anv/meta: Make meta_emit_blit() public
[mesa.git] / src / intel / vulkan / anv_meta_blit.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_meta.h"
25 #include "nir/nir_builder.h"
26
27 struct blit_region {
28 VkOffset3D src_offset;
29 VkExtent3D src_extent;
30 VkOffset3D dest_offset;
31 VkExtent3D dest_extent;
32 };
33
34 static nir_shader *
35 build_nir_vertex_shader(void)
36 {
37 const struct glsl_type *vec4 = glsl_vec4_type();
38 nir_builder b;
39
40 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
41 b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
42
43 nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
44 vec4, "a_pos");
45 pos_in->data.location = VERT_ATTRIB_GENERIC0;
46 nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
47 vec4, "gl_Position");
48 pos_out->data.location = VARYING_SLOT_POS;
49 nir_copy_var(&b, pos_out, pos_in);
50
51 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
52 vec4, "a_tex_pos");
53 tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
54 nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
55 vec4, "v_tex_pos");
56 tex_pos_out->data.location = VARYING_SLOT_VAR0;
57 tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH;
58 nir_copy_var(&b, tex_pos_out, tex_pos_in);
59
60 return b.shader;
61 }
62
63 static nir_shader *
64 build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
65 {
66 const struct glsl_type *vec4 = glsl_vec4_type();
67 nir_builder b;
68
69 nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
70 b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_fs");
71
72 nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
73 vec4, "v_tex_pos");
74 tex_pos_in->data.location = VARYING_SLOT_VAR0;
75
76 /* Swizzle the array index which comes in as Z coordinate into the right
77 * position.
78 */
79 unsigned swz[] = { 0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2 };
80 nir_ssa_def *const tex_pos =
81 nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz,
82 (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3), false);
83
84 const struct glsl_type *sampler_type =
85 glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D,
86 glsl_get_base_type(vec4));
87 nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
88 sampler_type, "s_tex");
89 sampler->data.descriptor_set = 0;
90 sampler->data.binding = 0;
91
92 nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
93 tex->sampler_dim = tex_dim;
94 tex->op = nir_texop_tex;
95 tex->src[0].src_type = nir_tex_src_coord;
96 tex->src[0].src = nir_src_for_ssa(tex_pos);
97 tex->dest_type = nir_type_float; /* TODO */
98 tex->is_array = glsl_sampler_type_is_array(sampler_type);
99 tex->coord_components = tex_pos->num_components;
100 tex->texture = nir_deref_var_create(tex, sampler);
101 tex->sampler = nir_deref_var_create(tex, sampler);
102
103 nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
104 nir_builder_instr_insert(&b, &tex->instr);
105
106 nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
107 vec4, "f_color");
108 color_out->data.location = FRAG_RESULT_DATA0;
109 nir_store_var(&b, color_out, &tex->dest.ssa, 4);
110
111 return b.shader;
112 }
113
114 static void
115 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
116 struct anv_meta_saved_state *saved_state)
117 {
118 anv_meta_save(saved_state, cmd_buffer,
119 (1 << VK_DYNAMIC_STATE_VIEWPORT));
120 }
121
122 void
123 anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer,
124 struct anv_meta_saved_state *save)
125 {
126 meta_prepare_blit(cmd_buffer, save);
127 }
128
129
130 /* Returns the user-provided VkBufferImageCopy::imageOffset in units of
131 * elements rather than texels. One element equals one texel or one block
132 * if Image is uncompressed or compressed, respectively.
133 */
134 static struct VkOffset3D
135 meta_region_offset_el(const struct anv_image * image,
136 const struct VkOffset3D * offset)
137 {
138 const struct isl_format_layout * isl_layout = image->format->isl_layout;
139 return (VkOffset3D) {
140 .x = offset->x / isl_layout->bw,
141 .y = offset->y / isl_layout->bh,
142 .z = offset->z / isl_layout->bd,
143 };
144 }
145
146 /* Returns the user-provided VkBufferImageCopy::imageExtent in units of
147 * elements rather than texels. One element equals one texel or one block
148 * if Image is uncompressed or compressed, respectively.
149 */
150 static struct VkExtent3D
151 meta_region_extent_el(const VkFormat format,
152 const struct VkExtent3D * extent)
153 {
154 const struct isl_format_layout * isl_layout =
155 anv_format_for_vk_format(format)->isl_layout;
156 return (VkExtent3D) {
157 .width = DIV_ROUND_UP(extent->width , isl_layout->bw),
158 .height = DIV_ROUND_UP(extent->height, isl_layout->bh),
159 .depth = DIV_ROUND_UP(extent->depth , isl_layout->bd),
160 };
161 }
162
163 void
164 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
165 struct anv_image *src_image,
166 struct anv_image_view *src_iview,
167 VkOffset3D src_offset,
168 VkExtent3D src_extent,
169 struct anv_image *dest_image,
170 struct anv_image_view *dest_iview,
171 VkOffset3D dest_offset,
172 VkExtent3D dest_extent,
173 VkFilter blit_filter)
174 {
175 struct anv_device *device = cmd_buffer->device;
176
177 struct blit_vb_data {
178 float pos[2];
179 float tex_coord[3];
180 } *vb_data;
181
182 assert(src_image->samples == dest_image->samples);
183
184 unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
185
186 struct anv_state vb_state =
187 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
188 memset(vb_state.map, 0, sizeof(struct anv_vue_header));
189 vb_data = vb_state.map + sizeof(struct anv_vue_header);
190
191 vb_data[0] = (struct blit_vb_data) {
192 .pos = {
193 dest_offset.x + dest_extent.width,
194 dest_offset.y + dest_extent.height,
195 },
196 .tex_coord = {
197 (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
198 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
199 (float)src_offset.z / (float)src_iview->extent.depth,
200 },
201 };
202
203 vb_data[1] = (struct blit_vb_data) {
204 .pos = {
205 dest_offset.x,
206 dest_offset.y + dest_extent.height,
207 },
208 .tex_coord = {
209 (float)src_offset.x / (float)src_iview->extent.width,
210 (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
211 (float)src_offset.z / (float)src_iview->extent.depth,
212 },
213 };
214
215 vb_data[2] = (struct blit_vb_data) {
216 .pos = {
217 dest_offset.x,
218 dest_offset.y,
219 },
220 .tex_coord = {
221 (float)src_offset.x / (float)src_iview->extent.width,
222 (float)src_offset.y / (float)src_iview->extent.height,
223 (float)src_offset.z / (float)src_iview->extent.depth,
224 },
225 };
226
227 anv_state_clflush(vb_state);
228
229 struct anv_buffer vertex_buffer = {
230 .device = device,
231 .size = vb_size,
232 .bo = &device->dynamic_state_block_pool.bo,
233 .offset = vb_state.offset,
234 };
235
236 anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
237 (VkBuffer[]) {
238 anv_buffer_to_handle(&vertex_buffer),
239 anv_buffer_to_handle(&vertex_buffer)
240 },
241 (VkDeviceSize[]) {
242 0,
243 sizeof(struct anv_vue_header),
244 });
245
246 VkSampler sampler;
247 ANV_CALL(CreateSampler)(anv_device_to_handle(device),
248 &(VkSamplerCreateInfo) {
249 .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
250 .magFilter = blit_filter,
251 .minFilter = blit_filter,
252 }, &cmd_buffer->pool->alloc, &sampler);
253
254 VkDescriptorPool desc_pool;
255 anv_CreateDescriptorPool(anv_device_to_handle(device),
256 &(const VkDescriptorPoolCreateInfo) {
257 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
258 .pNext = NULL,
259 .flags = 0,
260 .maxSets = 1,
261 .poolSizeCount = 1,
262 .pPoolSizes = (VkDescriptorPoolSize[]) {
263 {
264 .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
265 .descriptorCount = 1
266 },
267 }
268 }, &cmd_buffer->pool->alloc, &desc_pool);
269
270 VkDescriptorSet set;
271 anv_AllocateDescriptorSets(anv_device_to_handle(device),
272 &(VkDescriptorSetAllocateInfo) {
273 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
274 .descriptorPool = desc_pool,
275 .descriptorSetCount = 1,
276 .pSetLayouts = &device->meta_state.blit.ds_layout
277 }, &set);
278
279 anv_UpdateDescriptorSets(anv_device_to_handle(device),
280 1, /* writeCount */
281 (VkWriteDescriptorSet[]) {
282 {
283 .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
284 .dstSet = set,
285 .dstBinding = 0,
286 .dstArrayElement = 0,
287 .descriptorCount = 1,
288 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
289 .pImageInfo = (VkDescriptorImageInfo[]) {
290 {
291 .sampler = sampler,
292 .imageView = anv_image_view_to_handle(src_iview),
293 .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
294 },
295 }
296 }
297 }, 0, NULL);
298
299 VkFramebuffer fb;
300 anv_CreateFramebuffer(anv_device_to_handle(device),
301 &(VkFramebufferCreateInfo) {
302 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
303 .attachmentCount = 1,
304 .pAttachments = (VkImageView[]) {
305 anv_image_view_to_handle(dest_iview),
306 },
307 .width = dest_iview->extent.width,
308 .height = dest_iview->extent.height,
309 .layers = 1
310 }, &cmd_buffer->pool->alloc, &fb);
311
312 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
313 &(VkRenderPassBeginInfo) {
314 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
315 .renderPass = device->meta_state.blit.render_pass,
316 .framebuffer = fb,
317 .renderArea = {
318 .offset = { dest_offset.x, dest_offset.y },
319 .extent = { dest_extent.width, dest_extent.height },
320 },
321 .clearValueCount = 0,
322 .pClearValues = NULL,
323 }, VK_SUBPASS_CONTENTS_INLINE);
324
325 VkPipeline pipeline;
326
327 switch (src_image->type) {
328 case VK_IMAGE_TYPE_1D:
329 pipeline = device->meta_state.blit.pipeline_1d_src;
330 break;
331 case VK_IMAGE_TYPE_2D:
332 pipeline = device->meta_state.blit.pipeline_2d_src;
333 break;
334 case VK_IMAGE_TYPE_3D:
335 pipeline = device->meta_state.blit.pipeline_3d_src;
336 break;
337 default:
338 unreachable(!"bad VkImageType");
339 }
340
341 if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
342 anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
343 VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
344 }
345
346 anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
347 &(VkViewport) {
348 .x = 0.0f,
349 .y = 0.0f,
350 .width = dest_iview->extent.width,
351 .height = dest_iview->extent.height,
352 .minDepth = 0.0f,
353 .maxDepth = 1.0f,
354 });
355
356 anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
357 VK_PIPELINE_BIND_POINT_GRAPHICS,
358 device->meta_state.blit.pipeline_layout, 0, 1,
359 &set, 0, NULL);
360
361 ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
362
363 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
364
365 /* At the point where we emit the draw call, all data from the
366 * descriptor sets, etc. has been used. We are free to delete it.
367 */
368 anv_DestroyDescriptorPool(anv_device_to_handle(device),
369 desc_pool, &cmd_buffer->pool->alloc);
370 anv_DestroySampler(anv_device_to_handle(device), sampler,
371 &cmd_buffer->pool->alloc);
372 anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
373 &cmd_buffer->pool->alloc);
374 }
375
376 static void
377 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
378 const struct anv_meta_saved_state *saved_state)
379 {
380 anv_meta_restore(saved_state, cmd_buffer);
381 }
382
383 void
384 anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer,
385 struct anv_meta_saved_state *save)
386 {
387 meta_finish_blit(cmd_buffer, save);
388 }
389
390 static VkFormat
391 vk_format_for_size(int bs)
392 {
393 /* The choice of UNORM and UINT formats is very intentional here. Most of
394 * the time, we want to use a UINT format to avoid any rounding error in
395 * the blit. For stencil blits, R8_UINT is required by the hardware.
396 * (It's the only format allowed in conjunction with W-tiling.) Also we
397 * intentionally use the 4-channel formats whenever we can. This is so
398 * that, when we do a RGB <-> RGBX copy, the two formats will line up even
399 * though one of them is 3/4 the size of the other. The choice of UNORM
400 * vs. UINT is also very intentional because Haswell doesn't handle 8 or
401 * 16-bit RGB UINT formats at all so we have to use UNORM there.
402 * Fortunately, the only time we should ever use two different formats in
403 * the table below is for RGB -> RGBA blits and so we will never have any
404 * UNORM/UINT mismatch.
405 */
406 switch (bs) {
407 case 1: return VK_FORMAT_R8_UINT;
408 case 2: return VK_FORMAT_R8G8_UINT;
409 case 3: return VK_FORMAT_R8G8B8_UNORM;
410 case 4: return VK_FORMAT_R8G8B8A8_UNORM;
411 case 6: return VK_FORMAT_R16G16B16_UNORM;
412 case 8: return VK_FORMAT_R16G16B16A16_UNORM;
413 case 12: return VK_FORMAT_R32G32B32_UINT;
414 case 16: return VK_FORMAT_R32G32B32A32_UINT;
415 default:
416 unreachable("Invalid format block size");
417 }
418 }
419
420 static struct anv_meta_blit2d_surf
421 blit_surf_for_image(const struct anv_image* image,
422 const struct isl_surf *img_isl_surf)
423 {
424 return (struct anv_meta_blit2d_surf) {
425 .bo = image->bo,
426 .tiling = img_isl_surf->tiling,
427 .base_offset = image->offset,
428 .bs = isl_format_get_layout(img_isl_surf->format)->bs,
429 .pitch = isl_surf_get_row_pitch(img_isl_surf),
430 };
431 }
432
433 void
434 anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer,
435 struct anv_meta_blit2d_surf *src,
436 struct anv_meta_blit2d_surf *dst,
437 unsigned num_rects,
438 struct anv_meta_blit2d_rect *rects)
439 {
440 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
441 VkFormat src_format = vk_format_for_size(src->bs);
442 VkFormat dst_format = vk_format_for_size(dst->bs);
443 VkImageUsageFlags src_usage = VK_IMAGE_USAGE_SAMPLED_BIT;
444 VkImageUsageFlags dst_usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
445
446 for (unsigned r = 0; r < num_rects; ++r) {
447
448 /* Create VkImages */
449 VkImageCreateInfo image_info = {
450 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
451 .imageType = VK_IMAGE_TYPE_2D,
452 .format = 0, /* TEMPLATE */
453 .extent = {
454 .width = 0, /* TEMPLATE */
455 .height = 0, /* TEMPLATE */
456 .depth = 1,
457 },
458 .mipLevels = 1,
459 .arrayLayers = 1,
460 .samples = 1,
461 .tiling = 0, /* TEMPLATE */
462 .usage = 0, /* TEMPLATE */
463 };
464 struct anv_image_create_info anv_image_info = {
465 .vk_info = &image_info,
466 .isl_tiling_flags = 0, /* TEMPLATE */
467 };
468
469 /* The image height is the rect height + src/dst y-offset from the
470 * tile-aligned base address.
471 */
472 struct isl_tile_info tile_info;
473
474 anv_image_info.isl_tiling_flags = 1 << src->tiling;
475 image_info.tiling = anv_image_info.isl_tiling_flags == ISL_TILING_LINEAR_BIT ?
476 VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
477 image_info.usage = src_usage;
478 image_info.format = src_format,
479 isl_tiling_get_info(&cmd_buffer->device->isl_dev, src->tiling, src->bs, &tile_info);
480 image_info.extent.height = rects[r].height +
481 rects[r].src_y % tile_info.height;
482 image_info.extent.width = src->pitch / src->bs;
483 VkImage src_image;
484 anv_image_create(vk_device, &anv_image_info,
485 &cmd_buffer->pool->alloc, &src_image);
486
487 anv_image_info.isl_tiling_flags = 1 << dst->tiling;
488 image_info.tiling = anv_image_info.isl_tiling_flags == ISL_TILING_LINEAR_BIT ?
489 VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
490 image_info.usage = dst_usage;
491 image_info.format = dst_format,
492 isl_tiling_get_info(&cmd_buffer->device->isl_dev, dst->tiling, dst->bs, &tile_info);
493 image_info.extent.height = rects[r].height +
494 rects[r].dst_y % tile_info.height;
495 image_info.extent.width = dst->pitch / dst->bs;
496 VkImage dst_image;
497 anv_image_create(vk_device, &anv_image_info,
498 &cmd_buffer->pool->alloc, &dst_image);
499
500 /* We could use a vk call to bind memory, but that would require
501 * creating a dummy memory object etc. so there's really no point.
502 */
503 anv_image_from_handle(src_image)->bo = src->bo;
504 anv_image_from_handle(src_image)->offset = src->base_offset;
505 anv_image_from_handle(dst_image)->bo = dst->bo;
506 anv_image_from_handle(dst_image)->offset = dst->base_offset;
507
508 /* Create VkImageViews */
509 VkImageViewCreateInfo iview_info = {
510 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
511 .image = 0, /* TEMPLATE */
512 .viewType = VK_IMAGE_VIEW_TYPE_2D,
513 .format = 0, /* TEMPLATE */
514 .subresourceRange = {
515 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
516 .baseMipLevel = 0,
517 .levelCount = 1,
518 .baseArrayLayer = 0,
519 .layerCount = 1
520 },
521 };
522 uint32_t img_o = 0;
523
524 iview_info.image = src_image;
525 iview_info.format = src_format;
526 VkOffset3D src_offset_el = {0};
527 isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
528 &anv_image_from_handle(src_image)->
529 color_surface.isl,
530 rects[r].src_x,
531 rects[r].src_y,
532 &img_o,
533 (uint32_t*)&src_offset_el.x,
534 (uint32_t*)&src_offset_el.y);
535
536 struct anv_image_view src_iview;
537 anv_image_view_init(&src_iview, cmd_buffer->device,
538 &iview_info, cmd_buffer, img_o, src_usage);
539
540 iview_info.image = dst_image;
541 iview_info.format = dst_format;
542 VkOffset3D dst_offset_el = {0};
543 isl_surf_get_image_intratile_offset_el_xy(&cmd_buffer->device->isl_dev,
544 &anv_image_from_handle(dst_image)->
545 color_surface.isl,
546 rects[r].dst_x,
547 rects[r].dst_y,
548 &img_o,
549 (uint32_t*)&dst_offset_el.x,
550 (uint32_t*)&dst_offset_el.y);
551 struct anv_image_view dst_iview;
552 anv_image_view_init(&dst_iview, cmd_buffer->device,
553 &iview_info, cmd_buffer, img_o, dst_usage);
554
555 /* Perform blit */
556 meta_emit_blit(cmd_buffer,
557 anv_image_from_handle(src_image),
558 &src_iview,
559 src_offset_el,
560 (VkExtent3D){rects[r].width, rects[r].height, 1},
561 anv_image_from_handle(dst_image),
562 &dst_iview,
563 dst_offset_el,
564 (VkExtent3D){rects[r].width, rects[r].height, 1},
565 VK_FILTER_NEAREST);
566
567 anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
568 anv_DestroyImage(vk_device, dst_image, &cmd_buffer->pool->alloc);
569 }
570 }
571
572 static void
573 do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
574 struct anv_bo *src, uint64_t src_offset,
575 struct anv_bo *dest, uint64_t dest_offset,
576 int width, int height, int bs)
577 {
578 struct anv_meta_blit2d_surf b_src = {
579 .bo = src,
580 .tiling = ISL_TILING_LINEAR,
581 .base_offset = src_offset,
582 .bs = bs,
583 .pitch = width * bs,
584 };
585 struct anv_meta_blit2d_surf b_dst = {
586 .bo = dest,
587 .tiling = ISL_TILING_LINEAR,
588 .base_offset = dest_offset,
589 .bs = bs,
590 .pitch = width * bs,
591 };
592 struct anv_meta_blit2d_rect rect = {
593 .width = width,
594 .height = height,
595 };
596 anv_meta_blit2d(cmd_buffer,
597 &b_src,
598 &b_dst,
599 1,
600 &rect);
601 }
602
603 void anv_CmdCopyBuffer(
604 VkCommandBuffer commandBuffer,
605 VkBuffer srcBuffer,
606 VkBuffer destBuffer,
607 uint32_t regionCount,
608 const VkBufferCopy* pRegions)
609 {
610 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
611 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
612 ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
613
614 struct anv_meta_saved_state saved_state;
615
616 anv_meta_begin_blit2d(cmd_buffer, &saved_state);
617
618 for (unsigned r = 0; r < regionCount; r++) {
619 uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
620 uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
621 uint64_t copy_size = pRegions[r].size;
622
623 /* First, we compute the biggest format that can be used with the
624 * given offsets and size.
625 */
626 int bs = 16;
627
628 int fs = ffs(src_offset) - 1;
629 if (fs != -1)
630 bs = MIN2(bs, 1 << fs);
631 assert(src_offset % bs == 0);
632
633 fs = ffs(dest_offset) - 1;
634 if (fs != -1)
635 bs = MIN2(bs, 1 << fs);
636 assert(dest_offset % bs == 0);
637
638 fs = ffs(pRegions[r].size) - 1;
639 if (fs != -1)
640 bs = MIN2(bs, 1 << fs);
641 assert(pRegions[r].size % bs == 0);
642
643 /* This is maximum possible width/height our HW can handle */
644 uint64_t max_surface_dim = 1 << 14;
645
646 /* First, we make a bunch of max-sized copies */
647 uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
648 while (copy_size >= max_copy_size) {
649 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
650 dest_buffer->bo, dest_offset,
651 max_surface_dim, max_surface_dim, bs);
652 copy_size -= max_copy_size;
653 src_offset += max_copy_size;
654 dest_offset += max_copy_size;
655 }
656
657 uint64_t height = copy_size / (max_surface_dim * bs);
658 assert(height < max_surface_dim);
659 if (height != 0) {
660 uint64_t rect_copy_size = height * max_surface_dim * bs;
661 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
662 dest_buffer->bo, dest_offset,
663 max_surface_dim, height, bs);
664 copy_size -= rect_copy_size;
665 src_offset += rect_copy_size;
666 dest_offset += rect_copy_size;
667 }
668
669 if (copy_size != 0) {
670 do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
671 dest_buffer->bo, dest_offset,
672 copy_size / bs, 1, bs);
673 }
674 }
675
676 anv_meta_end_blit2d(cmd_buffer, &saved_state);
677 }
678
679 void anv_CmdUpdateBuffer(
680 VkCommandBuffer commandBuffer,
681 VkBuffer dstBuffer,
682 VkDeviceSize dstOffset,
683 VkDeviceSize dataSize,
684 const uint32_t* pData)
685 {
686 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
687 ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
688 struct anv_meta_saved_state saved_state;
689
690 anv_meta_begin_blit2d(cmd_buffer, &saved_state);
691
692 /* We can't quite grab a full block because the state stream needs a
693 * little data at the top to build its linked list.
694 */
695 const uint32_t max_update_size =
696 cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
697
698 assert(max_update_size < (1 << 14) * 4);
699
700 while (dataSize) {
701 const uint32_t copy_size = MIN2(dataSize, max_update_size);
702
703 struct anv_state tmp_data =
704 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
705
706 memcpy(tmp_data.map, pData, copy_size);
707
708 int bs;
709 if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) {
710 bs = 16;
711 } else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) {
712 bs = 8;
713 } else {
714 assert((copy_size & 3) == 0 && (dstOffset & 3) == 0);
715 bs = 4;
716 }
717
718 do_buffer_copy(cmd_buffer,
719 &cmd_buffer->device->dynamic_state_block_pool.bo,
720 tmp_data.offset,
721 dst_buffer->bo, dst_buffer->offset + dstOffset,
722 copy_size / bs, 1, bs);
723
724 dataSize -= copy_size;
725 dstOffset += copy_size;
726 pData = (void *)pData + copy_size;
727 }
728
729 anv_meta_end_blit2d(cmd_buffer, &saved_state);
730 }
731
732 void anv_CmdCopyImage(
733 VkCommandBuffer commandBuffer,
734 VkImage srcImage,
735 VkImageLayout srcImageLayout,
736 VkImage destImage,
737 VkImageLayout destImageLayout,
738 uint32_t regionCount,
739 const VkImageCopy* pRegions)
740 {
741 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
742 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
743 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
744 struct anv_meta_saved_state saved_state;
745
746 /* From the Vulkan 1.0 spec:
747 *
748 * vkCmdCopyImage can be used to copy image data between multisample
749 * images, but both images must have the same number of samples.
750 */
751 assert(src_image->samples == dest_image->samples);
752
753 anv_meta_begin_blit2d(cmd_buffer, &saved_state);
754
755 for (unsigned r = 0; r < regionCount; r++) {
756 assert(pRegions[r].srcSubresource.aspectMask ==
757 pRegions[r].dstSubresource.aspectMask);
758
759 VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
760
761 /* Create blit surfaces */
762 struct isl_surf *src_isl_surf =
763 &anv_image_get_surface_for_aspect_mask(src_image, aspect)->isl;
764 struct isl_surf *dst_isl_surf =
765 &anv_image_get_surface_for_aspect_mask(dest_image, aspect)->isl;
766 struct anv_meta_blit2d_surf b_src = blit_surf_for_image(src_image, src_isl_surf);
767 struct anv_meta_blit2d_surf b_dst = blit_surf_for_image(dest_image, dst_isl_surf);
768
769 /* Start creating blit rect */
770 const VkOffset3D dst_offset_el = meta_region_offset_el(dest_image, &pRegions[r].dstOffset);
771 const VkOffset3D src_offset_el = meta_region_offset_el(src_image, &pRegions[r].srcOffset);
772 const VkExtent3D img_extent_el = meta_region_extent_el(src_image->vk_format,
773 &pRegions[r].extent);
774 struct anv_meta_blit2d_rect rect = {
775 .width = img_extent_el.width,
776 .height = img_extent_el.height,
777 };
778
779 /* Loop through each 3D or array slice */
780 unsigned num_slices_3d = pRegions[r].extent.depth;
781 unsigned num_slices_array = pRegions[r].dstSubresource.layerCount;
782 unsigned slice_3d = 0;
783 unsigned slice_array = 0;
784 while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
785
786 /* Finish creating blit rect */
787 isl_surf_get_image_offset_el(dst_isl_surf,
788 pRegions[r].dstSubresource.mipLevel,
789 pRegions[r].dstSubresource.baseArrayLayer + slice_array,
790 pRegions[r].dstOffset.z + slice_3d,
791 &rect.dst_x,
792 &rect.dst_y);
793 isl_surf_get_image_offset_el(src_isl_surf,
794 pRegions[r].srcSubresource.mipLevel,
795 pRegions[r].srcSubresource.baseArrayLayer + slice_array,
796 pRegions[r].srcOffset.z + slice_3d,
797 &rect.src_x,
798 &rect.src_y);
799 rect.dst_x += dst_offset_el.x;
800 rect.dst_y += dst_offset_el.y;
801 rect.src_x += src_offset_el.x;
802 rect.src_y += src_offset_el.y;
803
804 /* Perform Blit */
805 anv_meta_blit2d(cmd_buffer,
806 &b_src,
807 &b_dst,
808 1,
809 &rect);
810
811 if (dest_image->type == VK_IMAGE_TYPE_3D)
812 slice_3d++;
813 else
814 slice_array++;
815 }
816 }
817
818 anv_meta_end_blit2d(cmd_buffer, &saved_state);
819 }
820
821 void anv_CmdBlitImage(
822 VkCommandBuffer commandBuffer,
823 VkImage srcImage,
824 VkImageLayout srcImageLayout,
825 VkImage destImage,
826 VkImageLayout destImageLayout,
827 uint32_t regionCount,
828 const VkImageBlit* pRegions,
829 VkFilter filter)
830
831 {
832 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
833 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
834 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
835 struct anv_meta_saved_state saved_state;
836
837 /* From the Vulkan 1.0 spec:
838 *
839 * vkCmdBlitImage must not be used for multisampled source or
840 * destination images. Use vkCmdResolveImage for this purpose.
841 */
842 assert(src_image->samples == 1);
843 assert(dest_image->samples == 1);
844
845 anv_finishme("respect VkFilter");
846
847 meta_prepare_blit(cmd_buffer, &saved_state);
848
849 for (unsigned r = 0; r < regionCount; r++) {
850 struct anv_image_view src_iview;
851 anv_image_view_init(&src_iview, cmd_buffer->device,
852 &(VkImageViewCreateInfo) {
853 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
854 .image = srcImage,
855 .viewType = anv_meta_get_view_type(src_image),
856 .format = src_image->vk_format,
857 .subresourceRange = {
858 .aspectMask = pRegions[r].srcSubresource.aspectMask,
859 .baseMipLevel = pRegions[r].srcSubresource.mipLevel,
860 .levelCount = 1,
861 .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
862 .layerCount = 1
863 },
864 },
865 cmd_buffer, 0, VK_IMAGE_USAGE_SAMPLED_BIT);
866
867 const VkOffset3D dest_offset = {
868 .x = pRegions[r].dstOffsets[0].x,
869 .y = pRegions[r].dstOffsets[0].y,
870 .z = 0,
871 };
872
873 if (pRegions[r].dstOffsets[1].x < pRegions[r].dstOffsets[0].x ||
874 pRegions[r].dstOffsets[1].y < pRegions[r].dstOffsets[0].y ||
875 pRegions[r].srcOffsets[1].x < pRegions[r].srcOffsets[0].x ||
876 pRegions[r].srcOffsets[1].y < pRegions[r].srcOffsets[0].y)
877 anv_finishme("FINISHME: Allow flipping in blits");
878
879 const VkExtent3D dest_extent = {
880 .width = pRegions[r].dstOffsets[1].x - pRegions[r].dstOffsets[0].x,
881 .height = pRegions[r].dstOffsets[1].y - pRegions[r].dstOffsets[0].y,
882 };
883
884 const VkExtent3D src_extent = {
885 .width = pRegions[r].srcOffsets[1].x - pRegions[r].srcOffsets[0].x,
886 .height = pRegions[r].srcOffsets[1].y - pRegions[r].srcOffsets[0].y,
887 };
888
889 const uint32_t dest_array_slice =
890 anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource,
891 &pRegions[r].dstOffsets[0]);
892
893 if (pRegions[r].srcSubresource.layerCount > 1)
894 anv_finishme("FINISHME: copy multiple array layers");
895
896 if (pRegions[r].srcOffsets[0].z + 1 != pRegions[r].srcOffsets[1].z ||
897 pRegions[r].dstOffsets[0].z + 1 != pRegions[r].dstOffsets[1].z)
898 anv_finishme("FINISHME: copy multiple depth layers");
899
900 struct anv_image_view dest_iview;
901 anv_image_view_init(&dest_iview, cmd_buffer->device,
902 &(VkImageViewCreateInfo) {
903 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
904 .image = destImage,
905 .viewType = anv_meta_get_view_type(dest_image),
906 .format = dest_image->vk_format,
907 .subresourceRange = {
908 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
909 .baseMipLevel = pRegions[r].dstSubresource.mipLevel,
910 .levelCount = 1,
911 .baseArrayLayer = dest_array_slice,
912 .layerCount = 1
913 },
914 },
915 cmd_buffer, 0, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
916
917 meta_emit_blit(cmd_buffer,
918 src_image, &src_iview,
919 pRegions[r].srcOffsets[0], src_extent,
920 dest_image, &dest_iview,
921 dest_offset, dest_extent,
922 filter);
923 }
924
925 meta_finish_blit(cmd_buffer, &saved_state);
926 }
927
928 static void
929 meta_copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
930 struct anv_buffer* buffer,
931 struct anv_image* image,
932 uint32_t regionCount,
933 const VkBufferImageCopy* pRegions,
934 bool forward)
935 {
936 struct anv_meta_saved_state saved_state;
937
938 /* The Vulkan 1.0 spec says "dstImage must have a sample count equal to
939 * VK_SAMPLE_COUNT_1_BIT."
940 */
941 assert(image->samples == 1);
942
943 anv_meta_begin_blit2d(cmd_buffer, &saved_state);
944
945 for (unsigned r = 0; r < regionCount; r++) {
946
947 /* Start creating blit rect */
948 const VkOffset3D img_offset_el = meta_region_offset_el(image, &pRegions[r].imageOffset);
949 const VkExtent3D bufferExtent = {
950 .width = pRegions[r].bufferRowLength,
951 .height = pRegions[r].bufferImageHeight,
952 };
953 const VkExtent3D buf_extent_el = meta_region_extent_el(image->vk_format, &bufferExtent);
954 const VkExtent3D img_extent_el = meta_region_extent_el(image->vk_format,
955 &pRegions[r].imageExtent);
956 struct anv_meta_blit2d_rect rect = {
957 .width = MAX2(buf_extent_el.width, img_extent_el.width),
958 .height = MAX2(buf_extent_el.height, img_extent_el.height),
959 };
960
961 /* Create blit surfaces */
962 VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
963 const struct isl_surf *img_isl_surf =
964 &anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
965 struct anv_meta_blit2d_surf img_bsurf = blit_surf_for_image(image, img_isl_surf);
966 struct anv_meta_blit2d_surf buf_bsurf = {
967 .bo = buffer->bo,
968 .tiling = ISL_TILING_LINEAR,
969 .base_offset = buffer->offset + pRegions[r].bufferOffset,
970 .bs = forward ? image->format->isl_layout->bs : img_bsurf.bs,
971 .pitch = rect.width * buf_bsurf.bs,
972 };
973
974 /* Set direction-dependent variables */
975 struct anv_meta_blit2d_surf *dst_bsurf = forward ? &img_bsurf : &buf_bsurf;
976 struct anv_meta_blit2d_surf *src_bsurf = forward ? &buf_bsurf : &img_bsurf;
977 uint32_t *x_offset = forward ? &rect.dst_x : &rect.src_x;
978 uint32_t *y_offset = forward ? &rect.dst_y : &rect.src_y;
979
980 /* Loop through each 3D or array slice */
981 unsigned num_slices_3d = pRegions[r].imageExtent.depth;
982 unsigned num_slices_array = pRegions[r].imageSubresource.layerCount;
983 unsigned slice_3d = 0;
984 unsigned slice_array = 0;
985 while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
986
987 /* Finish creating blit rect */
988 isl_surf_get_image_offset_el(img_isl_surf,
989 pRegions[r].imageSubresource.mipLevel,
990 pRegions[r].imageSubresource.baseArrayLayer + slice_array,
991 pRegions[r].imageOffset.z + slice_3d,
992 x_offset,
993 y_offset);
994 *x_offset += img_offset_el.x;
995 *y_offset += img_offset_el.y;
996
997 /* Perform Blit */
998 anv_meta_blit2d(cmd_buffer,
999 src_bsurf,
1000 dst_bsurf,
1001 1,
1002 &rect);
1003
1004 /* Once we've done the blit, all of the actual information about
1005 * the image is embedded in the command buffer so we can just
1006 * increment the offset directly in the image effectively
1007 * re-binding it to different backing memory.
1008 */
1009 buf_bsurf.base_offset += rect.width * rect.height * buf_bsurf.bs;
1010
1011 if (image->type == VK_IMAGE_TYPE_3D)
1012 slice_3d++;
1013 else
1014 slice_array++;
1015 }
1016 }
1017 anv_meta_end_blit2d(cmd_buffer, &saved_state);
1018 }
1019
1020 void anv_CmdCopyBufferToImage(
1021 VkCommandBuffer commandBuffer,
1022 VkBuffer srcBuffer,
1023 VkImage destImage,
1024 VkImageLayout destImageLayout,
1025 uint32_t regionCount,
1026 const VkBufferImageCopy* pRegions)
1027 {
1028 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1029 ANV_FROM_HANDLE(anv_image, dest_image, destImage);
1030 ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
1031
1032 meta_copy_buffer_to_image(cmd_buffer, src_buffer, dest_image,
1033 regionCount, pRegions, true);
1034 }
1035
1036 void anv_CmdCopyImageToBuffer(
1037 VkCommandBuffer commandBuffer,
1038 VkImage srcImage,
1039 VkImageLayout srcImageLayout,
1040 VkBuffer destBuffer,
1041 uint32_t regionCount,
1042 const VkBufferImageCopy* pRegions)
1043 {
1044 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1045 ANV_FROM_HANDLE(anv_image, src_image, srcImage);
1046 ANV_FROM_HANDLE(anv_buffer, dst_buffer, destBuffer);
1047
1048 meta_copy_buffer_to_image(cmd_buffer, dst_buffer, src_image,
1049 regionCount, pRegions, false);
1050 }
1051
1052 void
1053 anv_device_finish_meta_blit_state(struct anv_device *device)
1054 {
1055 anv_DestroyRenderPass(anv_device_to_handle(device),
1056 device->meta_state.blit.render_pass,
1057 &device->meta_state.alloc);
1058 anv_DestroyPipeline(anv_device_to_handle(device),
1059 device->meta_state.blit.pipeline_1d_src,
1060 &device->meta_state.alloc);
1061 anv_DestroyPipeline(anv_device_to_handle(device),
1062 device->meta_state.blit.pipeline_2d_src,
1063 &device->meta_state.alloc);
1064 anv_DestroyPipeline(anv_device_to_handle(device),
1065 device->meta_state.blit.pipeline_3d_src,
1066 &device->meta_state.alloc);
1067 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1068 device->meta_state.blit.pipeline_layout,
1069 &device->meta_state.alloc);
1070 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1071 device->meta_state.blit.ds_layout,
1072 &device->meta_state.alloc);
1073 }
1074
1075 VkResult
1076 anv_device_init_meta_blit_state(struct anv_device *device)
1077 {
1078 VkResult result;
1079
1080 result = anv_CreateRenderPass(anv_device_to_handle(device),
1081 &(VkRenderPassCreateInfo) {
1082 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
1083 .attachmentCount = 1,
1084 .pAttachments = &(VkAttachmentDescription) {
1085 .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
1086 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
1087 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
1088 .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
1089 .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
1090 },
1091 .subpassCount = 1,
1092 .pSubpasses = &(VkSubpassDescription) {
1093 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
1094 .inputAttachmentCount = 0,
1095 .colorAttachmentCount = 1,
1096 .pColorAttachments = &(VkAttachmentReference) {
1097 .attachment = 0,
1098 .layout = VK_IMAGE_LAYOUT_GENERAL,
1099 },
1100 .pResolveAttachments = NULL,
1101 .pDepthStencilAttachment = &(VkAttachmentReference) {
1102 .attachment = VK_ATTACHMENT_UNUSED,
1103 .layout = VK_IMAGE_LAYOUT_GENERAL,
1104 },
1105 .preserveAttachmentCount = 1,
1106 .pPreserveAttachments = (uint32_t[]) { 0 },
1107 },
1108 .dependencyCount = 0,
1109 }, &device->meta_state.alloc, &device->meta_state.blit.render_pass);
1110 if (result != VK_SUCCESS)
1111 goto fail;
1112
1113 /* We don't use a vertex shader for blitting, but instead build and pass
1114 * the VUEs directly to the rasterization backend. However, we do need
1115 * to provide GLSL source for the vertex shader so that the compiler
1116 * does not dead-code our inputs.
1117 */
1118 struct anv_shader_module vs = {
1119 .nir = build_nir_vertex_shader(),
1120 };
1121
1122 struct anv_shader_module fs_1d = {
1123 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D),
1124 };
1125
1126 struct anv_shader_module fs_2d = {
1127 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
1128 };
1129
1130 struct anv_shader_module fs_3d = {
1131 .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
1132 };
1133
1134 VkPipelineVertexInputStateCreateInfo vi_create_info = {
1135 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
1136 .vertexBindingDescriptionCount = 2,
1137 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
1138 {
1139 .binding = 0,
1140 .stride = 0,
1141 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
1142 },
1143 {
1144 .binding = 1,
1145 .stride = 5 * sizeof(float),
1146 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
1147 },
1148 },
1149 .vertexAttributeDescriptionCount = 3,
1150 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
1151 {
1152 /* VUE Header */
1153 .location = 0,
1154 .binding = 0,
1155 .format = VK_FORMAT_R32G32B32A32_UINT,
1156 .offset = 0
1157 },
1158 {
1159 /* Position */
1160 .location = 1,
1161 .binding = 1,
1162 .format = VK_FORMAT_R32G32_SFLOAT,
1163 .offset = 0
1164 },
1165 {
1166 /* Texture Coordinate */
1167 .location = 2,
1168 .binding = 1,
1169 .format = VK_FORMAT_R32G32B32_SFLOAT,
1170 .offset = 8
1171 }
1172 }
1173 };
1174
1175 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
1176 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
1177 .bindingCount = 1,
1178 .pBindings = (VkDescriptorSetLayoutBinding[]) {
1179 {
1180 .binding = 0,
1181 .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1182 .descriptorCount = 1,
1183 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
1184 .pImmutableSamplers = NULL
1185 },
1186 }
1187 };
1188 result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
1189 &ds_layout_info,
1190 &device->meta_state.alloc,
1191 &device->meta_state.blit.ds_layout);
1192 if (result != VK_SUCCESS)
1193 goto fail_render_pass;
1194
1195 result = anv_CreatePipelineLayout(anv_device_to_handle(device),
1196 &(VkPipelineLayoutCreateInfo) {
1197 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1198 .setLayoutCount = 1,
1199 .pSetLayouts = &device->meta_state.blit.ds_layout,
1200 },
1201 &device->meta_state.alloc, &device->meta_state.blit.pipeline_layout);
1202 if (result != VK_SUCCESS)
1203 goto fail_descriptor_set_layout;
1204
1205 VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
1206 {
1207 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
1208 .stage = VK_SHADER_STAGE_VERTEX_BIT,
1209 .module = anv_shader_module_to_handle(&vs),
1210 .pName = "main",
1211 .pSpecializationInfo = NULL
1212 }, {
1213 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
1214 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
1215 .module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
1216 .pName = "main",
1217 .pSpecializationInfo = NULL
1218 },
1219 };
1220
1221 const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
1222 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
1223 .stageCount = ARRAY_SIZE(pipeline_shader_stages),
1224 .pStages = pipeline_shader_stages,
1225 .pVertexInputState = &vi_create_info,
1226 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
1227 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
1228 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
1229 .primitiveRestartEnable = false,
1230 },
1231 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
1232 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
1233 .viewportCount = 1,
1234 .scissorCount = 1,
1235 },
1236 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
1237 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
1238 .rasterizerDiscardEnable = false,
1239 .polygonMode = VK_POLYGON_MODE_FILL,
1240 .cullMode = VK_CULL_MODE_NONE,
1241 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
1242 },
1243 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
1244 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
1245 .rasterizationSamples = 1,
1246 .sampleShadingEnable = false,
1247 .pSampleMask = (VkSampleMask[]) { UINT32_MAX },
1248 },
1249 .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
1250 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
1251 .attachmentCount = 1,
1252 .pAttachments = (VkPipelineColorBlendAttachmentState []) {
1253 { .colorWriteMask =
1254 VK_COLOR_COMPONENT_A_BIT |
1255 VK_COLOR_COMPONENT_R_BIT |
1256 VK_COLOR_COMPONENT_G_BIT |
1257 VK_COLOR_COMPONENT_B_BIT },
1258 }
1259 },
1260 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
1261 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
1262 .dynamicStateCount = 9,
1263 .pDynamicStates = (VkDynamicState[]) {
1264 VK_DYNAMIC_STATE_VIEWPORT,
1265 VK_DYNAMIC_STATE_SCISSOR,
1266 VK_DYNAMIC_STATE_LINE_WIDTH,
1267 VK_DYNAMIC_STATE_DEPTH_BIAS,
1268 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
1269 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
1270 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
1271 VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
1272 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
1273 },
1274 },
1275 .flags = 0,
1276 .layout = device->meta_state.blit.pipeline_layout,
1277 .renderPass = device->meta_state.blit.render_pass,
1278 .subpass = 0,
1279 };
1280
1281 const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
1282 .color_attachment_count = -1,
1283 .use_repclear = false,
1284 .disable_viewport = true,
1285 .disable_scissor = true,
1286 .disable_vs = true,
1287 .use_rectlist = true
1288 };
1289
1290 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d);
1291 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
1292 VK_NULL_HANDLE,
1293 &vk_pipeline_info, &anv_pipeline_info,
1294 &device->meta_state.alloc, &device->meta_state.blit.pipeline_1d_src);
1295 if (result != VK_SUCCESS)
1296 goto fail_pipeline_layout;
1297
1298 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
1299 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
1300 VK_NULL_HANDLE,
1301 &vk_pipeline_info, &anv_pipeline_info,
1302 &device->meta_state.alloc, &device->meta_state.blit.pipeline_2d_src);
1303 if (result != VK_SUCCESS)
1304 goto fail_pipeline_1d;
1305
1306 pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
1307 result = anv_graphics_pipeline_create(anv_device_to_handle(device),
1308 VK_NULL_HANDLE,
1309 &vk_pipeline_info, &anv_pipeline_info,
1310 &device->meta_state.alloc, &device->meta_state.blit.pipeline_3d_src);
1311 if (result != VK_SUCCESS)
1312 goto fail_pipeline_2d;
1313
1314 ralloc_free(vs.nir);
1315 ralloc_free(fs_1d.nir);
1316 ralloc_free(fs_2d.nir);
1317 ralloc_free(fs_3d.nir);
1318
1319 return VK_SUCCESS;
1320
1321 fail_pipeline_2d:
1322 anv_DestroyPipeline(anv_device_to_handle(device),
1323 device->meta_state.blit.pipeline_2d_src,
1324 &device->meta_state.alloc);
1325
1326 fail_pipeline_1d:
1327 anv_DestroyPipeline(anv_device_to_handle(device),
1328 device->meta_state.blit.pipeline_1d_src,
1329 &device->meta_state.alloc);
1330
1331 fail_pipeline_layout:
1332 anv_DestroyPipelineLayout(anv_device_to_handle(device),
1333 device->meta_state.blit.pipeline_layout,
1334 &device->meta_state.alloc);
1335 fail_descriptor_set_layout:
1336 anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
1337 device->meta_state.blit.ds_layout,
1338 &device->meta_state.alloc);
1339 fail_render_pass:
1340 anv_DestroyRenderPass(anv_device_to_handle(device),
1341 device->meta_state.blit.render_pass,
1342 &device->meta_state.alloc);
1343
1344 ralloc_free(vs.nir);
1345 ralloc_free(fs_1d.nir);
1346 ralloc_free(fs_2d.nir);
1347 ralloc_free(fs_3d.nir);
1348 fail:
1349 return result;
1350 }