anv: stop storing prog param data into shader blobs
[mesa.git] / src / intel / vulkan / anv_nir_compute_push_layout.c
1 /*
2 * Copyright © 2019 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_nir.h"
25 #include "nir_builder.h"
26 #include "compiler/brw_nir.h"
27 #include "util/mesa-sha1.h"
28
29 void
30 anv_nir_compute_push_layout(const struct anv_physical_device *pdevice,
31 bool robust_buffer_access,
32 nir_shader *nir,
33 struct brw_stage_prog_data *prog_data,
34 struct anv_pipeline_bind_map *map,
35 void *mem_ctx)
36 {
37 const struct brw_compiler *compiler = pdevice->compiler;
38 memset(map->push_ranges, 0, sizeof(map->push_ranges));
39
40 bool has_const_ubo = false;
41 unsigned push_start = UINT_MAX, push_end = 0;
42 nir_foreach_function(function, nir) {
43 if (!function->impl)
44 continue;
45
46 nir_foreach_block(block, function->impl) {
47 nir_foreach_instr(instr, block) {
48 if (instr->type != nir_instr_type_intrinsic)
49 continue;
50
51 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
52 switch (intrin->intrinsic) {
53 case nir_intrinsic_load_ubo:
54 if (nir_src_is_const(intrin->src[0]) &&
55 nir_src_is_const(intrin->src[1]))
56 has_const_ubo = true;
57 break;
58
59 case nir_intrinsic_load_push_constant: {
60 unsigned base = nir_intrinsic_base(intrin);
61 unsigned range = nir_intrinsic_range(intrin);
62 push_start = MIN2(push_start, base);
63 push_end = MAX2(push_end, base + range);
64 break;
65 }
66
67 default:
68 break;
69 }
70 }
71 }
72 }
73
74 const bool has_push_intrinsic = push_start <= push_end;
75
76 const bool push_ubo_ranges =
77 (pdevice->info.gen >= 8 || pdevice->info.is_haswell) &&
78 has_const_ubo && nir->info.stage != MESA_SHADER_COMPUTE;
79
80 if (push_ubo_ranges && robust_buffer_access) {
81 /* We can't on-the-fly adjust our push ranges because doing so would
82 * mess up the layout in the shader. When robustBufferAccess is
83 * enabled, we have to manually bounds check our pushed UBO accesses.
84 */
85 const uint32_t ubo_size_start =
86 offsetof(struct anv_push_constants, push_ubo_sizes);
87 const uint32_t ubo_size_end = ubo_size_start + (4 * sizeof(uint32_t));
88 push_start = MIN2(push_start, ubo_size_start);
89 push_end = MAX2(push_end, ubo_size_end);
90 }
91
92 if (nir->info.stage == MESA_SHADER_COMPUTE) {
93 /* For compute shaders, we always have to have the subgroup ID. The
94 * back-end compiler will "helpfully" add it for us in the last push
95 * constant slot. Yes, there is an off-by-one error here but that's
96 * because the back-end will add it so we want to claim the number of
97 * push constants one dword less than the full amount including
98 * gl_SubgroupId.
99 */
100 assert(push_end <= offsetof(struct anv_push_constants, cs.subgroup_id));
101 push_end = offsetof(struct anv_push_constants, cs.subgroup_id);
102 }
103
104 /* Align push_start down to a 32B boundary and make it no larger than
105 * push_end (no push constants is indicated by push_start = UINT_MAX).
106 */
107 push_start = MIN2(push_start, push_end);
108 push_start = align_down_u32(push_start, 32);
109
110 /* For vec4 our push data size needs to be aligned to a vec4 and for
111 * scalar, it needs to be aligned to a DWORD.
112 */
113 const unsigned align = compiler->scalar_stage[nir->info.stage] ? 4 : 16;
114 nir->num_uniforms = ALIGN(push_end - push_start, align);
115 prog_data->nr_params = nir->num_uniforms / 4;
116 prog_data->param = rzalloc_array(mem_ctx, uint32_t, prog_data->nr_params);
117
118 struct anv_push_range push_constant_range = {
119 .set = ANV_DESCRIPTOR_SET_PUSH_CONSTANTS,
120 .start = push_start / 32,
121 .length = DIV_ROUND_UP(push_end - push_start, 32),
122 };
123
124 /* Mapping from brw_ubo_range to anv_push_range */
125 int push_range_idx_map[4] = { -1, -1, -1, -1 };
126
127 if (push_ubo_ranges) {
128 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
129
130 /* We can push at most 64 registers worth of data. The back-end
131 * compiler would do this fixup for us but we'd like to calculate
132 * the push constant layout ourselves.
133 */
134 unsigned total_push_regs = push_constant_range.length;
135 for (unsigned i = 0; i < 4; i++) {
136 if (total_push_regs + prog_data->ubo_ranges[i].length > 64)
137 prog_data->ubo_ranges[i].length = 64 - total_push_regs;
138 total_push_regs += prog_data->ubo_ranges[i].length;
139 }
140 assert(total_push_regs <= 64);
141
142 int n = 0;
143
144 if (push_constant_range.length > 0)
145 map->push_ranges[n++] = push_constant_range;
146
147 for (int i = 0; i < 4; i++) {
148 struct brw_ubo_range *ubo_range = &prog_data->ubo_ranges[i];
149 if (ubo_range->length == 0)
150 continue;
151
152 if (n >= 4 || (n == 3 && compiler->constant_buffer_0_is_relative)) {
153 memset(ubo_range, 0, sizeof(*ubo_range));
154 continue;
155 }
156
157 const struct anv_pipeline_binding *binding =
158 &map->surface_to_descriptor[ubo_range->block];
159
160 push_range_idx_map[i] = n;
161 map->push_ranges[n++] = (struct anv_push_range) {
162 .set = binding->set,
163 .index = binding->index,
164 .dynamic_offset_index = binding->dynamic_offset_index,
165 .start = ubo_range->start,
166 .length = ubo_range->length,
167 };
168 }
169 } else {
170 /* For Ivy Bridge, the push constants packets have a different
171 * rule that would require us to iterate in the other direction
172 * and possibly mess around with dynamic state base address.
173 * Don't bother; just emit regular push constants at n = 0.
174 *
175 * In the compute case, we don't have multiple push ranges so it's
176 * better to just provide one in push_ranges[0].
177 */
178 map->push_ranges[0] = push_constant_range;
179 }
180
181 if (has_push_intrinsic || (push_ubo_ranges && robust_buffer_access)) {
182 nir_foreach_function(function, nir) {
183 if (!function->impl)
184 continue;
185
186 nir_builder b;
187 nir_builder_init(&b, function->impl);
188
189 nir_foreach_block(block, function->impl) {
190 nir_foreach_instr_safe(instr, block) {
191 if (instr->type != nir_instr_type_intrinsic)
192 continue;
193
194 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
195 switch (intrin->intrinsic) {
196 case nir_intrinsic_load_ubo: {
197 if (!robust_buffer_access)
198 break;
199
200 if (!nir_src_is_const(intrin->src[0]) ||
201 !nir_src_is_const(intrin->src[1]))
202 break;
203
204 uint32_t index = nir_src_as_uint(intrin->src[0]);
205 uint64_t offset = nir_src_as_uint(intrin->src[1]);
206 uint32_t size = intrin->num_components *
207 (intrin->dest.ssa.bit_size / 8);
208
209 int ubo_range_idx = -1;
210 for (unsigned i = 0; i < 4; i++) {
211 if (prog_data->ubo_ranges[i].length > 0 &&
212 prog_data->ubo_ranges[i].block == index) {
213 ubo_range_idx = i;
214 break;
215 }
216 }
217
218 if (ubo_range_idx < 0)
219 break;
220
221 const struct brw_ubo_range *range =
222 &prog_data->ubo_ranges[ubo_range_idx];
223 const uint32_t range_end =
224 (range->start + range->length) * 32;
225
226 if (range_end < offset || offset + size <= range->start)
227 break;
228
229 b.cursor = nir_after_instr(&intrin->instr);
230
231 assert(push_range_idx_map[ubo_range_idx] >= 0);
232 const uint32_t ubo_size_offset =
233 offsetof(struct anv_push_constants, push_ubo_sizes) +
234 push_range_idx_map[ubo_range_idx] * sizeof(uint32_t);
235
236 nir_intrinsic_instr *load_size =
237 nir_intrinsic_instr_create(b.shader,
238 nir_intrinsic_load_uniform);
239 load_size->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
240 nir_intrinsic_set_base(load_size,
241 ubo_size_offset - push_start);
242 nir_intrinsic_set_range(load_size, 4);
243 nir_intrinsic_set_type(load_size, nir_type_uint32);
244 load_size->num_components = 1;
245 nir_ssa_dest_init(&load_size->instr, &load_size->dest,
246 1, 32, NULL);
247 nir_builder_instr_insert(&b, &load_size->instr);
248
249 /* Do the size checks per-component. Thanks to scalar block
250 * layout, we could end up with a single vector straddling a
251 * 32B boundary.
252 *
253 * We align up to 32B so that we can get better CSE.
254 *
255 * We check
256 *
257 * offset + size - 1 < push_ubo_sizes[i]
258 *
259 * rather than
260 *
261 * offset + size <= push_ubo_sizes[i]
262 *
263 * because it properly returns OOB for the case where
264 * offset + size == 0.
265 */
266 nir_const_value last_byte_const[NIR_MAX_VEC_COMPONENTS];
267 for (unsigned c = 0; c < intrin->dest.ssa.num_components; c++) {
268 assert(intrin->dest.ssa.bit_size % 8 == 0);
269 const unsigned comp_size_B = intrin->dest.ssa.bit_size / 8;
270 const uint32_t comp_last_byte =
271 align_u32(offset + (c + 1) * comp_size_B,
272 ANV_UBO_BOUNDS_CHECK_ALIGNMENT) - 1;
273 last_byte_const[c] =
274 nir_const_value_for_uint(comp_last_byte, 32);
275 }
276 nir_ssa_def *last_byte =
277 nir_build_imm(&b, intrin->dest.ssa.num_components, 32,
278 last_byte_const);
279 nir_ssa_def *in_bounds =
280 nir_ult(&b, last_byte, &load_size->dest.ssa);
281
282 nir_ssa_def *zero =
283 nir_imm_zero(&b, intrin->dest.ssa.num_components,
284 intrin->dest.ssa.bit_size);
285 nir_ssa_def *value =
286 nir_bcsel(&b, in_bounds, &intrin->dest.ssa, zero);
287 nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
288 nir_src_for_ssa(value),
289 value->parent_instr);
290 break;
291 }
292
293 case nir_intrinsic_load_push_constant:
294 intrin->intrinsic = nir_intrinsic_load_uniform;
295 nir_intrinsic_set_base(intrin,
296 nir_intrinsic_base(intrin) -
297 push_start);
298 break;
299
300 default:
301 break;
302 }
303 }
304 }
305 }
306 }
307
308 /* Now that we're done computing the push constant portion of the
309 * bind map, hash it. This lets us quickly determine if the actual
310 * mapping has changed and not just a no-op pipeline change.
311 */
312 _mesa_sha1_compute(map->push_ranges,
313 sizeof(map->push_ranges),
314 map->push_sha1);
315 }
316
317 void
318 anv_nir_validate_push_layout(struct brw_stage_prog_data *prog_data,
319 struct anv_pipeline_bind_map *map)
320 {
321 #ifndef NDEBUG
322 unsigned prog_data_push_size = DIV_ROUND_UP(prog_data->nr_params, 8);
323 for (unsigned i = 0; i < 4; i++)
324 prog_data_push_size += prog_data->ubo_ranges[i].length;
325
326 unsigned bind_map_push_size = 0;
327 for (unsigned i = 0; i < 4; i++)
328 bind_map_push_size += map->push_ranges[i].length;
329
330 /* We could go through everything again but it should be enough to assert
331 * that they push the same number of registers. This should alert us if
332 * the back-end compiler decides to re-arrange stuff or shrink a range.
333 */
334 assert(prog_data_push_size == bind_map_push_size);
335 #endif
336 }