anv: Fix anv_pipeline_validate_create_info assertions.
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "common/gen_l3_config.h"
32 #include "anv_private.h"
33 #include "brw_nir.h"
34 #include "anv_nir.h"
35 #include "spirv/nir_spirv.h"
36
37 /* Needed for SWIZZLE macros */
38 #include "program/prog_instruction.h"
39
40 // Shader functions
41
42 VkResult anv_CreateShaderModule(
43 VkDevice _device,
44 const VkShaderModuleCreateInfo* pCreateInfo,
45 const VkAllocationCallbacks* pAllocator,
46 VkShaderModule* pShaderModule)
47 {
48 ANV_FROM_HANDLE(anv_device, device, _device);
49 struct anv_shader_module *module;
50
51 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
52 assert(pCreateInfo->flags == 0);
53
54 module = anv_alloc2(&device->alloc, pAllocator,
55 sizeof(*module) + pCreateInfo->codeSize, 8,
56 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
57 if (module == NULL)
58 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
59
60 module->nir = NULL;
61 module->size = pCreateInfo->codeSize;
62 memcpy(module->data, pCreateInfo->pCode, module->size);
63
64 _mesa_sha1_compute(module->data, module->size, module->sha1);
65
66 *pShaderModule = anv_shader_module_to_handle(module);
67
68 return VK_SUCCESS;
69 }
70
71 void anv_DestroyShaderModule(
72 VkDevice _device,
73 VkShaderModule _module,
74 const VkAllocationCallbacks* pAllocator)
75 {
76 ANV_FROM_HANDLE(anv_device, device, _device);
77 ANV_FROM_HANDLE(anv_shader_module, module, _module);
78
79 anv_free2(&device->alloc, pAllocator, module);
80 }
81
82 #define SPIR_V_MAGIC_NUMBER 0x07230203
83
84 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
85 * we can't do that yet because we don't have the ability to copy nir.
86 */
87 static nir_shader *
88 anv_shader_compile_to_nir(struct anv_device *device,
89 struct anv_shader_module *module,
90 const char *entrypoint_name,
91 gl_shader_stage stage,
92 const VkSpecializationInfo *spec_info)
93 {
94 if (strcmp(entrypoint_name, "main") != 0) {
95 anv_finishme("Multiple shaders per module not really supported");
96 }
97
98 const struct brw_compiler *compiler =
99 device->instance->physicalDevice.compiler;
100 const nir_shader_compiler_options *nir_options =
101 compiler->glsl_compiler_options[stage].NirOptions;
102
103 nir_shader *nir;
104 nir_function *entry_point;
105 if (module->nir) {
106 /* Some things such as our meta clear/blit code will give us a NIR
107 * shader directly. In that case, we just ignore the SPIR-V entirely
108 * and just use the NIR shader */
109 nir = module->nir;
110 nir->options = nir_options;
111 nir_validate_shader(nir);
112
113 assert(exec_list_length(&nir->functions) == 1);
114 struct exec_node *node = exec_list_get_head(&nir->functions);
115 entry_point = exec_node_data(nir_function, node, node);
116 } else {
117 uint32_t *spirv = (uint32_t *) module->data;
118 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
119 assert(module->size % 4 == 0);
120
121 uint32_t num_spec_entries = 0;
122 struct nir_spirv_specialization *spec_entries = NULL;
123 if (spec_info && spec_info->mapEntryCount > 0) {
124 num_spec_entries = spec_info->mapEntryCount;
125 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
126 for (uint32_t i = 0; i < num_spec_entries; i++) {
127 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
128 const void *data = spec_info->pData + entry.offset;
129 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
130
131 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
132 spec_entries[i].data = *(const uint32_t *)data;
133 }
134 }
135
136 entry_point = spirv_to_nir(spirv, module->size / 4,
137 spec_entries, num_spec_entries,
138 stage, entrypoint_name, nir_options);
139 nir = entry_point->shader;
140 assert(nir->stage == stage);
141 nir_validate_shader(nir);
142
143 free(spec_entries);
144
145 if (stage == MESA_SHADER_FRAGMENT) {
146 nir_lower_wpos_center(nir);
147 nir_validate_shader(nir);
148 }
149
150 nir_lower_returns(nir);
151 nir_validate_shader(nir);
152
153 nir_inline_functions(nir);
154 nir_validate_shader(nir);
155
156 /* Pick off the single entrypoint that we want */
157 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
158 if (func != entry_point)
159 exec_node_remove(&func->node);
160 }
161 assert(exec_list_length(&nir->functions) == 1);
162 entry_point->name = ralloc_strdup(entry_point, "main");
163
164 nir_remove_dead_variables(nir, nir_var_shader_in);
165 nir_remove_dead_variables(nir, nir_var_shader_out);
166 nir_remove_dead_variables(nir, nir_var_system_value);
167 nir_validate_shader(nir);
168
169 nir_propagate_invariant(nir);
170 nir_validate_shader(nir);
171
172 nir_lower_io_to_temporaries(entry_point->shader, entry_point->impl,
173 true, false);
174
175 nir_lower_system_values(nir);
176 nir_validate_shader(nir);
177 }
178
179 /* Vulkan uses the separate-shader linking model */
180 nir->info.separate_shader = true;
181
182 nir = brw_preprocess_nir(compiler, nir);
183
184 nir_shader_gather_info(nir, entry_point->impl);
185
186 nir_variable_mode indirect_mask = 0;
187 if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
188 indirect_mask |= nir_var_shader_in;
189 if (compiler->glsl_compiler_options[stage].EmitNoIndirectOutput)
190 indirect_mask |= nir_var_shader_out;
191 if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
192 indirect_mask |= nir_var_local;
193
194 nir_lower_indirect_derefs(nir, indirect_mask);
195
196 return nir;
197 }
198
199 void anv_DestroyPipeline(
200 VkDevice _device,
201 VkPipeline _pipeline,
202 const VkAllocationCallbacks* pAllocator)
203 {
204 ANV_FROM_HANDLE(anv_device, device, _device);
205 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
206
207 anv_reloc_list_finish(&pipeline->batch_relocs,
208 pAllocator ? pAllocator : &device->alloc);
209 if (pipeline->blend_state.map)
210 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
211
212 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
213 if (pipeline->shaders[s])
214 anv_shader_bin_unref(device, pipeline->shaders[s]);
215 }
216
217 anv_free2(&device->alloc, pAllocator, pipeline);
218 }
219
220 static const uint32_t vk_to_gen_primitive_type[] = {
221 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
222 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
223 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
224 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
225 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
226 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
227 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
228 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
229 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
230 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
231 /* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
232 };
233
234 static void
235 populate_sampler_prog_key(const struct gen_device_info *devinfo,
236 struct brw_sampler_prog_key_data *key)
237 {
238 /* XXX: Handle texture swizzle on HSW- */
239 for (int i = 0; i < MAX_SAMPLERS; i++) {
240 /* Assume color sampler, no swizzling. (Works for BDW+) */
241 key->swizzles[i] = SWIZZLE_XYZW;
242 }
243 }
244
245 static void
246 populate_vs_prog_key(const struct gen_device_info *devinfo,
247 struct brw_vs_prog_key *key)
248 {
249 memset(key, 0, sizeof(*key));
250
251 populate_sampler_prog_key(devinfo, &key->tex);
252
253 /* XXX: Handle vertex input work-arounds */
254
255 /* XXX: Handle sampler_prog_key */
256 }
257
258 static void
259 populate_gs_prog_key(const struct gen_device_info *devinfo,
260 struct brw_gs_prog_key *key)
261 {
262 memset(key, 0, sizeof(*key));
263
264 populate_sampler_prog_key(devinfo, &key->tex);
265 }
266
267 static void
268 populate_wm_prog_key(const struct gen_device_info *devinfo,
269 const VkGraphicsPipelineCreateInfo *info,
270 const struct anv_graphics_pipeline_create_info *extra,
271 struct brw_wm_prog_key *key)
272 {
273 ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
274
275 memset(key, 0, sizeof(*key));
276
277 populate_sampler_prog_key(devinfo, &key->tex);
278
279 /* TODO: Fill out key->input_slots_valid */
280
281 /* Vulkan doesn't specify a default */
282 key->high_quality_derivatives = false;
283
284 /* XXX Vulkan doesn't appear to specify */
285 key->clamp_fragment_color = false;
286
287 if (extra && extra->color_attachment_count >= 0) {
288 key->nr_color_regions = extra->color_attachment_count;
289 } else {
290 key->nr_color_regions =
291 render_pass->subpasses[info->subpass].color_count;
292 }
293
294 key->replicate_alpha = key->nr_color_regions > 1 &&
295 info->pMultisampleState &&
296 info->pMultisampleState->alphaToCoverageEnable;
297
298 if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
299 /* We should probably pull this out of the shader, but it's fairly
300 * harmless to compute it and then let dead-code take care of it.
301 */
302 key->persample_interp =
303 (info->pMultisampleState->minSampleShading *
304 info->pMultisampleState->rasterizationSamples) > 1;
305 key->multisample_fbo = true;
306 }
307 }
308
309 static void
310 populate_cs_prog_key(const struct gen_device_info *devinfo,
311 struct brw_cs_prog_key *key)
312 {
313 memset(key, 0, sizeof(*key));
314
315 populate_sampler_prog_key(devinfo, &key->tex);
316 }
317
318 static nir_shader *
319 anv_pipeline_compile(struct anv_pipeline *pipeline,
320 struct anv_shader_module *module,
321 const char *entrypoint,
322 gl_shader_stage stage,
323 const VkSpecializationInfo *spec_info,
324 struct brw_stage_prog_data *prog_data,
325 struct anv_pipeline_bind_map *map)
326 {
327 nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
328 module, entrypoint, stage,
329 spec_info);
330 if (nir == NULL)
331 return NULL;
332
333 anv_nir_lower_push_constants(nir);
334
335 /* Figure out the number of parameters */
336 prog_data->nr_params = 0;
337
338 if (nir->num_uniforms > 0) {
339 /* If the shader uses any push constants at all, we'll just give
340 * them the maximum possible number
341 */
342 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
343 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
344 }
345
346 if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
347 prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
348
349 if (nir->info.num_images > 0) {
350 prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
351 pipeline->needs_data_cache = true;
352 }
353
354 if (stage == MESA_SHADER_COMPUTE)
355 ((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
356 prog_data->nr_params++; /* The CS Thread ID uniform */
357
358 if (nir->info.num_ssbos > 0)
359 pipeline->needs_data_cache = true;
360
361 if (prog_data->nr_params > 0) {
362 /* XXX: I think we're leaking this */
363 prog_data->param = (const union gl_constant_value **)
364 malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
365
366 /* We now set the param values to be offsets into a
367 * anv_push_constant_data structure. Since the compiler doesn't
368 * actually dereference any of the gl_constant_value pointers in the
369 * params array, it doesn't really matter what we put here.
370 */
371 struct anv_push_constants *null_data = NULL;
372 if (nir->num_uniforms > 0) {
373 /* Fill out the push constants section of the param array */
374 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
375 prog_data->param[i] = (const union gl_constant_value *)
376 &null_data->client_data[i * sizeof(float)];
377 }
378 }
379
380 /* Set up dynamic offsets */
381 anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
382
383 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
384 if (pipeline->layout)
385 anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
386
387 /* nir_lower_io will only handle the push constants; we need to set this
388 * to the full number of possible uniforms.
389 */
390 nir->num_uniforms = prog_data->nr_params * 4;
391
392 return nir;
393 }
394
395 static void
396 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
397 {
398 prog_data->binding_table.size_bytes = 0;
399 prog_data->binding_table.texture_start = bias;
400 prog_data->binding_table.gather_texture_start = bias;
401 prog_data->binding_table.ubo_start = bias;
402 prog_data->binding_table.ssbo_start = bias;
403 prog_data->binding_table.image_start = bias;
404 }
405
406 static struct anv_shader_bin *
407 anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
408 struct anv_pipeline_cache *cache,
409 const void *key_data, uint32_t key_size,
410 const void *kernel_data, uint32_t kernel_size,
411 const void *prog_data, uint32_t prog_data_size,
412 const struct anv_pipeline_bind_map *bind_map)
413 {
414 if (cache) {
415 return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
416 kernel_data, kernel_size,
417 prog_data, prog_data_size,
418 bind_map);
419 } else {
420 return anv_shader_bin_create(pipeline->device, key_data, key_size,
421 kernel_data, kernel_size,
422 prog_data, prog_data_size, bind_map);
423 }
424 }
425
426
427 static void
428 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
429 gl_shader_stage stage,
430 struct anv_shader_bin *shader)
431 {
432 pipeline->shaders[stage] = shader;
433 pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
434 }
435
436 static VkResult
437 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
438 struct anv_pipeline_cache *cache,
439 const VkGraphicsPipelineCreateInfo *info,
440 struct anv_shader_module *module,
441 const char *entrypoint,
442 const VkSpecializationInfo *spec_info)
443 {
444 const struct brw_compiler *compiler =
445 pipeline->device->instance->physicalDevice.compiler;
446 struct anv_pipeline_bind_map map;
447 struct brw_vs_prog_key key;
448 struct anv_shader_bin *bin = NULL;
449 unsigned char sha1[20];
450
451 populate_vs_prog_key(&pipeline->device->info, &key);
452
453 if (cache) {
454 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
455 pipeline->layout, spec_info);
456 bin = anv_pipeline_cache_search(cache, sha1, 20);
457 }
458
459 if (bin == NULL) {
460 struct brw_vs_prog_data prog_data = { 0, };
461 struct anv_pipeline_binding surface_to_descriptor[256];
462 struct anv_pipeline_binding sampler_to_descriptor[256];
463
464 map = (struct anv_pipeline_bind_map) {
465 .surface_to_descriptor = surface_to_descriptor,
466 .sampler_to_descriptor = sampler_to_descriptor
467 };
468
469 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
470 MESA_SHADER_VERTEX, spec_info,
471 &prog_data.base.base, &map);
472 if (nir == NULL)
473 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
474
475 anv_fill_binding_table(&prog_data.base.base, 0);
476
477 void *mem_ctx = ralloc_context(NULL);
478
479 if (module->nir == NULL)
480 ralloc_steal(mem_ctx, nir);
481
482 prog_data.inputs_read = nir->info.inputs_read;
483
484 brw_compute_vue_map(&pipeline->device->info,
485 &prog_data.base.vue_map,
486 nir->info.outputs_written,
487 nir->info.separate_shader);
488
489 unsigned code_size;
490 const unsigned *shader_code =
491 brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
492 NULL, false, -1, &code_size, NULL);
493 if (shader_code == NULL) {
494 ralloc_free(mem_ctx);
495 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
496 }
497
498 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
499 shader_code, code_size,
500 &prog_data, sizeof(prog_data), &map);
501 if (!bin) {
502 ralloc_free(mem_ctx);
503 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
504 }
505
506 ralloc_free(mem_ctx);
507 }
508
509 const struct brw_vs_prog_data *vs_prog_data =
510 (const struct brw_vs_prog_data *)anv_shader_bin_get_prog_data(bin);
511
512 if (vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
513 pipeline->vs_simd8 = bin->kernel.offset;
514 pipeline->vs_vec4 = NO_KERNEL;
515 } else {
516 pipeline->vs_simd8 = NO_KERNEL;
517 pipeline->vs_vec4 = bin->kernel.offset;
518 }
519
520 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
521
522 return VK_SUCCESS;
523 }
524
525 static VkResult
526 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
527 struct anv_pipeline_cache *cache,
528 const VkGraphicsPipelineCreateInfo *info,
529 struct anv_shader_module *module,
530 const char *entrypoint,
531 const VkSpecializationInfo *spec_info)
532 {
533 const struct brw_compiler *compiler =
534 pipeline->device->instance->physicalDevice.compiler;
535 struct anv_pipeline_bind_map map;
536 struct brw_gs_prog_key key;
537 struct anv_shader_bin *bin = NULL;
538 unsigned char sha1[20];
539
540 populate_gs_prog_key(&pipeline->device->info, &key);
541
542 if (cache) {
543 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
544 pipeline->layout, spec_info);
545 bin = anv_pipeline_cache_search(cache, sha1, 20);
546 }
547
548 if (bin == NULL) {
549 struct brw_gs_prog_data prog_data = { 0, };
550 struct anv_pipeline_binding surface_to_descriptor[256];
551 struct anv_pipeline_binding sampler_to_descriptor[256];
552
553 map = (struct anv_pipeline_bind_map) {
554 .surface_to_descriptor = surface_to_descriptor,
555 .sampler_to_descriptor = sampler_to_descriptor
556 };
557
558 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
559 MESA_SHADER_GEOMETRY, spec_info,
560 &prog_data.base.base, &map);
561 if (nir == NULL)
562 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
563
564 anv_fill_binding_table(&prog_data.base.base, 0);
565
566 void *mem_ctx = ralloc_context(NULL);
567
568 if (module->nir == NULL)
569 ralloc_steal(mem_ctx, nir);
570
571 brw_compute_vue_map(&pipeline->device->info,
572 &prog_data.base.vue_map,
573 nir->info.outputs_written,
574 nir->info.separate_shader);
575
576 unsigned code_size;
577 const unsigned *shader_code =
578 brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
579 NULL, -1, &code_size, NULL);
580 if (shader_code == NULL) {
581 ralloc_free(mem_ctx);
582 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
583 }
584
585 /* TODO: SIMD8 GS */
586 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
587 shader_code, code_size,
588 &prog_data, sizeof(prog_data), &map);
589 if (!bin) {
590 ralloc_free(mem_ctx);
591 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
592 }
593
594 ralloc_free(mem_ctx);
595 }
596
597 pipeline->gs_kernel = bin->kernel.offset;
598
599 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
600
601 return VK_SUCCESS;
602 }
603
604 static VkResult
605 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
606 struct anv_pipeline_cache *cache,
607 const VkGraphicsPipelineCreateInfo *info,
608 const struct anv_graphics_pipeline_create_info *extra,
609 struct anv_shader_module *module,
610 const char *entrypoint,
611 const VkSpecializationInfo *spec_info)
612 {
613 const struct brw_compiler *compiler =
614 pipeline->device->instance->physicalDevice.compiler;
615 struct anv_pipeline_bind_map map;
616 struct brw_wm_prog_key key;
617 struct anv_shader_bin *bin = NULL;
618 unsigned char sha1[20];
619
620 populate_wm_prog_key(&pipeline->device->info, info, extra, &key);
621
622 if (cache) {
623 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
624 pipeline->layout, spec_info);
625 bin = anv_pipeline_cache_search(cache, sha1, 20);
626 }
627
628 if (bin == NULL) {
629 struct brw_wm_prog_data prog_data = { 0, };
630 struct anv_pipeline_binding surface_to_descriptor[256];
631 struct anv_pipeline_binding sampler_to_descriptor[256];
632
633 map = (struct anv_pipeline_bind_map) {
634 .surface_to_descriptor = surface_to_descriptor + 8,
635 .sampler_to_descriptor = sampler_to_descriptor
636 };
637
638 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
639 MESA_SHADER_FRAGMENT, spec_info,
640 &prog_data.base, &map);
641 if (nir == NULL)
642 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
643
644 unsigned num_rts = 0;
645 struct anv_pipeline_binding rt_bindings[8];
646 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
647 nir_foreach_variable_safe(var, &nir->outputs) {
648 if (var->data.location < FRAG_RESULT_DATA0)
649 continue;
650
651 unsigned rt = var->data.location - FRAG_RESULT_DATA0;
652 if (rt >= key.nr_color_regions) {
653 /* Out-of-bounds, throw it away */
654 var->data.mode = nir_var_local;
655 exec_node_remove(&var->node);
656 exec_list_push_tail(&impl->locals, &var->node);
657 continue;
658 }
659
660 /* Give it a new, compacted, location */
661 var->data.location = FRAG_RESULT_DATA0 + num_rts;
662
663 unsigned array_len =
664 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
665 assert(num_rts + array_len <= 8);
666
667 for (unsigned i = 0; i < array_len; i++) {
668 rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
669 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
670 .binding = 0,
671 .index = rt + i,
672 };
673 }
674
675 num_rts += array_len;
676 }
677
678 if (pipeline->use_repclear) {
679 assert(num_rts == 1);
680 key.nr_color_regions = 1;
681 }
682
683 if (num_rts == 0) {
684 /* If we have no render targets, we need a null render target */
685 rt_bindings[0] = (struct anv_pipeline_binding) {
686 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
687 .binding = 0,
688 .index = UINT8_MAX,
689 };
690 num_rts = 1;
691 }
692
693 assert(num_rts <= 8);
694 map.surface_to_descriptor -= num_rts;
695 map.surface_count += num_rts;
696 assert(map.surface_count <= 256);
697 memcpy(map.surface_to_descriptor, rt_bindings,
698 num_rts * sizeof(*rt_bindings));
699
700 anv_fill_binding_table(&prog_data.base, num_rts);
701
702 void *mem_ctx = ralloc_context(NULL);
703
704 if (module->nir == NULL)
705 ralloc_steal(mem_ctx, nir);
706
707 unsigned code_size;
708 const unsigned *shader_code =
709 brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
710 NULL, -1, -1, true, pipeline->use_repclear,
711 &code_size, NULL);
712 if (shader_code == NULL) {
713 ralloc_free(mem_ctx);
714 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
715 }
716
717 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
718 shader_code, code_size,
719 &prog_data, sizeof(prog_data), &map);
720 if (!bin) {
721 ralloc_free(mem_ctx);
722 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
723 }
724
725 ralloc_free(mem_ctx);
726 }
727
728 pipeline->ps_ksp0 = bin->kernel.offset;
729
730 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
731
732 return VK_SUCCESS;
733 }
734
735 VkResult
736 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
737 struct anv_pipeline_cache *cache,
738 const VkComputePipelineCreateInfo *info,
739 struct anv_shader_module *module,
740 const char *entrypoint,
741 const VkSpecializationInfo *spec_info)
742 {
743 const struct brw_compiler *compiler =
744 pipeline->device->instance->physicalDevice.compiler;
745 struct anv_pipeline_bind_map map;
746 struct brw_cs_prog_key key;
747 struct anv_shader_bin *bin = NULL;
748 unsigned char sha1[20];
749
750 populate_cs_prog_key(&pipeline->device->info, &key);
751
752 if (cache) {
753 anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
754 pipeline->layout, spec_info);
755 bin = anv_pipeline_cache_search(cache, sha1, 20);
756 }
757
758 if (bin == NULL) {
759 struct brw_cs_prog_data prog_data = { 0, };
760 struct anv_pipeline_binding surface_to_descriptor[256];
761 struct anv_pipeline_binding sampler_to_descriptor[256];
762
763 map = (struct anv_pipeline_bind_map) {
764 .surface_to_descriptor = surface_to_descriptor,
765 .sampler_to_descriptor = sampler_to_descriptor
766 };
767
768 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
769 MESA_SHADER_COMPUTE, spec_info,
770 &prog_data.base, &map);
771 if (nir == NULL)
772 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
773
774 anv_fill_binding_table(&prog_data.base, 1);
775
776 void *mem_ctx = ralloc_context(NULL);
777
778 if (module->nir == NULL)
779 ralloc_steal(mem_ctx, nir);
780
781 unsigned code_size;
782 const unsigned *shader_code =
783 brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
784 -1, &code_size, NULL);
785 if (shader_code == NULL) {
786 ralloc_free(mem_ctx);
787 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
788 }
789
790 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
791 shader_code, code_size,
792 &prog_data, sizeof(prog_data), &map);
793 if (!bin) {
794 ralloc_free(mem_ctx);
795 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
796 }
797
798 ralloc_free(mem_ctx);
799 }
800
801 pipeline->cs_simd = bin->kernel.offset;
802
803 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
804
805 return VK_SUCCESS;
806 }
807
808 /**
809 * Copy pipeline state not marked as dynamic.
810 * Dynamic state is pipeline state which hasn't been provided at pipeline
811 * creation time, but is dynamically provided afterwards using various
812 * vkCmdSet* functions.
813 *
814 * The set of state considered "non_dynamic" is determined by the pieces of
815 * state that have their corresponding VkDynamicState enums omitted from
816 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
817 *
818 * @param[out] pipeline Destination non_dynamic state.
819 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
820 */
821 static void
822 copy_non_dynamic_state(struct anv_pipeline *pipeline,
823 const VkGraphicsPipelineCreateInfo *pCreateInfo)
824 {
825 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
826 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
827 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
828
829 pipeline->dynamic_state = default_dynamic_state;
830
831 if (pCreateInfo->pDynamicState) {
832 /* Remove all of the states that are marked as dynamic */
833 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
834 for (uint32_t s = 0; s < count; s++)
835 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
836 }
837
838 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
839
840 /* Section 9.2 of the Vulkan 1.0.15 spec says:
841 *
842 * pViewportState is [...] NULL if the pipeline
843 * has rasterization disabled.
844 */
845 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
846 assert(pCreateInfo->pViewportState);
847
848 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
849 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
850 typed_memcpy(dynamic->viewport.viewports,
851 pCreateInfo->pViewportState->pViewports,
852 pCreateInfo->pViewportState->viewportCount);
853 }
854
855 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
856 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
857 typed_memcpy(dynamic->scissor.scissors,
858 pCreateInfo->pViewportState->pScissors,
859 pCreateInfo->pViewportState->scissorCount);
860 }
861 }
862
863 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
864 assert(pCreateInfo->pRasterizationState);
865 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
866 }
867
868 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
869 assert(pCreateInfo->pRasterizationState);
870 dynamic->depth_bias.bias =
871 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
872 dynamic->depth_bias.clamp =
873 pCreateInfo->pRasterizationState->depthBiasClamp;
874 dynamic->depth_bias.slope =
875 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
876 }
877
878 /* Section 9.2 of the Vulkan 1.0.15 spec says:
879 *
880 * pColorBlendState is [...] NULL if the pipeline has rasterization
881 * disabled or if the subpass of the render pass the pipeline is
882 * created against does not use any color attachments.
883 */
884 bool uses_color_att = false;
885 for (unsigned i = 0; i < subpass->color_count; ++i) {
886 if (subpass->color_attachments[i] != VK_ATTACHMENT_UNUSED) {
887 uses_color_att = true;
888 break;
889 }
890 }
891
892 if (uses_color_att &&
893 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
894 assert(pCreateInfo->pColorBlendState);
895
896 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
897 typed_memcpy(dynamic->blend_constants,
898 pCreateInfo->pColorBlendState->blendConstants, 4);
899 }
900
901 /* If there is no depthstencil attachment, then don't read
902 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
903 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
904 * no need to override the depthstencil defaults in
905 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
906 *
907 * Section 9.2 of the Vulkan 1.0.15 spec says:
908 *
909 * pDepthStencilState is [...] NULL if the pipeline has rasterization
910 * disabled or if the subpass of the render pass the pipeline is created
911 * against does not use a depth/stencil attachment.
912 */
913 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
914 subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
915 assert(pCreateInfo->pDepthStencilState);
916
917 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
918 dynamic->depth_bounds.min =
919 pCreateInfo->pDepthStencilState->minDepthBounds;
920 dynamic->depth_bounds.max =
921 pCreateInfo->pDepthStencilState->maxDepthBounds;
922 }
923
924 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
925 dynamic->stencil_compare_mask.front =
926 pCreateInfo->pDepthStencilState->front.compareMask;
927 dynamic->stencil_compare_mask.back =
928 pCreateInfo->pDepthStencilState->back.compareMask;
929 }
930
931 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
932 dynamic->stencil_write_mask.front =
933 pCreateInfo->pDepthStencilState->front.writeMask;
934 dynamic->stencil_write_mask.back =
935 pCreateInfo->pDepthStencilState->back.writeMask;
936 }
937
938 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
939 dynamic->stencil_reference.front =
940 pCreateInfo->pDepthStencilState->front.reference;
941 dynamic->stencil_reference.back =
942 pCreateInfo->pDepthStencilState->back.reference;
943 }
944 }
945
946 pipeline->dynamic_state_mask = states;
947 }
948
949 static void
950 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
951 {
952 struct anv_render_pass *renderpass = NULL;
953 struct anv_subpass *subpass = NULL;
954
955 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
956 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
957 */
958 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
959
960 renderpass = anv_render_pass_from_handle(info->renderPass);
961 assert(renderpass);
962
963 if (renderpass != &anv_meta_dummy_renderpass) {
964 assert(info->subpass < renderpass->subpass_count);
965 subpass = &renderpass->subpasses[info->subpass];
966 }
967
968 assert(info->stageCount >= 1);
969 assert(info->pVertexInputState);
970 assert(info->pInputAssemblyState);
971 assert(info->pRasterizationState);
972 if (!info->pRasterizationState->rasterizerDiscardEnable) {
973 assert(info->pViewportState);
974 assert(info->pMultisampleState);
975
976 if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
977 assert(info->pDepthStencilState);
978
979 if (subpass && subpass->color_count > 0)
980 assert(info->pColorBlendState);
981 }
982
983 for (uint32_t i = 0; i < info->stageCount; ++i) {
984 switch (info->pStages[i].stage) {
985 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
986 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
987 assert(info->pTessellationState);
988 break;
989 default:
990 break;
991 }
992 }
993 }
994
995 /**
996 * Calculate the desired L3 partitioning based on the current state of the
997 * pipeline. For now this simply returns the conservative defaults calculated
998 * by get_default_l3_weights(), but we could probably do better by gathering
999 * more statistics from the pipeline state (e.g. guess of expected URB usage
1000 * and bound surfaces), or by using feed-back from performance counters.
1001 */
1002 void
1003 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1004 {
1005 const struct gen_device_info *devinfo = &pipeline->device->info;
1006
1007 const struct gen_l3_weights w =
1008 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1009
1010 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1011 pipeline->urb.total_size =
1012 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1013 }
1014
1015 VkResult
1016 anv_pipeline_init(struct anv_pipeline *pipeline,
1017 struct anv_device *device,
1018 struct anv_pipeline_cache *cache,
1019 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1020 const struct anv_graphics_pipeline_create_info *extra,
1021 const VkAllocationCallbacks *alloc)
1022 {
1023 VkResult result;
1024
1025 anv_validate {
1026 anv_pipeline_validate_create_info(pCreateInfo);
1027 }
1028
1029 if (alloc == NULL)
1030 alloc = &device->alloc;
1031
1032 pipeline->device = device;
1033 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1034
1035 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1036 if (result != VK_SUCCESS)
1037 return result;
1038
1039 pipeline->batch.alloc = alloc;
1040 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1041 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1042 pipeline->batch.relocs = &pipeline->batch_relocs;
1043
1044 copy_non_dynamic_state(pipeline, pCreateInfo);
1045 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1046 pCreateInfo->pRasterizationState->depthClampEnable;
1047
1048 pipeline->use_repclear = extra && extra->use_repclear;
1049
1050 pipeline->needs_data_cache = false;
1051
1052 /* When we free the pipeline, we detect stages based on the NULL status
1053 * of various prog_data pointers. Make them NULL by default.
1054 */
1055 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1056
1057 pipeline->vs_simd8 = NO_KERNEL;
1058 pipeline->vs_vec4 = NO_KERNEL;
1059 pipeline->gs_kernel = NO_KERNEL;
1060 pipeline->ps_ksp0 = NO_KERNEL;
1061
1062 pipeline->active_stages = 0;
1063
1064 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
1065 struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1066 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1067 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
1068 pStages[stage] = &pCreateInfo->pStages[i];
1069 modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
1070 }
1071
1072 if (modules[MESA_SHADER_VERTEX]) {
1073 result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
1074 modules[MESA_SHADER_VERTEX],
1075 pStages[MESA_SHADER_VERTEX]->pName,
1076 pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
1077 if (result != VK_SUCCESS)
1078 goto compile_fail;
1079 }
1080
1081 if (modules[MESA_SHADER_TESS_CTRL] || modules[MESA_SHADER_TESS_EVAL])
1082 anv_finishme("no tessellation support");
1083
1084 if (modules[MESA_SHADER_GEOMETRY]) {
1085 result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
1086 modules[MESA_SHADER_GEOMETRY],
1087 pStages[MESA_SHADER_GEOMETRY]->pName,
1088 pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
1089 if (result != VK_SUCCESS)
1090 goto compile_fail;
1091 }
1092
1093 if (modules[MESA_SHADER_FRAGMENT]) {
1094 result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra,
1095 modules[MESA_SHADER_FRAGMENT],
1096 pStages[MESA_SHADER_FRAGMENT]->pName,
1097 pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
1098 if (result != VK_SUCCESS)
1099 goto compile_fail;
1100 }
1101
1102 if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
1103 /* Vertex is only optional if disable_vs is set */
1104 assert(extra->disable_vs);
1105 }
1106
1107 anv_pipeline_setup_l3_config(pipeline, false);
1108
1109 const VkPipelineVertexInputStateCreateInfo *vi_info =
1110 pCreateInfo->pVertexInputState;
1111
1112 uint64_t inputs_read;
1113 if (extra && extra->disable_vs) {
1114 /* If the VS is disabled, just assume the user knows what they're
1115 * doing and apply the layout blindly. This can only come from
1116 * meta, so this *should* be safe.
1117 */
1118 inputs_read = ~0ull;
1119 } else {
1120 inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1121 }
1122
1123 pipeline->vb_used = 0;
1124 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1125 const VkVertexInputAttributeDescription *desc =
1126 &vi_info->pVertexAttributeDescriptions[i];
1127
1128 if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1129 pipeline->vb_used |= 1 << desc->binding;
1130 }
1131
1132 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1133 const VkVertexInputBindingDescription *desc =
1134 &vi_info->pVertexBindingDescriptions[i];
1135
1136 pipeline->binding_stride[desc->binding] = desc->stride;
1137
1138 /* Step rate is programmed per vertex element (attribute), not
1139 * binding. Set up a map of which bindings step per instance, for
1140 * reference by vertex element setup. */
1141 switch (desc->inputRate) {
1142 default:
1143 case VK_VERTEX_INPUT_RATE_VERTEX:
1144 pipeline->instancing_enable[desc->binding] = false;
1145 break;
1146 case VK_VERTEX_INPUT_RATE_INSTANCE:
1147 pipeline->instancing_enable[desc->binding] = true;
1148 break;
1149 }
1150 }
1151
1152 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1153 pCreateInfo->pInputAssemblyState;
1154 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1155 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1156
1157 if (extra && extra->use_rectlist)
1158 pipeline->topology = _3DPRIM_RECTLIST;
1159
1160 return VK_SUCCESS;
1161
1162 compile_fail:
1163 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1164 if (pipeline->shaders[s])
1165 anv_shader_bin_unref(device, pipeline->shaders[s]);
1166 }
1167
1168 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1169
1170 return result;
1171 }
1172
1173 VkResult
1174 anv_graphics_pipeline_create(
1175 VkDevice _device,
1176 VkPipelineCache _cache,
1177 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1178 const struct anv_graphics_pipeline_create_info *extra,
1179 const VkAllocationCallbacks *pAllocator,
1180 VkPipeline *pPipeline)
1181 {
1182 ANV_FROM_HANDLE(anv_device, device, _device);
1183 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1184
1185 switch (device->info.gen) {
1186 case 7:
1187 if (device->info.is_haswell)
1188 return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1189 else
1190 return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1191 case 8:
1192 return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1193 case 9:
1194 return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1195 default:
1196 unreachable("unsupported gen\n");
1197 }
1198 }
1199
1200 VkResult anv_CreateGraphicsPipelines(
1201 VkDevice _device,
1202 VkPipelineCache pipelineCache,
1203 uint32_t count,
1204 const VkGraphicsPipelineCreateInfo* pCreateInfos,
1205 const VkAllocationCallbacks* pAllocator,
1206 VkPipeline* pPipelines)
1207 {
1208 VkResult result = VK_SUCCESS;
1209
1210 unsigned i = 0;
1211 for (; i < count; i++) {
1212 result = anv_graphics_pipeline_create(_device,
1213 pipelineCache,
1214 &pCreateInfos[i],
1215 NULL, pAllocator, &pPipelines[i]);
1216 if (result != VK_SUCCESS) {
1217 for (unsigned j = 0; j < i; j++) {
1218 anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1219 }
1220
1221 return result;
1222 }
1223 }
1224
1225 return VK_SUCCESS;
1226 }
1227
1228 static VkResult anv_compute_pipeline_create(
1229 VkDevice _device,
1230 VkPipelineCache _cache,
1231 const VkComputePipelineCreateInfo* pCreateInfo,
1232 const VkAllocationCallbacks* pAllocator,
1233 VkPipeline* pPipeline)
1234 {
1235 ANV_FROM_HANDLE(anv_device, device, _device);
1236 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1237
1238 switch (device->info.gen) {
1239 case 7:
1240 if (device->info.is_haswell)
1241 return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1242 else
1243 return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1244 case 8:
1245 return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1246 case 9:
1247 return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1248 default:
1249 unreachable("unsupported gen\n");
1250 }
1251 }
1252
1253 VkResult anv_CreateComputePipelines(
1254 VkDevice _device,
1255 VkPipelineCache pipelineCache,
1256 uint32_t count,
1257 const VkComputePipelineCreateInfo* pCreateInfos,
1258 const VkAllocationCallbacks* pAllocator,
1259 VkPipeline* pPipelines)
1260 {
1261 VkResult result = VK_SUCCESS;
1262
1263 unsigned i = 0;
1264 for (; i < count; i++) {
1265 result = anv_compute_pipeline_create(_device, pipelineCache,
1266 &pCreateInfos[i],
1267 pAllocator, &pPipelines[i]);
1268 if (result != VK_SUCCESS) {
1269 for (unsigned j = 0; j < i; j++) {
1270 anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1271 }
1272
1273 return result;
1274 }
1275 }
1276
1277 return VK_SUCCESS;
1278 }