anv: remove incorrect `UNUSED` flag
[mesa.git] / src / intel / vulkan / anv_image.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include <drm_fourcc.h>
31
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35
36 #include "vk_format_info.h"
37
38 static isl_surf_usage_flags_t
39 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
40 VkImageUsageFlags vk_usage,
41 isl_surf_usage_flags_t isl_extra_usage,
42 VkImageAspectFlagBits aspect)
43 {
44 isl_surf_usage_flags_t isl_usage = isl_extra_usage;
45
46 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
47 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
48
49 if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
50 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
51
52 if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
53 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
54
55 if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
56 isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
57
58 /* Even if we're only using it for transfer operations, clears to depth and
59 * stencil images happen as depth and stencil so they need the right ISL
60 * usage bits or else things will fall apart.
61 */
62 switch (aspect) {
63 case VK_IMAGE_ASPECT_DEPTH_BIT:
64 isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
65 break;
66 case VK_IMAGE_ASPECT_STENCIL_BIT:
67 isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
68 break;
69 case VK_IMAGE_ASPECT_COLOR_BIT:
70 case VK_IMAGE_ASPECT_PLANE_0_BIT:
71 case VK_IMAGE_ASPECT_PLANE_1_BIT:
72 case VK_IMAGE_ASPECT_PLANE_2_BIT:
73 break;
74 default:
75 unreachable("bad VkImageAspect");
76 }
77
78 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
79 /* blorp implements transfers by sampling from the source image. */
80 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
81 }
82
83 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
84 aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
85 /* blorp implements transfers by rendering into the destination image.
86 * Only request this with color images, as we deal with depth/stencil
87 * formats differently. */
88 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
89 }
90
91 return isl_usage;
92 }
93
94 static isl_tiling_flags_t
95 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
96 const struct isl_drm_modifier_info *isl_mod_info,
97 bool legacy_scanout)
98 {
99 const VkImageCreateInfo *base_info = anv_info->vk_info;
100 isl_tiling_flags_t flags = 0;
101
102 switch (base_info->tiling) {
103 default:
104 unreachable("bad VkImageTiling");
105 case VK_IMAGE_TILING_OPTIMAL:
106 flags = ISL_TILING_ANY_MASK;
107 break;
108 case VK_IMAGE_TILING_LINEAR:
109 flags = ISL_TILING_LINEAR_BIT;
110 break;
111 }
112
113 if (anv_info->isl_tiling_flags)
114 flags &= anv_info->isl_tiling_flags;
115
116 if (legacy_scanout)
117 flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT;
118
119 if (isl_mod_info)
120 flags &= 1 << isl_mod_info->tiling;
121
122 assert(flags);
123
124 return flags;
125 }
126
127 static struct anv_surface *
128 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
129 {
130 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
131 return &image->planes[plane].surface;
132 }
133
134 static void
135 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
136 {
137 assert(surf->isl.size > 0); /* isl surface must be initialized */
138
139 if (image->disjoint) {
140 surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment);
141 /* Plane offset is always 0 when it's disjoint. */
142 } else {
143 surf->offset = align_u32(image->size, surf->isl.alignment);
144 /* Determine plane's offset only once when the first surface is added. */
145 if (image->planes[plane].size == 0)
146 image->planes[plane].offset = image->size;
147 }
148
149 image->size = surf->offset + surf->isl.size;
150 image->planes[plane].size = (surf->offset + surf->isl.size) - image->planes[plane].offset;
151
152 image->alignment = MAX2(image->alignment, surf->isl.alignment);
153 image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
154 surf->isl.alignment);
155 }
156
157
158 static bool
159 all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
160 const struct VkImageCreateInfo *vk_info)
161 {
162 enum isl_format format =
163 anv_get_isl_format(devinfo, vk_info->format,
164 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
165
166 if (!isl_format_supports_ccs_e(devinfo, format))
167 return false;
168
169 if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
170 return true;
171
172 const VkImageFormatListCreateInfoKHR *fmt_list =
173 vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
174
175 if (!fmt_list || fmt_list->viewFormatCount == 0)
176 return false;
177
178 for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
179 enum isl_format view_format =
180 anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
181 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
182
183 if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
184 return false;
185 }
186
187 return true;
188 }
189
190 /**
191 * For color images that have an auxiliary surface, request allocation for an
192 * additional buffer that mainly stores fast-clear values. Use of this buffer
193 * allows us to access the image's subresources while being aware of their
194 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
195 * which a fast clear has occurred).
196 *
197 * In order to avoid having multiple clear colors for a single plane of an
198 * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
199 * the first slice (level 0, layer 0). At the time of our testing (Jan 17,
200 * 2018), there were no known applications which would benefit from fast-
201 * clearing more than just the first slice.
202 *
203 * The fast clear portion of the image is laid out in the following order:
204 *
205 * * 1 or 4 dwords (depending on hardware generation) for the clear color
206 * * 1 dword for the anv_fast_clear_type of the clear color
207 * * On gen9+, 1 dword per level and layer of the image (3D levels count
208 * multiple layers) in level-major order for compression state.
209 *
210 * For the purpose of discoverability, the algorithm used to manage
211 * compression and fast-clears is described here:
212 *
213 * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
214 * all of the values in the fast clear portion of the image are initialized
215 * to default values.
216 *
217 * * On fast-clear, the clear value is written into surface state and also
218 * into the buffer and the fast clear type is set appropriately. Both
219 * setting the fast-clear value in the buffer and setting the fast-clear
220 * type happen from the GPU using MI commands.
221 *
222 * * Whenever a render or blorp operation is performed with CCS_E, we call
223 * genX(cmd_buffer_mark_image_written) to set the compression state to
224 * true (which is represented by UINT32_MAX).
225 *
226 * * On pipeline barrier transitions, the worst-case transition is computed
227 * from the image layouts. The command streamer inspects the fast clear
228 * type and compression state dwords and constructs a predicate. The
229 * worst-case resolve is performed with the given predicate and the fast
230 * clear and compression state is set accordingly.
231 *
232 * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
233 * details on exactly what is allowed in what layouts.
234 *
235 * On gen7-9, we do not have a concept of indirect clear colors in hardware.
236 * In order to deal with this, we have to do some clear color management.
237 *
238 * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
239 * value from the buffer into the surface state with MI commands.
240 *
241 * * For any blorp operations, we pass the address to the clear value into
242 * blorp and it knows to copy the clear color.
243 */
244 static void
245 add_aux_state_tracking_buffer(struct anv_image *image,
246 VkImageAspectFlagBits aspect,
247 uint32_t plane,
248 const struct anv_device *device)
249 {
250 assert(image && device);
251 assert(image->planes[plane].aux_surface.isl.size > 0 &&
252 image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
253
254 /* Compressed images must be tiled and therefore everything should be 4K
255 * aligned. The CCS has the same alignment requirements. This is good
256 * because we need at least dword-alignment for MI_LOAD/STORE operations.
257 */
258 assert(image->alignment % 4 == 0);
259 assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
260
261 /* This buffer should be at the very end of the plane. */
262 if (image->disjoint) {
263 assert(image->planes[plane].size ==
264 (image->planes[plane].offset + image->planes[plane].size));
265 } else {
266 assert(image->size ==
267 (image->planes[plane].offset + image->planes[plane].size));
268 }
269
270 const unsigned clear_color_state_size = device->info.gen >= 10 ?
271 device->isl_dev.ss.clear_color_state_size :
272 device->isl_dev.ss.clear_value_size;
273
274 /* Clear color and fast clear type */
275 unsigned state_size = clear_color_state_size + 4;
276
277 /* We only need to track compression on CCS_E surfaces. */
278 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
279 if (image->type == VK_IMAGE_TYPE_3D) {
280 for (uint32_t l = 0; l < image->levels; l++)
281 state_size += anv_minify(image->extent.depth, l) * 4;
282 } else {
283 state_size += image->levels * image->array_size * 4;
284 }
285 }
286
287 image->planes[plane].fast_clear_state_offset =
288 image->planes[plane].offset + image->planes[plane].size;
289
290 image->planes[plane].size += state_size;
291 image->size += state_size;
292 }
293
294 /**
295 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
296 * image's memory requirements (that is, the image's size and alignment).
297 */
298 static VkResult
299 make_surface(const struct anv_device *dev,
300 struct anv_image *image,
301 const struct anv_image_create_info *anv_info,
302 isl_tiling_flags_t tiling_flags,
303 VkImageAspectFlagBits aspect)
304 {
305 const VkImageCreateInfo *vk_info = anv_info->vk_info;
306 bool ok;
307
308 static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
309 [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
310 [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
311 [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
312 };
313
314 image->extent = anv_sanitize_image_extent(vk_info->imageType,
315 vk_info->extent);
316
317 const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
318 const struct anv_format_plane plane_format =
319 anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
320 struct anv_surface *anv_surf = &image->planes[plane].surface;
321
322 const isl_surf_usage_flags_t usage =
323 choose_isl_surf_usage(vk_info->flags, image->usage,
324 anv_info->isl_extra_usage_flags, aspect);
325
326 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
327 * fall back to linear on Broadwell and earlier because we aren't
328 * guaranteed that we can handle offsets correctly. On Sky Lake, the
329 * horizontal and vertical alignments are sufficiently high that we can
330 * just use RENDER_SURFACE_STATE::X/Y Offset.
331 */
332 bool needs_shadow = false;
333 if (dev->info.gen <= 8 &&
334 (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT) &&
335 vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
336 assert(isl_format_is_compressed(plane_format.isl_format));
337 tiling_flags = ISL_TILING_LINEAR_BIT;
338 needs_shadow = true;
339 }
340
341 ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
342 .dim = vk_to_isl_surf_dim[vk_info->imageType],
343 .format = plane_format.isl_format,
344 .width = image->extent.width / plane_format.denominator_scales[0],
345 .height = image->extent.height / plane_format.denominator_scales[1],
346 .depth = image->extent.depth,
347 .levels = vk_info->mipLevels,
348 .array_len = vk_info->arrayLayers,
349 .samples = vk_info->samples,
350 .min_alignment = 0,
351 .row_pitch = anv_info->stride,
352 .usage = usage,
353 .tiling_flags = tiling_flags);
354
355 if (!ok)
356 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
357
358 image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
359
360 add_surface(image, anv_surf, plane);
361
362 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
363 * create an identical tiled shadow surface for use while texturing so we
364 * don't get garbage performance.
365 */
366 if (needs_shadow) {
367 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
368 assert(tiling_flags == ISL_TILING_LINEAR_BIT);
369
370 ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
371 .dim = vk_to_isl_surf_dim[vk_info->imageType],
372 .format = plane_format.isl_format,
373 .width = image->extent.width,
374 .height = image->extent.height,
375 .depth = image->extent.depth,
376 .levels = vk_info->mipLevels,
377 .array_len = vk_info->arrayLayers,
378 .samples = vk_info->samples,
379 .min_alignment = 0,
380 .row_pitch = anv_info->stride,
381 .usage = usage,
382 .tiling_flags = ISL_TILING_ANY_MASK);
383
384 /* isl_surf_init() will fail only if provided invalid input. Invalid input
385 * is illegal in Vulkan.
386 */
387 assert(ok);
388
389 add_surface(image, &image->planes[plane].shadow_surface, plane);
390 }
391
392 /* Add a HiZ surface to a depth buffer that will be used for rendering.
393 */
394 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
395 /* We don't advertise that depth buffers could be used as storage
396 * images.
397 */
398 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
399
400 /* Allow the user to control HiZ enabling. Disable by default on gen7
401 * because resolves are not currently implemented pre-BDW.
402 */
403 if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
404 /* It will never be used as an attachment, HiZ is pointless. */
405 } else if (dev->info.gen == 7) {
406 anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
407 } else if (vk_info->mipLevels > 1) {
408 anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
409 } else if (vk_info->arrayLayers > 1) {
410 anv_perf_warn(dev->instance, image,
411 "Implement multi-arrayLayer HiZ clears and resolves");
412 } else if (dev->info.gen == 8 && vk_info->samples > 1) {
413 anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
414 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
415 assert(image->planes[plane].aux_surface.isl.size == 0);
416 ok = isl_surf_get_hiz_surf(&dev->isl_dev,
417 &image->planes[plane].surface.isl,
418 &image->planes[plane].aux_surface.isl);
419 assert(ok);
420 add_surface(image, &image->planes[plane].aux_surface, plane);
421 image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
422 }
423 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
424 /* TODO: Disallow compression with :
425 *
426 * 1) non multiplanar images (We appear to hit a sampler bug with
427 * CCS & R16G16 format. Putting the clear state a page/4096bytes
428 * further fixes the issue).
429 *
430 * 2) alias images, because they might be aliases of images
431 * described in 1)
432 *
433 * 3) compression disabled by debug
434 */
435 const bool allow_compression =
436 image->n_planes == 1 &&
437 (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT) == 0 &&
438 likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
439
440 if (allow_compression) {
441 assert(image->planes[plane].aux_surface.isl.size == 0);
442 ok = isl_surf_get_ccs_surf(&dev->isl_dev,
443 &image->planes[plane].surface.isl,
444 &image->planes[plane].aux_surface.isl, 0);
445 if (ok) {
446
447 /* Disable CCS when it is not useful (i.e., when you can't render
448 * to the image with CCS enabled).
449 */
450 if (!isl_format_supports_rendering(&dev->info,
451 plane_format.isl_format)) {
452 /* While it may be technically possible to enable CCS for this
453 * image, we currently don't have things hooked up to get it
454 * working.
455 */
456 anv_perf_warn(dev->instance, image,
457 "This image format doesn't support rendering. "
458 "Not allocating an CCS buffer.");
459 image->planes[plane].aux_surface.isl.size = 0;
460 return VK_SUCCESS;
461 }
462
463 add_surface(image, &image->planes[plane].aux_surface, plane);
464 add_aux_state_tracking_buffer(image, aspect, plane, dev);
465
466 /* For images created without MUTABLE_FORMAT_BIT set, we know that
467 * they will always be used with the original format. In
468 * particular, they will always be used with a format that
469 * supports color compression. If it's never used as a storage
470 * image, then it will only be used through the sampler or the as
471 * a render target. This means that it's safe to just leave
472 * compression on at all times for these formats.
473 */
474 if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
475 all_formats_ccs_e_compatible(&dev->info, vk_info)) {
476 image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
477 }
478 }
479 }
480 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
481 assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
482 assert(image->planes[plane].aux_surface.isl.size == 0);
483 ok = isl_surf_get_mcs_surf(&dev->isl_dev,
484 &image->planes[plane].surface.isl,
485 &image->planes[plane].aux_surface.isl);
486 if (ok) {
487 add_surface(image, &image->planes[plane].aux_surface, plane);
488 add_aux_state_tracking_buffer(image, aspect, plane, dev);
489 image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
490 }
491 }
492
493 assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
494
495 /* Upper bound of the last surface should be smaller than the plane's
496 * size.
497 */
498 assert((MAX2(image->planes[plane].surface.offset,
499 image->planes[plane].aux_surface.offset) +
500 (image->planes[plane].aux_surface.isl.size > 0 ?
501 image->planes[plane].aux_surface.isl.size :
502 image->planes[plane].surface.isl.size)) <=
503 (image->planes[plane].offset + image->planes[plane].size));
504
505 if (image->planes[plane].aux_surface.isl.size) {
506 /* assert(image->planes[plane].fast_clear_state_offset == */
507 /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size)); */
508 assert(image->planes[plane].fast_clear_state_offset <
509 (image->planes[plane].offset + image->planes[plane].size));
510 }
511
512 return VK_SUCCESS;
513 }
514
515 static uint32_t
516 score_drm_format_mod(uint64_t modifier)
517 {
518 switch (modifier) {
519 case DRM_FORMAT_MOD_LINEAR: return 1;
520 case I915_FORMAT_MOD_X_TILED: return 2;
521 case I915_FORMAT_MOD_Y_TILED: return 3;
522 case I915_FORMAT_MOD_Y_TILED_CCS: return 4;
523 default: unreachable("bad DRM format modifier");
524 }
525 }
526
527 static const struct isl_drm_modifier_info *
528 choose_drm_format_mod(const struct anv_physical_device *device,
529 uint32_t modifier_count, const uint64_t *modifiers)
530 {
531 uint64_t best_mod = UINT64_MAX;
532 uint32_t best_score = 0;
533
534 for (uint32_t i = 0; i < modifier_count; ++i) {
535 uint32_t score = score_drm_format_mod(modifiers[i]);
536 if (score > best_score) {
537 best_mod = modifiers[i];
538 best_score = score;
539 }
540 }
541
542 if (best_score > 0)
543 return isl_drm_modifier_get_info(best_mod);
544 else
545 return NULL;
546 }
547
548 VkResult
549 anv_image_create(VkDevice _device,
550 const struct anv_image_create_info *create_info,
551 const VkAllocationCallbacks* alloc,
552 VkImage *pImage)
553 {
554 ANV_FROM_HANDLE(anv_device, device, _device);
555 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
556 const struct isl_drm_modifier_info *isl_mod_info = NULL;
557 struct anv_image *image = NULL;
558 VkResult r;
559
560 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
561
562 const struct wsi_image_create_info *wsi_info =
563 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
564 if (wsi_info && wsi_info->modifier_count > 0) {
565 isl_mod_info = choose_drm_format_mod(&device->instance->physicalDevice,
566 wsi_info->modifier_count,
567 wsi_info->modifiers);
568 assert(isl_mod_info);
569 }
570
571 anv_assert(pCreateInfo->mipLevels > 0);
572 anv_assert(pCreateInfo->arrayLayers > 0);
573 anv_assert(pCreateInfo->samples > 0);
574 anv_assert(pCreateInfo->extent.width > 0);
575 anv_assert(pCreateInfo->extent.height > 0);
576 anv_assert(pCreateInfo->extent.depth > 0);
577
578 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
579 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
580 if (!image)
581 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
582
583 image->type = pCreateInfo->imageType;
584 image->extent = pCreateInfo->extent;
585 image->vk_format = pCreateInfo->format;
586 image->format = anv_get_format(pCreateInfo->format);
587 image->aspects = vk_format_aspects(image->vk_format);
588 image->levels = pCreateInfo->mipLevels;
589 image->array_size = pCreateInfo->arrayLayers;
590 image->samples = pCreateInfo->samples;
591 image->usage = pCreateInfo->usage;
592 image->tiling = pCreateInfo->tiling;
593 image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT;
594 image->needs_set_tiling = wsi_info && wsi_info->scanout;
595 image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
596 DRM_FORMAT_MOD_INVALID;
597
598 const struct anv_format *format = anv_get_format(image->vk_format);
599 assert(format != NULL);
600
601 const isl_tiling_flags_t isl_tiling_flags =
602 choose_isl_tiling_flags(create_info, isl_mod_info,
603 image->needs_set_tiling);
604
605 image->n_planes = format->n_planes;
606
607 uint32_t b;
608 for_each_bit(b, image->aspects) {
609 r = make_surface(device, image, create_info, isl_tiling_flags,
610 (1 << b));
611 if (r != VK_SUCCESS)
612 goto fail;
613 }
614
615 *pImage = anv_image_to_handle(image);
616
617 return VK_SUCCESS;
618
619 fail:
620 if (image)
621 vk_free2(&device->alloc, alloc, image);
622
623 return r;
624 }
625
626 VkResult
627 anv_CreateImage(VkDevice device,
628 const VkImageCreateInfo *pCreateInfo,
629 const VkAllocationCallbacks *pAllocator,
630 VkImage *pImage)
631 {
632 #ifdef ANDROID
633 const VkNativeBufferANDROID *gralloc_info =
634 vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
635
636 if (gralloc_info)
637 return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
638 pAllocator, pImage);
639 #endif
640
641 return anv_image_create(device,
642 &(struct anv_image_create_info) {
643 .vk_info = pCreateInfo,
644 },
645 pAllocator,
646 pImage);
647 }
648
649 void
650 anv_DestroyImage(VkDevice _device, VkImage _image,
651 const VkAllocationCallbacks *pAllocator)
652 {
653 ANV_FROM_HANDLE(anv_device, device, _device);
654 ANV_FROM_HANDLE(anv_image, image, _image);
655
656 if (!image)
657 return;
658
659 for (uint32_t p = 0; p < image->n_planes; ++p) {
660 if (image->planes[p].bo_is_owned) {
661 assert(image->planes[p].address.bo != NULL);
662 anv_bo_cache_release(device, &device->bo_cache,
663 image->planes[p].address.bo);
664 }
665 }
666
667 vk_free2(&device->alloc, pAllocator, image);
668 }
669
670 static void anv_image_bind_memory_plane(struct anv_device *device,
671 struct anv_image *image,
672 uint32_t plane,
673 struct anv_device_memory *memory,
674 uint32_t memory_offset)
675 {
676 assert(!image->planes[plane].bo_is_owned);
677
678 if (!memory) {
679 image->planes[plane].address = ANV_NULL_ADDRESS;
680 return;
681 }
682
683 image->planes[plane].address = (struct anv_address) {
684 .bo = memory->bo,
685 .offset = memory_offset,
686 };
687 }
688
689 VkResult anv_BindImageMemory(
690 VkDevice _device,
691 VkImage _image,
692 VkDeviceMemory _memory,
693 VkDeviceSize memoryOffset)
694 {
695 ANV_FROM_HANDLE(anv_device, device, _device);
696 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
697 ANV_FROM_HANDLE(anv_image, image, _image);
698
699 uint32_t aspect_bit;
700 anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
701 uint32_t plane =
702 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
703 anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
704 }
705
706 return VK_SUCCESS;
707 }
708
709 VkResult anv_BindImageMemory2(
710 VkDevice _device,
711 uint32_t bindInfoCount,
712 const VkBindImageMemoryInfo* pBindInfos)
713 {
714 ANV_FROM_HANDLE(anv_device, device, _device);
715
716 for (uint32_t i = 0; i < bindInfoCount; i++) {
717 const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
718 ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
719 ANV_FROM_HANDLE(anv_image, image, bind_info->image);
720 VkImageAspectFlags aspects = image->aspects;
721
722 vk_foreach_struct_const(s, bind_info->pNext) {
723 switch (s->sType) {
724 case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
725 const VkBindImagePlaneMemoryInfo *plane_info =
726 (const VkBindImagePlaneMemoryInfo *) s;
727
728 aspects = plane_info->planeAspect;
729 break;
730 }
731 default:
732 anv_debug_ignored_stype(s->sType);
733 break;
734 }
735 }
736
737 uint32_t aspect_bit;
738 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
739 uint32_t plane =
740 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
741 anv_image_bind_memory_plane(device, image, plane,
742 mem, bind_info->memoryOffset);
743 }
744 }
745
746 return VK_SUCCESS;
747 }
748
749 void anv_GetImageSubresourceLayout(
750 VkDevice device,
751 VkImage _image,
752 const VkImageSubresource* subresource,
753 VkSubresourceLayout* layout)
754 {
755 ANV_FROM_HANDLE(anv_image, image, _image);
756
757 const struct anv_surface *surface;
758 if (subresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT_KHR &&
759 image->drm_format_mod != DRM_FORMAT_MOD_INVALID &&
760 isl_drm_modifier_has_aux(image->drm_format_mod))
761 surface = &image->planes[0].aux_surface;
762 else
763 surface = get_surface(image, subresource->aspectMask);
764
765 assert(__builtin_popcount(subresource->aspectMask) == 1);
766
767 layout->offset = surface->offset;
768 layout->rowPitch = surface->isl.row_pitch;
769 layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
770 layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
771
772 if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
773 assert(surface->isl.tiling == ISL_TILING_LINEAR);
774
775 uint32_t offset_B;
776 isl_surf_get_image_offset_B_tile_sa(&surface->isl,
777 subresource->mipLevel,
778 subresource->arrayLayer,
779 0 /* logical_z_offset_px */,
780 &offset_B, NULL, NULL);
781 layout->offset += offset_B;
782 layout->size = layout->rowPitch * anv_minify(image->extent.height,
783 subresource->mipLevel);
784 } else {
785 layout->size = surface->isl.size;
786 }
787 }
788
789 /**
790 * This function determines the optimal buffer to use for a given
791 * VkImageLayout and other pieces of information needed to make that
792 * determination. This does not determine the optimal buffer to use
793 * during a resolve operation.
794 *
795 * @param devinfo The device information of the Intel GPU.
796 * @param image The image that may contain a collection of buffers.
797 * @param aspect The aspect of the image to be accessed.
798 * @param layout The current layout of the image aspect(s).
799 *
800 * @return The primary buffer that should be used for the given layout.
801 */
802 enum isl_aux_usage
803 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
804 const struct anv_image * const image,
805 const VkImageAspectFlagBits aspect,
806 const VkImageLayout layout)
807 {
808 /* Validate the inputs. */
809
810 /* The devinfo is needed as the optimal buffer varies across generations. */
811 assert(devinfo != NULL);
812
813 /* The layout of a NULL image is not properly defined. */
814 assert(image != NULL);
815
816 /* The aspect must be exactly one of the image aspects. */
817 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
818
819 /* Determine the optimal buffer. */
820
821 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
822
823 /* If there is no auxiliary surface allocated, we must use the one and only
824 * main buffer.
825 */
826 if (image->planes[plane].aux_surface.isl.size == 0)
827 return ISL_AUX_USAGE_NONE;
828
829 /* All images that use an auxiliary surface are required to be tiled. */
830 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
831
832 /* Stencil has no aux */
833 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
834
835 switch (layout) {
836
837 /* Invalid Layouts */
838 case VK_IMAGE_LAYOUT_RANGE_SIZE:
839 case VK_IMAGE_LAYOUT_MAX_ENUM:
840 unreachable("Invalid image layout.");
841
842 /* Undefined layouts
843 *
844 * The pre-initialized layout is equivalent to the undefined layout for
845 * optimally-tiled images. We can only do color compression (CCS or HiZ)
846 * on tiled images.
847 */
848 case VK_IMAGE_LAYOUT_UNDEFINED:
849 case VK_IMAGE_LAYOUT_PREINITIALIZED:
850 return ISL_AUX_USAGE_NONE;
851
852
853 /* Transfer Layouts
854 */
855 case VK_IMAGE_LAYOUT_GENERAL:
856 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
857 case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
858 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
859 /* This buffer could be a depth buffer used in a transfer operation.
860 * BLORP currently doesn't use HiZ for transfer operations so we must
861 * use the main buffer for this layout. TODO: Enable HiZ in BLORP.
862 */
863 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ);
864 return ISL_AUX_USAGE_NONE;
865 } else {
866 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
867 return image->planes[plane].aux_usage;
868 }
869
870
871 /* Sampling Layouts */
872 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
873 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
874 assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
875 /* Fall-through */
876 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
877 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
878 if (anv_can_sample_with_hiz(devinfo, image))
879 return ISL_AUX_USAGE_HIZ;
880 else
881 return ISL_AUX_USAGE_NONE;
882 } else {
883 return image->planes[plane].aux_usage;
884 }
885
886
887 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
888 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
889
890 /* When handing the image off to the presentation engine, we need to
891 * ensure that things are properly resolved. For images with no
892 * modifier, we assume that they follow the old rules and always need
893 * a full resolve because the PE doesn't understand any form of
894 * compression. For images with modifiers, we use the aux usage from
895 * the modifier.
896 */
897 const struct isl_drm_modifier_info *mod_info =
898 isl_drm_modifier_get_info(image->drm_format_mod);
899 return mod_info ? mod_info->aux_usage : ISL_AUX_USAGE_NONE;
900 }
901
902
903 /* Rendering Layouts */
904 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
905 assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
906 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) {
907 assert(image->samples == 1);
908 return ISL_AUX_USAGE_CCS_D;
909 } else {
910 assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D);
911 return image->planes[plane].aux_usage;
912 }
913
914 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
915 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
916 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
917 return ISL_AUX_USAGE_HIZ;
918
919 case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
920 unreachable("VK_KHR_shared_presentable_image is unsupported");
921 }
922
923 /* If the layout isn't recognized in the exhaustive switch above, the
924 * VkImageLayout value is not defined in vulkan.h.
925 */
926 unreachable("layout is not a VkImageLayout enumeration member.");
927 }
928
929 /**
930 * This function returns the level of unresolved fast-clear support of the
931 * given image in the given VkImageLayout.
932 *
933 * @param devinfo The device information of the Intel GPU.
934 * @param image The image that may contain a collection of buffers.
935 * @param aspect The aspect of the image to be accessed.
936 * @param layout The current layout of the image aspect(s).
937 */
938 enum anv_fast_clear_type
939 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
940 const struct anv_image * const image,
941 const VkImageAspectFlagBits aspect,
942 const VkImageLayout layout)
943 {
944 /* The aspect must be exactly one of the image aspects. */
945 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
946
947 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
948
949 /* If there is no auxiliary surface allocated, there are no fast-clears */
950 if (image->planes[plane].aux_surface.isl.size == 0)
951 return ANV_FAST_CLEAR_NONE;
952
953 /* All images that use an auxiliary surface are required to be tiled. */
954 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
955
956 /* Stencil has no aux */
957 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
958
959 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
960 /* For depth images (with HiZ), the layout supports fast-clears if and
961 * only if it supports HiZ. However, we only support fast-clears to the
962 * default depth value.
963 */
964 enum isl_aux_usage aux_usage =
965 anv_layout_to_aux_usage(devinfo, image, aspect, layout);
966 return aux_usage == ISL_AUX_USAGE_HIZ ?
967 ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE;
968 }
969
970 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
971
972 /* We don't support MSAA fast-clears on Ivybridge or Bay Trail because they
973 * lack the MI ALU which we need to determine the predicates.
974 */
975 if (devinfo->gen == 7 && !devinfo->is_haswell && image->samples > 1)
976 return ANV_FAST_CLEAR_NONE;
977
978 switch (layout) {
979 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
980 return ANV_FAST_CLEAR_ANY;
981
982 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
983 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
984 #ifndef NDEBUG
985 /* We do not yet support any modifiers which support clear color so we
986 * just always return NONE. One day, this will change.
987 */
988 const struct isl_drm_modifier_info *mod_info =
989 isl_drm_modifier_get_info(image->drm_format_mod);
990 assert(!mod_info || !mod_info->supports_clear_color);
991 #endif
992 return ANV_FAST_CLEAR_NONE;
993 }
994
995 default:
996 /* If the image has MCS or CCS_E enabled all the time then we can use
997 * fast-clear as long as the clear color is the default value of zero
998 * since this is the default value we program into every surface state
999 * used for texturing.
1000 */
1001 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
1002 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
1003 return ANV_FAST_CLEAR_DEFAULT_VALUE;
1004 else
1005 return ANV_FAST_CLEAR_NONE;
1006 }
1007 }
1008
1009
1010 static struct anv_state
1011 alloc_surface_state(struct anv_device *device)
1012 {
1013 return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1014 }
1015
1016 static enum isl_channel_select
1017 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
1018 struct isl_swizzle format_swizzle)
1019 {
1020 if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
1021 swizzle = component;
1022
1023 switch (swizzle) {
1024 case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
1025 case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
1026 case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
1027 case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
1028 case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
1029 case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
1030 default:
1031 unreachable("Invalid swizzle");
1032 }
1033 }
1034
1035 void
1036 anv_image_fill_surface_state(struct anv_device *device,
1037 const struct anv_image *image,
1038 VkImageAspectFlagBits aspect,
1039 const struct isl_view *view_in,
1040 isl_surf_usage_flags_t view_usage,
1041 enum isl_aux_usage aux_usage,
1042 const union isl_color_value *clear_color,
1043 enum anv_image_view_state_flags flags,
1044 struct anv_surface_state *state_inout,
1045 struct brw_image_param *image_param_out)
1046 {
1047 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1048
1049 const struct anv_surface *surface = &image->planes[plane].surface,
1050 *aux_surface = &image->planes[plane].aux_surface;
1051
1052 struct isl_view view = *view_in;
1053 view.usage |= view_usage;
1054
1055 /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
1056 * compressed surface with a shadow surface, we use the shadow instead of
1057 * the primary surface. The shadow surface will be tiled, unlike the main
1058 * surface, so it should get significantly better performance.
1059 */
1060 if (image->planes[plane].shadow_surface.isl.size > 0 &&
1061 isl_format_is_compressed(view.format) &&
1062 (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
1063 assert(isl_format_is_compressed(surface->isl.format));
1064 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1065 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1066 surface = &image->planes[plane].shadow_surface;
1067 }
1068
1069 if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
1070 view.swizzle = anv_swizzle_for_render(view.swizzle);
1071
1072 /* If this is a HiZ buffer we can sample from with a programmable clear
1073 * value (SKL+), define the clear value to the optimal constant.
1074 */
1075 union isl_color_value default_clear_color = { .u32 = { 0, } };
1076 if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
1077 default_clear_color.f32[0] = ANV_HZ_FC_VAL;
1078 if (!clear_color)
1079 clear_color = &default_clear_color;
1080
1081 const struct anv_address address =
1082 anv_address_add(image->planes[plane].address, surface->offset);
1083
1084 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1085 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
1086 !isl_has_matching_typed_storage_image_format(&device->info,
1087 view.format)) {
1088 /* In this case, we are a writeable storage buffer which needs to be
1089 * lowered to linear. All tiling and offset calculations will be done in
1090 * the shader.
1091 */
1092 assert(aux_usage == ISL_AUX_USAGE_NONE);
1093 isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
1094 .address = anv_address_physical(address),
1095 .size = surface->isl.size,
1096 .format = ISL_FORMAT_RAW,
1097 .stride = 1,
1098 .mocs = device->default_mocs);
1099 state_inout->address = address,
1100 state_inout->aux_address = ANV_NULL_ADDRESS;
1101 state_inout->clear_address = ANV_NULL_ADDRESS;
1102 } else {
1103 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1104 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
1105 /* Typed surface reads support a very limited subset of the shader
1106 * image formats. Translate it into the closest format the hardware
1107 * supports.
1108 */
1109 assert(aux_usage == ISL_AUX_USAGE_NONE);
1110 view.format = isl_lower_storage_image_format(&device->info,
1111 view.format);
1112 }
1113
1114 const struct isl_surf *isl_surf = &surface->isl;
1115
1116 struct isl_surf tmp_surf;
1117 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1118 if (isl_format_is_compressed(surface->isl.format) &&
1119 !isl_format_is_compressed(view.format)) {
1120 /* We're creating an uncompressed view of a compressed surface. This
1121 * is allowed but only for a single level/layer.
1122 */
1123 assert(surface->isl.samples == 1);
1124 assert(view.levels == 1);
1125 assert(view.array_len == 1);
1126
1127 isl_surf_get_image_surf(&device->isl_dev, isl_surf,
1128 view.base_level,
1129 surface->isl.dim == ISL_SURF_DIM_3D ?
1130 0 : view.base_array_layer,
1131 surface->isl.dim == ISL_SURF_DIM_3D ?
1132 view.base_array_layer : 0,
1133 &tmp_surf,
1134 &offset_B, &tile_x_sa, &tile_y_sa);
1135
1136 /* The newly created image represents the one subimage we're
1137 * referencing with this view so it only has one array slice and
1138 * miplevel.
1139 */
1140 view.base_array_layer = 0;
1141 view.base_level = 0;
1142
1143 /* We're making an uncompressed view here. The image dimensions need
1144 * to be scaled down by the block size.
1145 */
1146 const struct isl_format_layout *fmtl =
1147 isl_format_get_layout(surface->isl.format);
1148 tmp_surf.format = view.format;
1149 tmp_surf.logical_level0_px.width =
1150 DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
1151 tmp_surf.logical_level0_px.height =
1152 DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
1153 tmp_surf.phys_level0_sa.width /= fmtl->bw;
1154 tmp_surf.phys_level0_sa.height /= fmtl->bh;
1155 tile_x_sa /= fmtl->bw;
1156 tile_y_sa /= fmtl->bh;
1157
1158 isl_surf = &tmp_surf;
1159
1160 if (device->info.gen <= 8) {
1161 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1162 assert(tile_x_sa == 0);
1163 assert(tile_y_sa == 0);
1164 }
1165 }
1166
1167 state_inout->address = anv_address_add(address, offset_B);
1168
1169 struct anv_address aux_address = ANV_NULL_ADDRESS;
1170 if (aux_usage != ISL_AUX_USAGE_NONE) {
1171 aux_address = anv_address_add(image->planes[plane].address,
1172 aux_surface->offset);
1173 }
1174 state_inout->aux_address = aux_address;
1175
1176 struct anv_address clear_address = ANV_NULL_ADDRESS;
1177 if (device->info.gen >= 10 && aux_usage != ISL_AUX_USAGE_NONE) {
1178 if (aux_usage == ISL_AUX_USAGE_HIZ) {
1179 clear_address = (struct anv_address) {
1180 .bo = &device->hiz_clear_bo,
1181 .offset = 0,
1182 };
1183 } else {
1184 clear_address = anv_image_get_clear_color_addr(device, image, aspect);
1185 }
1186 }
1187 state_inout->clear_address = clear_address;
1188
1189 isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1190 .surf = isl_surf,
1191 .view = &view,
1192 .address = anv_address_physical(state_inout->address),
1193 .clear_color = *clear_color,
1194 .aux_surf = &aux_surface->isl,
1195 .aux_usage = aux_usage,
1196 .aux_address = anv_address_physical(aux_address),
1197 .clear_address = anv_address_physical(clear_address),
1198 .use_clear_address = !anv_address_is_null(clear_address),
1199 .mocs = device->default_mocs,
1200 .x_offset_sa = tile_x_sa,
1201 .y_offset_sa = tile_y_sa);
1202
1203 /* With the exception of gen8, the bottom 12 bits of the MCS base address
1204 * are used to store other information. This should be ok, however,
1205 * because the surface buffer addresses are always 4K page aligned.
1206 */
1207 uint32_t *aux_addr_dw = state_inout->state.map +
1208 device->isl_dev.ss.aux_addr_offset;
1209 assert((aux_address.offset & 0xfff) == 0);
1210 state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
1211
1212 if (device->info.gen >= 10 && clear_address.bo) {
1213 uint32_t *clear_addr_dw = state_inout->state.map +
1214 device->isl_dev.ss.clear_color_state_offset;
1215 assert((clear_address.offset & 0x3f) == 0);
1216 state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
1217 }
1218 }
1219
1220 anv_state_flush(device, state_inout->state);
1221
1222 if (image_param_out) {
1223 assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1224 isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1225 &surface->isl, &view);
1226 }
1227 }
1228
1229 static VkImageAspectFlags
1230 remap_aspect_flags(VkImageAspectFlags view_aspects)
1231 {
1232 if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1233 if (_mesa_bitcount(view_aspects) == 1)
1234 return VK_IMAGE_ASPECT_COLOR_BIT;
1235
1236 VkImageAspectFlags color_aspects = 0;
1237 for (uint32_t i = 0; i < _mesa_bitcount(view_aspects); i++)
1238 color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT << i;
1239 return color_aspects;
1240 }
1241 /* No special remapping needed for depth & stencil aspects. */
1242 return view_aspects;
1243 }
1244
1245 VkResult
1246 anv_CreateImageView(VkDevice _device,
1247 const VkImageViewCreateInfo *pCreateInfo,
1248 const VkAllocationCallbacks *pAllocator,
1249 VkImageView *pView)
1250 {
1251 ANV_FROM_HANDLE(anv_device, device, _device);
1252 ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1253 struct anv_image_view *iview;
1254
1255 iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1256 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1257 if (iview == NULL)
1258 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1259
1260 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1261
1262 assert(range->layerCount > 0);
1263 assert(range->baseMipLevel < image->levels);
1264
1265 const VkImageViewUsageCreateInfo *usage_info =
1266 vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO);
1267 VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
1268 /* View usage should be a subset of image usage */
1269 assert((view_usage & ~image->usage) == 0);
1270 assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1271 VK_IMAGE_USAGE_STORAGE_BIT |
1272 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1273 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1274 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1275
1276 switch (image->type) {
1277 default:
1278 unreachable("bad VkImageType");
1279 case VK_IMAGE_TYPE_1D:
1280 case VK_IMAGE_TYPE_2D:
1281 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1282 break;
1283 case VK_IMAGE_TYPE_3D:
1284 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1285 <= anv_minify(image->extent.depth, range->baseMipLevel));
1286 break;
1287 }
1288
1289 /* First expand aspects to the image's ones (for example
1290 * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1291 * VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT |
1292 * VK_IMAGE_ASPECT_PLANE_2_BIT for an image of format
1293 * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
1294 */
1295 VkImageAspectFlags expanded_aspects =
1296 anv_image_expand_aspects(image, range->aspectMask);
1297
1298 iview->image = image;
1299
1300 /* Remap the expanded aspects for the image view. For example if only
1301 * VK_IMAGE_ASPECT_PLANE_1_BIT was given in range->aspectMask, we will
1302 * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1303 * the image view, it only has a single plane.
1304 */
1305 iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1306 iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1307 iview->vk_format = pCreateInfo->format;
1308
1309 iview->extent = (VkExtent3D) {
1310 .width = anv_minify(image->extent.width , range->baseMipLevel),
1311 .height = anv_minify(image->extent.height, range->baseMipLevel),
1312 .depth = anv_minify(image->extent.depth , range->baseMipLevel),
1313 };
1314
1315 /* Now go through the underlying image selected planes (computed in
1316 * expanded_aspects) and map them to planes in the image view.
1317 */
1318 uint32_t iaspect_bit, vplane = 0;
1319 anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1320 uint32_t iplane =
1321 anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit);
1322 VkImageAspectFlags vplane_aspect =
1323 anv_plane_to_aspect(iview->aspect_mask, vplane);
1324 struct anv_format_plane format =
1325 anv_get_format_plane(&device->info, pCreateInfo->format,
1326 vplane_aspect, image->tiling);
1327
1328 iview->planes[vplane].image_plane = iplane;
1329
1330 iview->planes[vplane].isl = (struct isl_view) {
1331 .format = format.isl_format,
1332 .base_level = range->baseMipLevel,
1333 .levels = anv_get_levelCount(image, range),
1334 .base_array_layer = range->baseArrayLayer,
1335 .array_len = anv_get_layerCount(image, range),
1336 .swizzle = {
1337 .r = remap_swizzle(pCreateInfo->components.r,
1338 VK_COMPONENT_SWIZZLE_R, format.swizzle),
1339 .g = remap_swizzle(pCreateInfo->components.g,
1340 VK_COMPONENT_SWIZZLE_G, format.swizzle),
1341 .b = remap_swizzle(pCreateInfo->components.b,
1342 VK_COMPONENT_SWIZZLE_B, format.swizzle),
1343 .a = remap_swizzle(pCreateInfo->components.a,
1344 VK_COMPONENT_SWIZZLE_A, format.swizzle),
1345 },
1346 };
1347
1348 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1349 iview->planes[vplane].isl.base_array_layer = 0;
1350 iview->planes[vplane].isl.array_len = iview->extent.depth;
1351 }
1352
1353 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1354 pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1355 iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1356 } else {
1357 iview->planes[vplane].isl.usage = 0;
1358 }
1359
1360 if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1361 (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1362 !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1363 iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1364 iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1365
1366 enum isl_aux_usage general_aux_usage =
1367 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1368 VK_IMAGE_LAYOUT_GENERAL);
1369 enum isl_aux_usage optimal_aux_usage =
1370 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1371 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1372
1373 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1374 &iview->planes[vplane].isl,
1375 ISL_SURF_USAGE_TEXTURE_BIT,
1376 optimal_aux_usage, NULL,
1377 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1378 &iview->planes[vplane].optimal_sampler_surface_state,
1379 NULL);
1380
1381 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1382 &iview->planes[vplane].isl,
1383 ISL_SURF_USAGE_TEXTURE_BIT,
1384 general_aux_usage, NULL,
1385 0,
1386 &iview->planes[vplane].general_sampler_surface_state,
1387 NULL);
1388 }
1389
1390 /* NOTE: This one needs to go last since it may stomp isl_view.format */
1391 if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1392 iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1393 iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1394
1395 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1396 &iview->planes[vplane].isl,
1397 ISL_SURF_USAGE_STORAGE_BIT,
1398 ISL_AUX_USAGE_NONE, NULL,
1399 0,
1400 &iview->planes[vplane].storage_surface_state,
1401 &iview->planes[vplane].storage_image_param);
1402
1403 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1404 &iview->planes[vplane].isl,
1405 ISL_SURF_USAGE_STORAGE_BIT,
1406 ISL_AUX_USAGE_NONE, NULL,
1407 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1408 &iview->planes[vplane].writeonly_storage_surface_state,
1409 NULL);
1410 }
1411
1412 vplane++;
1413 }
1414
1415 *pView = anv_image_view_to_handle(iview);
1416
1417 return VK_SUCCESS;
1418 }
1419
1420 void
1421 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1422 const VkAllocationCallbacks *pAllocator)
1423 {
1424 ANV_FROM_HANDLE(anv_device, device, _device);
1425 ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1426
1427 if (!iview)
1428 return;
1429
1430 for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1431 if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1432 anv_state_pool_free(&device->surface_state_pool,
1433 iview->planes[plane].optimal_sampler_surface_state.state);
1434 }
1435
1436 if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1437 anv_state_pool_free(&device->surface_state_pool,
1438 iview->planes[plane].general_sampler_surface_state.state);
1439 }
1440
1441 if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1442 anv_state_pool_free(&device->surface_state_pool,
1443 iview->planes[plane].storage_surface_state.state);
1444 }
1445
1446 if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1447 anv_state_pool_free(&device->surface_state_pool,
1448 iview->planes[plane].writeonly_storage_surface_state.state);
1449 }
1450 }
1451
1452 vk_free2(&device->alloc, pAllocator, iview);
1453 }
1454
1455
1456 VkResult
1457 anv_CreateBufferView(VkDevice _device,
1458 const VkBufferViewCreateInfo *pCreateInfo,
1459 const VkAllocationCallbacks *pAllocator,
1460 VkBufferView *pView)
1461 {
1462 ANV_FROM_HANDLE(anv_device, device, _device);
1463 ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1464 struct anv_buffer_view *view;
1465
1466 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1467 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1468 if (!view)
1469 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1470
1471 /* TODO: Handle the format swizzle? */
1472
1473 view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1474 VK_IMAGE_ASPECT_COLOR_BIT,
1475 VK_IMAGE_TILING_LINEAR);
1476 const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1477 view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1478 pCreateInfo->range);
1479 view->range = align_down_npot_u32(view->range, format_bs);
1480
1481 view->address = anv_address_add(buffer->address, pCreateInfo->offset);
1482
1483 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1484 view->surface_state = alloc_surface_state(device);
1485
1486 anv_fill_buffer_surface_state(device, view->surface_state,
1487 view->format,
1488 view->address, view->range, format_bs);
1489 } else {
1490 view->surface_state = (struct anv_state){ 0 };
1491 }
1492
1493 if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1494 view->storage_surface_state = alloc_surface_state(device);
1495 view->writeonly_storage_surface_state = alloc_surface_state(device);
1496
1497 enum isl_format storage_format =
1498 isl_has_matching_typed_storage_image_format(&device->info,
1499 view->format) ?
1500 isl_lower_storage_image_format(&device->info, view->format) :
1501 ISL_FORMAT_RAW;
1502
1503 anv_fill_buffer_surface_state(device, view->storage_surface_state,
1504 storage_format,
1505 view->address, view->range,
1506 (storage_format == ISL_FORMAT_RAW ? 1 :
1507 isl_format_get_layout(storage_format)->bpb / 8));
1508
1509 /* Write-only accesses should use the original format. */
1510 anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1511 view->format,
1512 view->address, view->range,
1513 isl_format_get_layout(view->format)->bpb / 8);
1514
1515 isl_buffer_fill_image_param(&device->isl_dev,
1516 &view->storage_image_param,
1517 view->format, view->range);
1518 } else {
1519 view->storage_surface_state = (struct anv_state){ 0 };
1520 view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1521 }
1522
1523 *pView = anv_buffer_view_to_handle(view);
1524
1525 return VK_SUCCESS;
1526 }
1527
1528 void
1529 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1530 const VkAllocationCallbacks *pAllocator)
1531 {
1532 ANV_FROM_HANDLE(anv_device, device, _device);
1533 ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1534
1535 if (!view)
1536 return;
1537
1538 if (view->surface_state.alloc_size > 0)
1539 anv_state_pool_free(&device->surface_state_pool,
1540 view->surface_state);
1541
1542 if (view->storage_surface_state.alloc_size > 0)
1543 anv_state_pool_free(&device->surface_state_pool,
1544 view->storage_surface_state);
1545
1546 if (view->writeonly_storage_surface_state.alloc_size > 0)
1547 anv_state_pool_free(&device->surface_state_pool,
1548 view->writeonly_storage_surface_state);
1549
1550 vk_free2(&device->alloc, pAllocator, view);
1551 }
1552
1553 const struct anv_surface *
1554 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1555 VkImageAspectFlags aspect_mask)
1556 {
1557 VkImageAspectFlags sanitized_mask;
1558
1559 switch (aspect_mask) {
1560 case VK_IMAGE_ASPECT_COLOR_BIT:
1561 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1562 sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1563 break;
1564 case VK_IMAGE_ASPECT_DEPTH_BIT:
1565 assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1566 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1567 break;
1568 case VK_IMAGE_ASPECT_STENCIL_BIT:
1569 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1570 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1571 break;
1572 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1573 /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1574 * combined depth stencil formats. Specifically, it states:
1575 *
1576 * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1577 * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1578 *
1579 * Image views with both depth and stencil aspects are only valid for
1580 * render target attachments, in which case
1581 * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1582 * stencil surfaces from the underlying surface.
1583 */
1584 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1585 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1586 } else {
1587 assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1588 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1589 }
1590 break;
1591 case VK_IMAGE_ASPECT_PLANE_0_BIT:
1592 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1593 sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT;
1594 break;
1595 case VK_IMAGE_ASPECT_PLANE_1_BIT:
1596 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1597 sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT;
1598 break;
1599 case VK_IMAGE_ASPECT_PLANE_2_BIT:
1600 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1601 sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT;
1602 break;
1603 default:
1604 unreachable("image does not have aspect");
1605 return NULL;
1606 }
1607
1608 uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1609 return &image->planes[plane].surface;
1610 }