anv/pipeline: Add shader lowering for multiview
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "common/gen_l3_config.h"
32 #include "anv_private.h"
33 #include "compiler/brw_nir.h"
34 #include "anv_nir.h"
35 #include "spirv/nir_spirv.h"
36
37 /* Needed for SWIZZLE macros */
38 #include "program/prog_instruction.h"
39
40 // Shader functions
41
42 VkResult anv_CreateShaderModule(
43 VkDevice _device,
44 const VkShaderModuleCreateInfo* pCreateInfo,
45 const VkAllocationCallbacks* pAllocator,
46 VkShaderModule* pShaderModule)
47 {
48 ANV_FROM_HANDLE(anv_device, device, _device);
49 struct anv_shader_module *module;
50
51 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
52 assert(pCreateInfo->flags == 0);
53
54 module = vk_alloc2(&device->alloc, pAllocator,
55 sizeof(*module) + pCreateInfo->codeSize, 8,
56 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
57 if (module == NULL)
58 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
59
60 module->size = pCreateInfo->codeSize;
61 memcpy(module->data, pCreateInfo->pCode, module->size);
62
63 _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65 *pShaderModule = anv_shader_module_to_handle(module);
66
67 return VK_SUCCESS;
68 }
69
70 void anv_DestroyShaderModule(
71 VkDevice _device,
72 VkShaderModule _module,
73 const VkAllocationCallbacks* pAllocator)
74 {
75 ANV_FROM_HANDLE(anv_device, device, _device);
76 ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78 if (!module)
79 return;
80
81 vk_free2(&device->alloc, pAllocator, module);
82 }
83
84 #define SPIR_V_MAGIC_NUMBER 0x07230203
85
86 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
87 * we can't do that yet because we don't have the ability to copy nir.
88 */
89 static nir_shader *
90 anv_shader_compile_to_nir(struct anv_pipeline *pipeline,
91 struct anv_shader_module *module,
92 const char *entrypoint_name,
93 gl_shader_stage stage,
94 const VkSpecializationInfo *spec_info)
95 {
96 const struct anv_device *device = pipeline->device;
97
98 const struct brw_compiler *compiler =
99 device->instance->physicalDevice.compiler;
100 const nir_shader_compiler_options *nir_options =
101 compiler->glsl_compiler_options[stage].NirOptions;
102
103 uint32_t *spirv = (uint32_t *) module->data;
104 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
105 assert(module->size % 4 == 0);
106
107 uint32_t num_spec_entries = 0;
108 struct nir_spirv_specialization *spec_entries = NULL;
109 if (spec_info && spec_info->mapEntryCount > 0) {
110 num_spec_entries = spec_info->mapEntryCount;
111 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
112 for (uint32_t i = 0; i < num_spec_entries; i++) {
113 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
114 const void *data = spec_info->pData + entry.offset;
115 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
116
117 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
118 if (spec_info->dataSize == 8)
119 spec_entries[i].data64 = *(const uint64_t *)data;
120 else
121 spec_entries[i].data32 = *(const uint32_t *)data;
122 }
123 }
124
125 const struct nir_spirv_supported_extensions supported_ext = {
126 .float64 = device->instance->physicalDevice.info.gen >= 8,
127 .int64 = device->instance->physicalDevice.info.gen >= 8,
128 .tessellation = true,
129 .draw_parameters = true,
130 .image_write_without_format = true,
131 };
132
133 nir_function *entry_point =
134 spirv_to_nir(spirv, module->size / 4,
135 spec_entries, num_spec_entries,
136 stage, entrypoint_name, &supported_ext, nir_options);
137 nir_shader *nir = entry_point->shader;
138 assert(nir->stage == stage);
139 nir_validate_shader(nir);
140
141 free(spec_entries);
142
143 /* We have to lower away local constant initializers right before we
144 * inline functions. That way they get properly initialized at the top
145 * of the function and not at the top of its caller.
146 */
147 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
148 NIR_PASS_V(nir, nir_lower_returns);
149 NIR_PASS_V(nir, nir_inline_functions);
150
151 /* Pick off the single entrypoint that we want */
152 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
153 if (func != entry_point)
154 exec_node_remove(&func->node);
155 }
156 assert(exec_list_length(&nir->functions) == 1);
157 entry_point->name = ralloc_strdup(entry_point, "main");
158
159 NIR_PASS_V(nir, nir_remove_dead_variables,
160 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
161
162 if (stage == MESA_SHADER_FRAGMENT)
163 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
164
165 /* Now that we've deleted all but the main function, we can go ahead and
166 * lower the rest of the constant initializers.
167 */
168 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
169 NIR_PASS_V(nir, nir_propagate_invariant);
170 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
171 entry_point->impl, true, false);
172 NIR_PASS_V(nir, nir_lower_system_values);
173
174 /* Vulkan uses the separate-shader linking model */
175 nir->info->separate_shader = true;
176
177 nir = brw_preprocess_nir(compiler, nir);
178
179 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
180
181 if (stage == MESA_SHADER_FRAGMENT)
182 NIR_PASS_V(nir, anv_nir_lower_input_attachments);
183
184 return nir;
185 }
186
187 void anv_DestroyPipeline(
188 VkDevice _device,
189 VkPipeline _pipeline,
190 const VkAllocationCallbacks* pAllocator)
191 {
192 ANV_FROM_HANDLE(anv_device, device, _device);
193 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
194
195 if (!pipeline)
196 return;
197
198 anv_reloc_list_finish(&pipeline->batch_relocs,
199 pAllocator ? pAllocator : &device->alloc);
200 if (pipeline->blend_state.map)
201 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
202
203 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
204 if (pipeline->shaders[s])
205 anv_shader_bin_unref(device, pipeline->shaders[s]);
206 }
207
208 vk_free2(&device->alloc, pAllocator, pipeline);
209 }
210
211 static const uint32_t vk_to_gen_primitive_type[] = {
212 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
213 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
214 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
215 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
216 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
217 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
218 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
219 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
220 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
221 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
222 };
223
224 static void
225 populate_sampler_prog_key(const struct gen_device_info *devinfo,
226 struct brw_sampler_prog_key_data *key)
227 {
228 /* Almost all multisampled textures are compressed. The only time when we
229 * don't compress a multisampled texture is for 16x MSAA with a surface
230 * width greater than 8k which is a bit of an edge case. Since the sampler
231 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
232 * to tell the compiler to always assume compression.
233 */
234 key->compressed_multisample_layout_mask = ~0;
235
236 /* SkyLake added support for 16x MSAA. With this came a new message for
237 * reading from a 16x MSAA surface with compression. The new message was
238 * needed because now the MCS data is 64 bits instead of 32 or lower as is
239 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
240 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
241 * so we can just use it unconditionally. This may not be quite as
242 * efficient but it saves us from recompiling.
243 */
244 if (devinfo->gen >= 9)
245 key->msaa_16 = ~0;
246
247 /* XXX: Handle texture swizzle on HSW- */
248 for (int i = 0; i < MAX_SAMPLERS; i++) {
249 /* Assume color sampler, no swizzling. (Works for BDW+) */
250 key->swizzles[i] = SWIZZLE_XYZW;
251 }
252 }
253
254 static void
255 populate_vs_prog_key(const struct gen_device_info *devinfo,
256 struct brw_vs_prog_key *key)
257 {
258 memset(key, 0, sizeof(*key));
259
260 populate_sampler_prog_key(devinfo, &key->tex);
261
262 /* XXX: Handle vertex input work-arounds */
263
264 /* XXX: Handle sampler_prog_key */
265 }
266
267 static void
268 populate_gs_prog_key(const struct gen_device_info *devinfo,
269 struct brw_gs_prog_key *key)
270 {
271 memset(key, 0, sizeof(*key));
272
273 populate_sampler_prog_key(devinfo, &key->tex);
274 }
275
276 static void
277 populate_wm_prog_key(const struct anv_pipeline *pipeline,
278 const VkGraphicsPipelineCreateInfo *info,
279 struct brw_wm_prog_key *key)
280 {
281 const struct gen_device_info *devinfo = &pipeline->device->info;
282
283 memset(key, 0, sizeof(*key));
284
285 populate_sampler_prog_key(devinfo, &key->tex);
286
287 /* TODO: we could set this to 0 based on the information in nir_shader, but
288 * this function is called before spirv_to_nir. */
289 const struct brw_vue_map *vue_map =
290 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
291 key->input_slots_valid = vue_map->slots_valid;
292
293 /* Vulkan doesn't specify a default */
294 key->high_quality_derivatives = false;
295
296 /* XXX Vulkan doesn't appear to specify */
297 key->clamp_fragment_color = false;
298
299 key->nr_color_regions = pipeline->subpass->color_count;
300
301 key->replicate_alpha = key->nr_color_regions > 1 &&
302 info->pMultisampleState &&
303 info->pMultisampleState->alphaToCoverageEnable;
304
305 if (info->pMultisampleState) {
306 /* We should probably pull this out of the shader, but it's fairly
307 * harmless to compute it and then let dead-code take care of it.
308 */
309 if (info->pMultisampleState->rasterizationSamples > 1) {
310 key->persample_interp =
311 (info->pMultisampleState->minSampleShading *
312 info->pMultisampleState->rasterizationSamples) > 1;
313 key->multisample_fbo = true;
314 }
315
316 key->frag_coord_adds_sample_pos =
317 info->pMultisampleState->sampleShadingEnable;
318 }
319 }
320
321 static void
322 populate_cs_prog_key(const struct gen_device_info *devinfo,
323 struct brw_cs_prog_key *key)
324 {
325 memset(key, 0, sizeof(*key));
326
327 populate_sampler_prog_key(devinfo, &key->tex);
328 }
329
330 static void
331 anv_pipeline_hash_shader(struct anv_pipeline *pipeline,
332 struct anv_shader_module *module,
333 const char *entrypoint,
334 gl_shader_stage stage,
335 const VkSpecializationInfo *spec_info,
336 const void *key, size_t key_size,
337 unsigned char *sha1_out)
338 {
339 struct mesa_sha1 ctx;
340
341 _mesa_sha1_init(&ctx);
342 if (stage != MESA_SHADER_COMPUTE) {
343 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
344 sizeof(pipeline->subpass->view_mask));
345 }
346 if (pipeline->layout) {
347 _mesa_sha1_update(&ctx, pipeline->layout->sha1,
348 sizeof(pipeline->layout->sha1));
349 }
350 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
351 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
352 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
353 if (spec_info) {
354 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
355 spec_info->mapEntryCount * sizeof(*spec_info->pMapEntries));
356 _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
357 }
358 _mesa_sha1_update(&ctx, key, key_size);
359 _mesa_sha1_final(&ctx, sha1_out);
360 }
361
362 static nir_shader *
363 anv_pipeline_compile(struct anv_pipeline *pipeline,
364 struct anv_shader_module *module,
365 const char *entrypoint,
366 gl_shader_stage stage,
367 const VkSpecializationInfo *spec_info,
368 struct brw_stage_prog_data *prog_data,
369 struct anv_pipeline_bind_map *map)
370 {
371 nir_shader *nir = anv_shader_compile_to_nir(pipeline,
372 module, entrypoint, stage,
373 spec_info);
374 if (nir == NULL)
375 return NULL;
376
377 NIR_PASS_V(nir, anv_nir_lower_push_constants);
378
379 if (stage != MESA_SHADER_COMPUTE)
380 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
381
382 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
383
384 /* Figure out the number of parameters */
385 prog_data->nr_params = 0;
386
387 if (nir->num_uniforms > 0) {
388 /* If the shader uses any push constants at all, we'll just give
389 * them the maximum possible number
390 */
391 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
392 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
393 }
394
395 if (nir->info->num_images > 0) {
396 prog_data->nr_params += nir->info->num_images * BRW_IMAGE_PARAM_SIZE;
397 pipeline->needs_data_cache = true;
398 }
399
400 if (stage == MESA_SHADER_COMPUTE)
401 ((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
402 prog_data->nr_params++; /* The CS Thread ID uniform */
403
404 if (nir->info->num_ssbos > 0)
405 pipeline->needs_data_cache = true;
406
407 if (prog_data->nr_params > 0) {
408 /* XXX: I think we're leaking this */
409 prog_data->param = (const union gl_constant_value **)
410 malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
411
412 /* We now set the param values to be offsets into a
413 * anv_push_constant_data structure. Since the compiler doesn't
414 * actually dereference any of the gl_constant_value pointers in the
415 * params array, it doesn't really matter what we put here.
416 */
417 struct anv_push_constants *null_data = NULL;
418 if (nir->num_uniforms > 0) {
419 /* Fill out the push constants section of the param array */
420 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
421 prog_data->param[i] = (const union gl_constant_value *)
422 &null_data->client_data[i * sizeof(float)];
423 }
424 }
425
426 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
427 if (pipeline->layout)
428 anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
429
430 /* nir_lower_io will only handle the push constants; we need to set this
431 * to the full number of possible uniforms.
432 */
433 nir->num_uniforms = prog_data->nr_params * 4;
434
435 return nir;
436 }
437
438 static void
439 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
440 {
441 prog_data->binding_table.size_bytes = 0;
442 prog_data->binding_table.texture_start = bias;
443 prog_data->binding_table.gather_texture_start = bias;
444 prog_data->binding_table.ubo_start = bias;
445 prog_data->binding_table.ssbo_start = bias;
446 prog_data->binding_table.image_start = bias;
447 }
448
449 static struct anv_shader_bin *
450 anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
451 struct anv_pipeline_cache *cache,
452 const void *key_data, uint32_t key_size,
453 const void *kernel_data, uint32_t kernel_size,
454 const struct brw_stage_prog_data *prog_data,
455 uint32_t prog_data_size,
456 const struct anv_pipeline_bind_map *bind_map)
457 {
458 if (cache) {
459 return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
460 kernel_data, kernel_size,
461 prog_data, prog_data_size,
462 bind_map);
463 } else {
464 return anv_shader_bin_create(pipeline->device, key_data, key_size,
465 kernel_data, kernel_size,
466 prog_data, prog_data_size,
467 prog_data->param, bind_map);
468 }
469 }
470
471
472 static void
473 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
474 gl_shader_stage stage,
475 struct anv_shader_bin *shader)
476 {
477 pipeline->shaders[stage] = shader;
478 pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
479 }
480
481 static VkResult
482 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
483 struct anv_pipeline_cache *cache,
484 const VkGraphicsPipelineCreateInfo *info,
485 struct anv_shader_module *module,
486 const char *entrypoint,
487 const VkSpecializationInfo *spec_info)
488 {
489 const struct brw_compiler *compiler =
490 pipeline->device->instance->physicalDevice.compiler;
491 struct anv_pipeline_bind_map map;
492 struct brw_vs_prog_key key;
493 struct anv_shader_bin *bin = NULL;
494 unsigned char sha1[20];
495
496 populate_vs_prog_key(&pipeline->device->info, &key);
497
498 if (cache) {
499 anv_pipeline_hash_shader(pipeline, module, entrypoint,
500 MESA_SHADER_VERTEX, spec_info,
501 &key, sizeof(key), sha1);
502 bin = anv_pipeline_cache_search(cache, sha1, 20);
503 }
504
505 if (bin == NULL) {
506 struct brw_vs_prog_data prog_data = { 0, };
507 struct anv_pipeline_binding surface_to_descriptor[256];
508 struct anv_pipeline_binding sampler_to_descriptor[256];
509
510 map = (struct anv_pipeline_bind_map) {
511 .surface_to_descriptor = surface_to_descriptor,
512 .sampler_to_descriptor = sampler_to_descriptor
513 };
514
515 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
516 MESA_SHADER_VERTEX, spec_info,
517 &prog_data.base.base, &map);
518 if (nir == NULL)
519 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
520
521 anv_fill_binding_table(&prog_data.base.base, 0);
522
523 void *mem_ctx = ralloc_context(NULL);
524
525 ralloc_steal(mem_ctx, nir);
526
527 prog_data.inputs_read = nir->info->inputs_read;
528 prog_data.double_inputs_read = nir->info->double_inputs_read;
529
530 brw_compute_vue_map(&pipeline->device->info,
531 &prog_data.base.vue_map,
532 nir->info->outputs_written,
533 nir->info->separate_shader);
534
535 unsigned code_size;
536 const unsigned *shader_code =
537 brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
538 NULL, false, -1, &code_size, NULL);
539 if (shader_code == NULL) {
540 ralloc_free(mem_ctx);
541 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
542 }
543
544 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
545 shader_code, code_size,
546 &prog_data.base.base, sizeof(prog_data),
547 &map);
548 if (!bin) {
549 ralloc_free(mem_ctx);
550 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
551 }
552
553 ralloc_free(mem_ctx);
554 }
555
556 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
557
558 return VK_SUCCESS;
559 }
560
561 static void
562 merge_tess_info(struct shader_info *tes_info,
563 const struct shader_info *tcs_info)
564 {
565 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
566 *
567 * "PointMode. Controls generation of points rather than triangles
568 * or lines. This functionality defaults to disabled, and is
569 * enabled if either shader stage includes the execution mode.
570 *
571 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
572 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
573 * and OutputVertices, it says:
574 *
575 * "One mode must be set in at least one of the tessellation
576 * shader stages."
577 *
578 * So, the fields can be set in either the TCS or TES, but they must
579 * agree if set in both. Our backend looks at TES, so bitwise-or in
580 * the values from the TCS.
581 */
582 assert(tcs_info->tess.tcs_vertices_out == 0 ||
583 tes_info->tess.tcs_vertices_out == 0 ||
584 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
585 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
586
587 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
588 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
589 tcs_info->tess.spacing == tes_info->tess.spacing);
590 tes_info->tess.spacing |= tcs_info->tess.spacing;
591
592 tes_info->tess.ccw |= tcs_info->tess.ccw;
593 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
594 }
595
596 static VkResult
597 anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline,
598 struct anv_pipeline_cache *cache,
599 const VkGraphicsPipelineCreateInfo *info,
600 struct anv_shader_module *tcs_module,
601 const char *tcs_entrypoint,
602 const VkSpecializationInfo *tcs_spec_info,
603 struct anv_shader_module *tes_module,
604 const char *tes_entrypoint,
605 const VkSpecializationInfo *tes_spec_info)
606 {
607 const struct gen_device_info *devinfo = &pipeline->device->info;
608 const struct brw_compiler *compiler =
609 pipeline->device->instance->physicalDevice.compiler;
610 struct anv_pipeline_bind_map tcs_map;
611 struct anv_pipeline_bind_map tes_map;
612 struct brw_tcs_prog_key tcs_key = { 0, };
613 struct brw_tes_prog_key tes_key = { 0, };
614 struct anv_shader_bin *tcs_bin = NULL;
615 struct anv_shader_bin *tes_bin = NULL;
616 unsigned char tcs_sha1[40];
617 unsigned char tes_sha1[40];
618
619 populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex);
620 populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex);
621 tcs_key.input_vertices = info->pTessellationState->patchControlPoints;
622
623 if (cache) {
624 anv_pipeline_hash_shader(pipeline, tcs_module, tcs_entrypoint,
625 MESA_SHADER_TESS_CTRL, tcs_spec_info,
626 &tcs_key, sizeof(tcs_key), tcs_sha1);
627 anv_pipeline_hash_shader(pipeline, tes_module, tes_entrypoint,
628 MESA_SHADER_TESS_EVAL, tes_spec_info,
629 &tes_key, sizeof(tes_key), tes_sha1);
630 memcpy(&tcs_sha1[20], tes_sha1, 20);
631 memcpy(&tes_sha1[20], tcs_sha1, 20);
632 tcs_bin = anv_pipeline_cache_search(cache, tcs_sha1, sizeof(tcs_sha1));
633 tes_bin = anv_pipeline_cache_search(cache, tes_sha1, sizeof(tes_sha1));
634 }
635
636 if (tcs_bin == NULL || tes_bin == NULL) {
637 struct brw_tcs_prog_data tcs_prog_data = { 0, };
638 struct brw_tes_prog_data tes_prog_data = { 0, };
639 struct anv_pipeline_binding tcs_surface_to_descriptor[256];
640 struct anv_pipeline_binding tcs_sampler_to_descriptor[256];
641 struct anv_pipeline_binding tes_surface_to_descriptor[256];
642 struct anv_pipeline_binding tes_sampler_to_descriptor[256];
643
644 tcs_map = (struct anv_pipeline_bind_map) {
645 .surface_to_descriptor = tcs_surface_to_descriptor,
646 .sampler_to_descriptor = tcs_sampler_to_descriptor
647 };
648 tes_map = (struct anv_pipeline_bind_map) {
649 .surface_to_descriptor = tes_surface_to_descriptor,
650 .sampler_to_descriptor = tes_sampler_to_descriptor
651 };
652
653 nir_shader *tcs_nir =
654 anv_pipeline_compile(pipeline, tcs_module, tcs_entrypoint,
655 MESA_SHADER_TESS_CTRL, tcs_spec_info,
656 &tcs_prog_data.base.base, &tcs_map);
657 nir_shader *tes_nir =
658 anv_pipeline_compile(pipeline, tes_module, tes_entrypoint,
659 MESA_SHADER_TESS_EVAL, tes_spec_info,
660 &tes_prog_data.base.base, &tes_map);
661 if (tcs_nir == NULL || tes_nir == NULL)
662 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
663
664 nir_lower_tes_patch_vertices(tes_nir,
665 tcs_nir->info->tess.tcs_vertices_out);
666
667 /* Copy TCS info into the TES info */
668 merge_tess_info(tes_nir->info, tcs_nir->info);
669
670 anv_fill_binding_table(&tcs_prog_data.base.base, 0);
671 anv_fill_binding_table(&tes_prog_data.base.base, 0);
672
673 void *mem_ctx = ralloc_context(NULL);
674
675 ralloc_steal(mem_ctx, tcs_nir);
676 ralloc_steal(mem_ctx, tes_nir);
677
678 /* Whacking the key after cache lookup is a bit sketchy, but all of
679 * this comes from the SPIR-V, which is part of the hash used for the
680 * pipeline cache. So it should be safe.
681 */
682 tcs_key.tes_primitive_mode = tes_nir->info->tess.primitive_mode;
683 tcs_key.outputs_written = tcs_nir->info->outputs_written;
684 tcs_key.patch_outputs_written = tcs_nir->info->patch_outputs_written;
685 tcs_key.quads_workaround =
686 devinfo->gen < 9 &&
687 tes_nir->info->tess.primitive_mode == 7 /* GL_QUADS */ &&
688 tes_nir->info->tess.spacing == TESS_SPACING_EQUAL;
689
690 tes_key.inputs_read = tcs_key.outputs_written;
691 tes_key.patch_inputs_read = tcs_key.patch_outputs_written;
692
693 unsigned code_size;
694 const int shader_time_index = -1;
695 const unsigned *shader_code;
696
697 shader_code =
698 brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data,
699 tcs_nir, shader_time_index, &code_size, NULL);
700 if (shader_code == NULL) {
701 ralloc_free(mem_ctx);
702 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
703 }
704
705 tcs_bin = anv_pipeline_upload_kernel(pipeline, cache,
706 tcs_sha1, sizeof(tcs_sha1),
707 shader_code, code_size,
708 &tcs_prog_data.base.base,
709 sizeof(tcs_prog_data),
710 &tcs_map);
711 if (!tcs_bin) {
712 ralloc_free(mem_ctx);
713 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
714 }
715
716 shader_code =
717 brw_compile_tes(compiler, NULL, mem_ctx, &tes_key,
718 &tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir,
719 NULL, shader_time_index, &code_size, NULL);
720 if (shader_code == NULL) {
721 ralloc_free(mem_ctx);
722 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
723 }
724
725 tes_bin = anv_pipeline_upload_kernel(pipeline, cache,
726 tes_sha1, sizeof(tes_sha1),
727 shader_code, code_size,
728 &tes_prog_data.base.base,
729 sizeof(tes_prog_data),
730 &tes_map);
731 if (!tes_bin) {
732 ralloc_free(mem_ctx);
733 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
734 }
735
736 ralloc_free(mem_ctx);
737 }
738
739 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
740 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
741
742 return VK_SUCCESS;
743 }
744
745 static VkResult
746 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
747 struct anv_pipeline_cache *cache,
748 const VkGraphicsPipelineCreateInfo *info,
749 struct anv_shader_module *module,
750 const char *entrypoint,
751 const VkSpecializationInfo *spec_info)
752 {
753 const struct brw_compiler *compiler =
754 pipeline->device->instance->physicalDevice.compiler;
755 struct anv_pipeline_bind_map map;
756 struct brw_gs_prog_key key;
757 struct anv_shader_bin *bin = NULL;
758 unsigned char sha1[20];
759
760 populate_gs_prog_key(&pipeline->device->info, &key);
761
762 if (cache) {
763 anv_pipeline_hash_shader(pipeline, module, entrypoint,
764 MESA_SHADER_GEOMETRY, spec_info,
765 &key, sizeof(key), sha1);
766 bin = anv_pipeline_cache_search(cache, sha1, 20);
767 }
768
769 if (bin == NULL) {
770 struct brw_gs_prog_data prog_data = { 0, };
771 struct anv_pipeline_binding surface_to_descriptor[256];
772 struct anv_pipeline_binding sampler_to_descriptor[256];
773
774 map = (struct anv_pipeline_bind_map) {
775 .surface_to_descriptor = surface_to_descriptor,
776 .sampler_to_descriptor = sampler_to_descriptor
777 };
778
779 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
780 MESA_SHADER_GEOMETRY, spec_info,
781 &prog_data.base.base, &map);
782 if (nir == NULL)
783 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
784
785 anv_fill_binding_table(&prog_data.base.base, 0);
786
787 void *mem_ctx = ralloc_context(NULL);
788
789 ralloc_steal(mem_ctx, nir);
790
791 brw_compute_vue_map(&pipeline->device->info,
792 &prog_data.base.vue_map,
793 nir->info->outputs_written,
794 nir->info->separate_shader);
795
796 unsigned code_size;
797 const unsigned *shader_code =
798 brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
799 NULL, -1, &code_size, NULL);
800 if (shader_code == NULL) {
801 ralloc_free(mem_ctx);
802 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
803 }
804
805 /* TODO: SIMD8 GS */
806 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
807 shader_code, code_size,
808 &prog_data.base.base, sizeof(prog_data),
809 &map);
810 if (!bin) {
811 ralloc_free(mem_ctx);
812 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
813 }
814
815 ralloc_free(mem_ctx);
816 }
817
818 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
819
820 return VK_SUCCESS;
821 }
822
823 static VkResult
824 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
825 struct anv_pipeline_cache *cache,
826 const VkGraphicsPipelineCreateInfo *info,
827 struct anv_shader_module *module,
828 const char *entrypoint,
829 const VkSpecializationInfo *spec_info)
830 {
831 const struct brw_compiler *compiler =
832 pipeline->device->instance->physicalDevice.compiler;
833 struct anv_pipeline_bind_map map;
834 struct brw_wm_prog_key key;
835 struct anv_shader_bin *bin = NULL;
836 unsigned char sha1[20];
837
838 populate_wm_prog_key(pipeline, info, &key);
839
840 if (cache) {
841 anv_pipeline_hash_shader(pipeline, module, entrypoint,
842 MESA_SHADER_FRAGMENT, spec_info,
843 &key, sizeof(key), sha1);
844 bin = anv_pipeline_cache_search(cache, sha1, 20);
845 }
846
847 if (bin == NULL) {
848 struct brw_wm_prog_data prog_data = { 0, };
849 struct anv_pipeline_binding surface_to_descriptor[256];
850 struct anv_pipeline_binding sampler_to_descriptor[256];
851
852 map = (struct anv_pipeline_bind_map) {
853 .surface_to_descriptor = surface_to_descriptor + 8,
854 .sampler_to_descriptor = sampler_to_descriptor
855 };
856
857 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
858 MESA_SHADER_FRAGMENT, spec_info,
859 &prog_data.base, &map);
860 if (nir == NULL)
861 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
862
863 unsigned num_rts = 0;
864 struct anv_pipeline_binding rt_bindings[8];
865 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
866 nir_foreach_variable_safe(var, &nir->outputs) {
867 if (var->data.location < FRAG_RESULT_DATA0)
868 continue;
869
870 unsigned rt = var->data.location - FRAG_RESULT_DATA0;
871 if (rt >= key.nr_color_regions) {
872 /* Out-of-bounds, throw it away */
873 var->data.mode = nir_var_local;
874 exec_node_remove(&var->node);
875 exec_list_push_tail(&impl->locals, &var->node);
876 continue;
877 }
878
879 /* Give it a new, compacted, location */
880 var->data.location = FRAG_RESULT_DATA0 + num_rts;
881
882 unsigned array_len =
883 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
884 assert(num_rts + array_len <= 8);
885
886 for (unsigned i = 0; i < array_len; i++) {
887 rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
888 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
889 .binding = 0,
890 .index = rt + i,
891 };
892 }
893
894 num_rts += array_len;
895 }
896
897 if (num_rts == 0) {
898 /* If we have no render targets, we need a null render target */
899 rt_bindings[0] = (struct anv_pipeline_binding) {
900 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
901 .binding = 0,
902 .index = UINT8_MAX,
903 };
904 num_rts = 1;
905 }
906
907 assert(num_rts <= 8);
908 map.surface_to_descriptor -= num_rts;
909 map.surface_count += num_rts;
910 assert(map.surface_count <= 256);
911 memcpy(map.surface_to_descriptor, rt_bindings,
912 num_rts * sizeof(*rt_bindings));
913
914 anv_fill_binding_table(&prog_data.base, num_rts);
915
916 void *mem_ctx = ralloc_context(NULL);
917
918 ralloc_steal(mem_ctx, nir);
919
920 unsigned code_size;
921 const unsigned *shader_code =
922 brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
923 NULL, -1, -1, true, false, NULL, &code_size, NULL);
924 if (shader_code == NULL) {
925 ralloc_free(mem_ctx);
926 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
927 }
928
929 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
930 shader_code, code_size,
931 &prog_data.base, sizeof(prog_data),
932 &map);
933 if (!bin) {
934 ralloc_free(mem_ctx);
935 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
936 }
937
938 ralloc_free(mem_ctx);
939 }
940
941 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
942
943 return VK_SUCCESS;
944 }
945
946 VkResult
947 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
948 struct anv_pipeline_cache *cache,
949 const VkComputePipelineCreateInfo *info,
950 struct anv_shader_module *module,
951 const char *entrypoint,
952 const VkSpecializationInfo *spec_info)
953 {
954 const struct brw_compiler *compiler =
955 pipeline->device->instance->physicalDevice.compiler;
956 struct anv_pipeline_bind_map map;
957 struct brw_cs_prog_key key;
958 struct anv_shader_bin *bin = NULL;
959 unsigned char sha1[20];
960
961 populate_cs_prog_key(&pipeline->device->info, &key);
962
963 if (cache) {
964 anv_pipeline_hash_shader(pipeline, module, entrypoint,
965 MESA_SHADER_COMPUTE, spec_info,
966 &key, sizeof(key), sha1);
967 bin = anv_pipeline_cache_search(cache, sha1, 20);
968 }
969
970 if (bin == NULL) {
971 struct brw_cs_prog_data prog_data = { 0, };
972 struct anv_pipeline_binding surface_to_descriptor[256];
973 struct anv_pipeline_binding sampler_to_descriptor[256];
974
975 map = (struct anv_pipeline_bind_map) {
976 .surface_to_descriptor = surface_to_descriptor,
977 .sampler_to_descriptor = sampler_to_descriptor
978 };
979
980 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
981 MESA_SHADER_COMPUTE, spec_info,
982 &prog_data.base, &map);
983 if (nir == NULL)
984 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
985
986 anv_fill_binding_table(&prog_data.base, 1);
987
988 void *mem_ctx = ralloc_context(NULL);
989
990 ralloc_steal(mem_ctx, nir);
991
992 unsigned code_size;
993 const unsigned *shader_code =
994 brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
995 -1, &code_size, NULL);
996 if (shader_code == NULL) {
997 ralloc_free(mem_ctx);
998 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
999 }
1000
1001 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
1002 shader_code, code_size,
1003 &prog_data.base, sizeof(prog_data),
1004 &map);
1005 if (!bin) {
1006 ralloc_free(mem_ctx);
1007 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1008 }
1009
1010 ralloc_free(mem_ctx);
1011 }
1012
1013 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
1014
1015 return VK_SUCCESS;
1016 }
1017
1018 /**
1019 * Copy pipeline state not marked as dynamic.
1020 * Dynamic state is pipeline state which hasn't been provided at pipeline
1021 * creation time, but is dynamically provided afterwards using various
1022 * vkCmdSet* functions.
1023 *
1024 * The set of state considered "non_dynamic" is determined by the pieces of
1025 * state that have their corresponding VkDynamicState enums omitted from
1026 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1027 *
1028 * @param[out] pipeline Destination non_dynamic state.
1029 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1030 */
1031 static void
1032 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1033 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1034 {
1035 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1036 struct anv_subpass *subpass = pipeline->subpass;
1037
1038 pipeline->dynamic_state = default_dynamic_state;
1039
1040 if (pCreateInfo->pDynamicState) {
1041 /* Remove all of the states that are marked as dynamic */
1042 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1043 for (uint32_t s = 0; s < count; s++)
1044 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1045 }
1046
1047 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1048
1049 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1050 *
1051 * pViewportState is [...] NULL if the pipeline
1052 * has rasterization disabled.
1053 */
1054 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1055 assert(pCreateInfo->pViewportState);
1056
1057 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1058 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1059 typed_memcpy(dynamic->viewport.viewports,
1060 pCreateInfo->pViewportState->pViewports,
1061 pCreateInfo->pViewportState->viewportCount);
1062 }
1063
1064 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1065 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1066 typed_memcpy(dynamic->scissor.scissors,
1067 pCreateInfo->pViewportState->pScissors,
1068 pCreateInfo->pViewportState->scissorCount);
1069 }
1070 }
1071
1072 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1073 assert(pCreateInfo->pRasterizationState);
1074 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1075 }
1076
1077 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1078 assert(pCreateInfo->pRasterizationState);
1079 dynamic->depth_bias.bias =
1080 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1081 dynamic->depth_bias.clamp =
1082 pCreateInfo->pRasterizationState->depthBiasClamp;
1083 dynamic->depth_bias.slope =
1084 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1085 }
1086
1087 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1088 *
1089 * pColorBlendState is [...] NULL if the pipeline has rasterization
1090 * disabled or if the subpass of the render pass the pipeline is
1091 * created against does not use any color attachments.
1092 */
1093 bool uses_color_att = false;
1094 for (unsigned i = 0; i < subpass->color_count; ++i) {
1095 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1096 uses_color_att = true;
1097 break;
1098 }
1099 }
1100
1101 if (uses_color_att &&
1102 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1103 assert(pCreateInfo->pColorBlendState);
1104
1105 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1106 typed_memcpy(dynamic->blend_constants,
1107 pCreateInfo->pColorBlendState->blendConstants, 4);
1108 }
1109
1110 /* If there is no depthstencil attachment, then don't read
1111 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1112 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1113 * no need to override the depthstencil defaults in
1114 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1115 *
1116 * Section 9.2 of the Vulkan 1.0.15 spec says:
1117 *
1118 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1119 * disabled or if the subpass of the render pass the pipeline is created
1120 * against does not use a depth/stencil attachment.
1121 */
1122 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1123 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
1124 assert(pCreateInfo->pDepthStencilState);
1125
1126 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1127 dynamic->depth_bounds.min =
1128 pCreateInfo->pDepthStencilState->minDepthBounds;
1129 dynamic->depth_bounds.max =
1130 pCreateInfo->pDepthStencilState->maxDepthBounds;
1131 }
1132
1133 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1134 dynamic->stencil_compare_mask.front =
1135 pCreateInfo->pDepthStencilState->front.compareMask;
1136 dynamic->stencil_compare_mask.back =
1137 pCreateInfo->pDepthStencilState->back.compareMask;
1138 }
1139
1140 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1141 dynamic->stencil_write_mask.front =
1142 pCreateInfo->pDepthStencilState->front.writeMask;
1143 dynamic->stencil_write_mask.back =
1144 pCreateInfo->pDepthStencilState->back.writeMask;
1145 }
1146
1147 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1148 dynamic->stencil_reference.front =
1149 pCreateInfo->pDepthStencilState->front.reference;
1150 dynamic->stencil_reference.back =
1151 pCreateInfo->pDepthStencilState->back.reference;
1152 }
1153 }
1154
1155 pipeline->dynamic_state_mask = states;
1156 }
1157
1158 static void
1159 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1160 {
1161 #ifdef DEBUG
1162 struct anv_render_pass *renderpass = NULL;
1163 struct anv_subpass *subpass = NULL;
1164
1165 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1166 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1167 */
1168 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1169
1170 renderpass = anv_render_pass_from_handle(info->renderPass);
1171 assert(renderpass);
1172
1173 assert(info->subpass < renderpass->subpass_count);
1174 subpass = &renderpass->subpasses[info->subpass];
1175
1176 assert(info->stageCount >= 1);
1177 assert(info->pVertexInputState);
1178 assert(info->pInputAssemblyState);
1179 assert(info->pRasterizationState);
1180 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1181 assert(info->pViewportState);
1182 assert(info->pMultisampleState);
1183
1184 if (subpass && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
1185 assert(info->pDepthStencilState);
1186
1187 if (subpass && subpass->color_count > 0)
1188 assert(info->pColorBlendState);
1189 }
1190
1191 for (uint32_t i = 0; i < info->stageCount; ++i) {
1192 switch (info->pStages[i].stage) {
1193 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1194 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1195 assert(info->pTessellationState);
1196 break;
1197 default:
1198 break;
1199 }
1200 }
1201 #endif
1202 }
1203
1204 /**
1205 * Calculate the desired L3 partitioning based on the current state of the
1206 * pipeline. For now this simply returns the conservative defaults calculated
1207 * by get_default_l3_weights(), but we could probably do better by gathering
1208 * more statistics from the pipeline state (e.g. guess of expected URB usage
1209 * and bound surfaces), or by using feed-back from performance counters.
1210 */
1211 void
1212 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1213 {
1214 const struct gen_device_info *devinfo = &pipeline->device->info;
1215
1216 const struct gen_l3_weights w =
1217 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1218
1219 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1220 pipeline->urb.total_size =
1221 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1222 }
1223
1224 VkResult
1225 anv_pipeline_init(struct anv_pipeline *pipeline,
1226 struct anv_device *device,
1227 struct anv_pipeline_cache *cache,
1228 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1229 const VkAllocationCallbacks *alloc)
1230 {
1231 VkResult result;
1232
1233 anv_pipeline_validate_create_info(pCreateInfo);
1234
1235 if (alloc == NULL)
1236 alloc = &device->alloc;
1237
1238 pipeline->device = device;
1239
1240 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1241 assert(pCreateInfo->subpass < render_pass->subpass_count);
1242 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1243
1244 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1245
1246 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1247 if (result != VK_SUCCESS)
1248 return result;
1249
1250 pipeline->batch.alloc = alloc;
1251 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1252 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1253 pipeline->batch.relocs = &pipeline->batch_relocs;
1254 pipeline->batch.status = VK_SUCCESS;
1255
1256 copy_non_dynamic_state(pipeline, pCreateInfo);
1257 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1258 pCreateInfo->pRasterizationState->depthClampEnable;
1259
1260 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1261 pCreateInfo->pMultisampleState->sampleShadingEnable;
1262
1263 pipeline->needs_data_cache = false;
1264
1265 /* When we free the pipeline, we detect stages based on the NULL status
1266 * of various prog_data pointers. Make them NULL by default.
1267 */
1268 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1269
1270 pipeline->active_stages = 0;
1271
1272 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
1273 struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1274 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1275 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
1276 pStages[stage] = &pCreateInfo->pStages[i];
1277 modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
1278 }
1279
1280 if (modules[MESA_SHADER_VERTEX]) {
1281 result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
1282 modules[MESA_SHADER_VERTEX],
1283 pStages[MESA_SHADER_VERTEX]->pName,
1284 pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
1285 if (result != VK_SUCCESS)
1286 goto compile_fail;
1287 }
1288
1289 if (modules[MESA_SHADER_TESS_EVAL]) {
1290 anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo,
1291 modules[MESA_SHADER_TESS_CTRL],
1292 pStages[MESA_SHADER_TESS_CTRL]->pName,
1293 pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
1294 modules[MESA_SHADER_TESS_EVAL],
1295 pStages[MESA_SHADER_TESS_EVAL]->pName,
1296 pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo);
1297 }
1298
1299 if (modules[MESA_SHADER_GEOMETRY]) {
1300 result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
1301 modules[MESA_SHADER_GEOMETRY],
1302 pStages[MESA_SHADER_GEOMETRY]->pName,
1303 pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
1304 if (result != VK_SUCCESS)
1305 goto compile_fail;
1306 }
1307
1308 if (modules[MESA_SHADER_FRAGMENT]) {
1309 result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
1310 modules[MESA_SHADER_FRAGMENT],
1311 pStages[MESA_SHADER_FRAGMENT]->pName,
1312 pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
1313 if (result != VK_SUCCESS)
1314 goto compile_fail;
1315 }
1316
1317 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1318
1319 anv_pipeline_setup_l3_config(pipeline, false);
1320
1321 const VkPipelineVertexInputStateCreateInfo *vi_info =
1322 pCreateInfo->pVertexInputState;
1323
1324 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1325
1326 pipeline->vb_used = 0;
1327 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1328 const VkVertexInputAttributeDescription *desc =
1329 &vi_info->pVertexAttributeDescriptions[i];
1330
1331 if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1332 pipeline->vb_used |= 1 << desc->binding;
1333 }
1334
1335 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1336 const VkVertexInputBindingDescription *desc =
1337 &vi_info->pVertexBindingDescriptions[i];
1338
1339 pipeline->binding_stride[desc->binding] = desc->stride;
1340
1341 /* Step rate is programmed per vertex element (attribute), not
1342 * binding. Set up a map of which bindings step per instance, for
1343 * reference by vertex element setup. */
1344 switch (desc->inputRate) {
1345 default:
1346 case VK_VERTEX_INPUT_RATE_VERTEX:
1347 pipeline->instancing_enable[desc->binding] = false;
1348 break;
1349 case VK_VERTEX_INPUT_RATE_INSTANCE:
1350 pipeline->instancing_enable[desc->binding] = true;
1351 break;
1352 }
1353 }
1354
1355 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1356 pCreateInfo->pInputAssemblyState;
1357 const VkPipelineTessellationStateCreateInfo *tess_info =
1358 pCreateInfo->pTessellationState;
1359 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1360
1361 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1362 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1363 else
1364 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1365
1366 return VK_SUCCESS;
1367
1368 compile_fail:
1369 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1370 if (pipeline->shaders[s])
1371 anv_shader_bin_unref(device, pipeline->shaders[s]);
1372 }
1373
1374 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1375
1376 return result;
1377 }