 ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
970 ANV_FROM_HANDLE(anv_image, image, bind_info->image);
971
972 /* Resolve will alter the image's aspects, do this first. */
973 if (mem && mem->ahw)
974 resolve_ahw_image(device, image, mem);
975
976 VkImageAspectFlags aspects = image->aspects;
977 vk_foreach_struct_const(s, bind_info->pNext) {
978 switch (s->sType) {
979 case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
980 const VkBindImagePlaneMemoryInfo *plane_info =
981 (const VkBindImagePlaneMemoryInfo *) s;
982
983 aspects = plane_info->planeAspect;
984 break;
985 }
986 case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
987 const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
988 (const VkBindImageMemorySwapchainInfoKHR *) s;
989 struct anv_image *swapchain_image =
990 anv_swapchain_get_image(swapchain_info->swapchain,
991 swapchain_info->imageIndex);
992 assert(swapchain_image);
993 assert(image->aspects == swapchain_image->aspects);
994 assert(mem == NULL);
995
996 uint32_t aspect_bit;
997 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
998 uint32_t plane =
999 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
1000 struct anv_device_memory mem = {
1001 .bo = swapchain_image->planes[plane].address.bo,
1002 };
1003 anv_image_bind_memory_plane(device, image, plane,
1004 &mem, bind_info->memoryOffset);
1005 }
1006 break;
1007 }
1008 default:
1009 anv_debug_ignored_stype(s->sType);
1010 break;
1011 }
1012 }
1013
1014 /* VkBindImageMemorySwapchainInfoKHR requires memory to be
1015 * VK_NULL_HANDLE. In such case, just carry one with the next bind
1016 * item.
1017 */
1018 if (!mem)
1019 continue;
1020
1021 uint32_t aspect_bit;
1022 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
1023 uint32_t plane =
1024 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
1025 anv_image_bind_memory_plane(device, image, plane,
1026 mem, bind_info->memoryOffset);
1027 }
1028 }
1029
1030 return VK_SUCCESS;
1031 }
1032
1033 void anv_GetImageSubresourceLayout(
1034 VkDevice device,
1035 VkImage _image,
1036 const VkImageSubresource* subresource,
1037 VkSubresourceLayout* layout)
1038 {
1039 ANV_FROM_HANDLE(anv_image, image, _image);
1040
1041 const struct anv_surface *surface;
1042 if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT &&
1043 image->drm_format_mod != DRM_FORMAT_MOD_INVALID &&
1044 isl_drm_modifier_has_aux(image->drm_format_mod))
1045 surface = &image->planes[0].aux_surface;
1046 else
1047 surface = get_surface(image, subresource->aspectMask);
1048
1049 assert(__builtin_popcount(subresource->aspectMask) == 1);
1050
1051 layout->offset = surface->offset;
1052 layout->rowPitch = surface->isl.row_pitch_B;
1053 layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
1054 layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
1055
1056 if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
1057 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1058
1059 uint32_t offset_B;
1060 isl_surf_get_image_offset_B_tile_sa(&surface->isl,
1061 subresource->mipLevel,
1062 subresource->arrayLayer,
1063 0 /* logical_z_offset_px */,
1064 &offset_B, NULL, NULL);
1065 layout->offset += offset_B;
1066 layout->size = layout->rowPitch * anv_minify(image->extent.height,
1067 subresource->mipLevel);
1068 } else {
1069 layout->size = surface->isl.size_B;
1070 }
1071 }
1072
1073 VkResult anv_GetImageDrmFormatModifierPropertiesEXT(
1074 VkDevice device,
1075 VkImage _image,
1076 VkImageDrmFormatModifierPropertiesEXT* pProperties)
1077 {
1078 ANV_FROM_HANDLE(anv_image, image, _image);
1079
1080 assert(pProperties->sType ==
1081 VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT);
1082
1083 pProperties->drmFormatModifier = image->drm_format_mod;
1084
1085 return VK_SUCCESS;
1086 }
1087
1088 /**
1089 * This function determines the optimal buffer to use for a given
1090 * VkImageLayout and other pieces of information needed to make that
1091 * determination. This does not determine the optimal buffer to use
1092 * during a resolve operation.
1093 *
1094 * @param devinfo The device information of the Intel GPU.
1095 * @param image The image that may contain a collection of buffers.
1096 * @param aspect The aspect of the image to be accessed.
1097 * @param layout The current layout of the image aspect(s).
1098 *
1099 * @return The primary buffer that should be used for the given layout.
1100 */
1101 enum isl_aux_usage
1102 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
1103 const struct anv_image * const image,
1104 const VkImageAspectFlagBits aspect,
1105 const VkImageLayout layout)
1106 {
1107 /* Validate the inputs. */
1108
1109 /* The devinfo is needed as the optimal buffer varies across generations. */
1110 assert(devinfo != NULL);
1111
1112 /* The layout of a NULL image is not properly defined. */
1113 assert(image != NULL);
1114
1115 /* The aspect must be exactly one of the image aspects. */
1116 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
1117
1118 /* Determine the optimal buffer. */
1119
1120 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1121
1122 /* If there is no auxiliary surface allocated, we must use the one and only
1123 * main buffer.
1124 */
1125 if (image->planes[plane].aux_surface.isl.size_B == 0)
1126 return ISL_AUX_USAGE_NONE;
1127
1128 /* All images that use an auxiliary surface are required to be tiled. */
1129 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1130
1131 /* Stencil has no aux */
1132 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
1133
1134 switch (layout) {
1135
1136 /* Invalid Layouts */
1137 case VK_IMAGE_LAYOUT_RANGE_SIZE:
1138 case VK_IMAGE_LAYOUT_MAX_ENUM:
1139 unreachable("Invalid image layout.");
1140
1141 /* Undefined layouts
1142 *
1143 * The pre-initialized layout is equivalent to the undefined layout for
1144 * optimally-tiled images. We can only do color compression (CCS or HiZ)
1145 * on tiled images.
1146 */
1147 case VK_IMAGE_LAYOUT_UNDEFINED:
1148 case VK_IMAGE_LAYOUT_PREINITIALIZED:
1149 return ISL_AUX_USAGE_NONE;
1150
1151
1152 /* Transfer Layouts
1153 */
1154 case VK_IMAGE_LAYOUT_GENERAL:
1155 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
1156 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1157 /* This buffer could be a depth buffer used in a transfer operation.
1158 * BLORP currently doesn't use HiZ for transfer operations so we must
1159 * use the main buffer for this layout. TODO: Enable HiZ in BLORP.
1160 */
1161 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ);
1162 return ISL_AUX_USAGE_NONE;
1163 } else {
1164 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1165 return image->planes[plane].aux_usage;
1166 }
1167
1168
1169 /* Sampling Layouts */
1170 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL_KHR:
1171 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
1172 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
1173 assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1174 /* Fall-through */
1175 case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
1176 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
1177 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1178 if (anv_can_sample_with_hiz(devinfo, image))
1179 return ISL_AUX_USAGE_HIZ;
1180 else
1181 return ISL_AUX_USAGE_NONE;
1182 } else {
1183 return image->planes[plane].aux_usage;
1184 }
1185
1186 case VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL_KHR:
1187 return ISL_AUX_USAGE_NONE;
1188
1189
1190 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
1191 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1192
1193 /* When handing the image off to the presentation engine, we need to
1194 * ensure that things are properly resolved. For images with no
1195 * modifier, we assume that they follow the old rules and always need
1196 * a full resolve because the PE doesn't understand any form of
1197 * compression. For images with modifiers, we use the aux usage from
1198 * the modifier.
1199 */
1200 const struct isl_drm_modifier_info *mod_info =
1201 isl_drm_modifier_get_info(image->drm_format_mod);
1202 return mod_info ? mod_info->aux_usage : ISL_AUX_USAGE_NONE;
1203 }
1204
1205
1206 /* Rendering Layouts */
1207 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
1208 assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1209 /* fall-through */
1210 case VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR:
1211 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) {
1212 assert(image->samples == 1);
1213 return ISL_AUX_USAGE_CCS_D;
1214 } else {
1215 assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D);
1216 return image->planes[plane].aux_usage;
1217 }
1218
1219 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL_KHR:
1220 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
1221 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
1222 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
1223 return ISL_AUX_USAGE_HIZ;
1224
1225 case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
1226 unreachable("VK_KHR_shared_presentable_image is unsupported");
1227
1228 case VK_IMAGE_LAYOUT_FRAGMENT_DENSITY_MAP_OPTIMAL_EXT:
1229 unreachable("VK_EXT_fragment_density_map is unsupported");
1230
1231 case VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV:
1232 unreachable("VK_NV_shading_rate_image is unsupported");
1233 }
1234
1235 /* If the layout isn't recognized in the exhaustive switch above, the
1236 * VkImageLayout value is not defined in vulkan.h.
1237 */
1238 unreachable("layout is not a VkImageLayout enumeration member.");
1239 }
1240
1241 /**
1242 * This function returns the level of unresolved fast-clear support of the
1243 * given image in the given VkImageLayout.
1244 *
1245 * @param devinfo The device information of the Intel GPU.
1246 * @param image The image that may contain a collection of buffers.
1247 * @param aspect The aspect of the image to be accessed.
1248 * @param layout The current layout of the image aspect(s).
1249 */
1250 enum anv_fast_clear_type
1251 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
1252 const struct anv_image * const image,
1253 const VkImageAspectFlagBits aspect,
1254 const VkImageLayout layout)
1255 {
1256 if (INTEL_DEBUG & DEBUG_NO_FAST_CLEAR)
1257 return ANV_FAST_CLEAR_NONE;
1258
1259 /* The aspect must be exactly one of the image aspects. */
1260 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
1261
1262 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1263
1264 /* If there is no auxiliary surface allocated, there are no fast-clears */
1265 if (image->planes[plane].aux_surface.isl.size_B == 0)
1266 return ANV_FAST_CLEAR_NONE;
1267
1268 /* All images that use an auxiliary surface are required to be tiled. */
1269 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1270
1271 /* Stencil has no aux */
1272 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
1273
1274 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
1275 /* For depth images (with HiZ), the layout supports fast-clears if and
1276 * only if it supports HiZ. However, we only support fast-clears to the
1277 * default depth value.
1278 */
1279 enum isl_aux_usage aux_usage =
1280 anv_layout_to_aux_usage(devinfo, image, aspect, layout);
1281 return aux_usage == ISL_AUX_USAGE_HIZ ?
1282 ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE;
1283 }
1284
1285 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1286
1287 /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
1288 * lack the MI ALU which we need to determine the predicates.
1289 */
1290 if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1)
1291 return ANV_FAST_CLEAR_NONE;
1292
1293 switch (layout) {
1294 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
1295 return ANV_FAST_CLEAR_ANY;
1296
1297 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
1298 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1299 #ifndef NDEBUG
1300 /* We do not yet support any modifiers which support clear color so we
1301 * just always return NONE. One day, this will change.
1302 */
1303 const struct isl_drm_modifier_info *mod_info =
1304 isl_drm_modifier_get_info(image->drm_format_mod);
1305 assert(!mod_info || !mod_info->supports_clear_color);
1306 #endif
1307 return ANV_FAST_CLEAR_NONE;
1308 }
1309
1310 default:
1311 /* If the image has MCS or CCS_E enabled all the time then we can use
1312 * fast-clear as long as the clear color is the default value of zero
1313 * since this is the default value we program into every surface state
1314 * used for texturing.
1315 */
1316 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
1317 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
1318 return ANV_FAST_CLEAR_DEFAULT_VALUE;
1319 else
1320 return ANV_FAST_CLEAR_NONE;
1321 }
1322 }
1323
1324
1325 static struct anv_state
1326 alloc_surface_state(struct anv_device *device)
1327 {
1328 return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1329 }
1330
1331 static enum isl_channel_select
1332 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
1333 struct isl_swizzle format_swizzle)
1334 {
1335 if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
1336 swizzle = component;
1337
1338 switch (swizzle) {
1339 case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
1340 case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
1341 case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
1342 case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
1343 case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
1344 case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
1345 default:
1346 unreachable("Invalid swizzle");
1347 }
1348 }
1349
1350 void
1351 anv_image_fill_surface_state(struct anv_device *device,
1352 const struct anv_image *image,
1353 VkImageAspectFlagBits aspect,
1354 const struct isl_view *view_in,
1355 isl_surf_usage_flags_t view_usage,
1356 enum isl_aux_usage aux_usage,
1357 const union isl_color_value *clear_color,
1358 enum anv_image_view_state_flags flags,
1359 struct anv_surface_state *state_inout,
1360 struct brw_image_param *image_param_out)
1361 {
1362 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1363
1364 const struct anv_surface *surface = &image->planes[plane].surface,
1365 *aux_surface = &image->planes[plane].aux_surface;
1366
1367 struct isl_view view = *view_in;
1368 view.usage |= view_usage;
1369
1370 /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
1371 * compressed surface with a shadow surface, we use the shadow instead of
1372 * the primary surface. The shadow surface will be tiled, unlike the main
1373 * surface, so it should get significantly better performance.
1374 */
1375 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1376 isl_format_is_compressed(view.format) &&
1377 (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
1378 assert(isl_format_is_compressed(surface->isl.format));
1379 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1380 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1381 surface = &image->planes[plane].shadow_surface;
1382 }
1383
1384 /* For texturing from stencil on gen7, we have to sample from a shadow
1385 * surface because we don't support W-tiling in the sampler.
1386 */
1387 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1388 aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
1389 assert(device->info.gen == 7);
1390 assert(view_usage & ISL_SURF_USAGE_TEXTURE_BIT);
1391 surface = &image->planes[plane].shadow_surface;
1392 }
1393
1394 if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
1395 view.swizzle = anv_swizzle_for_render(view.swizzle);
1396
1397 /* On Ivy Bridge and Bay Trail we do the swizzle in the shader */
1398 if (device->info.gen == 7 && !device->info.is_haswell)
1399 view.swizzle = ISL_SWIZZLE_IDENTITY;
1400
1401 /* If this is a HiZ buffer we can sample from with a programmable clear
1402 * value (SKL+), define the clear value to the optimal constant.
1403 */
1404 union isl_color_value default_clear_color = { .u32 = { 0, } };
1405 if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
1406 default_clear_color.f32[0] = ANV_HZ_FC_VAL;
1407 if (!clear_color)
1408 clear_color = &default_clear_color;
1409
1410 const struct anv_address address =
1411 anv_address_add(image->planes[plane].address, surface->offset);
1412
1413 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1414 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
1415 !isl_has_matching_typed_storage_image_format(&device->info,
1416 view.format)) {
1417 /* In this case, we are a writeable storage buffer which needs to be
1418 * lowered to linear. All tiling and offset calculations will be done in
1419 * the shader.
1420 */
1421 assert(aux_usage == ISL_AUX_USAGE_NONE);
1422 isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
1423 .address = anv_address_physical(address),
1424 .size_B = surface->isl.size_B,
1425 .format = ISL_FORMAT_RAW,
1426 .swizzle = ISL_SWIZZLE_IDENTITY,
1427 .stride_B = 1,
1428 .mocs = anv_mocs_for_bo(device, address.bo));
1429 state_inout->address = address,
1430 state_inout->aux_address = ANV_NULL_ADDRESS;
1431 state_inout->clear_address = ANV_NULL_ADDRESS;
1432 } else {
1433 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1434 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
1435 /* Typed surface reads support a very limited subset of the shader
1436 * image formats. Translate it into the closest format the hardware
1437 * supports.
1438 */
1439 assert(aux_usage == ISL_AUX_USAGE_NONE);
1440 view.format = isl_lower_storage_image_format(&device->info,
1441 view.format);
1442 }
1443
1444 const struct isl_surf *isl_surf = &surface->isl;
1445
1446 struct isl_surf tmp_surf;
1447 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1448 if (isl_format_is_compressed(surface->isl.format) &&
1449 !isl_format_is_compressed(view.format)) {
1450 /* We're creating an uncompressed view of a compressed surface. This
1451 * is allowed but only for a single level/layer.
1452 */
1453 assert(surface->isl.samples == 1);
1454 assert(view.levels == 1);
1455 assert(view.array_len == 1);
1456
1457 isl_surf_get_image_surf(&device->isl_dev, isl_surf,
1458 view.base_level,
1459 surface->isl.dim == ISL_SURF_DIM_3D ?
1460 0 : view.base_array_layer,
1461 surface->isl.dim == ISL_SURF_DIM_3D ?
1462 view.base_array_layer : 0,
1463 &tmp_surf,
1464 &offset_B, &tile_x_sa, &tile_y_sa);
1465
1466 /* The newly created image represents the one subimage we're
1467 * referencing with this view so it only has one array slice and
1468 * miplevel.
1469 */
1470 view.base_array_layer = 0;
1471 view.base_level = 0;
1472
1473 /* We're making an uncompressed view here. The image dimensions need
1474 * to be scaled down by the block size.
1475 */
1476 const struct isl_format_layout *fmtl =
1477 isl_format_get_layout(surface->isl.format);
1478 tmp_surf.logical_level0_px =
1479 isl_surf_get_logical_level0_el(&tmp_surf);
1480 tmp_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&tmp_surf);
1481 tmp_surf.format = view.format;
1482 tile_x_sa /= fmtl->bw;
1483 tile_y_sa /= fmtl->bh;
1484
1485 isl_surf = &tmp_surf;
1486
1487 if (device->info.gen <= 8) {
1488 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1489 assert(tile_x_sa == 0);
1490 assert(tile_y_sa == 0);
1491 }
1492 }
1493
1494 state_inout->address = anv_address_add(address, offset_B);
1495
1496 struct anv_address aux_address = ANV_NULL_ADDRESS;
1497 if (aux_usage != ISL_AUX_USAGE_NONE) {
1498 aux_address = anv_address_add(image->planes[plane].address,
1499 aux_surface->offset);
1500 }
1501 state_inout->aux_address = aux_address;
1502
1503 struct anv_address clear_address = ANV_NULL_ADDRESS;
1504 if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) {
1505 if (aux_usage == ISL_AUX_USAGE_HIZ) {
1506 clear_address = (struct anv_address) {
1507 .bo = device->hiz_clear_bo,
1508 .offset = 0,
1509 };
1510 } else {
1511 clear_address = anv_image_get_clear_color_addr(device, image, aspect);
1512 }
1513 }
1514 state_inout->clear_address = clear_address;
1515
1516 isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1517 .surf = isl_surf,
1518 .view = &view,
1519 .address = anv_address_physical(state_inout->address),
1520 .clear_color = *clear_color,
1521 .aux_surf = &aux_surface->isl,
1522 .aux_usage = aux_usage,
1523 .aux_address = anv_address_physical(aux_address),
1524 .clear_address = anv_address_physical(clear_address),
1525 .use_clear_address = !anv_address_is_null(clear_address),
1526 .mocs = anv_mocs_for_bo(device,
1527 state_inout->address.bo),
1528 .x_offset_sa = tile_x_sa,
1529 .y_offset_sa = tile_y_sa);
1530
1531 /* With the exception of gen8, the bottom 12 bits of the MCS base address
1532 * are used to store other information. This should be ok, however,
1533 * because the surface buffer addresses are always 4K page aligned.
1534 */
1535 uint32_t *aux_addr_dw = state_inout->state.map +
1536 device->isl_dev.ss.aux_addr_offset;
1537 assert((aux_address.offset & 0xfff) == 0);
1538 state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
1539
1540 if (device->info.gen >= 10 && clear_address.bo) {
1541 uint32_t *clear_addr_dw = state_inout->state.map +
1542 device->isl_dev.ss.clear_color_state_offset;
1543 assert((clear_address.offset & 0x3f) == 0);
1544 state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
1545 }
1546 }
1547
1548 if (image_param_out) {
1549 assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1550 isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1551 &surface->isl, &view);
1552 }
1553 }
1554
1555 static VkImageAspectFlags
1556 remap_aspect_flags(VkImageAspectFlags view_aspects)
1557 {
1558 if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1559 if (util_bitcount(view_aspects) == 1)
1560 return VK_IMAGE_ASPECT_COLOR_BIT;
1561
1562 VkImageAspectFlags color_aspects = 0;
1563 for (uint32_t i = 0; i < util_bitcount(view_aspects); i++)
1564 color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i;
1565 return color_aspects;
1566 }
1567 /* No special remapping needed for depth & stencil aspects. */
1568 return view_aspects;
1569 }
1570
1571 static uint32_t
1572 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
1573 {
1574 uint32_t planes = 0;
1575
1576 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
1577 VK_IMAGE_ASPECT_DEPTH_BIT |
1578 VK_IMAGE_ASPECT_STENCIL_BIT |
1579 VK_IMAGE_ASPECT_PLANE_0_BIT))
1580 planes++;
1581 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT)
1582 planes++;
1583 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT)
1584 planes++;
1585
1586 if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 &&
1587 (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
1588 planes++;
1589
1590 return planes;
1591 }
1592
1593 VkResult
1594 anv_CreateImageView(VkDevice _device,
1595 const VkImageViewCreateInfo *pCreateInfo,
1596 const VkAllocationCallbacks *pAllocator,
1597 VkImageView *pView)
1598 {
1599 ANV_FROM_HANDLE(anv_device, device, _device);
1600 ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1601 struct anv_image_view *iview;
1602
1603 iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1604 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1605 if (iview == NULL)
1606 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1607
1608 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1609
1610 assert(range->layerCount > 0);
1611 assert(range->baseMipLevel < image->levels);
1612
1613 /* Check if a conversion info was passed. */
1614 const struct anv_format *conv_format = NULL;
1615 const VkSamplerYcbcrConversionInfo *conv_info =
1616 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
1617
1618 /* If image has an external format, the pNext chain must contain an instance of
1619 * VKSamplerYcbcrConversionInfo with a conversion object created with the same
1620 * external format as image."
1621 */
1622 assert(!image->external_format || conv_info);
1623
1624 if (conv_info) {
1625 ANV_FROM_HANDLE(anv_ycbcr_conversion, conversion, conv_info->conversion);
1626 conv_format = conversion->format;
1627 }
1628
1629 VkImageUsageFlags image_usage = 0;
1630 if (range->aspectMask & ~VK_IMAGE_ASPECT_STENCIL_BIT)
1631 image_usage |= image->usage;
1632 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
1633 image_usage |= image->stencil_usage;
1634
1635 const VkImageViewUsageCreateInfo *usage_info =
1636 vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO);
1637 VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image_usage;
1638
1639 /* View usage should be a subset of image usage */
1640 assert((view_usage & ~image_usage) == 0);
1641 assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1642 VK_IMAGE_USAGE_STORAGE_BIT |
1643 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1644 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1645 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1646
1647 switch (image->type) {
1648 default:
1649 unreachable("bad VkImageType");
1650 case VK_IMAGE_TYPE_1D:
1651 case VK_IMAGE_TYPE_2D:
1652 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1653 break;
1654 case VK_IMAGE_TYPE_3D:
1655 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1656 <= anv_minify(image->extent.depth, range->baseMipLevel));
1657 break;
1658 }
1659
1660 /* First expand aspects to the image's ones (for example
1661 * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1662 * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT |
1663 * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format
1664 * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM.
1665 */
1666 VkImageAspectFlags expanded_aspects =
1667 anv_image_expand_aspects(image, range->aspectMask);
1668
1669 iview->image = image;
1670
1671 /* Remap the expanded aspects for the image view. For example if only
1672 * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will
1673 * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1674 * the image view, it only has a single plane.
1675 */
1676 iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1677 iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1678 iview->vk_format = pCreateInfo->format;
1679
1680 /* "If image has an external format, format must be VK_FORMAT_UNDEFINED." */
1681 assert(!image->external_format || pCreateInfo->format == VK_FORMAT_UNDEFINED);
1682
1683 /* Format is undefined, this can happen when using external formats. Set
1684 * view format from the passed conversion info.
1685 */
1686 if (iview->vk_format == VK_FORMAT_UNDEFINED && conv_format)
1687 iview->vk_format = conv_format->vk_format;
1688
1689 iview->extent = (VkExtent3D) {
1690 .width = anv_minify(image->extent.width , range->baseMipLevel),
1691 .height = anv_minify(image->extent.height, range->baseMipLevel),
1692 .depth = anv_minify(image->extent.depth , range->baseMipLevel),
1693 };
1694
1695 /* Now go through the underlying image selected planes (computed in
1696 * expanded_aspects) and map them to planes in the image view.
1697 */
1698 uint32_t iaspect_bit, vplane = 0;
1699 anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1700 uint32_t iplane =
1701 anv_image_aspect_to_plane(image->aspects, 1UL << iaspect_bit);
1702 VkImageAspectFlags vplane_aspect =
1703 anv_plane_to_aspect(iview->aspect_mask, vplane);
1704 struct anv_format_plane format =
1705 anv_get_format_plane(&device->info, iview->vk_format,
1706 vplane_aspect, image->tiling);
1707
1708 iview->planes[vplane].image_plane = iplane;
1709
1710 iview->planes[vplane].isl = (struct isl_view) {
1711 .format = format.isl_format,
1712 .base_level = range->baseMipLevel,
1713 .levels = anv_get_levelCount(image, range),
1714 .base_array_layer = range->baseArrayLayer,
1715 .array_len = anv_get_layerCount(image, range),
1716 .swizzle = {
1717 .r = remap_swizzle(pCreateInfo->components.r,
1718 VK_COMPONENT_SWIZZLE_R, format.swizzle),
1719 .g = remap_swizzle(pCreateInfo->components.g,
1720 VK_COMPONENT_SWIZZLE_G, format.swizzle),
1721 .b = remap_swizzle(pCreateInfo->components.b,
1722 VK_COMPONENT_SWIZZLE_B, format.swizzle),
1723 .a = remap_swizzle(pCreateInfo->components.a,
1724 VK_COMPONENT_SWIZZLE_A, format.swizzle),
1725 },
1726 };
1727
1728 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1729 iview->planes[vplane].isl.base_array_layer = 0;
1730 iview->planes[vplane].isl.array_len = iview->extent.depth;
1731 }
1732
1733 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1734 pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1735 iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1736 } else {
1737 iview->planes[vplane].isl.usage = 0;
1738 }
1739
1740 if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1741 (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1742 !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1743 iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1744 iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1745
1746 enum isl_aux_usage general_aux_usage =
1747 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1748 VK_IMAGE_LAYOUT_GENERAL);
1749 enum isl_aux_usage optimal_aux_usage =
1750 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1751 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1752
1753 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1754 &iview->planes[vplane].isl,
1755 ISL_SURF_USAGE_TEXTURE_BIT,
1756 optimal_aux_usage, NULL,
1757 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1758 &iview->planes[vplane].optimal_sampler_surface_state,
1759 NULL);
1760
1761 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1762 &iview->planes[vplane].isl,
1763 ISL_SURF_USAGE_TEXTURE_BIT,
1764 general_aux_usage, NULL,
1765 0,
1766 &iview->planes[vplane].general_sampler_surface_state,
1767 NULL);
1768 }
1769
1770 /* NOTE: This one needs to go last since it may stomp isl_view.format */
1771 if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1772 iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1773 iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1774
1775 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1776 &iview->planes[vplane].isl,
1777 ISL_SURF_USAGE_STORAGE_BIT,
1778 ISL_AUX_USAGE_NONE, NULL,
1779 0,
1780 &iview->planes[vplane].storage_surface_state,
1781 &iview->planes[vplane].storage_image_param);
1782
1783 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1784 &iview->planes[vplane].isl,
1785 ISL_SURF_USAGE_STORAGE_BIT,
1786 ISL_AUX_USAGE_NONE, NULL,
1787 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1788 &iview->planes[vplane].writeonly_storage_surface_state,
1789 NULL);
1790 }
1791
1792 vplane++;
1793 }
1794
1795 *pView = anv_image_view_to_handle(iview);
1796
1797 return VK_SUCCESS;
1798 }
1799
1800 void
1801 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1802 const VkAllocationCallbacks *pAllocator)
1803 {
1804 ANV_FROM_HANDLE(anv_device, device, _device);
1805 ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1806
1807 if (!iview)
1808 return;
1809
1810 for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1811 if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1812 anv_state_pool_free(&device->surface_state_pool,
1813 iview->planes[plane].optimal_sampler_surface_state.state);
1814 }
1815
1816 if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1817 anv_state_pool_free(&device->surface_state_pool,
1818 iview->planes[plane].general_sampler_surface_state.state);
1819 }
1820
1821 if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1822 anv_state_pool_free(&device->surface_state_pool,
1823 iview->planes[plane].storage_surface_state.state);
1824 }
1825
1826 if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1827 anv_state_pool_free(&device->surface_state_pool,
1828 iview->planes[plane].writeonly_storage_surface_state.state);
1829 }
1830 }
1831
1832 vk_free2(&device->alloc, pAllocator, iview);
1833 }
1834
1835
1836 VkResult
1837 anv_CreateBufferView(VkDevice _device,
1838 const VkBufferViewCreateInfo *pCreateInfo,
1839 const VkAllocationCallbacks *pAllocator,
1840 VkBufferView *pView)
1841 {
1842 ANV_FROM_HANDLE(anv_device, device, _device);
1843 ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1844 struct anv_buffer_view *view;
1845
1846 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1847 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1848 if (!view)
1849 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1850
1851 /* TODO: Handle the format swizzle? */
1852
1853 view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1854 VK_IMAGE_ASPECT_COLOR_BIT,
1855 VK_IMAGE_TILING_LINEAR);
1856 const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1857 view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1858 pCreateInfo->range);
1859 view->range = align_down_npot_u32(view->range, format_bs);
1860
1861 view->address = anv_address_add(buffer->address, pCreateInfo->offset);
1862
1863 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1864 view->surface_state = alloc_surface_state(device);
1865
1866 anv_fill_buffer_surface_state(device, view->surface_state,
1867 view->format,
1868 view->address, view->range, format_bs);
1869 } else {
1870 view->surface_state = (struct anv_state){ 0 };
1871 }
1872
1873 if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1874 view->storage_surface_state = alloc_surface_state(device);
1875 view->writeonly_storage_surface_state = alloc_surface_state(device);
1876
1877 enum isl_format storage_format =
1878 isl_has_matching_typed_storage_image_format(&device->info,
1879 view->format) ?
1880 isl_lower_storage_image_format(&device->info, view->format) :
1881 ISL_FORMAT_RAW;
1882
1883 anv_fill_buffer_surface_state(device, view->storage_surface_state,
1884 storage_format,
1885 view->address, view->range,
1886 (storage_format == ISL_FORMAT_RAW ? 1 :
1887 isl_format_get_layout(storage_format)->bpb / 8));
1888
1889 /* Write-only accesses should use the original format. */
1890 anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1891 view->format,
1892 view->address, view->range,
1893 isl_format_get_layout(view->format)->bpb / 8);
1894
1895 isl_buffer_fill_image_param(&device->isl_dev,
1896 &view->storage_image_param,
1897 view->format, view->range);
1898 } else {
1899 view->storage_surface_state = (struct anv_state){ 0 };
1900 view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1901 }
1902
1903 *pView = anv_buffer_view_to_handle(view);
1904
1905 return VK_SUCCESS;
1906 }
1907
1908 void
1909 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1910 const VkAllocationCallbacks *pAllocator)
1911 {
1912 ANV_FROM_HANDLE(anv_device, device, _device);
1913 ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1914
1915 if (!view)
1916 return;
1917
1918 if (view->surface_state.alloc_size > 0)
1919 anv_state_pool_free(&device->surface_state_pool,
1920 view->surface_state);
1921
1922 if (view->storage_surface_state.alloc_size > 0)
1923 anv_state_pool_free(&device->surface_state_pool,
1924 view->storage_surface_state);
1925
1926 if (view->writeonly_storage_surface_state.alloc_size > 0)
1927 anv_state_pool_free(&device->surface_state_pool,
1928 view->writeonly_storage_surface_state);
1929
1930 vk_free2(&device->alloc, pAllocator, view);
1931 }
1932
1933 const struct anv_surface *
1934 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1935 VkImageAspectFlags aspect_mask)
1936 {
1937 VkImageAspectFlags sanitized_mask;
1938
1939 switch (aspect_mask) {
1940 case VK_IMAGE_ASPECT_COLOR_BIT:
1941 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1942 sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1943 break;
1944 case VK_IMAGE_ASPECT_DEPTH_BIT:
1945 assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1946 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1947 break;
1948 case VK_IMAGE_ASPECT_STENCIL_BIT:
1949 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1950 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1951 break;
1952 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1953 /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1954 * combined depth stencil formats. Specifically, it states:
1955 *
1956 * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1957 * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1958 *
1959 * Image views with both depth and stencil aspects are only valid for
1960 * render target attachments, in which case
1961 * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1962 * stencil surfaces from the underlying surface.
1963 */
1964 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1965 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1966 } else {
1967 assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1968 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1969 }
1970 break;
1971 case VK_IMAGE_ASPECT_PLANE_0_BIT:
1972 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1973 sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT;
1974 break;
1975 case VK_IMAGE_ASPECT_PLANE_1_BIT:
1976 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1977 sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT;
1978 break;
1979 case VK_IMAGE_ASPECT_PLANE_2_BIT:
1980 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1981 sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT;
1982 break;
1983 default:
1984 unreachable("image does not have aspect");
1985 return NULL;
1986 }
1987
1988 uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1989 return &image->planes[plane].surface;
1990 }