2f1ce3956a95dd5fa6aa530fcdacc685df5520b1
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "anv_private.h"
32 #include "brw_nir.h"
33 #include "anv_nir.h"
34 #include "nir/spirv/nir_spirv.h"
35
36 /* Needed for SWIZZLE macros */
37 #include "program/prog_instruction.h"
38
39 // Shader functions
40
41 VkResult anv_CreateShaderModule(
42 VkDevice _device,
43 const VkShaderModuleCreateInfo* pCreateInfo,
44 const VkAllocationCallbacks* pAllocator,
45 VkShaderModule* pShaderModule)
46 {
47 ANV_FROM_HANDLE(anv_device, device, _device);
48 struct anv_shader_module *module;
49
50 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
51 assert(pCreateInfo->flags == 0);
52
53 module = anv_alloc2(&device->alloc, pAllocator,
54 sizeof(*module) + pCreateInfo->codeSize, 8,
55 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
56 if (module == NULL)
57 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
58
59 module->nir = NULL;
60 module->size = pCreateInfo->codeSize;
61 memcpy(module->data, pCreateInfo->pCode, module->size);
62
63 _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65 *pShaderModule = anv_shader_module_to_handle(module);
66
67 return VK_SUCCESS;
68 }
69
70 void anv_DestroyShaderModule(
71 VkDevice _device,
72 VkShaderModule _module,
73 const VkAllocationCallbacks* pAllocator)
74 {
75 ANV_FROM_HANDLE(anv_device, device, _device);
76 ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78 anv_free2(&device->alloc, pAllocator, module);
79 }
80
81 #define SPIR_V_MAGIC_NUMBER 0x07230203
82
83 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
84 * we can't do that yet because we don't have the ability to copy nir.
85 */
86 static nir_shader *
87 anv_shader_compile_to_nir(struct anv_device *device,
88 struct anv_shader_module *module,
89 const char *entrypoint_name,
90 gl_shader_stage stage,
91 const VkSpecializationInfo *spec_info)
92 {
93 if (strcmp(entrypoint_name, "main") != 0) {
94 anv_finishme("Multiple shaders per module not really supported");
95 }
96
97 const struct brw_compiler *compiler =
98 device->instance->physicalDevice.compiler;
99 const nir_shader_compiler_options *nir_options =
100 compiler->glsl_compiler_options[stage].NirOptions;
101
102 nir_shader *nir;
103 nir_function *entry_point;
104 if (module->nir) {
105 /* Some things such as our meta clear/blit code will give us a NIR
106 * shader directly. In that case, we just ignore the SPIR-V entirely
107 * and just use the NIR shader */
108 nir = module->nir;
109 nir->options = nir_options;
110 nir_validate_shader(nir);
111
112 assert(exec_list_length(&nir->functions) == 1);
113 struct exec_node *node = exec_list_get_head(&nir->functions);
114 entry_point = exec_node_data(nir_function, node, node);
115 } else {
116 uint32_t *spirv = (uint32_t *) module->data;
117 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
118 assert(module->size % 4 == 0);
119
120 uint32_t num_spec_entries = 0;
121 struct nir_spirv_specialization *spec_entries = NULL;
122 if (spec_info && spec_info->mapEntryCount > 0) {
123 num_spec_entries = spec_info->mapEntryCount;
124 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
125 for (uint32_t i = 0; i < num_spec_entries; i++) {
126 const uint32_t *data =
127 spec_info->pData + spec_info->pMapEntries[i].offset;
128 assert((const void *)(data + 1) <=
129 spec_info->pData + spec_info->dataSize);
130
131 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
132 spec_entries[i].data = *data;
133 }
134 }
135
136 entry_point = spirv_to_nir(spirv, module->size / 4,
137 spec_entries, num_spec_entries,
138 stage, entrypoint_name, nir_options);
139 nir = entry_point->shader;
140 assert(nir->stage == stage);
141 nir_validate_shader(nir);
142
143 free(spec_entries);
144
145 nir_lower_returns(nir);
146 nir_validate_shader(nir);
147
148 nir_inline_functions(nir);
149 nir_validate_shader(nir);
150
151 /* Pick off the single entrypoint that we want */
152 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
153 if (func != entry_point)
154 exec_node_remove(&func->node);
155 }
156 assert(exec_list_length(&nir->functions) == 1);
157 entry_point->name = ralloc_strdup(entry_point, "main");
158
159 nir_remove_dead_variables(nir, nir_var_shader_in);
160 nir_remove_dead_variables(nir, nir_var_shader_out);
161 nir_remove_dead_variables(nir, nir_var_system_value);
162 nir_validate_shader(nir);
163
164 nir_lower_outputs_to_temporaries(entry_point->shader, entry_point);
165
166 nir_lower_system_values(nir);
167 nir_validate_shader(nir);
168 }
169
170 /* Vulkan uses the separate-shader linking model */
171 nir->info.separate_shader = true;
172
173 nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]);
174
175 nir_shader_gather_info(nir, entry_point->impl);
176
177 uint32_t indirect_mask = 0;
178 if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
179 indirect_mask |= (1 << nir_var_shader_in);
180 if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
181 indirect_mask |= 1 << nir_var_local;
182
183 nir_lower_indirect_derefs(nir, indirect_mask);
184
185 return nir;
186 }
187
188 void anv_DestroyPipeline(
189 VkDevice _device,
190 VkPipeline _pipeline,
191 const VkAllocationCallbacks* pAllocator)
192 {
193 ANV_FROM_HANDLE(anv_device, device, _device);
194 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
195
196 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
197 free(pipeline->bindings[s].surface_to_descriptor);
198 free(pipeline->bindings[s].sampler_to_descriptor);
199 }
200
201 anv_reloc_list_finish(&pipeline->batch_relocs,
202 pAllocator ? pAllocator : &device->alloc);
203 if (pipeline->blend_state.map)
204 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
205 anv_free2(&device->alloc, pAllocator, pipeline);
206 }
207
208 static const uint32_t vk_to_gen_primitive_type[] = {
209 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
210 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
211 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
212 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
213 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
214 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
215 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
216 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
217 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
218 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
219 /* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
220 };
221
222 static void
223 populate_sampler_prog_key(const struct brw_device_info *devinfo,
224 struct brw_sampler_prog_key_data *key)
225 {
226 /* XXX: Handle texture swizzle on HSW- */
227 for (int i = 0; i < MAX_SAMPLERS; i++) {
228 /* Assume color sampler, no swizzling. (Works for BDW+) */
229 key->swizzles[i] = SWIZZLE_XYZW;
230 }
231 }
232
233 static void
234 populate_vs_prog_key(const struct brw_device_info *devinfo,
235 struct brw_vs_prog_key *key)
236 {
237 memset(key, 0, sizeof(*key));
238
239 populate_sampler_prog_key(devinfo, &key->tex);
240
241 /* XXX: Handle vertex input work-arounds */
242
243 /* XXX: Handle sampler_prog_key */
244 }
245
246 static void
247 populate_gs_prog_key(const struct brw_device_info *devinfo,
248 struct brw_gs_prog_key *key)
249 {
250 memset(key, 0, sizeof(*key));
251
252 populate_sampler_prog_key(devinfo, &key->tex);
253 }
254
255 static void
256 populate_wm_prog_key(const struct brw_device_info *devinfo,
257 const VkGraphicsPipelineCreateInfo *info,
258 const struct anv_graphics_pipeline_create_info *extra,
259 struct brw_wm_prog_key *key)
260 {
261 ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
262
263 memset(key, 0, sizeof(*key));
264
265 populate_sampler_prog_key(devinfo, &key->tex);
266
267 /* TODO: Fill out key->input_slots_valid */
268
269 /* Vulkan doesn't specify a default */
270 key->high_quality_derivatives = false;
271
272 /* XXX Vulkan doesn't appear to specify */
273 key->clamp_fragment_color = false;
274
275 /* Vulkan always specifies upper-left coordinates */
276 key->drawable_height = 0;
277 key->render_to_fbo = false;
278
279 if (extra && extra->color_attachment_count >= 0) {
280 key->nr_color_regions = extra->color_attachment_count;
281 } else {
282 key->nr_color_regions =
283 render_pass->subpasses[info->subpass].color_count;
284 }
285
286 key->replicate_alpha = key->nr_color_regions > 1 &&
287 info->pMultisampleState &&
288 info->pMultisampleState->alphaToCoverageEnable;
289
290 if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
291 /* We should probably pull this out of the shader, but it's fairly
292 * harmless to compute it and then let dead-code take care of it.
293 */
294 key->persample_shading = info->pMultisampleState->sampleShadingEnable;
295 if (key->persample_shading)
296 key->persample_2x = info->pMultisampleState->rasterizationSamples == 2;
297
298 key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
299 key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
300 }
301 }
302
303 static void
304 populate_cs_prog_key(const struct brw_device_info *devinfo,
305 struct brw_cs_prog_key *key)
306 {
307 memset(key, 0, sizeof(*key));
308
309 populate_sampler_prog_key(devinfo, &key->tex);
310 }
311
312 static nir_shader *
313 anv_pipeline_compile(struct anv_pipeline *pipeline,
314 struct anv_shader_module *module,
315 const char *entrypoint,
316 gl_shader_stage stage,
317 const VkSpecializationInfo *spec_info,
318 struct brw_stage_prog_data *prog_data)
319 {
320 const struct brw_compiler *compiler =
321 pipeline->device->instance->physicalDevice.compiler;
322
323 nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
324 module, entrypoint, stage,
325 spec_info);
326 if (nir == NULL)
327 return NULL;
328
329 anv_nir_lower_push_constants(nir, compiler->scalar_stage[stage]);
330
331 /* Figure out the number of parameters */
332 prog_data->nr_params = 0;
333
334 if (nir->num_uniforms > 0) {
335 /* If the shader uses any push constants at all, we'll just give
336 * them the maximum possible number
337 */
338 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
339 }
340
341 if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
342 prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
343
344 if (pipeline->bindings[stage].image_count > 0)
345 prog_data->nr_params += pipeline->bindings[stage].image_count *
346 BRW_IMAGE_PARAM_SIZE;
347
348 if (prog_data->nr_params > 0) {
349 /* XXX: I think we're leaking this */
350 prog_data->param = (const union gl_constant_value **)
351 malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
352
353 /* We now set the param values to be offsets into a
354 * anv_push_constant_data structure. Since the compiler doesn't
355 * actually dereference any of the gl_constant_value pointers in the
356 * params array, it doesn't really matter what we put here.
357 */
358 struct anv_push_constants *null_data = NULL;
359 if (nir->num_uniforms > 0) {
360 /* Fill out the push constants section of the param array */
361 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
362 prog_data->param[i] = (const union gl_constant_value *)
363 &null_data->client_data[i * sizeof(float)];
364 }
365 }
366
367 /* Set up dynamic offsets */
368 anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
369
370 char surface_usage_mask[256], sampler_usage_mask[256];
371 zero(surface_usage_mask);
372 zero(sampler_usage_mask);
373
374 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
375 if (pipeline->layout)
376 anv_nir_apply_pipeline_layout(pipeline, nir, prog_data);
377
378 /* All binding table offsets provided by apply_pipeline_layout() are
379 * relative to the start of the bindint table (plus MAX_RTS for VS).
380 */
381 unsigned bias;
382 switch (stage) {
383 case MESA_SHADER_FRAGMENT:
384 bias = MAX_RTS;
385 break;
386 case MESA_SHADER_COMPUTE:
387 bias = 1;
388 break;
389 default:
390 bias = 0;
391 break;
392 }
393 prog_data->binding_table.size_bytes = 0;
394 prog_data->binding_table.texture_start = bias;
395 prog_data->binding_table.ubo_start = bias;
396 prog_data->binding_table.ssbo_start = bias;
397 prog_data->binding_table.image_start = bias;
398
399 /* Finish the optimization and compilation process */
400 if (nir->stage != MESA_SHADER_VERTEX &&
401 nir->stage != MESA_SHADER_TESS_CTRL &&
402 nir->stage != MESA_SHADER_TESS_EVAL &&
403 nir->stage != MESA_SHADER_FRAGMENT) {
404 nir = brw_nir_lower_io(nir, &pipeline->device->info,
405 compiler->scalar_stage[stage], false, NULL);
406 }
407
408 /* nir_lower_io will only handle the push constants; we need to set this
409 * to the full number of possible uniforms.
410 */
411 nir->num_uniforms = prog_data->nr_params * 4;
412
413 return nir;
414 }
415
416 static void
417 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
418 gl_shader_stage stage,
419 struct brw_stage_prog_data *prog_data)
420 {
421 struct brw_device_info *devinfo = &pipeline->device->info;
422 uint32_t max_threads[] = {
423 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
424 [MESA_SHADER_TESS_CTRL] = 0,
425 [MESA_SHADER_TESS_EVAL] = 0,
426 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
427 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
428 [MESA_SHADER_COMPUTE] = devinfo->max_cs_threads,
429 };
430
431 pipeline->prog_data[stage] = prog_data;
432 pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
433 pipeline->scratch_start[stage] = pipeline->total_scratch;
434 pipeline->total_scratch =
435 align_u32(pipeline->total_scratch, 1024) +
436 prog_data->total_scratch * max_threads[stage];
437 }
438
439 static VkResult
440 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
441 struct anv_pipeline_cache *cache,
442 const VkGraphicsPipelineCreateInfo *info,
443 struct anv_shader_module *module,
444 const char *entrypoint,
445 const VkSpecializationInfo *spec_info)
446 {
447 const struct brw_compiler *compiler =
448 pipeline->device->instance->physicalDevice.compiler;
449 struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
450 struct brw_vs_prog_key key;
451 uint32_t kernel;
452 unsigned char sha1[20], *hash;
453
454 populate_vs_prog_key(&pipeline->device->info, &key);
455
456 if (module->size > 0) {
457 hash = sha1;
458 anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
459 kernel = anv_pipeline_cache_search(cache, hash, prog_data);
460 } else {
461 hash = NULL;
462 }
463
464 if (module->size == 0 || kernel == NO_KERNEL) {
465 memset(prog_data, 0, sizeof(*prog_data));
466
467 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
468 MESA_SHADER_VERTEX, spec_info,
469 &prog_data->base.base);
470 if (nir == NULL)
471 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
472
473 void *mem_ctx = ralloc_context(NULL);
474
475 if (module->nir == NULL)
476 ralloc_steal(mem_ctx, nir);
477
478 prog_data->inputs_read = nir->info.inputs_read;
479 if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
480 pipeline->writes_point_size = true;
481
482 brw_compute_vue_map(&pipeline->device->info,
483 &prog_data->base.vue_map,
484 nir->info.outputs_written,
485 nir->info.separate_shader);
486
487 unsigned code_size;
488 const unsigned *shader_code =
489 brw_compile_vs(compiler, NULL, mem_ctx, &key, prog_data, nir,
490 NULL, false, -1, &code_size, NULL);
491 if (shader_code == NULL) {
492 ralloc_free(mem_ctx);
493 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
494 }
495
496 kernel = anv_pipeline_cache_upload_kernel(cache, hash,
497 shader_code, code_size,
498 prog_data, sizeof(*prog_data));
499 ralloc_free(mem_ctx);
500 }
501
502 if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
503 pipeline->vs_simd8 = kernel;
504 pipeline->vs_vec4 = NO_KERNEL;
505 } else {
506 pipeline->vs_simd8 = NO_KERNEL;
507 pipeline->vs_vec4 = kernel;
508 }
509
510 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX,
511 &prog_data->base.base);
512
513 return VK_SUCCESS;
514 }
515
516 static VkResult
517 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
518 struct anv_pipeline_cache *cache,
519 const VkGraphicsPipelineCreateInfo *info,
520 struct anv_shader_module *module,
521 const char *entrypoint,
522 const VkSpecializationInfo *spec_info)
523 {
524 const struct brw_compiler *compiler =
525 pipeline->device->instance->physicalDevice.compiler;
526 struct brw_gs_prog_data *prog_data = &pipeline->gs_prog_data;
527 struct brw_gs_prog_key key;
528 uint32_t kernel;
529 unsigned char sha1[20], *hash;
530
531 populate_gs_prog_key(&pipeline->device->info, &key);
532
533 if (module->size > 0) {
534 hash = sha1;
535 anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
536 kernel = anv_pipeline_cache_search(cache, hash, prog_data);
537 } else {
538 hash = NULL;
539 }
540
541 if (module->size == 0 || kernel == NO_KERNEL) {
542 memset(prog_data, 0, sizeof(*prog_data));
543
544 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
545 MESA_SHADER_GEOMETRY, spec_info,
546 &prog_data->base.base);
547 if (nir == NULL)
548 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
549
550 void *mem_ctx = ralloc_context(NULL);
551
552 if (module->nir == NULL)
553 ralloc_steal(mem_ctx, nir);
554
555 if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
556 pipeline->writes_point_size = true;
557
558 brw_compute_vue_map(&pipeline->device->info,
559 &prog_data->base.vue_map,
560 nir->info.outputs_written,
561 nir->info.separate_shader);
562
563 unsigned code_size;
564 const unsigned *shader_code =
565 brw_compile_gs(compiler, NULL, mem_ctx, &key, prog_data, nir,
566 NULL, -1, &code_size, NULL);
567 if (shader_code == NULL) {
568 ralloc_free(mem_ctx);
569 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
570 }
571
572 /* TODO: SIMD8 GS */
573 kernel = anv_pipeline_cache_upload_kernel(cache, hash,
574 shader_code, code_size,
575 prog_data, sizeof(*prog_data));
576
577 ralloc_free(mem_ctx);
578 }
579
580 pipeline->gs_kernel = kernel;
581
582 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY,
583 &prog_data->base.base);
584
585 return VK_SUCCESS;
586 }
587
588 static VkResult
589 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
590 struct anv_pipeline_cache *cache,
591 const VkGraphicsPipelineCreateInfo *info,
592 const struct anv_graphics_pipeline_create_info *extra,
593 struct anv_shader_module *module,
594 const char *entrypoint,
595 const VkSpecializationInfo *spec_info)
596 {
597 const struct brw_compiler *compiler =
598 pipeline->device->instance->physicalDevice.compiler;
599 struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
600 struct brw_wm_prog_key key;
601 uint32_t kernel;
602 unsigned char sha1[20], *hash;
603
604 populate_wm_prog_key(&pipeline->device->info, info, extra, &key);
605
606 if (pipeline->use_repclear)
607 key.nr_color_regions = 1;
608
609 if (module->size > 0) {
610 hash = sha1;
611 anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
612 kernel = anv_pipeline_cache_search(cache, hash, prog_data);
613 } else {
614 hash = NULL;
615 }
616
617 if (module->size == 0 || kernel == NO_KERNEL) {
618 memset(prog_data, 0, sizeof(*prog_data));
619
620 prog_data->binding_table.render_target_start = 0;
621
622 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
623 MESA_SHADER_FRAGMENT, spec_info,
624 &prog_data->base);
625 if (nir == NULL)
626 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
627
628 nir_function_impl *impl = nir_shader_get_entrypoint(nir)->impl;
629 nir_foreach_variable_safe(var, &nir->outputs) {
630 if (var->data.location < FRAG_RESULT_DATA0)
631 continue;
632
633 unsigned rt = var->data.location - FRAG_RESULT_DATA0;
634 if (rt >= key.nr_color_regions) {
635 var->data.mode = nir_var_local;
636 exec_node_remove(&var->node);
637 exec_list_push_tail(&impl->locals, &var->node);
638 }
639 }
640
641 void *mem_ctx = ralloc_context(NULL);
642
643 if (module->nir == NULL)
644 ralloc_steal(mem_ctx, nir);
645
646 unsigned code_size;
647 const unsigned *shader_code =
648 brw_compile_fs(compiler, NULL, mem_ctx, &key, prog_data, nir,
649 NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
650 if (shader_code == NULL) {
651 ralloc_free(mem_ctx);
652 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
653 }
654
655 kernel = anv_pipeline_cache_upload_kernel(cache, hash,
656 shader_code, code_size,
657 prog_data, sizeof(*prog_data));
658
659 ralloc_free(mem_ctx);
660 }
661
662 if (prog_data->no_8)
663 pipeline->ps_simd8 = NO_KERNEL;
664 else
665 pipeline->ps_simd8 = kernel;
666
667 if (prog_data->no_8 || prog_data->prog_offset_16) {
668 pipeline->ps_simd16 = kernel + prog_data->prog_offset_16;
669 } else {
670 pipeline->ps_simd16 = NO_KERNEL;
671 }
672
673 pipeline->ps_ksp2 = 0;
674 pipeline->ps_grf_start2 = 0;
675 if (pipeline->ps_simd8 != NO_KERNEL) {
676 pipeline->ps_ksp0 = pipeline->ps_simd8;
677 pipeline->ps_grf_start0 = prog_data->base.dispatch_grf_start_reg;
678 if (pipeline->ps_simd16 != NO_KERNEL) {
679 pipeline->ps_ksp2 = pipeline->ps_simd16;
680 pipeline->ps_grf_start2 = prog_data->dispatch_grf_start_reg_16;
681 }
682 } else if (pipeline->ps_simd16 != NO_KERNEL) {
683 pipeline->ps_ksp0 = pipeline->ps_simd16;
684 pipeline->ps_grf_start0 = prog_data->dispatch_grf_start_reg_16;
685 }
686
687 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT,
688 &prog_data->base);
689
690 return VK_SUCCESS;
691 }
692
693 VkResult
694 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
695 struct anv_pipeline_cache *cache,
696 const VkComputePipelineCreateInfo *info,
697 struct anv_shader_module *module,
698 const char *entrypoint,
699 const VkSpecializationInfo *spec_info)
700 {
701 const struct brw_compiler *compiler =
702 pipeline->device->instance->physicalDevice.compiler;
703 struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
704 struct brw_cs_prog_key key;
705 uint32_t kernel;
706 unsigned char sha1[20], *hash;
707
708 populate_cs_prog_key(&pipeline->device->info, &key);
709
710 if (module->size > 0) {
711 hash = sha1;
712 anv_hash_shader(hash, &key, sizeof(key), module, entrypoint, spec_info);
713 kernel = anv_pipeline_cache_search(cache, hash, prog_data);
714 } else {
715 hash = NULL;
716 }
717
718 if (module->size == 0 || kernel == NO_KERNEL) {
719 memset(prog_data, 0, sizeof(*prog_data));
720
721 prog_data->binding_table.work_groups_start = 0;
722
723 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
724 MESA_SHADER_COMPUTE, spec_info,
725 &prog_data->base);
726 if (nir == NULL)
727 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
728
729 prog_data->base.total_shared = nir->num_shared;
730
731 void *mem_ctx = ralloc_context(NULL);
732
733 if (module->nir == NULL)
734 ralloc_steal(mem_ctx, nir);
735
736 unsigned code_size;
737 const unsigned *shader_code =
738 brw_compile_cs(compiler, NULL, mem_ctx, &key, prog_data, nir,
739 -1, &code_size, NULL);
740 if (shader_code == NULL) {
741 ralloc_free(mem_ctx);
742 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
743 }
744
745 kernel = anv_pipeline_cache_upload_kernel(cache, hash,
746 shader_code, code_size,
747 prog_data, sizeof(*prog_data));
748 ralloc_free(mem_ctx);
749 }
750
751 pipeline->cs_simd = kernel;
752
753 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE,
754 &prog_data->base);
755
756 return VK_SUCCESS;
757 }
758
759 static const int gen8_push_size = 32 * 1024;
760
761 static void
762 gen7_compute_urb_partition(struct anv_pipeline *pipeline)
763 {
764 const struct brw_device_info *devinfo = &pipeline->device->info;
765 bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
766 unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
767 unsigned vs_entry_size_bytes = vs_size * 64;
768 bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
769 unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
770 unsigned gs_entry_size_bytes = gs_size * 64;
771
772 /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
773 *
774 * VS Number of URB Entries must be divisible by 8 if the VS URB Entry
775 * Allocation Size is less than 9 512-bit URB entries.
776 *
777 * Similar text exists for GS.
778 */
779 unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
780 unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
781
782 /* URB allocations must be done in 8k chunks. */
783 unsigned chunk_size_bytes = 8192;
784
785 /* Determine the size of the URB in chunks. */
786 unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
787
788 /* Reserve space for push constants */
789 unsigned push_constant_bytes = gen8_push_size;
790 unsigned push_constant_chunks =
791 push_constant_bytes / chunk_size_bytes;
792
793 /* Initially, assign each stage the minimum amount of URB space it needs,
794 * and make a note of how much additional space it "wants" (the amount of
795 * additional space it could actually make use of).
796 */
797
798 /* VS has a lower limit on the number of URB entries */
799 unsigned vs_chunks =
800 ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
801 chunk_size_bytes) / chunk_size_bytes;
802 unsigned vs_wants =
803 ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
804 chunk_size_bytes) / chunk_size_bytes - vs_chunks;
805
806 unsigned gs_chunks = 0;
807 unsigned gs_wants = 0;
808 if (gs_present) {
809 /* There are two constraints on the minimum amount of URB space we can
810 * allocate:
811 *
812 * (1) We need room for at least 2 URB entries, since we always operate
813 * the GS in DUAL_OBJECT mode.
814 *
815 * (2) We can't allocate less than nr_gs_entries_granularity.
816 */
817 gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
818 chunk_size_bytes) / chunk_size_bytes;
819 gs_wants =
820 ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
821 chunk_size_bytes) / chunk_size_bytes - gs_chunks;
822 }
823
824 /* There should always be enough URB space to satisfy the minimum
825 * requirements of each stage.
826 */
827 unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
828 assert(total_needs <= urb_chunks);
829
830 /* Mete out remaining space (if any) in proportion to "wants". */
831 unsigned total_wants = vs_wants + gs_wants;
832 unsigned remaining_space = urb_chunks - total_needs;
833 if (remaining_space > total_wants)
834 remaining_space = total_wants;
835 if (remaining_space > 0) {
836 unsigned vs_additional = (unsigned)
837 round(vs_wants * (((double) remaining_space) / total_wants));
838 vs_chunks += vs_additional;
839 remaining_space -= vs_additional;
840 gs_chunks += remaining_space;
841 }
842
843 /* Sanity check that we haven't over-allocated. */
844 assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
845
846 /* Finally, compute the number of entries that can fit in the space
847 * allocated to each stage.
848 */
849 unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
850 unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
851
852 /* Since we rounded up when computing *_wants, this may be slightly more
853 * than the maximum allowed amount, so correct for that.
854 */
855 nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
856 nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
857
858 /* Ensure that we program a multiple of the granularity. */
859 nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
860 nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
861
862 /* Finally, sanity check to make sure we have at least the minimum number
863 * of entries needed for each stage.
864 */
865 assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
866 if (gs_present)
867 assert(nr_gs_entries >= 2);
868
869 /* Lay out the URB in the following order:
870 * - push constants
871 * - VS
872 * - GS
873 */
874 pipeline->urb.vs_start = push_constant_chunks;
875 pipeline->urb.vs_size = vs_size;
876 pipeline->urb.nr_vs_entries = nr_vs_entries;
877
878 pipeline->urb.gs_start = push_constant_chunks + vs_chunks;
879 pipeline->urb.gs_size = gs_size;
880 pipeline->urb.nr_gs_entries = nr_gs_entries;
881 }
882
883 static void
884 anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
885 const VkGraphicsPipelineCreateInfo *pCreateInfo)
886 {
887 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
888 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
889 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
890
891 pipeline->dynamic_state = default_dynamic_state;
892
893 if (pCreateInfo->pDynamicState) {
894 /* Remove all of the states that are marked as dynamic */
895 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
896 for (uint32_t s = 0; s < count; s++)
897 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
898 }
899
900 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
901
902 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
903 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
904 typed_memcpy(dynamic->viewport.viewports,
905 pCreateInfo->pViewportState->pViewports,
906 pCreateInfo->pViewportState->viewportCount);
907 }
908
909 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
910 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
911 typed_memcpy(dynamic->scissor.scissors,
912 pCreateInfo->pViewportState->pScissors,
913 pCreateInfo->pViewportState->scissorCount);
914 }
915
916 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
917 assert(pCreateInfo->pRasterizationState);
918 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
919 }
920
921 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
922 assert(pCreateInfo->pRasterizationState);
923 dynamic->depth_bias.bias =
924 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
925 dynamic->depth_bias.clamp =
926 pCreateInfo->pRasterizationState->depthBiasClamp;
927 dynamic->depth_bias.slope =
928 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
929 }
930
931 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
932 assert(pCreateInfo->pColorBlendState);
933 typed_memcpy(dynamic->blend_constants,
934 pCreateInfo->pColorBlendState->blendConstants, 4);
935 }
936
937 /* If there is no depthstencil attachment, then don't read
938 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
939 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
940 * no need to override the depthstencil defaults in
941 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
942 *
943 * From the Vulkan spec (20 Oct 2015, git-aa308cb):
944 *
945 * pDepthStencilState [...] may only be NULL if renderPass and subpass
946 * specify a subpass that has no depth/stencil attachment.
947 */
948 if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
949 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
950 assert(pCreateInfo->pDepthStencilState);
951 dynamic->depth_bounds.min =
952 pCreateInfo->pDepthStencilState->minDepthBounds;
953 dynamic->depth_bounds.max =
954 pCreateInfo->pDepthStencilState->maxDepthBounds;
955 }
956
957 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
958 assert(pCreateInfo->pDepthStencilState);
959 dynamic->stencil_compare_mask.front =
960 pCreateInfo->pDepthStencilState->front.compareMask;
961 dynamic->stencil_compare_mask.back =
962 pCreateInfo->pDepthStencilState->back.compareMask;
963 }
964
965 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
966 assert(pCreateInfo->pDepthStencilState);
967 dynamic->stencil_write_mask.front =
968 pCreateInfo->pDepthStencilState->front.writeMask;
969 dynamic->stencil_write_mask.back =
970 pCreateInfo->pDepthStencilState->back.writeMask;
971 }
972
973 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
974 assert(pCreateInfo->pDepthStencilState);
975 dynamic->stencil_reference.front =
976 pCreateInfo->pDepthStencilState->front.reference;
977 dynamic->stencil_reference.back =
978 pCreateInfo->pDepthStencilState->back.reference;
979 }
980 }
981
982 pipeline->dynamic_state_mask = states;
983 }
984
985 static void
986 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
987 {
988 struct anv_render_pass *renderpass = NULL;
989 struct anv_subpass *subpass = NULL;
990
991 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
992 * present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
993 * 4.2 Graphics Pipeline.
994 */
995 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
996
997 renderpass = anv_render_pass_from_handle(info->renderPass);
998 assert(renderpass);
999
1000 if (renderpass != &anv_meta_dummy_renderpass) {
1001 assert(info->subpass < renderpass->subpass_count);
1002 subpass = &renderpass->subpasses[info->subpass];
1003 }
1004
1005 assert(info->stageCount >= 1);
1006 assert(info->pVertexInputState);
1007 assert(info->pInputAssemblyState);
1008 assert(info->pViewportState);
1009 assert(info->pRasterizationState);
1010
1011 if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
1012 assert(info->pDepthStencilState);
1013
1014 if (subpass && subpass->color_count > 0)
1015 assert(info->pColorBlendState);
1016
1017 for (uint32_t i = 0; i < info->stageCount; ++i) {
1018 switch (info->pStages[i].stage) {
1019 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1020 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1021 assert(info->pTessellationState);
1022 break;
1023 default:
1024 break;
1025 }
1026 }
1027 }
1028
1029 VkResult
1030 anv_pipeline_init(struct anv_pipeline *pipeline,
1031 struct anv_device *device,
1032 struct anv_pipeline_cache *cache,
1033 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1034 const struct anv_graphics_pipeline_create_info *extra,
1035 const VkAllocationCallbacks *alloc)
1036 {
1037 VkResult result;
1038
1039 anv_validate {
1040 anv_pipeline_validate_create_info(pCreateInfo);
1041 }
1042
1043 if (alloc == NULL)
1044 alloc = &device->alloc;
1045
1046 pipeline->device = device;
1047 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1048
1049 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1050 if (result != VK_SUCCESS)
1051 return result;
1052
1053 pipeline->batch.alloc = alloc;
1054 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1055 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1056 pipeline->batch.relocs = &pipeline->batch_relocs;
1057
1058 anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
1059
1060 if (pCreateInfo->pTessellationState)
1061 anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
1062
1063 pipeline->use_repclear = extra && extra->use_repclear;
1064 pipeline->writes_point_size = false;
1065
1066 /* When we free the pipeline, we detect stages based on the NULL status
1067 * of various prog_data pointers. Make them NULL by default.
1068 */
1069 memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
1070 memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
1071 memset(pipeline->bindings, 0, sizeof(pipeline->bindings));
1072
1073 pipeline->vs_simd8 = NO_KERNEL;
1074 pipeline->vs_vec4 = NO_KERNEL;
1075 pipeline->gs_kernel = NO_KERNEL;
1076 pipeline->ps_ksp0 = NO_KERNEL;
1077
1078 pipeline->active_stages = 0;
1079 pipeline->total_scratch = 0;
1080
1081 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1082 ANV_FROM_HANDLE(anv_shader_module, module,
1083 pCreateInfo->pStages[i].module);
1084
1085 switch (pCreateInfo->pStages[i].stage) {
1086 case VK_SHADER_STAGE_VERTEX_BIT:
1087 anv_pipeline_compile_vs(pipeline, cache, pCreateInfo, module,
1088 pCreateInfo->pStages[i].pName,
1089 pCreateInfo->pStages[i].pSpecializationInfo);
1090 break;
1091 case VK_SHADER_STAGE_GEOMETRY_BIT:
1092 anv_pipeline_compile_gs(pipeline, cache, pCreateInfo, module,
1093 pCreateInfo->pStages[i].pName,
1094 pCreateInfo->pStages[i].pSpecializationInfo);
1095 break;
1096 case VK_SHADER_STAGE_FRAGMENT_BIT:
1097 anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra, module,
1098 pCreateInfo->pStages[i].pName,
1099 pCreateInfo->pStages[i].pSpecializationInfo);
1100 break;
1101 default:
1102 anv_finishme("Unsupported shader stage");
1103 }
1104 }
1105
1106 if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
1107 /* Vertex is only optional if disable_vs is set */
1108 assert(extra->disable_vs);
1109 memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
1110 }
1111
1112 gen7_compute_urb_partition(pipeline);
1113
1114 const VkPipelineVertexInputStateCreateInfo *vi_info =
1115 pCreateInfo->pVertexInputState;
1116
1117 uint64_t inputs_read;
1118 if (extra && extra->disable_vs) {
1119 /* If the VS is disabled, just assume the user knows what they're
1120 * doing and apply the layout blindly. This can only come from
1121 * meta, so this *should* be safe.
1122 */
1123 inputs_read = ~0ull;
1124 } else {
1125 inputs_read = pipeline->vs_prog_data.inputs_read;
1126 }
1127
1128 pipeline->vb_used = 0;
1129 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1130 const VkVertexInputAttributeDescription *desc =
1131 &vi_info->pVertexAttributeDescriptions[i];
1132
1133 if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1134 pipeline->vb_used |= 1 << desc->binding;
1135 }
1136
1137 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1138 const VkVertexInputBindingDescription *desc =
1139 &vi_info->pVertexBindingDescriptions[i];
1140
1141 pipeline->binding_stride[desc->binding] = desc->stride;
1142
1143 /* Step rate is programmed per vertex element (attribute), not
1144 * binding. Set up a map of which bindings step per instance, for
1145 * reference by vertex element setup. */
1146 switch (desc->inputRate) {
1147 default:
1148 case VK_VERTEX_INPUT_RATE_VERTEX:
1149 pipeline->instancing_enable[desc->binding] = false;
1150 break;
1151 case VK_VERTEX_INPUT_RATE_INSTANCE:
1152 pipeline->instancing_enable[desc->binding] = true;
1153 break;
1154 }
1155 }
1156
1157 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1158 pCreateInfo->pInputAssemblyState;
1159 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1160 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1161
1162 if (extra && extra->use_rectlist)
1163 pipeline->topology = _3DPRIM_RECTLIST;
1164
1165 while (anv_block_pool_size(&device->scratch_block_pool) <
1166 pipeline->total_scratch)
1167 anv_block_pool_alloc(&device->scratch_block_pool);
1168
1169 return VK_SUCCESS;
1170 }
1171
1172 VkResult
1173 anv_graphics_pipeline_create(
1174 VkDevice _device,
1175 VkPipelineCache _cache,
1176 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1177 const struct anv_graphics_pipeline_create_info *extra,
1178 const VkAllocationCallbacks *pAllocator,
1179 VkPipeline *pPipeline)
1180 {
1181 ANV_FROM_HANDLE(anv_device, device, _device);
1182 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1183
1184 if (cache == NULL)
1185 cache = &device->default_pipeline_cache;
1186
1187 switch (device->info.gen) {
1188 case 7:
1189 if (device->info.is_haswell)
1190 return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1191 else
1192 return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1193 case 8:
1194 return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1195 case 9:
1196 return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1197 default:
1198 unreachable("unsupported gen\n");
1199 }
1200 }
1201
1202 VkResult anv_CreateGraphicsPipelines(
1203 VkDevice _device,
1204 VkPipelineCache pipelineCache,
1205 uint32_t count,
1206 const VkGraphicsPipelineCreateInfo* pCreateInfos,
1207 const VkAllocationCallbacks* pAllocator,
1208 VkPipeline* pPipelines)
1209 {
1210 VkResult result = VK_SUCCESS;
1211
1212 unsigned i = 0;
1213 for (; i < count; i++) {
1214 result = anv_graphics_pipeline_create(_device,
1215 pipelineCache,
1216 &pCreateInfos[i],
1217 NULL, pAllocator, &pPipelines[i]);
1218 if (result != VK_SUCCESS) {
1219 for (unsigned j = 0; j < i; j++) {
1220 anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1221 }
1222
1223 return result;
1224 }
1225 }
1226
1227 return VK_SUCCESS;
1228 }
1229
1230 static VkResult anv_compute_pipeline_create(
1231 VkDevice _device,
1232 VkPipelineCache _cache,
1233 const VkComputePipelineCreateInfo* pCreateInfo,
1234 const VkAllocationCallbacks* pAllocator,
1235 VkPipeline* pPipeline)
1236 {
1237 ANV_FROM_HANDLE(anv_device, device, _device);
1238 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1239
1240 if (cache == NULL)
1241 cache = &device->default_pipeline_cache;
1242
1243 switch (device->info.gen) {
1244 case 7:
1245 if (device->info.is_haswell)
1246 return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1247 else
1248 return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1249 case 8:
1250 return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1251 case 9:
1252 return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1253 default:
1254 unreachable("unsupported gen\n");
1255 }
1256 }
1257
1258 VkResult anv_CreateComputePipelines(
1259 VkDevice _device,
1260 VkPipelineCache pipelineCache,
1261 uint32_t count,
1262 const VkComputePipelineCreateInfo* pCreateInfos,
1263 const VkAllocationCallbacks* pAllocator,
1264 VkPipeline* pPipelines)
1265 {
1266 VkResult result = VK_SUCCESS;
1267
1268 unsigned i = 0;
1269 for (; i < count; i++) {
1270 result = anv_compute_pipeline_create(_device, pipelineCache,
1271 &pCreateInfos[i],
1272 pAllocator, &pPipelines[i]);
1273 if (result != VK_SUCCESS) {
1274 for (unsigned j = 0; j < i; j++) {
1275 anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1276 }
1277
1278 return result;
1279 }
1280 }
1281
1282 return VK_SUCCESS;
1283 }