anv/pipeline: Add sample locations for gen7-7.5
[mesa.git] / src / intel / vulkan / anv_meta_clear.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_meta.h"
25 #include "anv_private.h"
26 #include "nir/nir_builder.h"
27
28 /** Vertex attributes for color clears. */
29 struct color_clear_vattrs {
30 struct anv_vue_header vue_header;
31 float position[2]; /**< 3DPRIM_RECTLIST */
32 VkClearColorValue color;
33 };
34
35 /** Vertex attributes for depthstencil clears. */
36 struct depthstencil_clear_vattrs {
37 struct anv_vue_header vue_header;
38 float position[2]; /*<< 3DPRIM_RECTLIST */
39 };
40
41 static void
42 meta_clear_begin(struct anv_meta_saved_state *saved_state,
43 struct anv_cmd_buffer *cmd_buffer)
44 {
45 anv_meta_save(saved_state, cmd_buffer,
46 (1 << VK_DYNAMIC_STATE_VIEWPORT) |
47 (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE) |
48 (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK));
49
50 /* Avoid uploading more viewport states than necessary */
51 cmd_buffer->state.dynamic.viewport.count = 0;
52 }
53
54 static void
55 meta_clear_end(struct anv_meta_saved_state *saved_state,
56 struct anv_cmd_buffer *cmd_buffer)
57 {
58 anv_meta_restore(saved_state, cmd_buffer);
59 }
60
61 static void
62 build_color_shaders(struct nir_shader **out_vs,
63 struct nir_shader **out_fs,
64 uint32_t frag_output)
65 {
66 nir_builder vs_b;
67 nir_builder fs_b;
68
69 nir_builder_init_simple_shader(&vs_b, NULL, MESA_SHADER_VERTEX, NULL);
70 nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
71
72 vs_b.shader->info.name = ralloc_strdup(vs_b.shader, "meta_clear_color_vs");
73 fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "meta_clear_color_fs");
74
75 const struct glsl_type *position_type = glsl_vec4_type();
76 const struct glsl_type *color_type = glsl_vec4_type();
77
78 nir_variable *vs_in_pos =
79 nir_variable_create(vs_b.shader, nir_var_shader_in, position_type,
80 "a_position");
81 vs_in_pos->data.location = VERT_ATTRIB_GENERIC0;
82
83 nir_variable *vs_out_pos =
84 nir_variable_create(vs_b.shader, nir_var_shader_out, position_type,
85 "gl_Position");
86 vs_out_pos->data.location = VARYING_SLOT_POS;
87
88 nir_variable *vs_in_color =
89 nir_variable_create(vs_b.shader, nir_var_shader_in, color_type,
90 "a_color");
91 vs_in_color->data.location = VERT_ATTRIB_GENERIC1;
92
93 nir_variable *vs_out_color =
94 nir_variable_create(vs_b.shader, nir_var_shader_out, color_type,
95 "v_color");
96 vs_out_color->data.location = VARYING_SLOT_VAR0;
97 vs_out_color->data.interpolation = INTERP_MODE_FLAT;
98
99 nir_variable *fs_in_color =
100 nir_variable_create(fs_b.shader, nir_var_shader_in, color_type,
101 "v_color");
102 fs_in_color->data.location = vs_out_color->data.location;
103 fs_in_color->data.interpolation = vs_out_color->data.interpolation;
104
105 nir_variable *fs_out_color =
106 nir_variable_create(fs_b.shader, nir_var_shader_out, color_type,
107 "f_color");
108 fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output;
109
110 nir_copy_var(&vs_b, vs_out_pos, vs_in_pos);
111 nir_copy_var(&vs_b, vs_out_color, vs_in_color);
112 nir_copy_var(&fs_b, fs_out_color, fs_in_color);
113
114 *out_vs = vs_b.shader;
115 *out_fs = fs_b.shader;
116 }
117
118 static VkResult
119 create_pipeline(struct anv_device *device,
120 uint32_t samples,
121 struct nir_shader *vs_nir,
122 struct nir_shader *fs_nir,
123 const VkPipelineVertexInputStateCreateInfo *vi_state,
124 const VkPipelineDepthStencilStateCreateInfo *ds_state,
125 const VkPipelineColorBlendStateCreateInfo *cb_state,
126 const VkAllocationCallbacks *alloc,
127 bool use_repclear,
128 struct anv_pipeline **pipeline)
129 {
130 VkDevice device_h = anv_device_to_handle(device);
131 VkResult result;
132
133 struct anv_shader_module vs_m = { .nir = vs_nir };
134 struct anv_shader_module fs_m = { .nir = fs_nir };
135
136 VkPipeline pipeline_h = VK_NULL_HANDLE;
137 result = anv_graphics_pipeline_create(device_h,
138 VK_NULL_HANDLE,
139 &(VkGraphicsPipelineCreateInfo) {
140 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
141 .stageCount = fs_nir ? 2 : 1,
142 .pStages = (VkPipelineShaderStageCreateInfo[]) {
143 {
144 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
145 .stage = VK_SHADER_STAGE_VERTEX_BIT,
146 .module = anv_shader_module_to_handle(&vs_m),
147 .pName = "main",
148 },
149 {
150 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
151 .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
152 .module = anv_shader_module_to_handle(&fs_m),
153 .pName = "main",
154 },
155 },
156 .pVertexInputState = vi_state,
157 .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
158 .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
159 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
160 .primitiveRestartEnable = false,
161 },
162 .pViewportState = &(VkPipelineViewportStateCreateInfo) {
163 .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
164 .viewportCount = 1,
165 .pViewports = NULL, /* dynamic */
166 .scissorCount = 1,
167 .pScissors = NULL, /* dynamic */
168 },
169 .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
170 .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
171 .rasterizerDiscardEnable = false,
172 .polygonMode = VK_POLYGON_MODE_FILL,
173 .cullMode = VK_CULL_MODE_NONE,
174 .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
175 .depthBiasEnable = false,
176 .depthClampEnable = true,
177 },
178 .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
179 .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
180 .rasterizationSamples = samples,
181 .sampleShadingEnable = false,
182 .pSampleMask = (VkSampleMask[]) { ~0 },
183 .alphaToCoverageEnable = false,
184 .alphaToOneEnable = false,
185 },
186 .pDepthStencilState = ds_state,
187 .pColorBlendState = cb_state,
188 .pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
189 /* The meta clear pipeline declares all state as dynamic.
190 * As a consequence, vkCmdBindPipeline writes no dynamic state
191 * to the cmd buffer. Therefore, at the end of the meta clear,
192 * we need only restore dynamic state was vkCmdSet.
193 */
194 .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
195 .dynamicStateCount = 8,
196 .pDynamicStates = (VkDynamicState[]) {
197 /* Everything except stencil write mask */
198 VK_DYNAMIC_STATE_VIEWPORT,
199 VK_DYNAMIC_STATE_SCISSOR,
200 VK_DYNAMIC_STATE_LINE_WIDTH,
201 VK_DYNAMIC_STATE_DEPTH_BIAS,
202 VK_DYNAMIC_STATE_BLEND_CONSTANTS,
203 VK_DYNAMIC_STATE_DEPTH_BOUNDS,
204 VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
205 VK_DYNAMIC_STATE_STENCIL_REFERENCE,
206 },
207 },
208 .flags = 0,
209 .renderPass = anv_render_pass_to_handle(&anv_meta_dummy_renderpass),
210 .subpass = 0,
211 },
212 &(struct anv_graphics_pipeline_create_info) {
213 .color_attachment_count = MAX_RTS,
214 .use_repclear = use_repclear,
215 .disable_vs = true,
216 .use_rectlist = true
217 },
218 alloc,
219 &pipeline_h);
220
221 ralloc_free(vs_nir);
222 ralloc_free(fs_nir);
223
224 *pipeline = anv_pipeline_from_handle(pipeline_h);
225
226 return result;
227 }
228
229 static VkResult
230 create_color_pipeline(struct anv_device *device,
231 uint32_t samples,
232 uint32_t frag_output,
233 struct anv_pipeline **pipeline)
234 {
235 struct nir_shader *vs_nir;
236 struct nir_shader *fs_nir;
237 build_color_shaders(&vs_nir, &fs_nir, frag_output);
238
239 const VkPipelineVertexInputStateCreateInfo vi_state = {
240 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
241 .vertexBindingDescriptionCount = 1,
242 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
243 {
244 .binding = 0,
245 .stride = sizeof(struct color_clear_vattrs),
246 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
247 },
248 },
249 .vertexAttributeDescriptionCount = 3,
250 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
251 {
252 /* VUE Header */
253 .location = 0,
254 .binding = 0,
255 .format = VK_FORMAT_R32G32B32A32_UINT,
256 .offset = offsetof(struct color_clear_vattrs, vue_header),
257 },
258 {
259 /* Position */
260 .location = 1,
261 .binding = 0,
262 .format = VK_FORMAT_R32G32_SFLOAT,
263 .offset = offsetof(struct color_clear_vattrs, position),
264 },
265 {
266 /* Color */
267 .location = 2,
268 .binding = 0,
269 .format = VK_FORMAT_R32G32B32A32_SFLOAT,
270 .offset = offsetof(struct color_clear_vattrs, color),
271 },
272 },
273 };
274
275 const VkPipelineDepthStencilStateCreateInfo ds_state = {
276 .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
277 .depthTestEnable = false,
278 .depthWriteEnable = false,
279 .depthBoundsTestEnable = false,
280 .stencilTestEnable = false,
281 };
282
283 VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = { 0 };
284 blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState) {
285 .blendEnable = false,
286 .colorWriteMask = VK_COLOR_COMPONENT_A_BIT |
287 VK_COLOR_COMPONENT_R_BIT |
288 VK_COLOR_COMPONENT_G_BIT |
289 VK_COLOR_COMPONENT_B_BIT,
290 };
291
292 const VkPipelineColorBlendStateCreateInfo cb_state = {
293 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
294 .logicOpEnable = false,
295 .attachmentCount = MAX_RTS,
296 .pAttachments = blend_attachment_state
297 };
298
299 /* Use the repclear shader. Since the NIR shader we are providing has
300 * exactly one output, that output will get compacted down to binding
301 * table entry 0. The hard-coded repclear shader is then exactly what
302 * we want regardless of what attachment we are actually clearing.
303 */
304 return
305 create_pipeline(device, samples, vs_nir, fs_nir, &vi_state, &ds_state,
306 &cb_state, &device->meta_state.alloc,
307 /*use_repclear*/ true, pipeline);
308 }
309
310 static void
311 destroy_pipeline(struct anv_device *device, struct anv_pipeline *pipeline)
312 {
313 if (!pipeline)
314 return;
315
316 ANV_CALL(DestroyPipeline)(anv_device_to_handle(device),
317 anv_pipeline_to_handle(pipeline),
318 &device->meta_state.alloc);
319 }
320
321 void
322 anv_device_finish_meta_clear_state(struct anv_device *device)
323 {
324 struct anv_meta_state *state = &device->meta_state;
325
326 for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) {
327 for (uint32_t j = 0; j < ARRAY_SIZE(state->clear[i].color_pipelines); ++j) {
328 destroy_pipeline(device, state->clear[i].color_pipelines[j]);
329 }
330
331 destroy_pipeline(device, state->clear[i].depth_only_pipeline);
332 destroy_pipeline(device, state->clear[i].stencil_only_pipeline);
333 destroy_pipeline(device, state->clear[i].depthstencil_pipeline);
334 }
335 }
336
337 static void
338 emit_color_clear(struct anv_cmd_buffer *cmd_buffer,
339 const VkClearAttachment *clear_att,
340 const VkClearRect *clear_rect)
341 {
342 struct anv_device *device = cmd_buffer->device;
343 const struct anv_subpass *subpass = cmd_buffer->state.subpass;
344 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
345 const uint32_t subpass_att = clear_att->colorAttachment;
346 const uint32_t pass_att = subpass->color_attachments[subpass_att];
347 const struct anv_image_view *iview = fb->attachments[pass_att];
348 const uint32_t samples = iview->image->samples;
349 const uint32_t samples_log2 = ffs(samples) - 1;
350 struct anv_pipeline *pipeline =
351 device->meta_state.clear[samples_log2].color_pipelines[subpass_att];
352 VkClearColorValue clear_value = clear_att->clearValue.color;
353
354 VkCommandBuffer cmd_buffer_h = anv_cmd_buffer_to_handle(cmd_buffer);
355 VkPipeline pipeline_h = anv_pipeline_to_handle(pipeline);
356
357 assert(samples_log2 < ARRAY_SIZE(device->meta_state.clear));
358 assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
359 assert(clear_att->colorAttachment < subpass->color_count);
360
361 const struct color_clear_vattrs vertex_data[3] = {
362 {
363 .vue_header = { 0 },
364 .position = {
365 clear_rect->rect.offset.x,
366 clear_rect->rect.offset.y,
367 },
368 .color = clear_value,
369 },
370 {
371 .vue_header = { 0 },
372 .position = {
373 clear_rect->rect.offset.x + clear_rect->rect.extent.width,
374 clear_rect->rect.offset.y,
375 },
376 .color = clear_value,
377 },
378 {
379 .vue_header = { 0 },
380 .position = {
381 clear_rect->rect.offset.x + clear_rect->rect.extent.width,
382 clear_rect->rect.offset.y + clear_rect->rect.extent.height,
383 },
384 .color = clear_value,
385 },
386 };
387
388 struct anv_state state =
389 anv_cmd_buffer_emit_dynamic(cmd_buffer, vertex_data, sizeof(vertex_data), 16);
390
391 struct anv_buffer vertex_buffer = {
392 .device = device,
393 .size = sizeof(vertex_data),
394 .bo = &device->dynamic_state_block_pool.bo,
395 .offset = state.offset,
396 };
397
398 ANV_CALL(CmdBindVertexBuffers)(cmd_buffer_h, 0, 1,
399 (VkBuffer[]) { anv_buffer_to_handle(&vertex_buffer) },
400 (VkDeviceSize[]) { 0 });
401
402 if (cmd_buffer->state.pipeline != pipeline) {
403 ANV_CALL(CmdBindPipeline)(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
404 pipeline_h);
405 }
406
407 ANV_CALL(CmdDraw)(cmd_buffer_h, 3, 1, 0, 0);
408 }
409
410
411 static void
412 build_depthstencil_shader(struct nir_shader **out_vs)
413 {
414 nir_builder vs_b;
415
416 nir_builder_init_simple_shader(&vs_b, NULL, MESA_SHADER_VERTEX, NULL);
417
418 vs_b.shader->info.name = ralloc_strdup(vs_b.shader, "meta_clear_depthstencil_vs");
419
420 const struct glsl_type *position_type = glsl_vec4_type();
421
422 nir_variable *vs_in_pos =
423 nir_variable_create(vs_b.shader, nir_var_shader_in, position_type,
424 "a_position");
425 vs_in_pos->data.location = VERT_ATTRIB_GENERIC0;
426
427 nir_variable *vs_out_pos =
428 nir_variable_create(vs_b.shader, nir_var_shader_out, position_type,
429 "gl_Position");
430 vs_out_pos->data.location = VARYING_SLOT_POS;
431
432 nir_copy_var(&vs_b, vs_out_pos, vs_in_pos);
433
434 *out_vs = vs_b.shader;
435 }
436
437 static VkResult
438 create_depthstencil_pipeline(struct anv_device *device,
439 VkImageAspectFlags aspects,
440 uint32_t samples,
441 struct anv_pipeline **pipeline)
442 {
443 struct nir_shader *vs_nir;
444
445 build_depthstencil_shader(&vs_nir);
446
447 const VkPipelineVertexInputStateCreateInfo vi_state = {
448 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
449 .vertexBindingDescriptionCount = 1,
450 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
451 {
452 .binding = 0,
453 .stride = sizeof(struct depthstencil_clear_vattrs),
454 .inputRate = VK_VERTEX_INPUT_RATE_VERTEX
455 },
456 },
457 .vertexAttributeDescriptionCount = 2,
458 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
459 {
460 /* VUE Header */
461 .location = 0,
462 .binding = 0,
463 .format = VK_FORMAT_R32G32B32A32_UINT,
464 .offset = offsetof(struct depthstencil_clear_vattrs, vue_header),
465 },
466 {
467 /* Position */
468 .location = 1,
469 .binding = 0,
470 .format = VK_FORMAT_R32G32_SFLOAT,
471 .offset = offsetof(struct depthstencil_clear_vattrs, position),
472 },
473 },
474 };
475
476 const VkPipelineDepthStencilStateCreateInfo ds_state = {
477 .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
478 .depthTestEnable = (aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
479 .depthCompareOp = VK_COMPARE_OP_ALWAYS,
480 .depthWriteEnable = (aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
481 .depthBoundsTestEnable = false,
482 .stencilTestEnable = (aspects & VK_IMAGE_ASPECT_STENCIL_BIT),
483 .front = {
484 .passOp = VK_STENCIL_OP_REPLACE,
485 .compareOp = VK_COMPARE_OP_ALWAYS,
486 .writeMask = UINT32_MAX,
487 .reference = 0, /* dynamic */
488 },
489 .back = { 0 /* dont care */ },
490 };
491
492 const VkPipelineColorBlendStateCreateInfo cb_state = {
493 .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
494 .logicOpEnable = false,
495 .attachmentCount = 0,
496 .pAttachments = NULL,
497 };
498
499 return create_pipeline(device, samples, vs_nir, NULL, &vi_state, &ds_state,
500 &cb_state, &device->meta_state.alloc,
501 /*use_repclear*/ true, pipeline);
502 }
503
504 static void
505 emit_depthstencil_clear(struct anv_cmd_buffer *cmd_buffer,
506 const VkClearAttachment *clear_att,
507 const VkClearRect *clear_rect)
508 {
509 struct anv_device *device = cmd_buffer->device;
510 struct anv_meta_state *meta_state = &device->meta_state;
511 const struct anv_subpass *subpass = cmd_buffer->state.subpass;
512 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
513 const uint32_t pass_att = subpass->depth_stencil_attachment;
514 const struct anv_image_view *iview = fb->attachments[pass_att];
515 const uint32_t samples = iview->image->samples;
516 const uint32_t samples_log2 = ffs(samples) - 1;
517 VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
518 VkImageAspectFlags aspects = clear_att->aspectMask;
519
520 VkCommandBuffer cmd_buffer_h = anv_cmd_buffer_to_handle(cmd_buffer);
521
522 assert(samples_log2 < ARRAY_SIZE(meta_state->clear));
523 assert(aspects == VK_IMAGE_ASPECT_DEPTH_BIT ||
524 aspects == VK_IMAGE_ASPECT_STENCIL_BIT ||
525 aspects == (VK_IMAGE_ASPECT_DEPTH_BIT |
526 VK_IMAGE_ASPECT_STENCIL_BIT));
527 assert(pass_att != VK_ATTACHMENT_UNUSED);
528
529 const struct depthstencil_clear_vattrs vertex_data[3] = {
530 {
531 .vue_header = { 0 },
532 .position = {
533 clear_rect->rect.offset.x,
534 clear_rect->rect.offset.y,
535 },
536 },
537 {
538 .vue_header = { 0 },
539 .position = {
540 clear_rect->rect.offset.x + clear_rect->rect.extent.width,
541 clear_rect->rect.offset.y,
542 },
543 },
544 {
545 .vue_header = { 0 },
546 .position = {
547 clear_rect->rect.offset.x + clear_rect->rect.extent.width,
548 clear_rect->rect.offset.y + clear_rect->rect.extent.height,
549 },
550 },
551 };
552
553 struct anv_state state =
554 anv_cmd_buffer_emit_dynamic(cmd_buffer, vertex_data, sizeof(vertex_data), 16);
555
556 struct anv_buffer vertex_buffer = {
557 .device = device,
558 .size = sizeof(vertex_data),
559 .bo = &device->dynamic_state_block_pool.bo,
560 .offset = state.offset,
561 };
562
563 ANV_CALL(CmdSetViewport)(cmd_buffer_h, 0, 1,
564 (VkViewport[]) {
565 {
566 .x = 0,
567 .y = 0,
568 .width = fb->width,
569 .height = fb->height,
570
571 /* Ignored when clearing only stencil. */
572 .minDepth = clear_value.depth,
573 .maxDepth = clear_value.depth,
574 },
575 });
576
577 if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
578 ANV_CALL(CmdSetStencilReference)(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT,
579 clear_value.stencil);
580 }
581
582 ANV_CALL(CmdBindVertexBuffers)(cmd_buffer_h, 0, 1,
583 (VkBuffer[]) { anv_buffer_to_handle(&vertex_buffer) },
584 (VkDeviceSize[]) { 0 });
585
586 struct anv_pipeline *pipeline;
587 switch (aspects) {
588 case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
589 pipeline = meta_state->clear[samples_log2].depthstencil_pipeline;
590 break;
591 case VK_IMAGE_ASPECT_DEPTH_BIT:
592 pipeline = meta_state->clear[samples_log2].depth_only_pipeline;
593 break;
594 case VK_IMAGE_ASPECT_STENCIL_BIT:
595 pipeline = meta_state->clear[samples_log2].stencil_only_pipeline;
596 break;
597 default:
598 unreachable("expected depth or stencil aspect");
599 }
600
601 if (cmd_buffer->state.pipeline != pipeline) {
602 ANV_CALL(CmdBindPipeline)(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
603 anv_pipeline_to_handle(pipeline));
604 }
605
606 ANV_CALL(CmdDraw)(cmd_buffer_h, 3, 1, 0, 0);
607 }
608
609 VkResult
610 anv_device_init_meta_clear_state(struct anv_device *device)
611 {
612 VkResult res;
613 struct anv_meta_state *state = &device->meta_state;
614
615 zero(device->meta_state.clear);
616
617 for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) {
618 uint32_t samples = 1 << i;
619
620 for (uint32_t j = 0; j < ARRAY_SIZE(state->clear[i].color_pipelines); ++j) {
621 res = create_color_pipeline(device, samples, /* frag_output */ j,
622 &state->clear[i].color_pipelines[j]);
623 if (res != VK_SUCCESS)
624 goto fail;
625 }
626
627 res = create_depthstencil_pipeline(device,
628 VK_IMAGE_ASPECT_DEPTH_BIT, samples,
629 &state->clear[i].depth_only_pipeline);
630 if (res != VK_SUCCESS)
631 goto fail;
632
633 res = create_depthstencil_pipeline(device,
634 VK_IMAGE_ASPECT_STENCIL_BIT, samples,
635 &state->clear[i].stencil_only_pipeline);
636 if (res != VK_SUCCESS)
637 goto fail;
638
639 res = create_depthstencil_pipeline(device,
640 VK_IMAGE_ASPECT_DEPTH_BIT |
641 VK_IMAGE_ASPECT_STENCIL_BIT, samples,
642 &state->clear[i].depthstencil_pipeline);
643 if (res != VK_SUCCESS)
644 goto fail;
645 }
646
647 return VK_SUCCESS;
648
649 fail:
650 anv_device_finish_meta_clear_state(device);
651 return res;
652 }
653
654 /**
655 * The parameters mean that same as those in vkCmdClearAttachments.
656 */
657 static void
658 emit_clear(struct anv_cmd_buffer *cmd_buffer,
659 const VkClearAttachment *clear_att,
660 const VkClearRect *clear_rect)
661 {
662 if (clear_att->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
663 emit_color_clear(cmd_buffer, clear_att, clear_rect);
664 } else {
665 assert(clear_att->aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT |
666 VK_IMAGE_ASPECT_STENCIL_BIT));
667 emit_depthstencil_clear(cmd_buffer, clear_att, clear_rect);
668 }
669 }
670
671 static bool
672 subpass_needs_clear(const struct anv_cmd_buffer *cmd_buffer)
673 {
674 const struct anv_cmd_state *cmd_state = &cmd_buffer->state;
675 uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
676
677 for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
678 uint32_t a = cmd_state->subpass->color_attachments[i];
679 if (cmd_state->attachments[a].pending_clear_aspects) {
680 return true;
681 }
682 }
683
684 if (ds != VK_ATTACHMENT_UNUSED &&
685 cmd_state->attachments[ds].pending_clear_aspects) {
686 return true;
687 }
688
689 return false;
690 }
691
692 /**
693 * Emit any pending attachment clears for the current subpass.
694 *
695 * @see anv_attachment_state::pending_clear_aspects
696 */
697 void
698 anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer)
699 {
700 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
701 struct anv_meta_saved_state saved_state;
702
703 if (!subpass_needs_clear(cmd_buffer))
704 return;
705
706 meta_clear_begin(&saved_state, cmd_buffer);
707
708 if (cmd_state->framebuffer->layers > 1)
709 anv_finishme("clearing multi-layer framebuffer");
710
711 VkClearRect clear_rect = {
712 .rect = cmd_state->render_area,
713 .baseArrayLayer = 0,
714 .layerCount = 1, /* FINISHME: clear multi-layer framebuffer */
715 };
716
717 for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
718 uint32_t a = cmd_state->subpass->color_attachments[i];
719
720 if (!cmd_state->attachments[a].pending_clear_aspects)
721 continue;
722
723 assert(cmd_state->attachments[a].pending_clear_aspects ==
724 VK_IMAGE_ASPECT_COLOR_BIT);
725
726 VkClearAttachment clear_att = {
727 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
728 .colorAttachment = i, /* Use attachment index relative to subpass */
729 .clearValue = cmd_state->attachments[a].clear_value,
730 };
731
732 emit_clear(cmd_buffer, &clear_att, &clear_rect);
733 cmd_state->attachments[a].pending_clear_aspects = 0;
734 }
735
736 uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
737
738 if (ds != VK_ATTACHMENT_UNUSED &&
739 cmd_state->attachments[ds].pending_clear_aspects) {
740
741 VkClearAttachment clear_att = {
742 .aspectMask = cmd_state->attachments[ds].pending_clear_aspects,
743 .clearValue = cmd_state->attachments[ds].clear_value,
744 };
745
746 emit_clear(cmd_buffer, &clear_att, &clear_rect);
747 cmd_state->attachments[ds].pending_clear_aspects = 0;
748 }
749
750 meta_clear_end(&saved_state, cmd_buffer);
751 }
752
753 static void
754 anv_cmd_clear_image(struct anv_cmd_buffer *cmd_buffer,
755 struct anv_image *image,
756 VkImageLayout image_layout,
757 const VkClearValue *clear_value,
758 uint32_t range_count,
759 const VkImageSubresourceRange *ranges)
760 {
761 VkDevice device_h = anv_device_to_handle(cmd_buffer->device);
762
763 for (uint32_t r = 0; r < range_count; r++) {
764 const VkImageSubresourceRange *range = &ranges[r];
765 for (uint32_t l = 0; l < anv_get_levelCount(image, range); ++l) {
766 const uint32_t layer_count = image->type == VK_IMAGE_TYPE_3D ?
767 anv_minify(image->extent.depth, l) :
768 anv_get_layerCount(image, range);
769 for (uint32_t s = 0; s < layer_count; ++s) {
770 struct anv_image_view iview;
771 anv_image_view_init(&iview, cmd_buffer->device,
772 &(VkImageViewCreateInfo) {
773 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
774 .image = anv_image_to_handle(image),
775 .viewType = anv_meta_get_view_type(image),
776 .format = image->vk_format,
777 .subresourceRange = {
778 .aspectMask = range->aspectMask,
779 .baseMipLevel = range->baseMipLevel + l,
780 .levelCount = 1,
781 .baseArrayLayer = range->baseArrayLayer + s,
782 .layerCount = 1
783 },
784 },
785 cmd_buffer, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
786
787 VkFramebuffer fb;
788 anv_CreateFramebuffer(device_h,
789 &(VkFramebufferCreateInfo) {
790 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
791 .attachmentCount = 1,
792 .pAttachments = (VkImageView[]) {
793 anv_image_view_to_handle(&iview),
794 },
795 .width = iview.extent.width,
796 .height = iview.extent.height,
797 .layers = 1
798 },
799 &cmd_buffer->pool->alloc,
800 &fb);
801
802 VkAttachmentDescription att_desc = {
803 .format = iview.vk_format,
804 .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
805 .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
806 .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
807 .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
808 .initialLayout = image_layout,
809 .finalLayout = image_layout,
810 };
811
812 VkSubpassDescription subpass_desc = {
813 .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
814 .inputAttachmentCount = 0,
815 .colorAttachmentCount = 0,
816 .pColorAttachments = NULL,
817 .pResolveAttachments = NULL,
818 .pDepthStencilAttachment = NULL,
819 .preserveAttachmentCount = 0,
820 .pPreserveAttachments = NULL,
821 };
822
823 const VkAttachmentReference att_ref = {
824 .attachment = 0,
825 .layout = image_layout,
826 };
827
828 if (range->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
829 subpass_desc.colorAttachmentCount = 1;
830 subpass_desc.pColorAttachments = &att_ref;
831 } else {
832 subpass_desc.pDepthStencilAttachment = &att_ref;
833 }
834
835 VkRenderPass pass;
836 anv_CreateRenderPass(device_h,
837 &(VkRenderPassCreateInfo) {
838 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
839 .attachmentCount = 1,
840 .pAttachments = &att_desc,
841 .subpassCount = 1,
842 .pSubpasses = &subpass_desc,
843 },
844 &cmd_buffer->pool->alloc,
845 &pass);
846
847 ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
848 &(VkRenderPassBeginInfo) {
849 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
850 .renderArea = {
851 .offset = { 0, 0, },
852 .extent = {
853 .width = iview.extent.width,
854 .height = iview.extent.height,
855 },
856 },
857 .renderPass = pass,
858 .framebuffer = fb,
859 .clearValueCount = 0,
860 .pClearValues = NULL,
861 },
862 VK_SUBPASS_CONTENTS_INLINE);
863
864 VkClearAttachment clear_att = {
865 .aspectMask = range->aspectMask,
866 .colorAttachment = 0,
867 .clearValue = *clear_value,
868 };
869
870 VkClearRect clear_rect = {
871 .rect = {
872 .offset = { 0, 0 },
873 .extent = { iview.extent.width, iview.extent.height },
874 },
875 .baseArrayLayer = range->baseArrayLayer,
876 .layerCount = 1, /* FINISHME: clear multi-layer framebuffer */
877 };
878
879 emit_clear(cmd_buffer, &clear_att, &clear_rect);
880
881 ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
882 ANV_CALL(DestroyRenderPass)(device_h, pass,
883 &cmd_buffer->pool->alloc);
884 ANV_CALL(DestroyFramebuffer)(device_h, fb,
885 &cmd_buffer->pool->alloc);
886 }
887 }
888 }
889 }
890
891 void anv_CmdClearColorImage(
892 VkCommandBuffer commandBuffer,
893 VkImage image_h,
894 VkImageLayout imageLayout,
895 const VkClearColorValue* pColor,
896 uint32_t rangeCount,
897 const VkImageSubresourceRange* pRanges)
898 {
899 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
900 ANV_FROM_HANDLE(anv_image, image, image_h);
901 struct anv_meta_saved_state saved_state;
902
903 meta_clear_begin(&saved_state, cmd_buffer);
904
905 anv_cmd_clear_image(cmd_buffer, image, imageLayout,
906 (const VkClearValue *) pColor,
907 rangeCount, pRanges);
908
909 meta_clear_end(&saved_state, cmd_buffer);
910 }
911
912 void anv_CmdClearDepthStencilImage(
913 VkCommandBuffer commandBuffer,
914 VkImage image_h,
915 VkImageLayout imageLayout,
916 const VkClearDepthStencilValue* pDepthStencil,
917 uint32_t rangeCount,
918 const VkImageSubresourceRange* pRanges)
919 {
920 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
921 ANV_FROM_HANDLE(anv_image, image, image_h);
922 struct anv_meta_saved_state saved_state;
923
924 meta_clear_begin(&saved_state, cmd_buffer);
925
926 anv_cmd_clear_image(cmd_buffer, image, imageLayout,
927 (const VkClearValue *) pDepthStencil,
928 rangeCount, pRanges);
929
930 meta_clear_end(&saved_state, cmd_buffer);
931 }
932
933 void anv_CmdClearAttachments(
934 VkCommandBuffer commandBuffer,
935 uint32_t attachmentCount,
936 const VkClearAttachment* pAttachments,
937 uint32_t rectCount,
938 const VkClearRect* pRects)
939 {
940 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
941 struct anv_meta_saved_state saved_state;
942
943 meta_clear_begin(&saved_state, cmd_buffer);
944
945 /* FINISHME: We can do better than this dumb loop. It thrashes too much
946 * state.
947 */
948 for (uint32_t a = 0; a < attachmentCount; ++a) {
949 for (uint32_t r = 0; r < rectCount; ++r) {
950 emit_clear(cmd_buffer, &pAttachments[a], &pRects[r]);
951 }
952 }
953
954 meta_clear_end(&saved_state, cmd_buffer);
955 }
956
957 static void
958 do_buffer_fill(struct anv_cmd_buffer *cmd_buffer,
959 struct anv_bo *dest, uint64_t dest_offset,
960 int width, int height, VkFormat fill_format, uint32_t data)
961 {
962 VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
963
964 VkImageCreateInfo image_info = {
965 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
966 .imageType = VK_IMAGE_TYPE_2D,
967 .format = fill_format,
968 .extent = {
969 .width = width,
970 .height = height,
971 .depth = 1,
972 },
973 .mipLevels = 1,
974 .arrayLayers = 1,
975 .samples = 1,
976 .tiling = VK_IMAGE_TILING_LINEAR,
977 .usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
978 .flags = 0,
979 };
980
981 VkImage dest_image;
982 image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
983 anv_CreateImage(vk_device, &image_info,
984 &cmd_buffer->pool->alloc, &dest_image);
985
986 /* We could use a vk call to bind memory, but that would require
987 * creating a dummy memory object etc. so there's really no point.
988 */
989 anv_image_from_handle(dest_image)->bo = dest;
990 anv_image_from_handle(dest_image)->offset = dest_offset;
991
992 const VkClearValue clear_value = {
993 .color = {
994 .uint32 = { data, data, data, data }
995 }
996 };
997
998 const VkImageSubresourceRange range = {
999 .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1000 .baseMipLevel = 0,
1001 .levelCount = 1,
1002 .baseArrayLayer = 0,
1003 .layerCount = 1,
1004 };
1005
1006 anv_cmd_clear_image(cmd_buffer, anv_image_from_handle(dest_image),
1007 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
1008 &clear_value, 1, &range);
1009 }
1010
1011 void anv_CmdFillBuffer(
1012 VkCommandBuffer commandBuffer,
1013 VkBuffer dstBuffer,
1014 VkDeviceSize dstOffset,
1015 VkDeviceSize fillSize,
1016 uint32_t data)
1017 {
1018 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1019 ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
1020 struct anv_meta_saved_state saved_state;
1021
1022 meta_clear_begin(&saved_state, cmd_buffer);
1023
1024 VkFormat format;
1025 int bs;
1026 if ((fillSize & 15) == 0 && (dstOffset & 15) == 0) {
1027 format = VK_FORMAT_R32G32B32A32_UINT;
1028 bs = 16;
1029 } else if ((fillSize & 7) == 0 && (dstOffset & 15) == 0) {
1030 format = VK_FORMAT_R32G32_UINT;
1031 bs = 8;
1032 } else {
1033 assert((fillSize & 3) == 0 && (dstOffset & 3) == 0);
1034 format = VK_FORMAT_R32_UINT;
1035 bs = 4;
1036 }
1037
1038 /* This is maximum possible width/height our HW can handle */
1039 const uint64_t max_surface_dim = 1 << 14;
1040
1041 /* First, we make a bunch of max-sized copies */
1042 const uint64_t max_fill_size = max_surface_dim * max_surface_dim * bs;
1043 while (fillSize > max_fill_size) {
1044 do_buffer_fill(cmd_buffer, dst_buffer->bo,
1045 dst_buffer->offset + dstOffset,
1046 max_surface_dim, max_surface_dim, format, data);
1047 fillSize -= max_fill_size;
1048 dstOffset += max_fill_size;
1049 }
1050
1051 uint64_t height = fillSize / (max_surface_dim * bs);
1052 assert(height < max_surface_dim);
1053 if (height != 0) {
1054 const uint64_t rect_fill_size = height * max_surface_dim * bs;
1055 do_buffer_fill(cmd_buffer, dst_buffer->bo,
1056 dst_buffer->offset + dstOffset,
1057 max_surface_dim, height, format, data);
1058 fillSize -= rect_fill_size;
1059 dstOffset += rect_fill_size;
1060 }
1061
1062 if (fillSize != 0) {
1063 do_buffer_fill(cmd_buffer, dst_buffer->bo,
1064 dst_buffer->offset + dstOffset,
1065 fillSize / bs, 1, format, data);
1066 }
1067
1068 meta_clear_end(&saved_state, cmd_buffer);
1069 }