anv: return VK_ERROR_OUT_OF_DEVICE_MEMORY when surface size is out of HW limits
[mesa.git] / src / intel / vulkan / anv_image.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <sys/mman.h>
30 #include <drm_fourcc.h>
31
32 #include "anv_private.h"
33 #include "util/debug.h"
34 #include "vk_util.h"
35
36 #include "vk_format_info.h"
37
38 static isl_surf_usage_flags_t
39 choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
40 VkImageUsageFlags vk_usage,
41 isl_surf_usage_flags_t isl_extra_usage,
42 VkImageAspectFlagBits aspect)
43 {
44 isl_surf_usage_flags_t isl_usage = isl_extra_usage;
45
46 if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
47 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
48
49 if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
50 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
51
52 if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
53 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
54
55 if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
56 isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
57
58 /* Even if we're only using it for transfer operations, clears to depth and
59 * stencil images happen as depth and stencil so they need the right ISL
60 * usage bits or else things will fall apart.
61 */
62 switch (aspect) {
63 case VK_IMAGE_ASPECT_DEPTH_BIT:
64 isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
65 break;
66 case VK_IMAGE_ASPECT_STENCIL_BIT:
67 isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
68 break;
69 case VK_IMAGE_ASPECT_COLOR_BIT:
70 case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
71 case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
72 case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
73 break;
74 default:
75 unreachable("bad VkImageAspect");
76 }
77
78 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
79 /* blorp implements transfers by sampling from the source image. */
80 isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
81 }
82
83 if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
84 aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
85 /* blorp implements transfers by rendering into the destination image.
86 * Only request this with color images, as we deal with depth/stencil
87 * formats differently. */
88 isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
89 }
90
91 return isl_usage;
92 }
93
94 static isl_tiling_flags_t
95 choose_isl_tiling_flags(const struct anv_image_create_info *anv_info,
96 const struct isl_drm_modifier_info *isl_mod_info)
97 {
98 const VkImageCreateInfo *base_info = anv_info->vk_info;
99 isl_tiling_flags_t flags = 0;
100
101 switch (base_info->tiling) {
102 default:
103 unreachable("bad VkImageTiling");
104 case VK_IMAGE_TILING_OPTIMAL:
105 flags = ISL_TILING_ANY_MASK;
106 break;
107 case VK_IMAGE_TILING_LINEAR:
108 flags = ISL_TILING_LINEAR_BIT;
109 break;
110 }
111
112 if (anv_info->isl_tiling_flags)
113 flags &= anv_info->isl_tiling_flags;
114
115 if (isl_mod_info)
116 flags &= 1 << isl_mod_info->tiling;
117
118 assert(flags);
119
120 return flags;
121 }
122
123 static struct anv_surface *
124 get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
125 {
126 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
127 return &image->planes[plane].surface;
128 }
129
130 static void
131 add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
132 {
133 assert(surf->isl.size > 0); /* isl surface must be initialized */
134
135 if (image->disjoint) {
136 surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment);
137 /* Plane offset is always 0 when it's disjoint. */
138 } else {
139 surf->offset = align_u32(image->size, surf->isl.alignment);
140 /* Determine plane's offset only once when the first surface is added. */
141 if (image->planes[plane].size == 0)
142 image->planes[plane].offset = image->size;
143 }
144
145 image->size = surf->offset + surf->isl.size;
146 image->planes[plane].size = (surf->offset + surf->isl.size) - image->planes[plane].offset;
147
148 image->alignment = MAX2(image->alignment, surf->isl.alignment);
149 image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
150 surf->isl.alignment);
151 }
152
153
154 static bool
155 all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
156 const struct VkImageCreateInfo *vk_info)
157 {
158 enum isl_format format =
159 anv_get_isl_format(devinfo, vk_info->format,
160 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
161
162 if (!isl_format_supports_ccs_e(devinfo, format))
163 return false;
164
165 if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
166 return true;
167
168 const VkImageFormatListCreateInfoKHR *fmt_list =
169 vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
170
171 if (!fmt_list || fmt_list->viewFormatCount == 0)
172 return false;
173
174 for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
175 enum isl_format view_format =
176 anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
177 VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
178
179 if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
180 return false;
181 }
182
183 return true;
184 }
185
186 /**
187 * For color images that have an auxiliary surface, request allocation for an
188 * additional buffer that mainly stores fast-clear values. Use of this buffer
189 * allows us to access the image's subresources while being aware of their
190 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
191 * which a fast clear has occurred).
192 *
193 * For the purpose of discoverability, the algorithm used to manage this buffer
194 * is described here. A clear value in this buffer is updated when a fast clear
195 * is performed on a subresource. One of two synchronization operations is
196 * performed in order for a following memory access to use the fast-clear
197 * value:
198 * a. Copy the value from the buffer to the surface state object used for
199 * reading. This is done implicitly when the value is the clear value
200 * predetermined to be the default in other surface state objects. This
201 * is currently only done explicitly for the operation below.
202 * b. Do (a) and use the surface state object to resolve the subresource.
203 * This is only done during layout transitions for decent performance.
204 *
205 * With the above scheme, we can fast-clear whenever the hardware allows except
206 * for two cases in which synchronization becomes impossible or undesirable:
207 * * The subresource is in the GENERAL layout and is cleared to a value
208 * other than the special default value.
209 *
210 * Performing a synchronization operation in order to read from the
211 * subresource is undesirable in this case. Firstly, b) is not an option
212 * because a layout transition isn't required between a write and read of
213 * an image in the GENERAL layout. Secondly, it's undesirable to do a)
214 * explicitly because it would require large infrastructural changes. The
215 * Vulkan API supports us in deciding not to optimize this layout by
216 * stating that using this layout may cause suboptimal performance. NOTE:
217 * the auxiliary buffer must always be enabled to support a) implicitly.
218 *
219 *
220 * * For the given miplevel, only some of the layers are cleared at once.
221 *
222 * If the user clears each layer to a different value, then tries to
223 * render to multiple layers at once, we have no ability to perform a
224 * synchronization operation in between. a) is not helpful because the
225 * object can only hold one clear value. b) is not an option because a
226 * layout transition isn't required in this case.
227 */
228 static void
229 add_fast_clear_state_buffer(struct anv_image *image,
230 VkImageAspectFlagBits aspect,
231 uint32_t plane,
232 const struct anv_device *device)
233 {
234 assert(image && device);
235 assert(image->planes[plane].aux_surface.isl.size > 0 &&
236 image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
237
238 /* The offset to the buffer of clear values must be dword-aligned for GPU
239 * memcpy operations. It is located immediately after the auxiliary surface.
240 */
241
242 /* Tiled images are guaranteed to be 4K aligned, so the image alignment
243 * should also be dword-aligned.
244 */
245 assert(image->alignment % 4 == 0);
246
247 /* Auxiliary buffers should be a multiple of 4K, so the start of the clear
248 * values buffer should already be dword-aligned.
249 */
250 assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
251
252 /* This buffer should be at the very end of the plane. */
253 if (image->disjoint) {
254 assert(image->planes[plane].size ==
255 (image->planes[plane].offset + image->planes[plane].size));
256 } else {
257 assert(image->size ==
258 (image->planes[plane].offset + image->planes[plane].size));
259 }
260
261 const unsigned entry_size = anv_fast_clear_state_entry_size(device);
262 /* There's no padding between entries, so ensure that they're always a
263 * multiple of 32 bits in order to enable GPU memcpy operations.
264 */
265 assert(entry_size % 4 == 0);
266
267 const unsigned plane_state_size =
268 entry_size * anv_image_aux_levels(image, aspect);
269
270 image->planes[plane].fast_clear_state_offset =
271 image->planes[plane].offset + image->planes[plane].size;
272
273 image->planes[plane].size += plane_state_size;
274 image->size += plane_state_size;
275 }
276
277 /**
278 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
279 * image's memory requirements (that is, the image's size and alignment).
280 */
281 static VkResult
282 make_surface(const struct anv_device *dev,
283 struct anv_image *image,
284 const struct anv_image_create_info *anv_info,
285 isl_tiling_flags_t tiling_flags,
286 VkImageAspectFlagBits aspect)
287 {
288 const VkImageCreateInfo *vk_info = anv_info->vk_info;
289 bool ok UNUSED;
290
291 static const enum isl_surf_dim vk_to_isl_surf_dim[] = {
292 [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
293 [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
294 [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
295 };
296
297 image->extent = anv_sanitize_image_extent(vk_info->imageType,
298 vk_info->extent);
299
300 const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
301 const struct anv_format_plane plane_format =
302 anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
303 struct anv_surface *anv_surf = &image->planes[plane].surface;
304
305 const isl_surf_usage_flags_t usage =
306 choose_isl_surf_usage(vk_info->flags, image->usage,
307 anv_info->isl_extra_usage_flags, aspect);
308
309 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
310 * fall back to linear on Broadwell and earlier because we aren't
311 * guaranteed that we can handle offsets correctly. On Sky Lake, the
312 * horizontal and vertical alignments are sufficiently high that we can
313 * just use RENDER_SURFACE_STATE::X/Y Offset.
314 */
315 bool needs_shadow = false;
316 if (dev->info.gen <= 8 &&
317 (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) &&
318 vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
319 assert(isl_format_is_compressed(plane_format.isl_format));
320 tiling_flags = ISL_TILING_LINEAR_BIT;
321 needs_shadow = true;
322 }
323
324 ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
325 .dim = vk_to_isl_surf_dim[vk_info->imageType],
326 .format = plane_format.isl_format,
327 .width = image->extent.width / plane_format.denominator_scales[0],
328 .height = image->extent.height / plane_format.denominator_scales[1],
329 .depth = image->extent.depth,
330 .levels = vk_info->mipLevels,
331 .array_len = vk_info->arrayLayers,
332 .samples = vk_info->samples,
333 .min_alignment = 0,
334 .row_pitch = anv_info->stride,
335 .usage = usage,
336 .tiling_flags = tiling_flags);
337
338 if (!ok)
339 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
340
341 image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
342
343 add_surface(image, anv_surf, plane);
344
345 /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
346 * create an identical tiled shadow surface for use while texturing so we
347 * don't get garbage performance.
348 */
349 if (needs_shadow) {
350 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
351 assert(tiling_flags == ISL_TILING_LINEAR_BIT);
352
353 ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
354 .dim = vk_to_isl_surf_dim[vk_info->imageType],
355 .format = plane_format.isl_format,
356 .width = image->extent.width,
357 .height = image->extent.height,
358 .depth = image->extent.depth,
359 .levels = vk_info->mipLevels,
360 .array_len = vk_info->arrayLayers,
361 .samples = vk_info->samples,
362 .min_alignment = 0,
363 .row_pitch = anv_info->stride,
364 .usage = usage,
365 .tiling_flags = ISL_TILING_ANY_MASK);
366
367 /* isl_surf_init() will fail only if provided invalid input. Invalid input
368 * is illegal in Vulkan.
369 */
370 assert(ok);
371
372 add_surface(image, &image->planes[plane].shadow_surface, plane);
373 }
374
375 /* Add a HiZ surface to a depth buffer that will be used for rendering.
376 */
377 if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
378 /* We don't advertise that depth buffers could be used as storage
379 * images.
380 */
381 assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
382
383 /* Allow the user to control HiZ enabling. Disable by default on gen7
384 * because resolves are not currently implemented pre-BDW.
385 */
386 if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
387 /* It will never be used as an attachment, HiZ is pointless. */
388 } else if (dev->info.gen == 7) {
389 anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
390 } else if (vk_info->mipLevels > 1) {
391 anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
392 } else if (vk_info->arrayLayers > 1) {
393 anv_perf_warn(dev->instance, image,
394 "Implement multi-arrayLayer HiZ clears and resolves");
395 } else if (dev->info.gen == 8 && vk_info->samples > 1) {
396 anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
397 } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
398 assert(image->planes[plane].aux_surface.isl.size == 0);
399 ok = isl_surf_get_hiz_surf(&dev->isl_dev,
400 &image->planes[plane].surface.isl,
401 &image->planes[plane].aux_surface.isl);
402 assert(ok);
403 add_surface(image, &image->planes[plane].aux_surface, plane);
404 image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
405 }
406 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
407 /* TODO: Disallow compression with :
408 *
409 * 1) non multiplanar images (We appear to hit a sampler bug with
410 * CCS & R16G16 format. Putting the clear state a page/4096bytes
411 * further fixes the issue).
412 *
413 * 2) alias images, because they might be aliases of images
414 * described in 1)
415 *
416 * 3) compression disabled by debug
417 */
418 const bool allow_compression =
419 image->n_planes == 1 &&
420 (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT_KHR) == 0 &&
421 likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
422
423 if (allow_compression) {
424 assert(image->planes[plane].aux_surface.isl.size == 0);
425 ok = isl_surf_get_ccs_surf(&dev->isl_dev,
426 &image->planes[plane].surface.isl,
427 &image->planes[plane].aux_surface.isl, 0);
428 if (ok) {
429
430 /* Disable CCS when it is not useful (i.e., when you can't render
431 * to the image with CCS enabled).
432 */
433 if (!isl_format_supports_rendering(&dev->info,
434 plane_format.isl_format)) {
435 /* While it may be technically possible to enable CCS for this
436 * image, we currently don't have things hooked up to get it
437 * working.
438 */
439 anv_perf_warn(dev->instance, image,
440 "This image format doesn't support rendering. "
441 "Not allocating an CCS buffer.");
442 image->planes[plane].aux_surface.isl.size = 0;
443 return VK_SUCCESS;
444 }
445
446 add_surface(image, &image->planes[plane].aux_surface, plane);
447 add_fast_clear_state_buffer(image, aspect, plane, dev);
448
449 /* For images created without MUTABLE_FORMAT_BIT set, we know that
450 * they will always be used with the original format. In
451 * particular, they will always be used with a format that
452 * supports color compression. If it's never used as a storage
453 * image, then it will only be used through the sampler or the as
454 * a render target. This means that it's safe to just leave
455 * compression on at all times for these formats.
456 */
457 if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
458 all_formats_ccs_e_compatible(&dev->info, vk_info)) {
459 image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
460 }
461 }
462 }
463 } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
464 assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
465 assert(image->planes[plane].aux_surface.isl.size == 0);
466 ok = isl_surf_get_mcs_surf(&dev->isl_dev,
467 &image->planes[plane].surface.isl,
468 &image->planes[plane].aux_surface.isl);
469 if (ok) {
470 add_surface(image, &image->planes[plane].aux_surface, plane);
471 add_fast_clear_state_buffer(image, aspect, plane, dev);
472 image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
473 }
474 }
475
476 assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
477
478 /* Upper bound of the last surface should be smaller than the plane's
479 * size.
480 */
481 assert((MAX2(image->planes[plane].surface.offset,
482 image->planes[plane].aux_surface.offset) +
483 (image->planes[plane].aux_surface.isl.size > 0 ?
484 image->planes[plane].aux_surface.isl.size :
485 image->planes[plane].surface.isl.size)) <=
486 (image->planes[plane].offset + image->planes[plane].size));
487
488 if (image->planes[plane].aux_surface.isl.size) {
489 /* assert(image->planes[plane].fast_clear_state_offset == */
490 /* (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size)); */
491 assert(image->planes[plane].fast_clear_state_offset <
492 (image->planes[plane].offset + image->planes[plane].size));
493 }
494
495 return VK_SUCCESS;
496 }
497
498 static const struct isl_drm_modifier_info *
499 get_legacy_scanout_drm_format_mod(VkImageTiling tiling)
500 {
501 switch (tiling) {
502 case VK_IMAGE_TILING_OPTIMAL:
503 return isl_drm_modifier_get_info(I915_FORMAT_MOD_X_TILED);
504 case VK_IMAGE_TILING_LINEAR:
505 return isl_drm_modifier_get_info(DRM_FORMAT_MOD_LINEAR);
506 default:
507 unreachable("bad VkImageTiling");
508 }
509 }
510
511 VkResult
512 anv_image_create(VkDevice _device,
513 const struct anv_image_create_info *create_info,
514 const VkAllocationCallbacks* alloc,
515 VkImage *pImage)
516 {
517 ANV_FROM_HANDLE(anv_device, device, _device);
518 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
519 const struct isl_drm_modifier_info *isl_mod_info = NULL;
520 struct anv_image *image = NULL;
521 VkResult r;
522
523 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
524
525 const struct wsi_image_create_info *wsi_info =
526 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
527 if (wsi_info && wsi_info->scanout)
528 isl_mod_info = get_legacy_scanout_drm_format_mod(pCreateInfo->tiling);
529
530 anv_assert(pCreateInfo->mipLevels > 0);
531 anv_assert(pCreateInfo->arrayLayers > 0);
532 anv_assert(pCreateInfo->samples > 0);
533 anv_assert(pCreateInfo->extent.width > 0);
534 anv_assert(pCreateInfo->extent.height > 0);
535 anv_assert(pCreateInfo->extent.depth > 0);
536
537 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
538 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
539 if (!image)
540 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
541
542 image->type = pCreateInfo->imageType;
543 image->extent = pCreateInfo->extent;
544 image->vk_format = pCreateInfo->format;
545 image->format = anv_get_format(pCreateInfo->format);
546 image->aspects = vk_format_aspects(image->vk_format);
547 image->levels = pCreateInfo->mipLevels;
548 image->array_size = pCreateInfo->arrayLayers;
549 image->samples = pCreateInfo->samples;
550 image->usage = pCreateInfo->usage;
551 image->tiling = pCreateInfo->tiling;
552 image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_KHR;
553 image->drm_format_mod = isl_mod_info ? isl_mod_info->modifier :
554 DRM_FORMAT_MOD_INVALID;
555
556 const struct anv_format *format = anv_get_format(image->vk_format);
557 assert(format != NULL);
558
559 const isl_tiling_flags_t isl_tiling_flags =
560 choose_isl_tiling_flags(create_info, isl_mod_info);
561
562 image->n_planes = format->n_planes;
563
564 uint32_t b;
565 for_each_bit(b, image->aspects) {
566 r = make_surface(device, image, create_info, isl_tiling_flags,
567 (1 << b));
568 if (r != VK_SUCCESS)
569 goto fail;
570 }
571
572 *pImage = anv_image_to_handle(image);
573
574 return VK_SUCCESS;
575
576 fail:
577 if (image)
578 vk_free2(&device->alloc, alloc, image);
579
580 return r;
581 }
582
583 VkResult
584 anv_CreateImage(VkDevice device,
585 const VkImageCreateInfo *pCreateInfo,
586 const VkAllocationCallbacks *pAllocator,
587 VkImage *pImage)
588 {
589 #ifdef ANDROID
590 const VkNativeBufferANDROID *gralloc_info =
591 vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
592
593 if (gralloc_info)
594 return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
595 pAllocator, pImage);
596 #endif
597
598 return anv_image_create(device,
599 &(struct anv_image_create_info) {
600 .vk_info = pCreateInfo,
601 },
602 pAllocator,
603 pImage);
604 }
605
606 void
607 anv_DestroyImage(VkDevice _device, VkImage _image,
608 const VkAllocationCallbacks *pAllocator)
609 {
610 ANV_FROM_HANDLE(anv_device, device, _device);
611 ANV_FROM_HANDLE(anv_image, image, _image);
612
613 if (!image)
614 return;
615
616 for (uint32_t p = 0; p < image->n_planes; ++p) {
617 if (image->planes[p].bo_is_owned) {
618 assert(image->planes[p].bo != NULL);
619 anv_bo_cache_release(device, &device->bo_cache, image->planes[p].bo);
620 }
621 }
622
623 vk_free2(&device->alloc, pAllocator, image);
624 }
625
626 static void anv_image_bind_memory_plane(struct anv_device *device,
627 struct anv_image *image,
628 uint32_t plane,
629 struct anv_device_memory *memory,
630 uint32_t memory_offset)
631 {
632 assert(!image->planes[plane].bo_is_owned);
633
634 if (!memory) {
635 image->planes[plane].bo = NULL;
636 image->planes[plane].bo_offset = 0;
637 return;
638 }
639
640 image->planes[plane].bo = memory->bo;
641 image->planes[plane].bo_offset = memory_offset;
642 }
643
644 VkResult anv_BindImageMemory(
645 VkDevice _device,
646 VkImage _image,
647 VkDeviceMemory _memory,
648 VkDeviceSize memoryOffset)
649 {
650 ANV_FROM_HANDLE(anv_device, device, _device);
651 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
652 ANV_FROM_HANDLE(anv_image, image, _image);
653
654 uint32_t aspect_bit;
655 anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
656 uint32_t plane =
657 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
658 anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
659 }
660
661 return VK_SUCCESS;
662 }
663
664 VkResult anv_BindImageMemory2KHR(
665 VkDevice _device,
666 uint32_t bindInfoCount,
667 const VkBindImageMemoryInfoKHR* pBindInfos)
668 {
669 ANV_FROM_HANDLE(anv_device, device, _device);
670
671 for (uint32_t i = 0; i < bindInfoCount; i++) {
672 const VkBindImageMemoryInfoKHR *bind_info = &pBindInfos[i];
673 ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
674 ANV_FROM_HANDLE(anv_image, image, bind_info->image);
675 VkImageAspectFlags aspects = image->aspects;
676
677 vk_foreach_struct_const(s, bind_info->pNext) {
678 switch (s->sType) {
679 case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR: {
680 const VkBindImagePlaneMemoryInfoKHR *plane_info =
681 (const VkBindImagePlaneMemoryInfoKHR *) s;
682
683 aspects = plane_info->planeAspect;
684 break;
685 }
686 default:
687 anv_debug_ignored_stype(s->sType);
688 break;
689 }
690 }
691
692 uint32_t aspect_bit;
693 anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
694 uint32_t plane =
695 anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
696 anv_image_bind_memory_plane(device, image, plane,
697 mem, bind_info->memoryOffset);
698 }
699 }
700
701 return VK_SUCCESS;
702 }
703
704 void anv_GetImageSubresourceLayout(
705 VkDevice device,
706 VkImage _image,
707 const VkImageSubresource* subresource,
708 VkSubresourceLayout* layout)
709 {
710 ANV_FROM_HANDLE(anv_image, image, _image);
711 const struct anv_surface *surface =
712 get_surface(image, subresource->aspectMask);
713
714 assert(__builtin_popcount(subresource->aspectMask) == 1);
715
716 /* If we are on a non-zero mip level or array slice, we need to
717 * calculate a real offset.
718 */
719 anv_assert(subresource->mipLevel == 0);
720 anv_assert(subresource->arrayLayer == 0);
721
722 layout->offset = surface->offset;
723 layout->rowPitch = surface->isl.row_pitch;
724 layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
725 layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);
726 layout->size = surface->isl.size;
727 }
728
729 /**
730 * This function determines the optimal buffer to use for a given
731 * VkImageLayout and other pieces of information needed to make that
732 * determination. This does not determine the optimal buffer to use
733 * during a resolve operation.
734 *
735 * @param devinfo The device information of the Intel GPU.
736 * @param image The image that may contain a collection of buffers.
737 * @param plane The plane of the image to be accessed.
738 * @param layout The current layout of the image aspect(s).
739 *
740 * @return The primary buffer that should be used for the given layout.
741 */
742 enum isl_aux_usage
743 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
744 const struct anv_image * const image,
745 const VkImageAspectFlagBits aspect,
746 const VkImageLayout layout)
747 {
748 /* Validate the inputs. */
749
750 /* The devinfo is needed as the optimal buffer varies across generations. */
751 assert(devinfo != NULL);
752
753 /* The layout of a NULL image is not properly defined. */
754 assert(image != NULL);
755
756 /* The aspect must be exactly one of the image aspects. */
757 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
758
759 /* Determine the optimal buffer. */
760
761 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
762
763 /* If there is no auxiliary surface allocated, we must use the one and only
764 * main buffer.
765 */
766 if (image->planes[plane].aux_surface.isl.size == 0)
767 return ISL_AUX_USAGE_NONE;
768
769 /* All images that use an auxiliary surface are required to be tiled. */
770 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
771
772 /* Stencil has no aux */
773 assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
774
775 /* The following switch currently only handles depth stencil aspects.
776 * TODO: Handle the color aspect.
777 */
778 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV)
779 return image->planes[plane].aux_usage;
780
781 switch (layout) {
782
783 /* Invalid Layouts */
784 case VK_IMAGE_LAYOUT_RANGE_SIZE:
785 case VK_IMAGE_LAYOUT_MAX_ENUM:
786 unreachable("Invalid image layout.");
787
788 /* Undefined layouts
789 *
790 * The pre-initialized layout is equivalent to the undefined layout for
791 * optimally-tiled images. We can only do color compression (CCS or HiZ)
792 * on tiled images.
793 */
794 case VK_IMAGE_LAYOUT_UNDEFINED:
795 case VK_IMAGE_LAYOUT_PREINITIALIZED:
796 return ISL_AUX_USAGE_NONE;
797
798
799 /* Transfer Layouts
800 *
801 * This buffer could be a depth buffer used in a transfer operation. BLORP
802 * currently doesn't use HiZ for transfer operations so we must use the main
803 * buffer for this layout. TODO: Enable HiZ in BLORP.
804 */
805 case VK_IMAGE_LAYOUT_GENERAL:
806 case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
807 case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
808 return ISL_AUX_USAGE_NONE;
809
810
811 /* Sampling Layouts */
812 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
813 assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
814 /* Fall-through */
815 case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
816 case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR:
817 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
818 if (anv_can_sample_with_hiz(devinfo, image))
819 return ISL_AUX_USAGE_HIZ;
820 else
821 return ISL_AUX_USAGE_NONE;
822
823 case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
824 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
825
826 /* On SKL+, the render buffer can be decompressed by the presentation
827 * engine. Support for this feature has not yet landed in the wider
828 * ecosystem. TODO: Update this code when support lands.
829 *
830 * From the BDW PRM, Vol 7, Render Target Resolve:
831 *
832 * If the MCS is enabled on a non-multisampled render target, the
833 * render target must be resolved before being used for other
834 * purposes (display, texture, CPU lock) The clear value from
835 * SURFACE_STATE is written into pixels in the render target
836 * indicated as clear in the MCS.
837 *
838 * Pre-SKL, the render buffer must be resolved before being used for
839 * presentation. We can infer that the auxiliary buffer is not used.
840 */
841 return ISL_AUX_USAGE_NONE;
842
843
844 /* Rendering Layouts */
845 case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
846 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
847 unreachable("Color images are not yet supported.");
848
849 case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
850 case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR:
851 assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
852 return ISL_AUX_USAGE_HIZ;
853
854 case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
855 unreachable("VK_KHR_shared_presentable_image is unsupported");
856 }
857
858 /* If the layout isn't recognized in the exhaustive switch above, the
859 * VkImageLayout value is not defined in vulkan.h.
860 */
861 unreachable("layout is not a VkImageLayout enumeration member.");
862 }
863
864
865 static struct anv_state
866 alloc_surface_state(struct anv_device *device)
867 {
868 return anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
869 }
870
871 static enum isl_channel_select
872 remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
873 struct isl_swizzle format_swizzle)
874 {
875 if (swizzle == VK_COMPONENT_SWIZZLE_IDENTITY)
876 swizzle = component;
877
878 switch (swizzle) {
879 case VK_COMPONENT_SWIZZLE_ZERO: return ISL_CHANNEL_SELECT_ZERO;
880 case VK_COMPONENT_SWIZZLE_ONE: return ISL_CHANNEL_SELECT_ONE;
881 case VK_COMPONENT_SWIZZLE_R: return format_swizzle.r;
882 case VK_COMPONENT_SWIZZLE_G: return format_swizzle.g;
883 case VK_COMPONENT_SWIZZLE_B: return format_swizzle.b;
884 case VK_COMPONENT_SWIZZLE_A: return format_swizzle.a;
885 default:
886 unreachable("Invalid swizzle");
887 }
888 }
889
890 void
891 anv_image_fill_surface_state(struct anv_device *device,
892 const struct anv_image *image,
893 VkImageAspectFlagBits aspect,
894 const struct isl_view *view_in,
895 isl_surf_usage_flags_t view_usage,
896 enum isl_aux_usage aux_usage,
897 const union isl_color_value *clear_color,
898 enum anv_image_view_state_flags flags,
899 struct anv_surface_state *state_inout,
900 struct brw_image_param *image_param_out)
901 {
902 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
903
904 const struct anv_surface *surface = &image->planes[plane].surface,
905 *aux_surface = &image->planes[plane].aux_surface;
906
907 struct isl_view view = *view_in;
908 view.usage |= view_usage;
909
910 /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
911 * compressed surface with a shadow surface, we use the shadow instead of
912 * the primary surface. The shadow surface will be tiled, unlike the main
913 * surface, so it should get significantly better performance.
914 */
915 if (image->planes[plane].shadow_surface.isl.size > 0 &&
916 isl_format_is_compressed(view.format) &&
917 (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
918 assert(isl_format_is_compressed(surface->isl.format));
919 assert(surface->isl.tiling == ISL_TILING_LINEAR);
920 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
921 surface = &image->planes[plane].shadow_surface;
922 }
923
924 if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
925 view.swizzle = anv_swizzle_for_render(view.swizzle);
926
927 /* If this is a HiZ buffer we can sample from with a programmable clear
928 * value (SKL+), define the clear value to the optimal constant.
929 */
930 union isl_color_value default_clear_color = { .u32 = { 0, } };
931 if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
932 default_clear_color.f32[0] = ANV_HZ_FC_VAL;
933 if (!clear_color)
934 clear_color = &default_clear_color;
935
936 const uint64_t address = image->planes[plane].bo_offset + surface->offset;
937 const uint64_t aux_address = aux_usage == ISL_AUX_USAGE_NONE ?
938 0 : (image->planes[plane].bo_offset + aux_surface->offset);
939
940 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
941 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
942 !isl_has_matching_typed_storage_image_format(&device->info,
943 view.format)) {
944 /* In this case, we are a writeable storage buffer which needs to be
945 * lowered to linear. All tiling and offset calculations will be done in
946 * the shader.
947 */
948 assert(aux_usage == ISL_AUX_USAGE_NONE);
949 isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
950 .address = address,
951 .size = surface->isl.size,
952 .format = ISL_FORMAT_RAW,
953 .stride = 1,
954 .mocs = device->default_mocs);
955 state_inout->address = address,
956 state_inout->aux_address = 0;
957 } else {
958 if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
959 !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
960 /* Typed surface reads support a very limited subset of the shader
961 * image formats. Translate it into the closest format the hardware
962 * supports.
963 */
964 assert(aux_usage == ISL_AUX_USAGE_NONE);
965 view.format = isl_lower_storage_image_format(&device->info,
966 view.format);
967 }
968
969 const struct isl_surf *isl_surf = &surface->isl;
970
971 struct isl_surf tmp_surf;
972 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
973 if (isl_format_is_compressed(surface->isl.format) &&
974 !isl_format_is_compressed(view.format)) {
975 /* We're creating an uncompressed view of a compressed surface. This
976 * is allowed but only for a single level/layer.
977 */
978 assert(surface->isl.samples == 1);
979 assert(view.levels == 1);
980 assert(view.array_len == 1);
981
982 isl_surf_get_image_surf(&device->isl_dev, isl_surf,
983 view.base_level,
984 surface->isl.dim == ISL_SURF_DIM_3D ?
985 0 : view.base_array_layer,
986 surface->isl.dim == ISL_SURF_DIM_3D ?
987 view.base_array_layer : 0,
988 &tmp_surf,
989 &offset_B, &tile_x_sa, &tile_y_sa);
990
991 /* The newly created image represents the one subimage we're
992 * referencing with this view so it only has one array slice and
993 * miplevel.
994 */
995 view.base_array_layer = 0;
996 view.base_level = 0;
997
998 /* We're making an uncompressed view here. The image dimensions need
999 * to be scaled down by the block size.
1000 */
1001 const struct isl_format_layout *fmtl =
1002 isl_format_get_layout(surface->isl.format);
1003 tmp_surf.format = view.format;
1004 tmp_surf.logical_level0_px.width =
1005 DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
1006 tmp_surf.logical_level0_px.height =
1007 DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
1008 tmp_surf.phys_level0_sa.width /= fmtl->bw;
1009 tmp_surf.phys_level0_sa.height /= fmtl->bh;
1010 tile_x_sa /= fmtl->bw;
1011 tile_y_sa /= fmtl->bh;
1012
1013 isl_surf = &tmp_surf;
1014
1015 if (device->info.gen <= 8) {
1016 assert(surface->isl.tiling == ISL_TILING_LINEAR);
1017 assert(tile_x_sa == 0);
1018 assert(tile_y_sa == 0);
1019 }
1020 }
1021
1022 isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
1023 .surf = isl_surf,
1024 .view = &view,
1025 .address = address + offset_B,
1026 .clear_color = *clear_color,
1027 .aux_surf = &aux_surface->isl,
1028 .aux_usage = aux_usage,
1029 .aux_address = aux_address,
1030 .mocs = device->default_mocs,
1031 .x_offset_sa = tile_x_sa,
1032 .y_offset_sa = tile_y_sa);
1033 state_inout->address = address + offset_B;
1034 if (device->info.gen >= 8) {
1035 state_inout->aux_address = aux_address;
1036 } else {
1037 /* On gen7 and prior, the bottom 12 bits of the MCS base address are
1038 * used to store other information. This should be ok, however,
1039 * because surface buffer addresses are always 4K page alinged.
1040 */
1041 uint32_t *aux_addr_dw = state_inout->state.map +
1042 device->isl_dev.ss.aux_addr_offset;
1043 assert((aux_address & 0xfff) == 0);
1044 assert(aux_address == (*aux_addr_dw & 0xfffff000));
1045 state_inout->aux_address = *aux_addr_dw;
1046 }
1047 }
1048
1049 anv_state_flush(device, state_inout->state);
1050
1051 if (image_param_out) {
1052 assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
1053 isl_surf_fill_image_param(&device->isl_dev, image_param_out,
1054 &surface->isl, &view);
1055 }
1056 }
1057
1058 static VkImageAspectFlags
1059 remap_aspect_flags(VkImageAspectFlags view_aspects)
1060 {
1061 if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1062 if (_mesa_bitcount(view_aspects) == 1)
1063 return VK_IMAGE_ASPECT_COLOR_BIT;
1064
1065 VkImageAspectFlags color_aspects = 0;
1066 for (uint32_t i = 0; i < _mesa_bitcount(view_aspects); i++)
1067 color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << i;
1068 return color_aspects;
1069 }
1070 /* No special remapping needed for depth & stencil aspects. */
1071 return view_aspects;
1072 }
1073
1074 VkResult
1075 anv_CreateImageView(VkDevice _device,
1076 const VkImageViewCreateInfo *pCreateInfo,
1077 const VkAllocationCallbacks *pAllocator,
1078 VkImageView *pView)
1079 {
1080 ANV_FROM_HANDLE(anv_device, device, _device);
1081 ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
1082 struct anv_image_view *iview;
1083
1084 iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
1085 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1086 if (iview == NULL)
1087 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1088
1089 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1090
1091 assert(range->layerCount > 0);
1092 assert(range->baseMipLevel < image->levels);
1093
1094 const VkImageViewUsageCreateInfoKHR *usage_info =
1095 vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO_KHR);
1096 VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
1097 /* View usage should be a subset of image usage */
1098 assert((view_usage & ~image->usage) == 0);
1099 assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
1100 VK_IMAGE_USAGE_STORAGE_BIT |
1101 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
1102 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
1103 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
1104
1105 switch (image->type) {
1106 default:
1107 unreachable("bad VkImageType");
1108 case VK_IMAGE_TYPE_1D:
1109 case VK_IMAGE_TYPE_2D:
1110 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1 <= image->array_size);
1111 break;
1112 case VK_IMAGE_TYPE_3D:
1113 assert(range->baseArrayLayer + anv_get_layerCount(image, range) - 1
1114 <= anv_minify(image->extent.depth, range->baseMipLevel));
1115 break;
1116 }
1117
1118 /* First expand aspects to the image's ones (for example
1119 * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
1120 * VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | VK_IMAGE_ASPECT_PLANE_1_BIT_KHR |
1121 * VK_IMAGE_ASPECT_PLANE_2_BIT_KHR for an image of format
1122 * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
1123 */
1124 VkImageAspectFlags expanded_aspects =
1125 anv_image_expand_aspects(image, range->aspectMask);
1126
1127 iview->image = image;
1128
1129 /* Remap the expanded aspects for the image view. For example if only
1130 * VK_IMAGE_ASPECT_PLANE_1_BIT_KHR was given in range->aspectMask, we will
1131 * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
1132 * the image view, it only has a single plane.
1133 */
1134 iview->aspect_mask = remap_aspect_flags(expanded_aspects);
1135 iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
1136 iview->vk_format = pCreateInfo->format;
1137
1138 iview->extent = (VkExtent3D) {
1139 .width = anv_minify(image->extent.width , range->baseMipLevel),
1140 .height = anv_minify(image->extent.height, range->baseMipLevel),
1141 .depth = anv_minify(image->extent.depth , range->baseMipLevel),
1142 };
1143
1144 /* Now go through the underlying image selected planes (computed in
1145 * expanded_aspects) and map them to planes in the image view.
1146 */
1147 uint32_t iaspect_bit, vplane = 0;
1148 anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
1149 uint32_t iplane =
1150 anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit);
1151 VkImageAspectFlags vplane_aspect =
1152 anv_plane_to_aspect(iview->aspect_mask, vplane);
1153 struct anv_format_plane format =
1154 anv_get_format_plane(&device->info, pCreateInfo->format,
1155 vplane_aspect, image->tiling);
1156
1157 iview->planes[vplane].image_plane = iplane;
1158
1159 iview->planes[vplane].isl = (struct isl_view) {
1160 .format = format.isl_format,
1161 .base_level = range->baseMipLevel,
1162 .levels = anv_get_levelCount(image, range),
1163 .base_array_layer = range->baseArrayLayer,
1164 .array_len = anv_get_layerCount(image, range),
1165 .swizzle = {
1166 .r = remap_swizzle(pCreateInfo->components.r,
1167 VK_COMPONENT_SWIZZLE_R, format.swizzle),
1168 .g = remap_swizzle(pCreateInfo->components.g,
1169 VK_COMPONENT_SWIZZLE_G, format.swizzle),
1170 .b = remap_swizzle(pCreateInfo->components.b,
1171 VK_COMPONENT_SWIZZLE_B, format.swizzle),
1172 .a = remap_swizzle(pCreateInfo->components.a,
1173 VK_COMPONENT_SWIZZLE_A, format.swizzle),
1174 },
1175 };
1176
1177 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
1178 iview->planes[vplane].isl.base_array_layer = 0;
1179 iview->planes[vplane].isl.array_len = iview->extent.depth;
1180 }
1181
1182 if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
1183 pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
1184 iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
1185 } else {
1186 iview->planes[vplane].isl.usage = 0;
1187 }
1188
1189 if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
1190 (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
1191 !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
1192 iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
1193 iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
1194
1195 enum isl_aux_usage general_aux_usage =
1196 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1197 VK_IMAGE_LAYOUT_GENERAL);
1198 enum isl_aux_usage optimal_aux_usage =
1199 anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
1200 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
1201
1202 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1203 &iview->planes[vplane].isl,
1204 ISL_SURF_USAGE_TEXTURE_BIT,
1205 optimal_aux_usage, NULL,
1206 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
1207 &iview->planes[vplane].optimal_sampler_surface_state,
1208 NULL);
1209
1210 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1211 &iview->planes[vplane].isl,
1212 ISL_SURF_USAGE_TEXTURE_BIT,
1213 general_aux_usage, NULL,
1214 0,
1215 &iview->planes[vplane].general_sampler_surface_state,
1216 NULL);
1217 }
1218
1219 /* NOTE: This one needs to go last since it may stomp isl_view.format */
1220 if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
1221 iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
1222 iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
1223
1224 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1225 &iview->planes[vplane].isl,
1226 ISL_SURF_USAGE_STORAGE_BIT,
1227 ISL_AUX_USAGE_NONE, NULL,
1228 0,
1229 &iview->planes[vplane].storage_surface_state,
1230 &iview->planes[vplane].storage_image_param);
1231
1232 anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
1233 &iview->planes[vplane].isl,
1234 ISL_SURF_USAGE_STORAGE_BIT,
1235 ISL_AUX_USAGE_NONE, NULL,
1236 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
1237 &iview->planes[vplane].writeonly_storage_surface_state,
1238 NULL);
1239 }
1240
1241 vplane++;
1242 }
1243
1244 *pView = anv_image_view_to_handle(iview);
1245
1246 return VK_SUCCESS;
1247 }
1248
1249 void
1250 anv_DestroyImageView(VkDevice _device, VkImageView _iview,
1251 const VkAllocationCallbacks *pAllocator)
1252 {
1253 ANV_FROM_HANDLE(anv_device, device, _device);
1254 ANV_FROM_HANDLE(anv_image_view, iview, _iview);
1255
1256 if (!iview)
1257 return;
1258
1259 for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
1260 if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
1261 anv_state_pool_free(&device->surface_state_pool,
1262 iview->planes[plane].optimal_sampler_surface_state.state);
1263 }
1264
1265 if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
1266 anv_state_pool_free(&device->surface_state_pool,
1267 iview->planes[plane].general_sampler_surface_state.state);
1268 }
1269
1270 if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
1271 anv_state_pool_free(&device->surface_state_pool,
1272 iview->planes[plane].storage_surface_state.state);
1273 }
1274
1275 if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
1276 anv_state_pool_free(&device->surface_state_pool,
1277 iview->planes[plane].writeonly_storage_surface_state.state);
1278 }
1279 }
1280
1281 vk_free2(&device->alloc, pAllocator, iview);
1282 }
1283
1284
1285 VkResult
1286 anv_CreateBufferView(VkDevice _device,
1287 const VkBufferViewCreateInfo *pCreateInfo,
1288 const VkAllocationCallbacks *pAllocator,
1289 VkBufferView *pView)
1290 {
1291 ANV_FROM_HANDLE(anv_device, device, _device);
1292 ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
1293 struct anv_buffer_view *view;
1294
1295 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1296 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1297 if (!view)
1298 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1299
1300 /* TODO: Handle the format swizzle? */
1301
1302 view->format = anv_get_isl_format(&device->info, pCreateInfo->format,
1303 VK_IMAGE_ASPECT_COLOR_BIT,
1304 VK_IMAGE_TILING_LINEAR);
1305 const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
1306 view->bo = buffer->bo;
1307 view->offset = buffer->offset + pCreateInfo->offset;
1308 view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
1309 pCreateInfo->range);
1310 view->range = align_down_npot_u32(view->range, format_bs);
1311
1312 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
1313 view->surface_state = alloc_surface_state(device);
1314
1315 anv_fill_buffer_surface_state(device, view->surface_state,
1316 view->format,
1317 view->offset, view->range, format_bs);
1318 } else {
1319 view->surface_state = (struct anv_state){ 0 };
1320 }
1321
1322 if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
1323 view->storage_surface_state = alloc_surface_state(device);
1324 view->writeonly_storage_surface_state = alloc_surface_state(device);
1325
1326 enum isl_format storage_format =
1327 isl_has_matching_typed_storage_image_format(&device->info,
1328 view->format) ?
1329 isl_lower_storage_image_format(&device->info, view->format) :
1330 ISL_FORMAT_RAW;
1331
1332 anv_fill_buffer_surface_state(device, view->storage_surface_state,
1333 storage_format,
1334 view->offset, view->range,
1335 (storage_format == ISL_FORMAT_RAW ? 1 :
1336 isl_format_get_layout(storage_format)->bpb / 8));
1337
1338 /* Write-only accesses should use the original format. */
1339 anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
1340 view->format,
1341 view->offset, view->range,
1342 isl_format_get_layout(view->format)->bpb / 8);
1343
1344 isl_buffer_fill_image_param(&device->isl_dev,
1345 &view->storage_image_param,
1346 view->format, view->range);
1347 } else {
1348 view->storage_surface_state = (struct anv_state){ 0 };
1349 view->writeonly_storage_surface_state = (struct anv_state){ 0 };
1350 }
1351
1352 *pView = anv_buffer_view_to_handle(view);
1353
1354 return VK_SUCCESS;
1355 }
1356
1357 void
1358 anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1359 const VkAllocationCallbacks *pAllocator)
1360 {
1361 ANV_FROM_HANDLE(anv_device, device, _device);
1362 ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);
1363
1364 if (!view)
1365 return;
1366
1367 if (view->surface_state.alloc_size > 0)
1368 anv_state_pool_free(&device->surface_state_pool,
1369 view->surface_state);
1370
1371 if (view->storage_surface_state.alloc_size > 0)
1372 anv_state_pool_free(&device->surface_state_pool,
1373 view->storage_surface_state);
1374
1375 if (view->writeonly_storage_surface_state.alloc_size > 0)
1376 anv_state_pool_free(&device->surface_state_pool,
1377 view->writeonly_storage_surface_state);
1378
1379 vk_free2(&device->alloc, pAllocator, view);
1380 }
1381
1382 const struct anv_surface *
1383 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1384 VkImageAspectFlags aspect_mask)
1385 {
1386 VkImageAspectFlags sanitized_mask;
1387
1388 switch (aspect_mask) {
1389 case VK_IMAGE_ASPECT_COLOR_BIT:
1390 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1391 sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
1392 break;
1393 case VK_IMAGE_ASPECT_DEPTH_BIT:
1394 assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
1395 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1396 break;
1397 case VK_IMAGE_ASPECT_STENCIL_BIT:
1398 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
1399 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1400 break;
1401 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1402 /* FINISHME: The Vulkan spec (git a511ba2) requires support for
1403 * combined depth stencil formats. Specifically, it states:
1404 *
1405 * At least one of ename:VK_FORMAT_D24_UNORM_S8_UINT or
1406 * ename:VK_FORMAT_D32_SFLOAT_S8_UINT must be supported.
1407 *
1408 * Image views with both depth and stencil aspects are only valid for
1409 * render target attachments, in which case
1410 * cmd_buffer_emit_depth_stencil() will pick out both the depth and
1411 * stencil surfaces from the underlying surface.
1412 */
1413 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1414 sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
1415 } else {
1416 assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
1417 sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
1418 }
1419 break;
1420 case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
1421 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1422 sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR;
1423 break;
1424 case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
1425 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1426 sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR;
1427 break;
1428 case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
1429 assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
1430 sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR;
1431 break;
1432 default:
1433 unreachable("image does not have aspect");
1434 return NULL;
1435 }
1436
1437 uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
1438 return &image->planes[plane].surface;
1439 }