anv/image: Add support for modifiers for WSI
[mesa.git] / src / intel / vulkan / anv_image.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include <drm_fourcc.h>
31
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35
36 #include "vk_format_info.h"
37
38 static isl_surf_usage_flags_t
39 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
40 VkImageUsageFlags vk_usage,
41 isl_surf_usage_flags_t isl_extra_usage,
42 VkImageAspectFlagBits aspect)
43 {
44 isl_surf_usage_flags_t isl_usage = isl_extra_usage;
45
46 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
47 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
48
49 if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
50 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
51
52 if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
53 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
54
55 if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
56 isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
57
58 /* Even if we're only using it for transfer operations, clears to depth and
59 * stencil images happen as depth and stencil so they need the right ISL
60 * usage bits or else things will fall apart.
61 */
62 switch (aspect) {
63 case VK_IMAGE_ASPECT_DEPTH_BIT:
64 isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
65 break;
66 case VK_IMAGE_ASPECT_STENCIL_BIT:
67 isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
68 break;
69 case VK_IMAGE_ASPECT_COLOR_BIT:
70 case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
71 case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
72 case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
73 break;
74 default:
75 unreachable("bad VkImageAspect");
76 }
77
78 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
79 /* blorp implements transfers by sampling from the source image. */
80 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
81 }
82
83 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
84 aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
85 /* blorp implements transfers by rendering into the destination image.
86 * Only request this with color images, as we deal with depth/stencil
87 * formats differently. */
88 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
89 }
90
91 return isl_usage;
92 }
93
94 static isl_tiling_flags_t
95 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
96 const struct isl_drm_modifier_info *isl_mod_info,
97 bool legacy_scanout)
98 {
99 const VkImageCreateInfo *base_info = anv_info->vk_info;
100 isl_tiling_flags_t flags = 0;
101
102 switch (base_info->tiling) {
103 default:
104 unreachable("bad VkImageTiling");
105 case VK_IMAGE_TILING_OPTIMAL:
106 flags = ISL_TILING_ANY_MASK;
107 break;
108 case VK_IMAGE_TILING_LINEAR:
109 flags = ISL_TILING_LINEAR_BIT;
110 break;
111 }
112
113 if (anv_info->isl_tiling_flags)
114 flags &= anv_info->isl_tiling_flags;
115
116 if (legacy_scanout)
117 flags &= ISL_TILING_LINEAR_BIT | ISL_TILING_X_BIT;
118
119 if (isl_mod_info)
120 flags &= 1 << isl_mod_info->tiling;
121
122 assert(flags);
123
124 return flags;
125 }
126
127 static struct anv_surface *
128 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
129 {
130 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
131 return &image->planes[plane].surface;
132 }
133
134 static void
135 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
136 {
137 assert(surf->isl.size > 0); /* isl surface must be initialized */
138
139 if (image->disjoint) {
140 surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment);
141 /* Plane offset is always 0 when it's disjoint. */
142 } else {
143 surf->offset = align_u32(image->size, surf->isl.alignment);
144 /* Determine plane's offset only once when the first surface is added. */
145 if (image->planes[plane].size == 0)
146 image->planes[plane].offset = image->size;
147 }
148
149 image->size = surf->offset + surf->isl.size;
150 image->planes[plane].size = (surf->offset + surf->isl.size) - image->planes[plane].offset;
151
152 image->alignment = MAX2(image->alignment, surf->isl.alignment);
153 image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
154 surf->isl.alignment);
155 }
156
157
158 static bool
159 all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
160 const struct VkImageCreateInfo *vk_info)
161 {
162 enum isl_format format =
163 anv_get_isl_format(devinfo, vk_info->format,
164 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
165
166 if (!isl_format_supports_ccs_e(devinfo, format))
167 return false;
168
169 if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
170 return true;
171
172 const VkImageFormatListCreateInfoKHR *fmt_list =
173 vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
174
175 if (!fmt_list || fmt_list->viewFormatCount == 0)
176 return false;
177
178 for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
179 enum isl_format view_format =
180 anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
181 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
182
183 if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
184 return false;
185 }
186
187 return true;
188 }
189
190 /**
191 * For color images that have an auxiliary surface, request allocation for an
192 * additional buffer that mainly stores fast-clear values. Use of this buffer
193 * allows us to access the image's subresources while being aware of their
194 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
195 * which a fast clear has occurred).
196 *
197 * In order to avoid having multiple clear colors for a single plane of an
198 * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
199 * the first slice (level 0, layer 0). At the time of our testing (Jan 17,
200 * 2018), there were no known applications which would benefit from fast-
201 * clearing more than just the first slice.
202 *
203 * The fast clear portion of the image is laid out in the following order:
204 *
205 * * 1 or 4 dwords (depending on hardware generation) for the clear color
206 * * 1 dword for the anv_fast_clear_type of the clear color
207 * * On gen9+, 1 dword per level and layer of the image (3D levels count
208 * multiple layers) in level-major order for compression state.
209 *
210 * For the purpose of discoverability, the algorithm used to manage
211 * compression and fast-clears is described here:
212 *
213 * * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
214 * all of the values in the fast clear portion of the image are initialized
215 * to default values.
216 *
217 * * On fast-clear, the clear value is written into surface state and also
218 * into the buffer and the fast clear type is set appropriately. Both
219 * setting the fast-clear value in the buffer and setting the fast-clear
220 * type happen from the GPU using MI commands.
221 *
222 * * Whenever a render or blorp operation is performed with CCS_E, we call
223 * genX(cmd_buffer_mark_image_written) to set the compression state to
224 * true (which is represented by UINT32_MAX).
225 *
226 * * On pipeline barrier transitions, the worst-case transition is computed
227 * from the image layouts. The command streamer inspects the fast clear
228 * type and compression state dwords and constructs a predicate. The
229 * worst-case resolve is performed with the given predicate and the fast
230 * clear and compression state is set accordingly.
231 *
232 * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
233 * details on exactly what is allowed in what layouts.
234 *
235 * On gen7-9, we do not have a concept of indirect clear colors in hardware.
236 * In order to deal with this, we have to do some clear color management.
237 *
238 * * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
239 * value from the buffer into the surface state with MI commands.
240 *
241 * * For any blorp operations, we pass the address to the clear value into
242 * blorp and it knows to copy the clear color.
243 */
244 static void
245 add_aux_state_tracking_buffer(struct anv_image *image,
246 VkImageAspectFlagBits aspect,
247 uint32_t plane,
248 const struct anv_device *device)
249 {
250 assert(image && device);
251 assert(image->planes[plane].aux_surface.isl.size > 0 &&
252 image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
253
254 /* Compressed images must be tiled and therefore everything should be 4K
255 * aligned. The CCS has the same alignment requirements. This is good
256 * because we need at least dword-alignment for MI_LOAD/STORE operations.
257 */
258 assert(image->alignment % 4 == 0);
259 assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
260
261 /* This buffer should be at the very end of the plane. */
262 if (image->disjoint) {
263 assert(image->planes[plane].size ==
264 (image->planes[plane].offset + image->planes[plane].size));
265 } else {
266 assert(image->size ==
267 (image->planes[plane].offset + image->planes[plane].size));
268 }
269
270 /* Clear color and fast clear type */
271 unsigned state_size = device->isl_dev.ss.clear_value_size + 4;
272
273 /* We only need to track compression on CCS_E surfaces. */
274 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
275 if (image->type == VK_IMAGE_TYPE_3D) {
276 for (uint32_t l = 0; l < image->levels; l++)
277 state_size += anv_minify(image->extent.depth, l) * 4;
278 } else {
279 state_size += image->levels * image->array_size * 4;
280 }
281 }
282
283 image->planes[plane].fast_clear_state_offset =
284 image->planes[plane].offset + image->planes[plane].size;
285
286 image->planes[plane].size += state_size;
287 image->size += state_size;
288 }
289
290 /**
291 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
292 * image's memory requirements (that is, the image's size and alignment).
293 */
294 static VkResult
295 make_surface(const struct anv_device *dev,
296 struct anv_image *image,
297 const struct anv_image_create_info *anv_info,
298 isl_tiling_flags_t tiling_flags,
299 VkImageAspectFlagBits aspect)
300 {
301 const VkImageCreateInfo *vk_info = anv_info->vk_info;
302 bool ok UNUSED;
303
304 static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
305 [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
306 [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
307 [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
308 };
309
310 image->extent = anv_sanitize_image_extent(vk_info->imageType,
311 vk_info->extent);
312
313 const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
314 const struct anv_format_plane plane_format =
315 anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
316 struct anv_surface *anv_surf = &image->planes[plane].surface;
317
318 const isl_surf_usage_flags_t usage =
319 choose_isl_surf_usage(vk_info->flags, image->usage,
320 anv_info->isl_extra_usage_flags, aspect);
321
322 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
323 * fall back to linear on Broadwell and earlier because we aren't
324 * guaranteed that we can handle offsets correctly. On Sky Lake, the
325 * horizontal and vertical alignments are sufficiently high that we can
326 * just use RENDER_SURFACE_STATE::X/Y Offset.
327 */
328 bool needs_shadow = false;
329 if (dev->info.gen <= 8 &&
330 (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) &&
331 vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
332 assert(isl_format_is_compressed(plane_format.isl_format));
333 tiling_flags = ISL_TILING_LINEAR_BIT;
334 needs_shadow = true;
335 }
336
337 ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
338 .dim = vk_to_isl_surf_dim[vk_info->imageType],
339 .format = plane_format.isl_format,
340 .width = image->extent.width / plane_format.denominator_scales[0],
341 .height = image->extent.height / plane_format.denominator_scales[1],
342 .depth = image->extent.depth,
343 .levels = vk_info->mipLevels,
344 .array_len = vk_info->arrayLayers,
345 .samples = vk_info->samples,
346 .min_alignment = 0,
347 .row_pitch = anv_info->stride,
348 .usage = usage,
349 .tiling_flags = tiling_flags);
350
351 if (!ok)
352 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
353
354 image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
355
356 add_surface(image, anv_surf, plane);
357
358 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
359 * create an identical tiled shadow surface for use while texturing so we
360 * don't get garbage performance.
361 */
362 if (needs_shadow) {
363 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
364 assert(tiling_flags == ISL_TILING_LINEAR_BIT);
365
366 ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
367 .dim = vk_to_isl_surf_dim[vk_info->imageType],
368 .format = plane_format.isl_format,
369 .width = image->extent.width,
370 .height = image->extent.height,
371 .depth = image->extent.depth,
372 .levels = vk_info->mipLevels,
373 .array_len = vk_info->arrayLayers,
374 .samples = vk_info->samples,
375 .min_alignment = 0,
376 .row_pitch = anv_info->stride,
377 .usage = usage,
378 .tiling_flags = ISL_TILING_ANY_MASK);
379
380 /* isl_surf_init() will fail only if provided invalid input. Invalid input
381 * is illegal in Vulkan.
382 */
383 assert(ok);
384
385 add_surface(image, &image->planes[plane].shadow_surface, plane);
386 }
387
388 /* Add a HiZ surface to a depth buffer that will be used for rendering.
389 */
390 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
391 /* We don't advertise that depth buffers could be used as storage
392 * images.
393 */
394 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
395
396 /* Allow the user to control HiZ enabling. Disable by default on gen7
397 * because resolves are not currently implemented pre-BDW.
398 */
399 if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
400 /* It will never be used as an attachment, HiZ is pointless. */
401 } else if (dev->info.gen == 7) {
402 anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
403 } else if (vk_info->mipLevels > 1) {
404 anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
405 } else if (vk_info->arrayLayers > 1) {
406 anv_perf_warn(dev->instance, image,
407 "Implement multi-arrayLayer HiZ clears and resolves");
408 } else if (dev->info.gen == 8 && vk_info->samples > 1) {
409 anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
410 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
411 assert(image->planes[plane].aux_surface.isl.size == 0);
412 ok = isl_surf_get_hiz_surf(&dev->isl_dev,
413 &image->planes[plane].surface.isl,
414 &image->planes[plane].aux_surface.isl);
415 assert(ok);
416 add_surface(image, &image->planes[plane].aux_surface, plane);
417 image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
418 }
419 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
420 /* TODO: Disallow compression with :
421 *
422 * 1) non multiplanar images (We appear to hit a sampler bug with
423 * CCS & R16G16 format. Putting the clear state a page/4096bytes
424 * further fixes the issue).
425 *
426 * 2) alias images, because they might be aliases of images
427 * described in 1)
428 *
429 * 3) compression disabled by debug
430 */
431 const bool allow_compression =
432 image->n_planes == 1 &&
433 (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT_KHR) == 0 &&
434 likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
435
436 if (allow_compression) {
437 assert(image->planes[plane].aux_surface.isl.size == 0);
438 ok = isl_surf_get_ccs_surf(&dev->isl_dev,
439 &image->planes[plane].surface.isl,
440 &image->planes[plane].aux_surface.isl, 0);
441 if (ok) {
442
443 /* Disable CCS when it is not useful (i.e., when you can't render
444 * to the image with CCS enabled).
445 */
446 if (!isl_format_supports_rendering(&dev->info,
447 plane_format.isl_format)) {
448 /* While it may be technically possible to enable CCS for this
449 * image, we currently don't have things hooked up to get it
450 * working.
451 */
452 anv_perf_warn(dev->instance, image,
453 "This image format doesn't support rendering. "
454 "Not allocating an CCS buffer.");
455 image->planes[plane].aux_surface.isl.size = 0;
456 return VK_SUCCESS;
457 }
458
459 add_surface(image, &image->planes[plane].aux_surface, plane);
460 add_aux_state_tracking_buffer(image, aspect, plane, dev);
461
462 /* For images created without MUTABLE_FORMAT_BIT set, we know that
463 * they will always be used with the original format. In
464 * particular, they will always be used with a format that
465 * supports color compression. If it's never used as a storage
466 * image, then it will only be used through the sampler or the as
467 * a render target. This means that it's safe to just leave
468 * compression on at all times for these formats.
469 */
470 if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
471 all_formats_ccs_e_compatible(&dev->info, vk_info)) {
472 image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
473 }
474 }
475 }
476 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
477 assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
478 assert(image->planes[plane].aux_surface.isl.size == 0);
479 ok = isl_surf_get_mcs_surf(&dev->isl_dev,
480 &image->planes[plane].surface.isl,
481 &image->planes[plane].aux_surface.isl);
482 if (ok) {
483 add_surface(image, &image->planes[plane].aux_surface, plane);
484 add_aux_state_tracking_buffer(image, aspect, plane, dev);
485 image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
486 }
487 }
488
489 assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
490
491 /* Upper bound of the last surface should be smaller than the plane's
492 * size.
493 */
494 assert((MAX2(image->planes[plane].surface.offset,
495 image->planes[plane].aux_surface.offset) +
496 (image->planes[plane].aux_surface.isl.size > 0 ?
497 image->planes[plane].aux_surface.isl.size :
498 image->planes[plane].surface.isl.size)) <=
499 (image->planes[plane].offset + image->planes[plane].size));
500
501 if (image->planes[plane].aux_surface.isl.size) {
502 /* assert(image->planes[plane].fast_clear_state_offset == */
503 /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size)); */
504 assert(image->planes[plane].fast_clear_state_offset <
505 (image->planes[plane].offset + image->planes[plane].size));
506 }
507
508 return VK_SUCCESS;
509 }
510
511 static uint32_t
512 score_drm_format_mod(uint64_t modifier)
513 {
514 switch (modifier) {
515 case DRM_FORMAT_MOD_LINEAR: return 1;
516 case I915_FORMAT_MOD_X_TILED: return 2;
517 case I915_FORMAT_MOD_Y_TILED: return 3;
518 default: unreachable("bad DRM format modifier");
519 }
520 }
521
522 static const struct isl_drm_modifier_info *
523 choose_drm_format_mod(const struct anv_physical_device *device,
524 uint32_t modifier_count, const uint64_t *modifiers)
525 {
526 uint64_t best_mod = UINT64_MAX;
527 uint32_t best_score = 0;
528
529 for (uint32_t i = 0; i < modifier_count; ++i) {
530 uint32_t score = score_drm_format_mod(modifiers[i]);
531 if (score > best_score) {
532 best_mod = modifiers[i];
533 best_score = score;
534 }
535 }
536
537 if (best_score > 0)
538 return isl_drm_modifier_get_info(best_mod);
539 else
540 return NULL;
541 }
542
543 VkResult
544 anv_image_create(VkDevice _device,
545 const struct anv_image_create_info *create_info,
546 const VkAllocationCallbacks* alloc,
547 VkImage *pImage)
548 {
549 ANV_FROM_HANDLE(anv_device, device, _device);
550 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
551 const struct isl_drm_modifier_info *isl_mod_info = NULL;
552 struct anv_image *image = NULL;
553 VkResult r;
554
555 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
556
557 const struct wsi_image_create_info *wsi_info =
558 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
559 if (wsi_info && wsi_info->modifier_count > 0) {
560 isl_mod_info = choose_drm_format_mod(&device->instance->physicalDevice,
561 wsi_info->modifier_count,
562 wsi_info->modifiers);
563 assert(isl_mod_info);
564 }
565
566 anv_assert(pCreateInfo->mipLevels > 0);
567 anv_assert(pCreateInfo->arrayLayers > 0);
568 anv_assert(pCreateInfo->samples > 0);
569 anv_assert(pCreateInfo->extent.width > 0);
570 anv_assert(pCreateInfo->extent.height > 0);
571 anv_assert(pCreateInfo->extent.depth > 0);
572
573 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
574 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
575 if (!image)
576 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
577
578 image->type = pCreateInfo->imageType;
579 image->extent = pCreateInfo->extent;
580 image->vk_format = pCreateInfo->format;
581 image->format = anv_get_format(pCreateInfo->format);
582 image->aspects = vk_format_aspects(image->vk_format);
583 image->levels = pCreateInfo->mipLevels;
584 image->array_size = pCreateInfo->arrayLayers;
585 image->samples = pCreateInfo->samples;
586 image->usage = pCreateInfo->usage;
587 image->tiling = pCreateInfo->tiling;
588 image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_KHR;
589 image->needs_set_tiling = wsi_info && wsi_info->scanout;
590 image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
591 DRM_FORMAT_MOD_INVALID;
592
593 const struct anv_format *format = anv_get_format(image->vk_format);
594 assert(format != NULL);
595
596 const isl_tiling_flags_t isl_tiling_flags =
597 choose_isl_tiling_flags(create_info, isl_mod_info,
598 image->needs_set_tiling);
599
600 image->n_planes = format->n_planes;
601
602 uint32_t b;
603 for_each_bit(b, image->aspects) {
604 r = make_surface(device, image, create_info, isl_tiling_flags,
605 (1 << b));
606 if (r != VK_SUCCESS)
607 goto fail;
608 }
609
610 *pImage = anv_image_to_handle(image);
611
612 return VK_SUCCESS;
613
614 fail:
615 if (image)
616 vk_free2(&device->alloc, alloc, image);
617
618 return r;
619 }
620
621 VkResult
622 anv_CreateImage(VkDevice device,
623 const VkImageCreateInfo *pCreateInfo,
624 const VkAllocationCallbacks *pAllocator,
625 VkImage *pImage)
626 {
627 #ifdef ANDROID
628 const VkNativeBufferANDROID *gralloc_info =
629 vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
630
631 if (gralloc_info)
632 return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
633 pAllocator, pImage);
634 #endif
635
636 return anv_image_create(device,
637 &(struct anv_image_create_info) {
638 .vk_info = pCreateInfo,
639 },
640 pAllocator,
641 pImage);
642 }
643
644 void
645 anv_DestroyImage(VkDevice _device, VkImage _image,
646 const VkAllocationCallbacks *pAllocator)
647 {
648 ANV_FROM_HANDLE(anv_device, device, _device);
649 ANV_FROM_HANDLE(anv_image, image, _image);
650
651 if (!image)
652 return;
653
654 for (uint32_t p = 0; p < image->n_planes; ++p) {
655 if (image->planes[p].bo_is_owned) {
656 assert(image->planes[p].bo != NULL);
657 anv_bo_cache_release(device, &device->bo_cache, image->planes[p].bo);
658 }
659 }
660
661 vk_free2(&device->alloc, pAllocator, image);
662 }
663
664 static void anv_image_bind_memory_plane(struct anv_device *device,
665 struct anv_image *image,
666 uint32_t plane,
667 struct anv_device_memory *memory,
668 uint32_t memory_offset)
669 {
670 assert(!image->planes[plane].bo_is_owned);
671
672 if (!memory) {
673 image->planes[plane].bo = NULL;
674 image->planes[plane].bo_offset = 0;
675 return;
676 }
677
678 image->planes[plane].bo = memory->bo;
679 image->planes[plane].bo_offset = memory_offset;
680 }
681
682 VkResult anv_BindImageMemory(
683 VkDevice _device,
684 VkImage _image,
685 VkDeviceMemory _memory,
686 VkDeviceSize memoryOffset)
687 {
688 ANV_FROM_HANDLE(anv_device, device, _device);
689 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
690 ANV_FROM_HANDLE(anv_image, image, _image);
691
692 uint32_t aspect_bit;
693 anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
694 uint32_t plane =
695 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
696 anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
697 }
698
699 return VK_SUCCESS;
700 }
701
702 VkResult anv_BindImageMemory2KHR(
703 VkDevice _device,
704 uint32_t bindInfoCount,
705 const VkBindImageMemoryInfoKHR* pBindInfos)
706 {
707 ANV_FROM_HANDLE(anv_device, device, _device);
708
709 for (uint32_t i = 0; i < bindInfoCount; i++) {
710 const VkBindImageMemoryInfoKHR *bind_info = &pBindInfos[i];
711 ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
712 ANV_FROM_HANDLE(anv_image, image, bind_info->image);
713 VkImageAspectFlags aspects = image->aspects;
714
715 vk_foreach_struct_const(s, bind_info->pNext) {
716 switch (s->sType) {
717 case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR: {
718 const VkBindImagePlaneMemoryInfoKHR *plane_info =
719 (const VkBindImagePlaneMemoryInfoKHR *) s;
720
721 aspects = plane_info->planeAspect;
722 break;
723 }
724 default:
725 anv_debug_ignored_stype(s->sType);
726 break;
727 }
728 }
729
730 uint32_t aspect_bit;
731 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
732 uint32_t plane =
733 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
734 anv_image_bind_memory_plane(device, image, plane,
735 mem, bind_info->memoryOffset);
736 }
737 }
738
739 return VK_SUCCESS;
740 }
741
742 void anv_GetImageSubresourceLayout(
743 VkDevice device,
744 VkImage _image,
745 const VkImageSubresource* subresource,
746 VkSubresourceLayout* layout)
747 {
748 ANV_FROM_HANDLE(anv_image, image, _image);
749 const struct anv_surface *surface =
750 get_surface(image, subresource->aspectMask);
751
752 assert(__builtin_popcount(subresource->aspectMask) == 1);
753
754 /* If we are on a non-zero mip level or array slice, we need to
755 * calculate a real offset.
756 */
757 anv_assert(subresource->mipLevel == 0);
758 anv_assert(subresource->arrayLayer == 0);
759
760 layout->offset = surface->offset;
761 layout->rowPitch = surface->isl.row_pitch;
762 layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
763 layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
764 layout->size = surface->isl.size;
765 }
766
767 /**
768 * This function determines the optimal buffer to use for a given
769 * VkImageLayout and other pieces of information needed to make that
770 * determination. This does not determine the optimal buffer to use
771 * during a resolve operation.
772 *
773 * @param devinfo The device information of the Intel GPU.
774 * @param image The image that may contain a collection of buffers.
775 * @param aspect The aspect of the image to be accessed.
776 * @param layout The current layout of the image aspect(s).
777 *
778 * @return The primary buffer that should be used for the given layout.
779 */
780 enum isl_aux_usage
781 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
782 const struct anv_image * const image,
783 const VkImageAspectFlagBits aspect,
784 const VkImageLayout layout)
785 {
786 /* Validate the inputs. */
787
788 /* The devinfo is needed as the optimal buffer varies across generations. */
789 assert(devinfo != NULL);
790
791 /* The layout of a NULL image is not properly defined. */
792 assert(image != NULL);
793
794 /* The aspect must be exactly one of the image aspects. */
795 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
796
797 /* Determine the optimal buffer. */
798
799 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
800
801 /* If there is no auxiliary surface allocated, we must use the one and only
802 * main buffer.
803 */
804 if (image->planes[plane].aux_surface.isl.size == 0)
805 return ISL_AUX_USAGE_NONE;
806
807 /* All images that use an auxiliary surface are required to be tiled. */
808 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
809
810 /* Stencil has no aux */
811 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
812
813 switch (layout) {
814
815 /* Invalid Layouts */
816 case VK_IMAGE_LAYOUT_RANGE_SIZE:
817 case VK_IMAGE_LAYOUT_MAX_ENUM:
818 unreachable("Invalid image layout.");
819
820 /* Undefined layouts
821 *
822 * The pre-initialized layout is equivalent to the undefined layout for
823 * optimally-tiled images. We can only do color compression (CCS or HiZ)
824 * on tiled images.
825 */
826 case VK_IMAGE_LAYOUT_UNDEFINED:
827 case VK_IMAGE_LAYOUT_PREINITIALIZED:
828 return ISL_AUX_USAGE_NONE;
829
830
831 /* Transfer Layouts
832 */
833 case VK_IMAGE_LAYOUT_GENERAL:
834 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
835 case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
836 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
837 /* This buffer could be a depth buffer used in a transfer operation.
838 * BLORP currently doesn't use HiZ for transfer operations so we must
839 * use the main buffer for this layout. TODO: Enable HiZ in BLORP.
840 */
841 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ);
842 return ISL_AUX_USAGE_NONE;
843 } else {
844 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
845 return image->planes[plane].aux_usage;
846 }
847
848
849 /* Sampling Layouts */
850 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
851 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR:
852 assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
853 /* Fall-through */
854 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
855 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
856 if (anv_can_sample_with_hiz(devinfo, image))
857 return ISL_AUX_USAGE_HIZ;
858 else
859 return ISL_AUX_USAGE_NONE;
860 } else {
861 return image->planes[plane].aux_usage;
862 }
863
864
865 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
866 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
867
868 /* On SKL+, the render buffer can be decompressed by the presentation
869 * engine. Support for this feature has not yet landed in the wider
870 * ecosystem. TODO: Update this code when support lands.
871 *
872 * From the BDW PRM, Vol 7, Render Target Resolve:
873 *
874 * If the MCS is enabled on a non-multisampled render target, the
875 * render target must be resolved before being used for other
876 * purposes (display, texture, CPU lock) The clear value from
877 * SURFACE_STATE is written into pixels in the render target
878 * indicated as clear in the MCS.
879 *
880 * Pre-SKL, the render buffer must be resolved before being used for
881 * presentation. We can infer that the auxiliary buffer is not used.
882 */
883 return ISL_AUX_USAGE_NONE;
884
885
886 /* Rendering Layouts */
887 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
888 assert(aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE) {
890 assert(image->samples == 1);
891 return ISL_AUX_USAGE_CCS_D;
892 } else {
893 assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_D);
894 return image->planes[plane].aux_usage;
895 }
896
897 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
898 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR:
899 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
900 return ISL_AUX_USAGE_HIZ;
901
902 case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
903 unreachable("VK_KHR_shared_presentable_image is unsupported");
904 }
905
906 /* If the layout isn't recognized in the exhaustive switch above, the
907 * VkImageLayout value is not defined in vulkan.h.
908 */
909 unreachable("layout is not a VkImageLayout enumeration member.");
910 }
911
912 /**
913 * This function returns the level of unresolved fast-clear support of the
914 * given image in the given VkImageLayout.
915 *
916 * @param devinfo The device information of the Intel GPU.
917 * @param image The image that may contain a collection of buffers.
918 * @param aspect The aspect of the image to be accessed.
919 * @param layout The current layout of the image aspect(s).
920 */
921 enum anv_fast_clear_type
922 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
923 const struct anv_image * const image,
924 const VkImageAspectFlagBits aspect,
925 const VkImageLayout layout)
926 {
927 /* The aspect must be exactly one of the image aspects. */
928 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
929
930 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
931
932 /* If there is no auxiliary surface allocated, there are no fast-clears */
933 if (image->planes[plane].aux_surface.isl.size == 0)
934 return ANV_FAST_CLEAR_NONE;
935
936 /* All images that use an auxiliary surface are required to be tiled. */
937 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
938
939 /* Stencil has no aux */
940 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
941
942 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
943 /* For depth images (with HiZ), the layout supports fast-clears if and
944 * only if it supports HiZ. However, we only support fast-clears to the
945 * default depth value.
946 */
947 enum isl_aux_usage aux_usage =
948 anv_layout_to_aux_usage(devinfo, image, aspect, layout);
949 return aux_usage == ISL_AUX_USAGE_HIZ ?
950 ANV_FAST_CLEAR_DEFAULT_VALUE : ANV_FAST_CLEAR_NONE;
951 }
952
953 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
954
955 /* Multisample fast-clear is not yet supported. */
956 if (image->samples > 1)
957 return ANV_FAST_CLEAR_NONE;
958
959 switch (layout) {
960 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
961 return ANV_FAST_CLEAR_ANY;
962
963 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
964 return ANV_FAST_CLEAR_NONE;
965
966 default:
967 /* If the image has CCS_E enabled all the time then we can use
968 * fast-clear as long as the clear color is the default value of zero
969 * since this is the default value we program into every surface state
970 * used for texturing.
971 */
972 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
973 return ANV_FAST_CLEAR_DEFAULT_VALUE;
974 else
975 return ANV_FAST_CLEAR_NONE;
976 }
977 }
978
979
980 static struct anv_state
981 alloc_surface_state(struct anv_device *device)
982 {
983 return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
984 }
985
986 static enum isl_channel_select
987 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
988 struct isl_swizzle format_swizzle)
989 {
990 if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
991 swizzle = component;
992
993 switch (swizzle) {
994 case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
995 case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
996 case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
997 case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
998 case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
999 case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
1000 default:
1001 unreachable("Invalid swizzle");
1002 }
1003 }
1004
1005 void
1006 anv_image_fill_surface_state(struct anv_device *device,
1007 const struct anv_image *image,
1008 VkImageAspectFlagBits aspect,
1009 const struct isl_view *view_in,
1010 isl_surf_usage_flags_t view_usage,
1011 enum isl_aux_usage aux_usage,
1012 const union isl_color_value *clear_color,
1013 enum anv_image_view_state_flags flags,
1014 struct anv_surface_state *state_inout,
1015 struct brw_image_param *image_param_out)
1016 {
1017 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1018
1019 const struct anv_surface *surface = &image->planes[plane].surface,
1020 *aux_surface = &image->planes[plane].aux_surface;
1021
1022 struct isl_view view = *view_in;
1023 view.usage |= view_usage;
1024
1025 /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
1026 * compressed surface with a shadow surface, we use the shadow instead of
1027 * the primary surface. The shadow surface will be tiled, unlike the main
1028 * surface, so it should get significantly better performance.
1029 */
1030 if (image->planes[plane].shadow_surface.isl.size > 0 &&
1031 isl_format_is_compressed(view.format) &&
1032 (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
1033 assert(isl_format_is_compressed(surface->isl.format));
1034 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1035 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1036 surface = &image->planes[plane].shadow_surface;
1037 }
1038
1039 if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
1040 view.swizzle = anv_swizzle_for_render(view.swizzle);
1041
1042 /* If this is a HiZ buffer we can sample from with a programmable clear
1043 * value (SKL+), define the clear value to the optimal constant.
1044 */
1045 union isl_color_value default_clear_color = { .u32 = { 0, } };
1046 if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
1047 default_clear_color.f32[0] = ANV_HZ_FC_VAL;
1048 if (!clear_color)
1049 clear_color = &default_clear_color;
1050
1051 const uint64_t address = image->planes[plane].bo_offset + surface->offset;
1052 const uint64_t aux_address = aux_usage == ISL_AUX_USAGE_NONE ?
1053 0 : (image->planes[plane].bo_offset + aux_surface->offset);
1054
1055 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1056 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
1057 !isl_has_matching_typed_storage_image_format(&device->info,
1058 view.format)) {
1059 /* In this case, we are a writeable storage buffer which needs to be
1060 * lowered to linear. All tiling and offset calculations will be done in
1061 * the shader.
1062 */
1063 assert(aux_usage == ISL_AUX_USAGE_NONE);
1064 isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
1065 .address = address,
1066 .size = surface->isl.size,
1067 .format = ISL_FORMAT_RAW,
1068 .stride = 1,
1069 .mocs = device->default_mocs);
1070 state_inout->address = address,
1071 state_inout->aux_address = 0;
1072 } else {
1073 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
1074 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
1075 /* Typed surface reads support a very limited subset of the shader
1076 * image formats. Translate it into the closest format the hardware
1077 * supports.
1078 */
1079 assert(aux_usage == ISL_AUX_USAGE_NONE);
1080 view.format = isl_lower_storage_image_format(&device->info,
1081 view.format);
1082 }
1083
1084 const struct isl_surf *isl_surf = &surface->isl;
1085
1086 struct isl_surf tmp_surf;
1087 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1088 if (isl_format_is_compressed(surface->isl.format) &&
1089 !isl_format_is_compressed(view.format)) {
1090 /* We're creating an uncompressed view of a compressed surface. This
1091 * is allowed but only for a single level/layer.
1092 */
1093 assert(surface->isl.samples == 1);
1094 assert(view.levels == 1);
1095 assert(view.array_len == 1);
1096
1097 isl_surf_get_image_surf(&device->isl_dev, isl_surf,
1098 view.base_level,
1099 surface->isl.dim == ISL_SURF_DIM_3D ?
1100 0 : view.base_array_layer,
1101 surface->isl.dim == ISL_SURF_DIM_3D ?
1102 view.base_array_layer : 0,
1103 &tmp_surf,
1104 &offset_B, &tile_x_sa, &tile_y_sa);
1105
1106 /* The newly created image represents the one subimage we're
1107 * referencing with this view so it only has one array slice and
1108 * miplevel.
1109 */
1110 view.base_array_layer = 0;
1111 view.base_level = 0;
1112
1113 /* We're making an uncompressed view here. The image dimensions need
1114 * to be scaled down by the block size.
1115 */
1116 const struct isl_format_layout *fmtl =
1117 isl_format_get_layout(surface->isl.format);
1118 tmp_surf.format = view.format;
1119 tmp_surf.logical_level0_px.width =
1120 DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
1121 tmp_surf.logical_level0_px.height =
1122 DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
1123 tmp_surf.phys_level0_sa.width /= fmtl->bw;
1124 tmp_surf.phys_level0_sa.height /= fmtl->bh;
1125 tile_x_sa /= fmtl->bw;
1126 tile_y_sa /= fmtl->bh;
1127
1128 isl_surf = &tmp_surf;
1129
1130 if (device->info.gen <= 8) {
1131 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1132 assert(tile_x_sa == 0);
1133 assert(tile_y_sa == 0);
1134 }
1135 }
1136
1137 isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1138 .surf = isl_surf,
1139 .view = &view,
1140 .address = address + offset_B,
1141 .clear_color = *clear_color,
1142 .aux_surf = &aux_surface->isl,
1143 .aux_usage = aux_usage,
1144 .aux_address = aux_address,
1145 .mocs = device->default_mocs,
1146 .x_offset_sa = tile_x_sa,
1147 .y_offset_sa = tile_y_sa);
1148 state_inout->address = address + offset_B;
1149 if (device->info.gen >= 8) {
1150 state_inout->aux_address = aux_address;
1151 } else {
1152 /* On gen7 and prior, the bottom 12 bits of the MCS base address are
1153 * used to store other information. This should be ok, however,
1154 * because surface buffer addresses are always 4K page alinged.
1155 */
1156 uint32_t *aux_addr_dw = state_inout->state.map +
1157 device->isl_dev.ss.aux_addr_offset;
1158 assert((aux_address & 0xfff) == 0);
1159 assert(aux_address == (*aux_addr_dw & 0xfffff000));
1160 state_inout->aux_address = *aux_addr_dw;
1161 }
1162 }
1163
1164 anv_state_flush(device, state_inout->state);
1165
1166 if (image_param_out) {
1167 assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1168 isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1169 &surface->isl, &view);
1170 }
1171 }
1172
1173 static VkImageAspectFlags
1174 remap_aspect_flags(VkImageAspectFlags view_aspects)
1175 {
1176 if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1177 if (_mesa_bitcount(view_aspects) == 1)
1178 return VK_IMAGE_ASPECT_COLOR_BIT;
1179
1180 VkImageAspectFlags color_aspects = 0;
1181 for (uint32_t i = 0; i < _mesa_bitcount(view_aspects); i++)
1182 color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << i;
1183 return color_aspects;
1184 }
1185 /* No special remapping needed for depth & stencil aspects. */
1186 return view_aspects;
1187 }
1188
1189 VkResult
1190 anv_CreateImageView(VkDevice _device,
1191 const VkImageViewCreateInfo *pCreateInfo,
1192 const VkAllocationCallbacks *pAllocator,
1193 VkImageView *pView)
1194 {
1195 ANV_FROM_HANDLE(anv_device, device, _device);
1196 ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1197 struct anv_image_view *iview;
1198
1199 iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1200 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1201 if (iview == NULL)
1202 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1203
1204 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1205
1206 assert(range->layerCount > 0);
1207 assert(range->baseMipLevel < image->levels);
1208
1209 const VkImageViewUsageCreateInfoKHR *usage_info =
1210 vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO_KHR);
1211 VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
1212 /* View usage should be a subset of image usage */
1213 assert((view_usage & ~image->usage) == 0);
1214 assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1215 VK_IMAGE_USAGE_STORAGE_BIT |
1216 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1217 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1218 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1219
1220 switch (image->type) {
1221 default:
1222 unreachable("bad VkImageType");
1223 case VK_IMAGE_TYPE_1D:
1224 case VK_IMAGE_TYPE_2D:
1225 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1226 break;
1227 case VK_IMAGE_TYPE_3D:
1228 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1229 <= anv_minify(image->extent.depth, range->baseMipLevel));
1230 break;
1231 }
1232
1233 /* First expand aspects to the image's ones (for example
1234 * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1235 * VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | VK_IMAGE_ASPECT_PLANE_1_BIT_KHR |
1236 * VK_IMAGE_ASPECT_PLANE_2_BIT_KHR for an image of format
1237 * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
1238 */
1239 VkImageAspectFlags expanded_aspects =
1240 anv_image_expand_aspects(image, range->aspectMask);
1241
1242 iview->image = image;
1243
1244 /* Remap the expanded aspects for the image view. For example if only
1245 * VK_IMAGE_ASPECT_PLANE_1_BIT_KHR was given in range->aspectMask, we will
1246 * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1247 * the image view, it only has a single plane.
1248 */
1249 iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1250 iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1251 iview->vk_format = pCreateInfo->format;
1252
1253 iview->extent = (VkExtent3D) {
1254 .width = anv_minify(image->extent.width , range->baseMipLevel),
1255 .height = anv_minify(image->extent.height, range->baseMipLevel),
1256 .depth = anv_minify(image->extent.depth , range->baseMipLevel),
1257 };
1258
1259 /* Now go through the underlying image selected planes (computed in
1260 * expanded_aspects) and map them to planes in the image view.
1261 */
1262 uint32_t iaspect_bit, vplane = 0;
1263 anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1264 uint32_t iplane =
1265 anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit);
1266 VkImageAspectFlags vplane_aspect =
1267 anv_plane_to_aspect(iview->aspect_mask, vplane);
1268 struct anv_format_plane format =
1269 anv_get_format_plane(&device->info, pCreateInfo->format,
1270 vplane_aspect, image->tiling);
1271
1272 iview->planes[vplane].image_plane = iplane;
1273
1274 iview->planes[vplane].isl = (struct isl_view) {
1275 .format = format.isl_format,
1276 .base_level = range->baseMipLevel,
1277 .levels = anv_get_levelCount(image, range),
1278 .base_array_layer = range->baseArrayLayer,
1279 .array_len = anv_get_layerCount(image, range),
1280 .swizzle = {
1281 .r = remap_swizzle(pCreateInfo->components.r,
1282 VK_COMPONENT_SWIZZLE_R, format.swizzle),
1283 .g = remap_swizzle(pCreateInfo->components.g,
1284 VK_COMPONENT_SWIZZLE_G, format.swizzle),
1285 .b = remap_swizzle(pCreateInfo->components.b,
1286 VK_COMPONENT_SWIZZLE_B, format.swizzle),
1287 .a = remap_swizzle(pCreateInfo->components.a,
1288 VK_COMPONENT_SWIZZLE_A, format.swizzle),
1289 },
1290 };
1291
1292 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1293 iview->planes[vplane].isl.base_array_layer = 0;
1294 iview->planes[vplane].isl.array_len = iview->extent.depth;
1295 }
1296
1297 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1298 pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1299 iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1300 } else {
1301 iview->planes[vplane].isl.usage = 0;
1302 }
1303
1304 if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1305 (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1306 !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1307 iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1308 iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1309
1310 enum isl_aux_usage general_aux_usage =
1311 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1312 VK_IMAGE_LAYOUT_GENERAL);
1313 enum isl_aux_usage optimal_aux_usage =
1314 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1315 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1316
1317 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1318 &iview->planes[vplane].isl,
1319 ISL_SURF_USAGE_TEXTURE_BIT,
1320 optimal_aux_usage, NULL,
1321 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1322 &iview->planes[vplane].optimal_sampler_surface_state,
1323 NULL);
1324
1325 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1326 &iview->planes[vplane].isl,
1327 ISL_SURF_USAGE_TEXTURE_BIT,
1328 general_aux_usage, NULL,
1329 0,
1330 &iview->planes[vplane].general_sampler_surface_state,
1331 NULL);
1332 }
1333
1334 /* NOTE: This one needs to go last since it may stomp isl_view.format */
1335 if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1336 iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1337 iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1338
1339 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1340 &iview->planes[vplane].isl,
1341 ISL_SURF_USAGE_STORAGE_BIT,
1342 ISL_AUX_USAGE_NONE, NULL,
1343 0,
1344 &iview->planes[vplane].storage_surface_state,
1345 &iview->planes[vplane].storage_image_param);
1346
1347 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1348 &iview->planes[vplane].isl,
1349 ISL_SURF_USAGE_STORAGE_BIT,
1350 ISL_AUX_USAGE_NONE, NULL,
1351 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1352 &iview->planes[vplane].writeonly_storage_surface_state,
1353 NULL);
1354 }
1355
1356 vplane++;
1357 }
1358
1359 *pView = anv_image_view_to_handle(iview);
1360
1361 return VK_SUCCESS;
1362 }
1363
1364 void
1365 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1366 const VkAllocationCallbacks *pAllocator)
1367 {
1368 ANV_FROM_HANDLE(anv_device, device, _device);
1369 ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1370
1371 if (!iview)
1372 return;
1373
1374 for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1375 if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1376 anv_state_pool_free(&device->surface_state_pool,
1377 iview->planes[plane].optimal_sampler_surface_state.state);
1378 }
1379
1380 if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1381 anv_state_pool_free(&device->surface_state_pool,
1382 iview->planes[plane].general_sampler_surface_state.state);
1383 }
1384
1385 if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1386 anv_state_pool_free(&device->surface_state_pool,
1387 iview->planes[plane].storage_surface_state.state);
1388 }
1389
1390 if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1391 anv_state_pool_free(&device->surface_state_pool,
1392 iview->planes[plane].writeonly_storage_surface_state.state);
1393 }
1394 }
1395
1396 vk_free2(&device->alloc, pAllocator, iview);
1397 }
1398
1399
1400 VkResult
1401 anv_CreateBufferView(VkDevice _device,
1402 const VkBufferViewCreateInfo *pCreateInfo,
1403 const VkAllocationCallbacks *pAllocator,
1404 VkBufferView *pView)
1405 {
1406 ANV_FROM_HANDLE(anv_device, device, _device);
1407 ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1408 struct anv_buffer_view *view;
1409
1410 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1411 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1412 if (!view)
1413 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1414
1415 /* TODO: Handle the format swizzle? */
1416
1417 view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1418 VK_IMAGE_ASPECT_COLOR_BIT,
1419 VK_IMAGE_TILING_LINEAR);
1420 const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1421 view->bo = buffer->bo;
1422 view->offset = buffer->offset + pCreateInfo->offset;
1423 view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1424 pCreateInfo->range);
1425 view->range = align_down_npot_u32(view->range, format_bs);
1426
1427 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1428 view->surface_state = alloc_surface_state(device);
1429
1430 anv_fill_buffer_surface_state(device, view->surface_state,
1431 view->format,
1432 view->offset, view->range, format_bs);
1433 } else {
1434 view->surface_state = (struct anv_state){ 0 };
1435 }
1436
1437 if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1438 view->storage_surface_state = alloc_surface_state(device);
1439 view->writeonly_storage_surface_state = alloc_surface_state(device);
1440
1441 enum isl_format storage_format =
1442 isl_has_matching_typed_storage_image_format(&device->info,
1443 view->format) ?
1444 isl_lower_storage_image_format(&device->info, view->format) :
1445 ISL_FORMAT_RAW;
1446
1447 anv_fill_buffer_surface_state(device, view->storage_surface_state,
1448 storage_format,
1449 view->offset, view->range,
1450 (storage_format == ISL_FORMAT_RAW ? 1 :
1451 isl_format_get_layout(storage_format)->bpb / 8));
1452
1453 /* Write-only accesses should use the original format. */
1454 anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1455 view->format,
1456 view->offset, view->range,
1457 isl_format_get_layout(view->format)->bpb / 8);
1458
1459 isl_buffer_fill_image_param(&device->isl_dev,
1460 &view->storage_image_param,
1461 view->format, view->range);
1462 } else {
1463 view->storage_surface_state = (struct anv_state){ 0 };
1464 view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1465 }
1466
1467 *pView = anv_buffer_view_to_handle(view);
1468
1469 return VK_SUCCESS;
1470 }
1471
1472 void
1473 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1474 const VkAllocationCallbacks *pAllocator)
1475 {
1476 ANV_FROM_HANDLE(anv_device, device, _device);
1477 ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1478
1479 if (!view)
1480 return;
1481
1482 if (view->surface_state.alloc_size > 0)
1483 anv_state_pool_free(&device->surface_state_pool,
1484 view->surface_state);
1485
1486 if (view->storage_surface_state.alloc_size > 0)
1487 anv_state_pool_free(&device->surface_state_pool,
1488 view->storage_surface_state);
1489
1490 if (view->writeonly_storage_surface_state.alloc_size > 0)
1491 anv_state_pool_free(&device->surface_state_pool,
1492 view->writeonly_storage_surface_state);
1493
1494 vk_free2(&device->alloc, pAllocator, view);
1495 }
1496
1497 const struct anv_surface *
1498 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1499 VkImageAspectFlags aspect_mask)
1500 {
1501 VkImageAspectFlags sanitized_mask;
1502
1503 switch (aspect_mask) {
1504 case VK_IMAGE_ASPECT_COLOR_BIT:
1505 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1506 sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1507 break;
1508 case VK_IMAGE_ASPECT_DEPTH_BIT:
1509 assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1510 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1511 break;
1512 case VK_IMAGE_ASPECT_STENCIL_BIT:
1513 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1514 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1515 break;
1516 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1517 /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1518 * combined depth stencil formats. Specifically, it states:
1519 *
1520 * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1521 * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1522 *
1523 * Image views with both depth and stencil aspects are only valid for
1524 * render target attachments, in which case
1525 * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1526 * stencil surfaces from the underlying surface.
1527 */
1528 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1529 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1530 } else {
1531 assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1532 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1533 }
1534 break;
1535 case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
1536 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1537 sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR;
1538 break;
1539 case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
1540 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1541 sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR;
1542 break;
1543 case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
1544 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1545 sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR;
1546 break;
1547 default:
1548 unreachable("image does not have aspect");
1549 return NULL;
1550 }
1551
1552 uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1553 return &image->planes[plane].surface;
1554 }