64d4d93803cc4f4b828347590613404c751e2e24
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "anv_private.h"
34 #include "compiler/brw_nir.h"
35 #include "anv_nir.h"
36 #include "nir/nir_xfb_info.h"
37 #include "spirv/nir_spirv.h"
38 #include "vk_util.h"
39
40 /* Needed for SWIZZLE macros */
41 #include "program/prog_instruction.h"
42
43 // Shader functions
44
45 VkResult anv_CreateShaderModule(
46 VkDevice _device,
47 const VkShaderModuleCreateInfo* pCreateInfo,
48 const VkAllocationCallbacks* pAllocator,
49 VkShaderModule* pShaderModule)
50 {
51 ANV_FROM_HANDLE(anv_device, device, _device);
52 struct anv_shader_module *module;
53
54 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
55 assert(pCreateInfo->flags == 0);
56
57 module = vk_alloc2(&device->alloc, pAllocator,
58 sizeof(*module) + pCreateInfo->codeSize, 8,
59 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
60 if (module == NULL)
61 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
62
63 module->size = pCreateInfo->codeSize;
64 memcpy(module->data, pCreateInfo->pCode, module->size);
65
66 _mesa_sha1_compute(module->data, module->size, module->sha1);
67
68 *pShaderModule = anv_shader_module_to_handle(module);
69
70 return VK_SUCCESS;
71 }
72
73 void anv_DestroyShaderModule(
74 VkDevice _device,
75 VkShaderModule _module,
76 const VkAllocationCallbacks* pAllocator)
77 {
78 ANV_FROM_HANDLE(anv_device, device, _device);
79 ANV_FROM_HANDLE(anv_shader_module, module, _module);
80
81 if (!module)
82 return;
83
84 vk_free2(&device->alloc, pAllocator, module);
85 }
86
87 #define SPIR_V_MAGIC_NUMBER 0x07230203
88
89 static const uint64_t stage_to_debug[] = {
90 [MESA_SHADER_VERTEX] = DEBUG_VS,
91 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
92 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
93 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
94 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
95 [MESA_SHADER_COMPUTE] = DEBUG_CS,
96 };
97
98 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
99 * we can't do that yet because we don't have the ability to copy nir.
100 */
101 static nir_shader *
102 anv_shader_compile_to_nir(struct anv_device *device,
103 void *mem_ctx,
104 const struct anv_shader_module *module,
105 const char *entrypoint_name,
106 gl_shader_stage stage,
107 const VkSpecializationInfo *spec_info)
108 {
109 const struct anv_physical_device *pdevice =
110 &device->instance->physicalDevice;
111 const struct brw_compiler *compiler = pdevice->compiler;
112 const nir_shader_compiler_options *nir_options =
113 compiler->glsl_compiler_options[stage].NirOptions;
114
115 uint32_t *spirv = (uint32_t *) module->data;
116 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
117 assert(module->size % 4 == 0);
118
119 uint32_t num_spec_entries = 0;
120 struct nir_spirv_specialization *spec_entries = NULL;
121 if (spec_info && spec_info->mapEntryCount > 0) {
122 num_spec_entries = spec_info->mapEntryCount;
123 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
124 for (uint32_t i = 0; i < num_spec_entries; i++) {
125 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
126 const void *data = spec_info->pData + entry.offset;
127 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
128
129 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
130 if (spec_info->dataSize == 8)
131 spec_entries[i].data64 = *(const uint64_t *)data;
132 else
133 spec_entries[i].data32 = *(const uint32_t *)data;
134 }
135 }
136
137 struct spirv_to_nir_options spirv_options = {
138 .lower_workgroup_access_to_offsets = true,
139 .caps = {
140 .derivative_group = true,
141 .descriptor_array_dynamic_indexing = true,
142 .device_group = true,
143 .draw_parameters = true,
144 .float16 = pdevice->info.gen >= 8,
145 .float64 = pdevice->info.gen >= 8,
146 .geometry_streams = true,
147 .image_write_without_format = true,
148 .int8 = pdevice->info.gen >= 8,
149 .int16 = pdevice->info.gen >= 8,
150 .int64 = pdevice->info.gen >= 8,
151 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
152 .min_lod = true,
153 .multiview = true,
154 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
155 .post_depth_coverage = pdevice->info.gen >= 9,
156 .runtime_descriptor_array = true,
157 .shader_viewport_index_layer = true,
158 .stencil_export = pdevice->info.gen >= 9,
159 .storage_8bit = pdevice->info.gen >= 8,
160 .storage_16bit = pdevice->info.gen >= 8,
161 .subgroup_arithmetic = true,
162 .subgroup_basic = true,
163 .subgroup_ballot = true,
164 .subgroup_quad = true,
165 .subgroup_shuffle = true,
166 .subgroup_vote = true,
167 .tessellation = true,
168 .transform_feedback = pdevice->info.gen >= 8,
169 .variable_pointers = true,
170 },
171 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
172 .phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
173 .push_const_ptr_type = glsl_uint_type(),
174 .shared_ptr_type = glsl_uint_type(),
175 };
176
177 if (pdevice->has_a64_buffer_access) {
178 if (device->robust_buffer_access)
179 spirv_options.ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
180 else
181 spirv_options.ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1);
182 } else {
183 spirv_options.ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2);
184 }
185
186 nir_function *entry_point =
187 spirv_to_nir(spirv, module->size / 4,
188 spec_entries, num_spec_entries,
189 stage, entrypoint_name, &spirv_options, nir_options);
190 nir_shader *nir = entry_point->shader;
191 assert(nir->info.stage == stage);
192 nir_validate_shader(nir, "after spirv_to_nir");
193 ralloc_steal(mem_ctx, nir);
194
195 free(spec_entries);
196
197 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
198 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
199 gl_shader_stage_name(stage));
200 nir_print_shader(nir, stderr);
201 }
202
203 /* We have to lower away local constant initializers right before we
204 * inline functions. That way they get properly initialized at the top
205 * of the function and not at the top of its caller.
206 */
207 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
208 NIR_PASS_V(nir, nir_lower_returns);
209 NIR_PASS_V(nir, nir_inline_functions);
210 NIR_PASS_V(nir, nir_opt_deref);
211
212 /* Pick off the single entrypoint that we want */
213 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
214 if (func != entry_point)
215 exec_node_remove(&func->node);
216 }
217 assert(exec_list_length(&nir->functions) == 1);
218
219 /* Now that we've deleted all but the main function, we can go ahead and
220 * lower the rest of the constant initializers. We do this here so that
221 * nir_remove_dead_variables and split_per_member_structs below see the
222 * corresponding stores.
223 */
224 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
225
226 /* Split member structs. We do this before lower_io_to_temporaries so that
227 * it doesn't lower system values to temporaries by accident.
228 */
229 NIR_PASS_V(nir, nir_split_var_copies);
230 NIR_PASS_V(nir, nir_split_per_member_structs);
231
232 NIR_PASS_V(nir, nir_remove_dead_variables,
233 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
234
235 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
236 nir_address_format_64bit_global);
237
238 NIR_PASS_V(nir, nir_propagate_invariant);
239 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
240 entry_point->impl, true, false);
241
242 NIR_PASS_V(nir, nir_lower_frexp);
243
244 /* Vulkan uses the separate-shader linking model */
245 nir->info.separate_shader = true;
246
247 nir = brw_preprocess_nir(compiler, nir, NULL);
248
249 return nir;
250 }
251
252 void anv_DestroyPipeline(
253 VkDevice _device,
254 VkPipeline _pipeline,
255 const VkAllocationCallbacks* pAllocator)
256 {
257 ANV_FROM_HANDLE(anv_device, device, _device);
258 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
259
260 if (!pipeline)
261 return;
262
263 anv_reloc_list_finish(&pipeline->batch_relocs,
264 pAllocator ? pAllocator : &device->alloc);
265 if (pipeline->blend_state.map)
266 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
267
268 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
269 if (pipeline->shaders[s])
270 anv_shader_bin_unref(device, pipeline->shaders[s]);
271 }
272
273 vk_free2(&device->alloc, pAllocator, pipeline);
274 }
275
276 static const uint32_t vk_to_gen_primitive_type[] = {
277 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
278 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
279 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
280 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
281 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
282 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
283 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
284 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
285 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
286 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
287 };
288
289 static void
290 populate_sampler_prog_key(const struct gen_device_info *devinfo,
291 struct brw_sampler_prog_key_data *key)
292 {
293 /* Almost all multisampled textures are compressed. The only time when we
294 * don't compress a multisampled texture is for 16x MSAA with a surface
295 * width greater than 8k which is a bit of an edge case. Since the sampler
296 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
297 * to tell the compiler to always assume compression.
298 */
299 key->compressed_multisample_layout_mask = ~0;
300
301 /* SkyLake added support for 16x MSAA. With this came a new message for
302 * reading from a 16x MSAA surface with compression. The new message was
303 * needed because now the MCS data is 64 bits instead of 32 or lower as is
304 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
305 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
306 * so we can just use it unconditionally. This may not be quite as
307 * efficient but it saves us from recompiling.
308 */
309 if (devinfo->gen >= 9)
310 key->msaa_16 = ~0;
311
312 /* XXX: Handle texture swizzle on HSW- */
313 for (int i = 0; i < MAX_SAMPLERS; i++) {
314 /* Assume color sampler, no swizzling. (Works for BDW+) */
315 key->swizzles[i] = SWIZZLE_XYZW;
316 }
317 }
318
319 static void
320 populate_vs_prog_key(const struct gen_device_info *devinfo,
321 struct brw_vs_prog_key *key)
322 {
323 memset(key, 0, sizeof(*key));
324
325 populate_sampler_prog_key(devinfo, &key->tex);
326
327 /* XXX: Handle vertex input work-arounds */
328
329 /* XXX: Handle sampler_prog_key */
330 }
331
332 static void
333 populate_tcs_prog_key(const struct gen_device_info *devinfo,
334 unsigned input_vertices,
335 struct brw_tcs_prog_key *key)
336 {
337 memset(key, 0, sizeof(*key));
338
339 populate_sampler_prog_key(devinfo, &key->tex);
340
341 key->input_vertices = input_vertices;
342 }
343
344 static void
345 populate_tes_prog_key(const struct gen_device_info *devinfo,
346 struct brw_tes_prog_key *key)
347 {
348 memset(key, 0, sizeof(*key));
349
350 populate_sampler_prog_key(devinfo, &key->tex);
351 }
352
353 static void
354 populate_gs_prog_key(const struct gen_device_info *devinfo,
355 struct brw_gs_prog_key *key)
356 {
357 memset(key, 0, sizeof(*key));
358
359 populate_sampler_prog_key(devinfo, &key->tex);
360 }
361
362 static void
363 populate_wm_prog_key(const struct gen_device_info *devinfo,
364 const struct anv_subpass *subpass,
365 const VkPipelineMultisampleStateCreateInfo *ms_info,
366 struct brw_wm_prog_key *key)
367 {
368 memset(key, 0, sizeof(*key));
369
370 populate_sampler_prog_key(devinfo, &key->tex);
371
372 /* We set this to 0 here and set to the actual value before we call
373 * brw_compile_fs.
374 */
375 key->input_slots_valid = 0;
376
377 /* Vulkan doesn't specify a default */
378 key->high_quality_derivatives = false;
379
380 /* XXX Vulkan doesn't appear to specify */
381 key->clamp_fragment_color = false;
382
383 assert(subpass->color_count <= MAX_RTS);
384 for (uint32_t i = 0; i < subpass->color_count; i++) {
385 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
386 key->color_outputs_valid |= (1 << i);
387 }
388
389 key->nr_color_regions = util_bitcount(key->color_outputs_valid);
390
391 /* To reduce possible shader recompilations we would need to know if
392 * there is a SampleMask output variable to compute if we should emit
393 * code to workaround the issue that hardware disables alpha to coverage
394 * when there is SampleMask output.
395 */
396 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
397
398 /* Vulkan doesn't support fixed-function alpha test */
399 key->alpha_test_replicate_alpha = false;
400
401 if (ms_info) {
402 /* We should probably pull this out of the shader, but it's fairly
403 * harmless to compute it and then let dead-code take care of it.
404 */
405 if (ms_info->rasterizationSamples > 1) {
406 key->persample_interp =
407 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
408 key->multisample_fbo = true;
409 }
410
411 key->frag_coord_adds_sample_pos = ms_info->sampleShadingEnable;
412 }
413 }
414
415 static void
416 populate_cs_prog_key(const struct gen_device_info *devinfo,
417 struct brw_cs_prog_key *key)
418 {
419 memset(key, 0, sizeof(*key));
420
421 populate_sampler_prog_key(devinfo, &key->tex);
422 }
423
424 struct anv_pipeline_stage {
425 gl_shader_stage stage;
426
427 const struct anv_shader_module *module;
428 const char *entrypoint;
429 const VkSpecializationInfo *spec_info;
430
431 unsigned char shader_sha1[20];
432
433 union brw_any_prog_key key;
434
435 struct {
436 gl_shader_stage stage;
437 unsigned char sha1[20];
438 } cache_key;
439
440 nir_shader *nir;
441
442 struct anv_pipeline_binding surface_to_descriptor[256];
443 struct anv_pipeline_binding sampler_to_descriptor[256];
444 struct anv_pipeline_bind_map bind_map;
445
446 union brw_any_prog_data prog_data;
447
448 VkPipelineCreationFeedbackEXT feedback;
449 };
450
451 static void
452 anv_pipeline_hash_shader(const struct anv_shader_module *module,
453 const char *entrypoint,
454 gl_shader_stage stage,
455 const VkSpecializationInfo *spec_info,
456 unsigned char *sha1_out)
457 {
458 struct mesa_sha1 ctx;
459 _mesa_sha1_init(&ctx);
460
461 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
462 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
463 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
464 if (spec_info) {
465 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
466 spec_info->mapEntryCount *
467 sizeof(*spec_info->pMapEntries));
468 _mesa_sha1_update(&ctx, spec_info->pData,
469 spec_info->dataSize);
470 }
471
472 _mesa_sha1_final(&ctx, sha1_out);
473 }
474
475 static void
476 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
477 struct anv_pipeline_layout *layout,
478 struct anv_pipeline_stage *stages,
479 unsigned char *sha1_out)
480 {
481 struct mesa_sha1 ctx;
482 _mesa_sha1_init(&ctx);
483
484 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
485 sizeof(pipeline->subpass->view_mask));
486
487 if (layout)
488 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
489
490 const bool rba = pipeline->device->robust_buffer_access;
491 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
492
493 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
494 if (stages[s].entrypoint) {
495 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
496 sizeof(stages[s].shader_sha1));
497 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
498 }
499 }
500
501 _mesa_sha1_final(&ctx, sha1_out);
502 }
503
504 static void
505 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
506 struct anv_pipeline_layout *layout,
507 struct anv_pipeline_stage *stage,
508 unsigned char *sha1_out)
509 {
510 struct mesa_sha1 ctx;
511 _mesa_sha1_init(&ctx);
512
513 if (layout)
514 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
515
516 const bool rba = pipeline->device->robust_buffer_access;
517 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
518
519 _mesa_sha1_update(&ctx, stage->shader_sha1,
520 sizeof(stage->shader_sha1));
521 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
522
523 _mesa_sha1_final(&ctx, sha1_out);
524 }
525
526 static nir_shader *
527 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
528 struct anv_pipeline_cache *cache,
529 void *mem_ctx,
530 struct anv_pipeline_stage *stage)
531 {
532 const struct brw_compiler *compiler =
533 pipeline->device->instance->physicalDevice.compiler;
534 const nir_shader_compiler_options *nir_options =
535 compiler->glsl_compiler_options[stage->stage].NirOptions;
536 nir_shader *nir;
537
538 nir = anv_device_search_for_nir(pipeline->device, cache,
539 nir_options,
540 stage->shader_sha1,
541 mem_ctx);
542 if (nir) {
543 assert(nir->info.stage == stage->stage);
544 return nir;
545 }
546
547 nir = anv_shader_compile_to_nir(pipeline->device,
548 mem_ctx,
549 stage->module,
550 stage->entrypoint,
551 stage->stage,
552 stage->spec_info);
553 if (nir) {
554 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
555 return nir;
556 }
557
558 return NULL;
559 }
560
561 static void
562 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
563 void *mem_ctx,
564 struct anv_pipeline_stage *stage,
565 struct anv_pipeline_layout *layout)
566 {
567 const struct anv_physical_device *pdevice =
568 &pipeline->device->instance->physicalDevice;
569 const struct brw_compiler *compiler = pdevice->compiler;
570
571 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
572 nir_shader *nir = stage->nir;
573
574 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
575 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
576 NIR_PASS_V(nir, anv_nir_lower_input_attachments);
577 }
578
579 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
580
581 NIR_PASS_V(nir, anv_nir_lower_push_constants);
582
583 if (nir->info.stage != MESA_SHADER_COMPUTE)
584 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
585
586 if (nir->info.stage == MESA_SHADER_COMPUTE)
587 prog_data->total_shared = nir->num_shared;
588
589 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
590
591 if (nir->num_uniforms > 0) {
592 assert(prog_data->nr_params == 0);
593
594 /* If the shader uses any push constants at all, we'll just give
595 * them the maximum possible number
596 */
597 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
598 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
599 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
600 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
601
602 /* We now set the param values to be offsets into a
603 * anv_push_constant_data structure. Since the compiler doesn't
604 * actually dereference any of the gl_constant_value pointers in the
605 * params array, it doesn't really matter what we put here.
606 */
607 struct anv_push_constants *null_data = NULL;
608 /* Fill out the push constants section of the param array */
609 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
610 prog_data->param[i] = ANV_PARAM_PUSH(
611 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
612 }
613 }
614
615 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
616 pipeline->needs_data_cache = true;
617
618 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
619
620 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
621 if (layout) {
622 anv_nir_apply_pipeline_layout(pdevice,
623 pipeline->device->robust_buffer_access,
624 layout, nir, prog_data,
625 &stage->bind_map);
626
627 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
628 nir_address_format_32bit_index_offset);
629
630 nir_address_format ssbo_address_format;
631 if (pdevice->has_a64_buffer_access) {
632 if (pipeline->device->robust_buffer_access)
633 ssbo_address_format = nir_address_format_64bit_bounded_global;
634 else
635 ssbo_address_format = nir_address_format_64bit_global;
636 } else {
637 ssbo_address_format = nir_address_format_32bit_index_offset;
638 }
639 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
640 ssbo_address_format);
641
642 NIR_PASS_V(nir, nir_opt_constant_folding);
643
644 /* We don't support non-uniform UBOs and non-uniform SSBO access is
645 * handled naturally by falling back to A64 messages.
646 */
647 NIR_PASS_V(nir, nir_lower_non_uniform_access,
648 nir_lower_non_uniform_texture_access |
649 nir_lower_non_uniform_image_access);
650 }
651
652 if (nir->info.stage != MESA_SHADER_COMPUTE)
653 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
654
655 assert(nir->num_uniforms == prog_data->nr_params * 4);
656
657 stage->nir = nir;
658 }
659
660 static void
661 anv_pipeline_link_vs(const struct brw_compiler *compiler,
662 struct anv_pipeline_stage *vs_stage,
663 struct anv_pipeline_stage *next_stage)
664 {
665 if (next_stage)
666 brw_nir_link_shaders(compiler, &vs_stage->nir, &next_stage->nir);
667 }
668
669 static const unsigned *
670 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
671 void *mem_ctx,
672 struct anv_device *device,
673 struct anv_pipeline_stage *vs_stage)
674 {
675 brw_compute_vue_map(compiler->devinfo,
676 &vs_stage->prog_data.vs.base.vue_map,
677 vs_stage->nir->info.outputs_written,
678 vs_stage->nir->info.separate_shader);
679
680 return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs,
681 &vs_stage->prog_data.vs, vs_stage->nir, -1, NULL);
682 }
683
684 static void
685 merge_tess_info(struct shader_info *tes_info,
686 const struct shader_info *tcs_info)
687 {
688 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
689 *
690 * "PointMode. Controls generation of points rather than triangles
691 * or lines. This functionality defaults to disabled, and is
692 * enabled if either shader stage includes the execution mode.
693 *
694 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
695 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
696 * and OutputVertices, it says:
697 *
698 * "One mode must be set in at least one of the tessellation
699 * shader stages."
700 *
701 * So, the fields can be set in either the TCS or TES, but they must
702 * agree if set in both. Our backend looks at TES, so bitwise-or in
703 * the values from the TCS.
704 */
705 assert(tcs_info->tess.tcs_vertices_out == 0 ||
706 tes_info->tess.tcs_vertices_out == 0 ||
707 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
708 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
709
710 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
711 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
712 tcs_info->tess.spacing == tes_info->tess.spacing);
713 tes_info->tess.spacing |= tcs_info->tess.spacing;
714
715 assert(tcs_info->tess.primitive_mode == 0 ||
716 tes_info->tess.primitive_mode == 0 ||
717 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
718 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
719 tes_info->tess.ccw |= tcs_info->tess.ccw;
720 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
721 }
722
723 static void
724 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
725 struct anv_pipeline_stage *tcs_stage,
726 struct anv_pipeline_stage *tes_stage)
727 {
728 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
729
730 brw_nir_link_shaders(compiler, &tcs_stage->nir, &tes_stage->nir);
731
732 nir_lower_patch_vertices(tes_stage->nir,
733 tcs_stage->nir->info.tess.tcs_vertices_out,
734 NULL);
735
736 /* Copy TCS info into the TES info */
737 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
738
739 /* Whacking the key after cache lookup is a bit sketchy, but all of
740 * this comes from the SPIR-V, which is part of the hash used for the
741 * pipeline cache. So it should be safe.
742 */
743 tcs_stage->key.tcs.tes_primitive_mode =
744 tes_stage->nir->info.tess.primitive_mode;
745 tcs_stage->key.tcs.quads_workaround =
746 compiler->devinfo->gen < 9 &&
747 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
748 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
749 }
750
751 static const unsigned *
752 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
753 void *mem_ctx,
754 struct anv_device *device,
755 struct anv_pipeline_stage *tcs_stage,
756 struct anv_pipeline_stage *prev_stage)
757 {
758 tcs_stage->key.tcs.outputs_written =
759 tcs_stage->nir->info.outputs_written;
760 tcs_stage->key.tcs.patch_outputs_written =
761 tcs_stage->nir->info.patch_outputs_written;
762
763 return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs,
764 &tcs_stage->prog_data.tcs, tcs_stage->nir,
765 -1, NULL);
766 }
767
768 static void
769 anv_pipeline_link_tes(const struct brw_compiler *compiler,
770 struct anv_pipeline_stage *tes_stage,
771 struct anv_pipeline_stage *next_stage)
772 {
773 if (next_stage)
774 brw_nir_link_shaders(compiler, &tes_stage->nir, &next_stage->nir);
775 }
776
777 static const unsigned *
778 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
779 void *mem_ctx,
780 struct anv_device *device,
781 struct anv_pipeline_stage *tes_stage,
782 struct anv_pipeline_stage *tcs_stage)
783 {
784 tes_stage->key.tes.inputs_read =
785 tcs_stage->nir->info.outputs_written;
786 tes_stage->key.tes.patch_inputs_read =
787 tcs_stage->nir->info.patch_outputs_written;
788
789 return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes,
790 &tcs_stage->prog_data.tcs.base.vue_map,
791 &tes_stage->prog_data.tes, tes_stage->nir,
792 NULL, -1, NULL);
793 }
794
795 static void
796 anv_pipeline_link_gs(const struct brw_compiler *compiler,
797 struct anv_pipeline_stage *gs_stage,
798 struct anv_pipeline_stage *next_stage)
799 {
800 if (next_stage)
801 brw_nir_link_shaders(compiler, &gs_stage->nir, &next_stage->nir);
802 }
803
804 static const unsigned *
805 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
806 void *mem_ctx,
807 struct anv_device *device,
808 struct anv_pipeline_stage *gs_stage,
809 struct anv_pipeline_stage *prev_stage)
810 {
811 brw_compute_vue_map(compiler->devinfo,
812 &gs_stage->prog_data.gs.base.vue_map,
813 gs_stage->nir->info.outputs_written,
814 gs_stage->nir->info.separate_shader);
815
816 return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs,
817 &gs_stage->prog_data.gs, gs_stage->nir,
818 NULL, -1, NULL);
819 }
820
821 static void
822 anv_pipeline_link_fs(const struct brw_compiler *compiler,
823 struct anv_pipeline_stage *stage)
824 {
825 unsigned num_rts = 0;
826 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
827 struct anv_pipeline_binding rt_bindings[max_rt];
828 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
829 int rt_to_bindings[max_rt];
830 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
831 bool rt_used[max_rt];
832 memset(rt_used, 0, sizeof(rt_used));
833
834 /* Flag used render targets */
835 nir_foreach_variable_safe(var, &stage->nir->outputs) {
836 if (var->data.location < FRAG_RESULT_DATA0)
837 continue;
838
839 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
840 /* Unused or out-of-bounds */
841 if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid & (1 << rt)))
842 continue;
843
844 const unsigned array_len =
845 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
846 assert(rt + array_len <= max_rt);
847
848 for (unsigned i = 0; i < array_len; i++)
849 rt_used[rt + i] = true;
850 }
851
852 /* Set new, compacted, location */
853 for (unsigned i = 0; i < max_rt; i++) {
854 if (!rt_used[i])
855 continue;
856
857 rt_to_bindings[i] = num_rts;
858 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
859 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
860 .binding = 0,
861 .index = i,
862 };
863 num_rts++;
864 }
865
866 bool deleted_output = false;
867 nir_foreach_variable_safe(var, &stage->nir->outputs) {
868 if (var->data.location < FRAG_RESULT_DATA0)
869 continue;
870
871 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
872 if (rt >= MAX_RTS ||
873 !(stage->key.wm.color_outputs_valid & (1 << rt))) {
874 /* Unused or out-of-bounds, throw it away */
875 deleted_output = true;
876 var->data.mode = nir_var_function_temp;
877 exec_node_remove(&var->node);
878 exec_list_push_tail(&impl->locals, &var->node);
879 continue;
880 }
881
882 /* Give it the new location */
883 assert(rt_to_bindings[rt] != -1);
884 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
885 }
886
887 if (deleted_output)
888 nir_fixup_deref_modes(stage->nir);
889
890 if (num_rts == 0) {
891 /* If we have no render targets, we need a null render target */
892 rt_bindings[0] = (struct anv_pipeline_binding) {
893 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
894 .binding = 0,
895 .index = UINT32_MAX,
896 };
897 num_rts = 1;
898 }
899
900 /* Now that we've determined the actual number of render targets, adjust
901 * the key accordingly.
902 */
903 stage->key.wm.nr_color_regions = num_rts;
904 stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
905
906 assert(num_rts <= max_rt);
907 assert(stage->bind_map.surface_count == 0);
908 typed_memcpy(stage->bind_map.surface_to_descriptor,
909 rt_bindings, num_rts);
910 stage->bind_map.surface_count += num_rts;
911 }
912
913 static const unsigned *
914 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
915 void *mem_ctx,
916 struct anv_device *device,
917 struct anv_pipeline_stage *fs_stage,
918 struct anv_pipeline_stage *prev_stage)
919 {
920 /* TODO: we could set this to 0 based on the information in nir_shader, but
921 * we need this before we call spirv_to_nir.
922 */
923 assert(prev_stage);
924 fs_stage->key.wm.input_slots_valid =
925 prev_stage->prog_data.vue.vue_map.slots_valid;
926
927 const unsigned *code =
928 brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm,
929 &fs_stage->prog_data.wm, fs_stage->nir,
930 NULL, -1, -1, -1, true, false, NULL, NULL);
931
932 if (fs_stage->key.wm.nr_color_regions == 0 &&
933 !fs_stage->prog_data.wm.has_side_effects &&
934 !fs_stage->prog_data.wm.uses_kill &&
935 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
936 !fs_stage->prog_data.wm.computed_stencil) {
937 /* This fragment shader has no outputs and no side effects. Go ahead
938 * and return the code pointer so we don't accidentally think the
939 * compile failed but zero out prog_data which will set program_size to
940 * zero and disable the stage.
941 */
942 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
943 }
944
945 return code;
946 }
947
948 static VkResult
949 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
950 struct anv_pipeline_cache *cache,
951 const VkGraphicsPipelineCreateInfo *info)
952 {
953 VkPipelineCreationFeedbackEXT pipeline_feedback = {
954 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
955 };
956 int64_t pipeline_start = os_time_get_nano();
957
958 const struct brw_compiler *compiler =
959 pipeline->device->instance->physicalDevice.compiler;
960 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
961
962 pipeline->active_stages = 0;
963
964 VkResult result;
965 for (uint32_t i = 0; i < info->stageCount; i++) {
966 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
967 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
968
969 pipeline->active_stages |= sinfo->stage;
970
971 int64_t stage_start = os_time_get_nano();
972
973 stages[stage].stage = stage;
974 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
975 stages[stage].entrypoint = sinfo->pName;
976 stages[stage].spec_info = sinfo->pSpecializationInfo;
977 anv_pipeline_hash_shader(stages[stage].module,
978 stages[stage].entrypoint,
979 stage,
980 stages[stage].spec_info,
981 stages[stage].shader_sha1);
982
983 const struct gen_device_info *devinfo = &pipeline->device->info;
984 switch (stage) {
985 case MESA_SHADER_VERTEX:
986 populate_vs_prog_key(devinfo, &stages[stage].key.vs);
987 break;
988 case MESA_SHADER_TESS_CTRL:
989 populate_tcs_prog_key(devinfo,
990 info->pTessellationState->patchControlPoints,
991 &stages[stage].key.tcs);
992 break;
993 case MESA_SHADER_TESS_EVAL:
994 populate_tes_prog_key(devinfo, &stages[stage].key.tes);
995 break;
996 case MESA_SHADER_GEOMETRY:
997 populate_gs_prog_key(devinfo, &stages[stage].key.gs);
998 break;
999 case MESA_SHADER_FRAGMENT:
1000 populate_wm_prog_key(devinfo, pipeline->subpass,
1001 info->pMultisampleState,
1002 &stages[stage].key.wm);
1003 break;
1004 default:
1005 unreachable("Invalid graphics shader stage");
1006 }
1007
1008 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1009 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1010 }
1011
1012 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1013 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1014
1015 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1016
1017 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1018
1019 unsigned char sha1[20];
1020 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1021
1022 unsigned found = 0;
1023 unsigned cache_hits = 0;
1024 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1025 if (!stages[s].entrypoint)
1026 continue;
1027
1028 int64_t stage_start = os_time_get_nano();
1029
1030 stages[s].cache_key.stage = s;
1031 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1032
1033 bool cache_hit;
1034 struct anv_shader_bin *bin =
1035 anv_device_search_for_kernel(pipeline->device, cache,
1036 &stages[s].cache_key,
1037 sizeof(stages[s].cache_key), &cache_hit);
1038 if (bin) {
1039 found++;
1040 pipeline->shaders[s] = bin;
1041 }
1042
1043 if (cache_hit) {
1044 cache_hits++;
1045 stages[s].feedback.flags |=
1046 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1047 }
1048 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1049 }
1050
1051 if (found == __builtin_popcount(pipeline->active_stages)) {
1052 if (cache_hits == found) {
1053 pipeline_feedback.flags |=
1054 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1055 }
1056 /* We found all our shaders in the cache. We're done. */
1057 goto done;
1058 } else if (found > 0) {
1059 /* We found some but not all of our shaders. This shouldn't happen
1060 * most of the time but it can if we have a partially populated
1061 * pipeline cache.
1062 */
1063 assert(found < __builtin_popcount(pipeline->active_stages));
1064
1065 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1066 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1067 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1068 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1069 (uint64_t)(uintptr_t)cache,
1070 0, 0, "anv",
1071 "Found a partial pipeline in the cache. This is "
1072 "most likely caused by an incomplete pipeline cache "
1073 "import or export");
1074
1075 /* We're going to have to recompile anyway, so just throw away our
1076 * references to the shaders in the cache. We'll get them out of the
1077 * cache again as part of the compilation process.
1078 */
1079 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1080 stages[s].feedback.flags = 0;
1081 if (pipeline->shaders[s]) {
1082 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1083 pipeline->shaders[s] = NULL;
1084 }
1085 }
1086 }
1087
1088 void *pipeline_ctx = ralloc_context(NULL);
1089
1090 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1091 if (!stages[s].entrypoint)
1092 continue;
1093
1094 int64_t stage_start = os_time_get_nano();
1095
1096 assert(stages[s].stage == s);
1097 assert(pipeline->shaders[s] == NULL);
1098
1099 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1100 .surface_to_descriptor = stages[s].surface_to_descriptor,
1101 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1102 };
1103
1104 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1105 pipeline_ctx,
1106 &stages[s]);
1107 if (stages[s].nir == NULL) {
1108 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1109 goto fail;
1110 }
1111
1112 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1113 }
1114
1115 /* Walk backwards to link */
1116 struct anv_pipeline_stage *next_stage = NULL;
1117 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1118 if (!stages[s].entrypoint)
1119 continue;
1120
1121 switch (s) {
1122 case MESA_SHADER_VERTEX:
1123 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1124 break;
1125 case MESA_SHADER_TESS_CTRL:
1126 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1127 break;
1128 case MESA_SHADER_TESS_EVAL:
1129 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1130 break;
1131 case MESA_SHADER_GEOMETRY:
1132 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1133 break;
1134 case MESA_SHADER_FRAGMENT:
1135 anv_pipeline_link_fs(compiler, &stages[s]);
1136 break;
1137 default:
1138 unreachable("Invalid graphics shader stage");
1139 }
1140
1141 next_stage = &stages[s];
1142 }
1143
1144 struct anv_pipeline_stage *prev_stage = NULL;
1145 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1146 if (!stages[s].entrypoint)
1147 continue;
1148
1149 int64_t stage_start = os_time_get_nano();
1150
1151 void *stage_ctx = ralloc_context(NULL);
1152
1153 nir_xfb_info *xfb_info = NULL;
1154 if (s == MESA_SHADER_VERTEX ||
1155 s == MESA_SHADER_TESS_EVAL ||
1156 s == MESA_SHADER_GEOMETRY)
1157 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1158
1159 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1160
1161 const unsigned *code;
1162 switch (s) {
1163 case MESA_SHADER_VERTEX:
1164 code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1165 &stages[s]);
1166 break;
1167 case MESA_SHADER_TESS_CTRL:
1168 code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1169 &stages[s], prev_stage);
1170 break;
1171 case MESA_SHADER_TESS_EVAL:
1172 code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1173 &stages[s], prev_stage);
1174 break;
1175 case MESA_SHADER_GEOMETRY:
1176 code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1177 &stages[s], prev_stage);
1178 break;
1179 case MESA_SHADER_FRAGMENT:
1180 code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1181 &stages[s], prev_stage);
1182 break;
1183 default:
1184 unreachable("Invalid graphics shader stage");
1185 }
1186 if (code == NULL) {
1187 ralloc_free(stage_ctx);
1188 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1189 goto fail;
1190 }
1191
1192 struct anv_shader_bin *bin =
1193 anv_device_upload_kernel(pipeline->device, cache,
1194 &stages[s].cache_key,
1195 sizeof(stages[s].cache_key),
1196 code, stages[s].prog_data.base.program_size,
1197 stages[s].nir->constant_data,
1198 stages[s].nir->constant_data_size,
1199 &stages[s].prog_data.base,
1200 brw_prog_data_size(s),
1201 xfb_info, &stages[s].bind_map);
1202 if (!bin) {
1203 ralloc_free(stage_ctx);
1204 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1205 goto fail;
1206 }
1207
1208 pipeline->shaders[s] = bin;
1209 ralloc_free(stage_ctx);
1210
1211 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1212
1213 prev_stage = &stages[s];
1214 }
1215
1216 ralloc_free(pipeline_ctx);
1217
1218 done:
1219
1220 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1221 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1222 /* This can happen if we decided to implicitly disable the fragment
1223 * shader. See anv_pipeline_compile_fs().
1224 */
1225 anv_shader_bin_unref(pipeline->device,
1226 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1227 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1228 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1229 }
1230
1231 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1232
1233 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1234 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1235 if (create_feedback) {
1236 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1237
1238 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1239 for (uint32_t i = 0; i < info->stageCount; i++) {
1240 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1241 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1242 }
1243 }
1244
1245 return VK_SUCCESS;
1246
1247 fail:
1248 ralloc_free(pipeline_ctx);
1249
1250 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1251 if (pipeline->shaders[s])
1252 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1253 }
1254
1255 return result;
1256 }
1257
1258 VkResult
1259 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1260 struct anv_pipeline_cache *cache,
1261 const VkComputePipelineCreateInfo *info,
1262 const struct anv_shader_module *module,
1263 const char *entrypoint,
1264 const VkSpecializationInfo *spec_info)
1265 {
1266 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1267 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1268 };
1269 int64_t pipeline_start = os_time_get_nano();
1270
1271 const struct brw_compiler *compiler =
1272 pipeline->device->instance->physicalDevice.compiler;
1273
1274 struct anv_pipeline_stage stage = {
1275 .stage = MESA_SHADER_COMPUTE,
1276 .module = module,
1277 .entrypoint = entrypoint,
1278 .spec_info = spec_info,
1279 .cache_key = {
1280 .stage = MESA_SHADER_COMPUTE,
1281 },
1282 .feedback = {
1283 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1284 },
1285 };
1286 anv_pipeline_hash_shader(stage.module,
1287 stage.entrypoint,
1288 MESA_SHADER_COMPUTE,
1289 stage.spec_info,
1290 stage.shader_sha1);
1291
1292 struct anv_shader_bin *bin = NULL;
1293
1294 populate_cs_prog_key(&pipeline->device->info, &stage.key.cs);
1295
1296 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1297
1298 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1299 bool cache_hit;
1300 bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
1301 sizeof(stage.cache_key), &cache_hit);
1302
1303 if (bin == NULL) {
1304 int64_t stage_start = os_time_get_nano();
1305
1306 stage.bind_map = (struct anv_pipeline_bind_map) {
1307 .surface_to_descriptor = stage.surface_to_descriptor,
1308 .sampler_to_descriptor = stage.sampler_to_descriptor
1309 };
1310
1311 /* Set up a binding for the gl_NumWorkGroups */
1312 stage.bind_map.surface_count = 1;
1313 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1314 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1315 };
1316
1317 void *mem_ctx = ralloc_context(NULL);
1318
1319 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1320 if (stage.nir == NULL) {
1321 ralloc_free(mem_ctx);
1322 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1323 }
1324
1325 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1326
1327 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
1328 &stage.prog_data.cs);
1329
1330 const unsigned *shader_code =
1331 brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs,
1332 &stage.prog_data.cs, stage.nir, -1, NULL);
1333 if (shader_code == NULL) {
1334 ralloc_free(mem_ctx);
1335 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1336 }
1337
1338 const unsigned code_size = stage.prog_data.base.program_size;
1339 bin = anv_device_upload_kernel(pipeline->device, cache,
1340 &stage.cache_key, sizeof(stage.cache_key),
1341 shader_code, code_size,
1342 stage.nir->constant_data,
1343 stage.nir->constant_data_size,
1344 &stage.prog_data.base,
1345 sizeof(stage.prog_data.cs),
1346 NULL, &stage.bind_map);
1347 if (!bin) {
1348 ralloc_free(mem_ctx);
1349 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1350 }
1351
1352 ralloc_free(mem_ctx);
1353
1354 stage.feedback.duration = os_time_get_nano() - stage_start;
1355 }
1356
1357 if (cache_hit) {
1358 stage.feedback.flags |=
1359 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1360 pipeline_feedback.flags |=
1361 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1362 }
1363 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1364
1365 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1366 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1367 if (create_feedback) {
1368 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1369
1370 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1371 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1372 }
1373
1374 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1375 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1376
1377 return VK_SUCCESS;
1378 }
1379
1380 /**
1381 * Copy pipeline state not marked as dynamic.
1382 * Dynamic state is pipeline state which hasn't been provided at pipeline
1383 * creation time, but is dynamically provided afterwards using various
1384 * vkCmdSet* functions.
1385 *
1386 * The set of state considered "non_dynamic" is determined by the pieces of
1387 * state that have their corresponding VkDynamicState enums omitted from
1388 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1389 *
1390 * @param[out] pipeline Destination non_dynamic state.
1391 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1392 */
1393 static void
1394 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1395 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1396 {
1397 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1398 struct anv_subpass *subpass = pipeline->subpass;
1399
1400 pipeline->dynamic_state = default_dynamic_state;
1401
1402 if (pCreateInfo->pDynamicState) {
1403 /* Remove all of the states that are marked as dynamic */
1404 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1405 for (uint32_t s = 0; s < count; s++)
1406 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1407 }
1408
1409 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1410
1411 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1412 *
1413 * pViewportState is [...] NULL if the pipeline
1414 * has rasterization disabled.
1415 */
1416 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1417 assert(pCreateInfo->pViewportState);
1418
1419 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1420 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1421 typed_memcpy(dynamic->viewport.viewports,
1422 pCreateInfo->pViewportState->pViewports,
1423 pCreateInfo->pViewportState->viewportCount);
1424 }
1425
1426 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1427 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1428 typed_memcpy(dynamic->scissor.scissors,
1429 pCreateInfo->pViewportState->pScissors,
1430 pCreateInfo->pViewportState->scissorCount);
1431 }
1432 }
1433
1434 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1435 assert(pCreateInfo->pRasterizationState);
1436 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1437 }
1438
1439 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1440 assert(pCreateInfo->pRasterizationState);
1441 dynamic->depth_bias.bias =
1442 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1443 dynamic->depth_bias.clamp =
1444 pCreateInfo->pRasterizationState->depthBiasClamp;
1445 dynamic->depth_bias.slope =
1446 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1447 }
1448
1449 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1450 *
1451 * pColorBlendState is [...] NULL if the pipeline has rasterization
1452 * disabled or if the subpass of the render pass the pipeline is
1453 * created against does not use any color attachments.
1454 */
1455 bool uses_color_att = false;
1456 for (unsigned i = 0; i < subpass->color_count; ++i) {
1457 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1458 uses_color_att = true;
1459 break;
1460 }
1461 }
1462
1463 if (uses_color_att &&
1464 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1465 assert(pCreateInfo->pColorBlendState);
1466
1467 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1468 typed_memcpy(dynamic->blend_constants,
1469 pCreateInfo->pColorBlendState->blendConstants, 4);
1470 }
1471
1472 /* If there is no depthstencil attachment, then don't read
1473 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1474 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1475 * no need to override the depthstencil defaults in
1476 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1477 *
1478 * Section 9.2 of the Vulkan 1.0.15 spec says:
1479 *
1480 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1481 * disabled or if the subpass of the render pass the pipeline is created
1482 * against does not use a depth/stencil attachment.
1483 */
1484 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1485 subpass->depth_stencil_attachment) {
1486 assert(pCreateInfo->pDepthStencilState);
1487
1488 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1489 dynamic->depth_bounds.min =
1490 pCreateInfo->pDepthStencilState->minDepthBounds;
1491 dynamic->depth_bounds.max =
1492 pCreateInfo->pDepthStencilState->maxDepthBounds;
1493 }
1494
1495 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1496 dynamic->stencil_compare_mask.front =
1497 pCreateInfo->pDepthStencilState->front.compareMask;
1498 dynamic->stencil_compare_mask.back =
1499 pCreateInfo->pDepthStencilState->back.compareMask;
1500 }
1501
1502 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1503 dynamic->stencil_write_mask.front =
1504 pCreateInfo->pDepthStencilState->front.writeMask;
1505 dynamic->stencil_write_mask.back =
1506 pCreateInfo->pDepthStencilState->back.writeMask;
1507 }
1508
1509 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1510 dynamic->stencil_reference.front =
1511 pCreateInfo->pDepthStencilState->front.reference;
1512 dynamic->stencil_reference.back =
1513 pCreateInfo->pDepthStencilState->back.reference;
1514 }
1515 }
1516
1517 pipeline->dynamic_state_mask = states;
1518 }
1519
1520 static void
1521 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1522 {
1523 #ifdef DEBUG
1524 struct anv_render_pass *renderpass = NULL;
1525 struct anv_subpass *subpass = NULL;
1526
1527 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1528 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1529 */
1530 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1531
1532 renderpass = anv_render_pass_from_handle(info->renderPass);
1533 assert(renderpass);
1534
1535 assert(info->subpass < renderpass->subpass_count);
1536 subpass = &renderpass->subpasses[info->subpass];
1537
1538 assert(info->stageCount >= 1);
1539 assert(info->pVertexInputState);
1540 assert(info->pInputAssemblyState);
1541 assert(info->pRasterizationState);
1542 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1543 assert(info->pViewportState);
1544 assert(info->pMultisampleState);
1545
1546 if (subpass && subpass->depth_stencil_attachment)
1547 assert(info->pDepthStencilState);
1548
1549 if (subpass && subpass->color_count > 0) {
1550 bool all_color_unused = true;
1551 for (int i = 0; i < subpass->color_count; i++) {
1552 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1553 all_color_unused = false;
1554 }
1555 /* pColorBlendState is ignored if the pipeline has rasterization
1556 * disabled or if the subpass of the render pass the pipeline is
1557 * created against does not use any color attachments.
1558 */
1559 assert(info->pColorBlendState || all_color_unused);
1560 }
1561 }
1562
1563 for (uint32_t i = 0; i < info->stageCount; ++i) {
1564 switch (info->pStages[i].stage) {
1565 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1566 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1567 assert(info->pTessellationState);
1568 break;
1569 default:
1570 break;
1571 }
1572 }
1573 #endif
1574 }
1575
1576 /**
1577 * Calculate the desired L3 partitioning based on the current state of the
1578 * pipeline. For now this simply returns the conservative defaults calculated
1579 * by get_default_l3_weights(), but we could probably do better by gathering
1580 * more statistics from the pipeline state (e.g. guess of expected URB usage
1581 * and bound surfaces), or by using feed-back from performance counters.
1582 */
1583 void
1584 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1585 {
1586 const struct gen_device_info *devinfo = &pipeline->device->info;
1587
1588 const struct gen_l3_weights w =
1589 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1590
1591 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1592 pipeline->urb.total_size =
1593 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1594 }
1595
1596 VkResult
1597 anv_pipeline_init(struct anv_pipeline *pipeline,
1598 struct anv_device *device,
1599 struct anv_pipeline_cache *cache,
1600 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1601 const VkAllocationCallbacks *alloc)
1602 {
1603 VkResult result;
1604
1605 anv_pipeline_validate_create_info(pCreateInfo);
1606
1607 if (alloc == NULL)
1608 alloc = &device->alloc;
1609
1610 pipeline->device = device;
1611
1612 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1613 assert(pCreateInfo->subpass < render_pass->subpass_count);
1614 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1615
1616 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1617 if (result != VK_SUCCESS)
1618 return result;
1619
1620 pipeline->batch.alloc = alloc;
1621 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1622 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1623 pipeline->batch.relocs = &pipeline->batch_relocs;
1624 pipeline->batch.status = VK_SUCCESS;
1625
1626 copy_non_dynamic_state(pipeline, pCreateInfo);
1627 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1628 pCreateInfo->pRasterizationState->depthClampEnable;
1629
1630 /* Previously we enabled depth clipping when !depthClampEnable.
1631 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1632 * clipping info is available, use its enable value to determine clipping,
1633 * otherwise fallback to the previous !depthClampEnable logic.
1634 */
1635 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1636 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1637 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1638 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1639
1640 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1641 pCreateInfo->pMultisampleState->sampleShadingEnable;
1642
1643 pipeline->needs_data_cache = false;
1644
1645 /* When we free the pipeline, we detect stages based on the NULL status
1646 * of various prog_data pointers. Make them NULL by default.
1647 */
1648 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1649
1650 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1651 if (result != VK_SUCCESS) {
1652 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1653 return result;
1654 }
1655
1656 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1657
1658 anv_pipeline_setup_l3_config(pipeline, false);
1659
1660 const VkPipelineVertexInputStateCreateInfo *vi_info =
1661 pCreateInfo->pVertexInputState;
1662
1663 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1664
1665 pipeline->vb_used = 0;
1666 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1667 const VkVertexInputAttributeDescription *desc =
1668 &vi_info->pVertexAttributeDescriptions[i];
1669
1670 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1671 pipeline->vb_used |= 1 << desc->binding;
1672 }
1673
1674 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1675 const VkVertexInputBindingDescription *desc =
1676 &vi_info->pVertexBindingDescriptions[i];
1677
1678 pipeline->vb[desc->binding].stride = desc->stride;
1679
1680 /* Step rate is programmed per vertex element (attribute), not
1681 * binding. Set up a map of which bindings step per instance, for
1682 * reference by vertex element setup. */
1683 switch (desc->inputRate) {
1684 default:
1685 case VK_VERTEX_INPUT_RATE_VERTEX:
1686 pipeline->vb[desc->binding].instanced = false;
1687 break;
1688 case VK_VERTEX_INPUT_RATE_INSTANCE:
1689 pipeline->vb[desc->binding].instanced = true;
1690 break;
1691 }
1692
1693 pipeline->vb[desc->binding].instance_divisor = 1;
1694 }
1695
1696 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1697 vk_find_struct_const(vi_info->pNext,
1698 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1699 if (vi_div_state) {
1700 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1701 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1702 &vi_div_state->pVertexBindingDivisors[i];
1703
1704 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1705 }
1706 }
1707
1708 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1709 * different views. If the client asks for instancing, we need to multiply
1710 * the instance divisor by the number of views ensure that we repeat the
1711 * client's per-instance data once for each view.
1712 */
1713 if (pipeline->subpass->view_mask) {
1714 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1715 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1716 if (pipeline->vb[vb].instanced)
1717 pipeline->vb[vb].instance_divisor *= view_count;
1718 }
1719 }
1720
1721 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1722 pCreateInfo->pInputAssemblyState;
1723 const VkPipelineTessellationStateCreateInfo *tess_info =
1724 pCreateInfo->pTessellationState;
1725 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1726
1727 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1728 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1729 else
1730 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1731
1732 return VK_SUCCESS;
1733 }