i965/miptree: Store fast clear colors in an isl_color_value
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "common/gen_l3_config.h"
32 #include "anv_private.h"
33 #include "compiler/brw_nir.h"
34 #include "anv_nir.h"
35 #include "spirv/nir_spirv.h"
36
37 /* Needed for SWIZZLE macros */
38 #include "program/prog_instruction.h"
39
40 // Shader functions
41
42 VkResult anv_CreateShaderModule(
43 VkDevice _device,
44 const VkShaderModuleCreateInfo* pCreateInfo,
45 const VkAllocationCallbacks* pAllocator,
46 VkShaderModule* pShaderModule)
47 {
48 ANV_FROM_HANDLE(anv_device, device, _device);
49 struct anv_shader_module *module;
50
51 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
52 assert(pCreateInfo->flags == 0);
53
54 module = vk_alloc2(&device->alloc, pAllocator,
55 sizeof(*module) + pCreateInfo->codeSize, 8,
56 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
57 if (module == NULL)
58 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
59
60 module->size = pCreateInfo->codeSize;
61 memcpy(module->data, pCreateInfo->pCode, module->size);
62
63 _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65 *pShaderModule = anv_shader_module_to_handle(module);
66
67 return VK_SUCCESS;
68 }
69
70 void anv_DestroyShaderModule(
71 VkDevice _device,
72 VkShaderModule _module,
73 const VkAllocationCallbacks* pAllocator)
74 {
75 ANV_FROM_HANDLE(anv_device, device, _device);
76 ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78 if (!module)
79 return;
80
81 vk_free2(&device->alloc, pAllocator, module);
82 }
83
84 #define SPIR_V_MAGIC_NUMBER 0x07230203
85
86 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
87 * we can't do that yet because we don't have the ability to copy nir.
88 */
89 static nir_shader *
90 anv_shader_compile_to_nir(struct anv_pipeline *pipeline,
91 struct anv_shader_module *module,
92 const char *entrypoint_name,
93 gl_shader_stage stage,
94 const VkSpecializationInfo *spec_info)
95 {
96 const struct anv_device *device = pipeline->device;
97
98 const struct brw_compiler *compiler =
99 device->instance->physicalDevice.compiler;
100 const nir_shader_compiler_options *nir_options =
101 compiler->glsl_compiler_options[stage].NirOptions;
102
103 uint32_t *spirv = (uint32_t *) module->data;
104 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
105 assert(module->size % 4 == 0);
106
107 uint32_t num_spec_entries = 0;
108 struct nir_spirv_specialization *spec_entries = NULL;
109 if (spec_info && spec_info->mapEntryCount > 0) {
110 num_spec_entries = spec_info->mapEntryCount;
111 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
112 for (uint32_t i = 0; i < num_spec_entries; i++) {
113 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
114 const void *data = spec_info->pData + entry.offset;
115 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
116
117 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
118 if (spec_info->dataSize == 8)
119 spec_entries[i].data64 = *(const uint64_t *)data;
120 else
121 spec_entries[i].data32 = *(const uint32_t *)data;
122 }
123 }
124
125 const struct nir_spirv_supported_extensions supported_ext = {
126 .float64 = device->instance->physicalDevice.info.gen >= 8,
127 .int64 = device->instance->physicalDevice.info.gen >= 8,
128 .tessellation = true,
129 .draw_parameters = true,
130 .image_write_without_format = true,
131 .multiview = true,
132 };
133
134 nir_function *entry_point =
135 spirv_to_nir(spirv, module->size / 4,
136 spec_entries, num_spec_entries,
137 stage, entrypoint_name, &supported_ext, nir_options);
138 nir_shader *nir = entry_point->shader;
139 assert(nir->stage == stage);
140 nir_validate_shader(nir);
141
142 free(spec_entries);
143
144 /* We have to lower away local constant initializers right before we
145 * inline functions. That way they get properly initialized at the top
146 * of the function and not at the top of its caller.
147 */
148 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
149 NIR_PASS_V(nir, nir_lower_returns);
150 NIR_PASS_V(nir, nir_inline_functions);
151
152 /* Pick off the single entrypoint that we want */
153 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
154 if (func != entry_point)
155 exec_node_remove(&func->node);
156 }
157 assert(exec_list_length(&nir->functions) == 1);
158 entry_point->name = ralloc_strdup(entry_point, "main");
159
160 NIR_PASS_V(nir, nir_remove_dead_variables,
161 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
162
163 if (stage == MESA_SHADER_FRAGMENT)
164 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
165
166 /* Now that we've deleted all but the main function, we can go ahead and
167 * lower the rest of the constant initializers.
168 */
169 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
170 NIR_PASS_V(nir, nir_propagate_invariant);
171 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
172 entry_point->impl, true, false);
173 NIR_PASS_V(nir, nir_lower_system_values);
174
175 /* Vulkan uses the separate-shader linking model */
176 nir->info.separate_shader = true;
177
178 nir = brw_preprocess_nir(compiler, nir);
179
180 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
181
182 if (stage == MESA_SHADER_FRAGMENT)
183 NIR_PASS_V(nir, anv_nir_lower_input_attachments);
184
185 return nir;
186 }
187
188 void anv_DestroyPipeline(
189 VkDevice _device,
190 VkPipeline _pipeline,
191 const VkAllocationCallbacks* pAllocator)
192 {
193 ANV_FROM_HANDLE(anv_device, device, _device);
194 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
195
196 if (!pipeline)
197 return;
198
199 anv_reloc_list_finish(&pipeline->batch_relocs,
200 pAllocator ? pAllocator : &device->alloc);
201 if (pipeline->blend_state.map)
202 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
203
204 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
205 if (pipeline->shaders[s])
206 anv_shader_bin_unref(device, pipeline->shaders[s]);
207 }
208
209 vk_free2(&device->alloc, pAllocator, pipeline);
210 }
211
212 static const uint32_t vk_to_gen_primitive_type[] = {
213 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
214 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
215 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
216 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
217 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
218 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
219 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
220 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
221 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
222 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
223 };
224
225 static void
226 populate_sampler_prog_key(const struct gen_device_info *devinfo,
227 struct brw_sampler_prog_key_data *key)
228 {
229 /* Almost all multisampled textures are compressed. The only time when we
230 * don't compress a multisampled texture is for 16x MSAA with a surface
231 * width greater than 8k which is a bit of an edge case. Since the sampler
232 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
233 * to tell the compiler to always assume compression.
234 */
235 key->compressed_multisample_layout_mask = ~0;
236
237 /* SkyLake added support for 16x MSAA. With this came a new message for
238 * reading from a 16x MSAA surface with compression. The new message was
239 * needed because now the MCS data is 64 bits instead of 32 or lower as is
240 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
241 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
242 * so we can just use it unconditionally. This may not be quite as
243 * efficient but it saves us from recompiling.
244 */
245 if (devinfo->gen >= 9)
246 key->msaa_16 = ~0;
247
248 /* XXX: Handle texture swizzle on HSW- */
249 for (int i = 0; i < MAX_SAMPLERS; i++) {
250 /* Assume color sampler, no swizzling. (Works for BDW+) */
251 key->swizzles[i] = SWIZZLE_XYZW;
252 }
253 }
254
255 static void
256 populate_vs_prog_key(const struct gen_device_info *devinfo,
257 struct brw_vs_prog_key *key)
258 {
259 memset(key, 0, sizeof(*key));
260
261 populate_sampler_prog_key(devinfo, &key->tex);
262
263 /* XXX: Handle vertex input work-arounds */
264
265 /* XXX: Handle sampler_prog_key */
266 }
267
268 static void
269 populate_gs_prog_key(const struct gen_device_info *devinfo,
270 struct brw_gs_prog_key *key)
271 {
272 memset(key, 0, sizeof(*key));
273
274 populate_sampler_prog_key(devinfo, &key->tex);
275 }
276
277 static void
278 populate_wm_prog_key(const struct anv_pipeline *pipeline,
279 const VkGraphicsPipelineCreateInfo *info,
280 struct brw_wm_prog_key *key)
281 {
282 const struct gen_device_info *devinfo = &pipeline->device->info;
283
284 memset(key, 0, sizeof(*key));
285
286 populate_sampler_prog_key(devinfo, &key->tex);
287
288 /* TODO: we could set this to 0 based on the information in nir_shader, but
289 * this function is called before spirv_to_nir. */
290 const struct brw_vue_map *vue_map =
291 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
292 key->input_slots_valid = vue_map->slots_valid;
293
294 /* Vulkan doesn't specify a default */
295 key->high_quality_derivatives = false;
296
297 /* XXX Vulkan doesn't appear to specify */
298 key->clamp_fragment_color = false;
299
300 key->nr_color_regions = pipeline->subpass->color_count;
301
302 key->replicate_alpha = key->nr_color_regions > 1 &&
303 info->pMultisampleState &&
304 info->pMultisampleState->alphaToCoverageEnable;
305
306 if (info->pMultisampleState) {
307 /* We should probably pull this out of the shader, but it's fairly
308 * harmless to compute it and then let dead-code take care of it.
309 */
310 if (info->pMultisampleState->rasterizationSamples > 1) {
311 key->persample_interp =
312 (info->pMultisampleState->minSampleShading *
313 info->pMultisampleState->rasterizationSamples) > 1;
314 key->multisample_fbo = true;
315 }
316
317 key->frag_coord_adds_sample_pos =
318 info->pMultisampleState->sampleShadingEnable;
319 }
320 }
321
322 static void
323 populate_cs_prog_key(const struct gen_device_info *devinfo,
324 struct brw_cs_prog_key *key)
325 {
326 memset(key, 0, sizeof(*key));
327
328 populate_sampler_prog_key(devinfo, &key->tex);
329 }
330
331 static void
332 anv_pipeline_hash_shader(struct anv_pipeline *pipeline,
333 struct anv_shader_module *module,
334 const char *entrypoint,
335 gl_shader_stage stage,
336 const VkSpecializationInfo *spec_info,
337 const void *key, size_t key_size,
338 unsigned char *sha1_out)
339 {
340 struct mesa_sha1 ctx;
341
342 _mesa_sha1_init(&ctx);
343 if (stage != MESA_SHADER_COMPUTE) {
344 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
345 sizeof(pipeline->subpass->view_mask));
346 }
347 if (pipeline->layout) {
348 _mesa_sha1_update(&ctx, pipeline->layout->sha1,
349 sizeof(pipeline->layout->sha1));
350 }
351 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
352 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
353 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
354 if (spec_info) {
355 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
356 spec_info->mapEntryCount * sizeof(*spec_info->pMapEntries));
357 _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
358 }
359 _mesa_sha1_update(&ctx, key, key_size);
360 _mesa_sha1_final(&ctx, sha1_out);
361 }
362
363 static nir_shader *
364 anv_pipeline_compile(struct anv_pipeline *pipeline,
365 struct anv_shader_module *module,
366 const char *entrypoint,
367 gl_shader_stage stage,
368 const VkSpecializationInfo *spec_info,
369 struct brw_stage_prog_data *prog_data,
370 struct anv_pipeline_bind_map *map)
371 {
372 nir_shader *nir = anv_shader_compile_to_nir(pipeline,
373 module, entrypoint, stage,
374 spec_info);
375 if (nir == NULL)
376 return NULL;
377
378 NIR_PASS_V(nir, anv_nir_lower_push_constants);
379
380 if (stage != MESA_SHADER_COMPUTE)
381 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
382
383 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
384
385 /* Figure out the number of parameters */
386 prog_data->nr_params = 0;
387
388 if (nir->num_uniforms > 0) {
389 /* If the shader uses any push constants at all, we'll just give
390 * them the maximum possible number
391 */
392 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
393 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
394 }
395
396 if (nir->info.num_images > 0) {
397 prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
398 pipeline->needs_data_cache = true;
399 }
400
401 if (stage == MESA_SHADER_COMPUTE)
402 ((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
403 prog_data->nr_params++; /* The CS Thread ID uniform */
404
405 if (nir->info.num_ssbos > 0)
406 pipeline->needs_data_cache = true;
407
408 if (prog_data->nr_params > 0) {
409 /* XXX: I think we're leaking this */
410 prog_data->param = (const union gl_constant_value **)
411 malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
412
413 /* We now set the param values to be offsets into a
414 * anv_push_constant_data structure. Since the compiler doesn't
415 * actually dereference any of the gl_constant_value pointers in the
416 * params array, it doesn't really matter what we put here.
417 */
418 struct anv_push_constants *null_data = NULL;
419 if (nir->num_uniforms > 0) {
420 /* Fill out the push constants section of the param array */
421 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
422 prog_data->param[i] = (const union gl_constant_value *)
423 &null_data->client_data[i * sizeof(float)];
424 }
425 }
426
427 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
428 if (pipeline->layout)
429 anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
430
431 /* nir_lower_io will only handle the push constants; we need to set this
432 * to the full number of possible uniforms.
433 */
434 nir->num_uniforms = prog_data->nr_params * 4;
435
436 return nir;
437 }
438
439 static void
440 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
441 {
442 prog_data->binding_table.size_bytes = 0;
443 prog_data->binding_table.texture_start = bias;
444 prog_data->binding_table.gather_texture_start = bias;
445 prog_data->binding_table.ubo_start = bias;
446 prog_data->binding_table.ssbo_start = bias;
447 prog_data->binding_table.image_start = bias;
448 }
449
450 static struct anv_shader_bin *
451 anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
452 struct anv_pipeline_cache *cache,
453 const void *key_data, uint32_t key_size,
454 const void *kernel_data, uint32_t kernel_size,
455 const struct brw_stage_prog_data *prog_data,
456 uint32_t prog_data_size,
457 const struct anv_pipeline_bind_map *bind_map)
458 {
459 if (cache) {
460 return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
461 kernel_data, kernel_size,
462 prog_data, prog_data_size,
463 bind_map);
464 } else {
465 return anv_shader_bin_create(pipeline->device, key_data, key_size,
466 kernel_data, kernel_size,
467 prog_data, prog_data_size,
468 prog_data->param, bind_map);
469 }
470 }
471
472
473 static void
474 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
475 gl_shader_stage stage,
476 struct anv_shader_bin *shader)
477 {
478 pipeline->shaders[stage] = shader;
479 pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
480 }
481
482 static VkResult
483 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
484 struct anv_pipeline_cache *cache,
485 const VkGraphicsPipelineCreateInfo *info,
486 struct anv_shader_module *module,
487 const char *entrypoint,
488 const VkSpecializationInfo *spec_info)
489 {
490 const struct brw_compiler *compiler =
491 pipeline->device->instance->physicalDevice.compiler;
492 struct anv_pipeline_bind_map map;
493 struct brw_vs_prog_key key;
494 struct anv_shader_bin *bin = NULL;
495 unsigned char sha1[20];
496
497 populate_vs_prog_key(&pipeline->device->info, &key);
498
499 if (cache) {
500 anv_pipeline_hash_shader(pipeline, module, entrypoint,
501 MESA_SHADER_VERTEX, spec_info,
502 &key, sizeof(key), sha1);
503 bin = anv_pipeline_cache_search(cache, sha1, 20);
504 }
505
506 if (bin == NULL) {
507 struct brw_vs_prog_data prog_data = { 0, };
508 struct anv_pipeline_binding surface_to_descriptor[256];
509 struct anv_pipeline_binding sampler_to_descriptor[256];
510
511 map = (struct anv_pipeline_bind_map) {
512 .surface_to_descriptor = surface_to_descriptor,
513 .sampler_to_descriptor = sampler_to_descriptor
514 };
515
516 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
517 MESA_SHADER_VERTEX, spec_info,
518 &prog_data.base.base, &map);
519 if (nir == NULL)
520 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
521
522 anv_fill_binding_table(&prog_data.base.base, 0);
523
524 void *mem_ctx = ralloc_context(NULL);
525
526 ralloc_steal(mem_ctx, nir);
527
528 brw_compute_vue_map(&pipeline->device->info,
529 &prog_data.base.vue_map,
530 nir->info.outputs_written,
531 nir->info.separate_shader);
532
533 unsigned code_size;
534 const unsigned *shader_code =
535 brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
536 NULL, false, -1, &code_size, NULL);
537 if (shader_code == NULL) {
538 ralloc_free(mem_ctx);
539 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
540 }
541
542 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
543 shader_code, code_size,
544 &prog_data.base.base, sizeof(prog_data),
545 &map);
546 if (!bin) {
547 ralloc_free(mem_ctx);
548 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
549 }
550
551 ralloc_free(mem_ctx);
552 }
553
554 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
555
556 return VK_SUCCESS;
557 }
558
559 static void
560 merge_tess_info(struct shader_info *tes_info,
561 const struct shader_info *tcs_info)
562 {
563 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
564 *
565 * "PointMode. Controls generation of points rather than triangles
566 * or lines. This functionality defaults to disabled, and is
567 * enabled if either shader stage includes the execution mode.
568 *
569 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
570 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
571 * and OutputVertices, it says:
572 *
573 * "One mode must be set in at least one of the tessellation
574 * shader stages."
575 *
576 * So, the fields can be set in either the TCS or TES, but they must
577 * agree if set in both. Our backend looks at TES, so bitwise-or in
578 * the values from the TCS.
579 */
580 assert(tcs_info->tess.tcs_vertices_out == 0 ||
581 tes_info->tess.tcs_vertices_out == 0 ||
582 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
583 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
584
585 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
586 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
587 tcs_info->tess.spacing == tes_info->tess.spacing);
588 tes_info->tess.spacing |= tcs_info->tess.spacing;
589
590 tes_info->tess.ccw |= tcs_info->tess.ccw;
591 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
592 }
593
594 static VkResult
595 anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline,
596 struct anv_pipeline_cache *cache,
597 const VkGraphicsPipelineCreateInfo *info,
598 struct anv_shader_module *tcs_module,
599 const char *tcs_entrypoint,
600 const VkSpecializationInfo *tcs_spec_info,
601 struct anv_shader_module *tes_module,
602 const char *tes_entrypoint,
603 const VkSpecializationInfo *tes_spec_info)
604 {
605 const struct gen_device_info *devinfo = &pipeline->device->info;
606 const struct brw_compiler *compiler =
607 pipeline->device->instance->physicalDevice.compiler;
608 struct anv_pipeline_bind_map tcs_map;
609 struct anv_pipeline_bind_map tes_map;
610 struct brw_tcs_prog_key tcs_key = { 0, };
611 struct brw_tes_prog_key tes_key = { 0, };
612 struct anv_shader_bin *tcs_bin = NULL;
613 struct anv_shader_bin *tes_bin = NULL;
614 unsigned char tcs_sha1[40];
615 unsigned char tes_sha1[40];
616
617 populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex);
618 populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex);
619 tcs_key.input_vertices = info->pTessellationState->patchControlPoints;
620
621 if (cache) {
622 anv_pipeline_hash_shader(pipeline, tcs_module, tcs_entrypoint,
623 MESA_SHADER_TESS_CTRL, tcs_spec_info,
624 &tcs_key, sizeof(tcs_key), tcs_sha1);
625 anv_pipeline_hash_shader(pipeline, tes_module, tes_entrypoint,
626 MESA_SHADER_TESS_EVAL, tes_spec_info,
627 &tes_key, sizeof(tes_key), tes_sha1);
628 memcpy(&tcs_sha1[20], tes_sha1, 20);
629 memcpy(&tes_sha1[20], tcs_sha1, 20);
630 tcs_bin = anv_pipeline_cache_search(cache, tcs_sha1, sizeof(tcs_sha1));
631 tes_bin = anv_pipeline_cache_search(cache, tes_sha1, sizeof(tes_sha1));
632 }
633
634 if (tcs_bin == NULL || tes_bin == NULL) {
635 struct brw_tcs_prog_data tcs_prog_data = { 0, };
636 struct brw_tes_prog_data tes_prog_data = { 0, };
637 struct anv_pipeline_binding tcs_surface_to_descriptor[256];
638 struct anv_pipeline_binding tcs_sampler_to_descriptor[256];
639 struct anv_pipeline_binding tes_surface_to_descriptor[256];
640 struct anv_pipeline_binding tes_sampler_to_descriptor[256];
641
642 tcs_map = (struct anv_pipeline_bind_map) {
643 .surface_to_descriptor = tcs_surface_to_descriptor,
644 .sampler_to_descriptor = tcs_sampler_to_descriptor
645 };
646 tes_map = (struct anv_pipeline_bind_map) {
647 .surface_to_descriptor = tes_surface_to_descriptor,
648 .sampler_to_descriptor = tes_sampler_to_descriptor
649 };
650
651 nir_shader *tcs_nir =
652 anv_pipeline_compile(pipeline, tcs_module, tcs_entrypoint,
653 MESA_SHADER_TESS_CTRL, tcs_spec_info,
654 &tcs_prog_data.base.base, &tcs_map);
655 nir_shader *tes_nir =
656 anv_pipeline_compile(pipeline, tes_module, tes_entrypoint,
657 MESA_SHADER_TESS_EVAL, tes_spec_info,
658 &tes_prog_data.base.base, &tes_map);
659 if (tcs_nir == NULL || tes_nir == NULL)
660 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
661
662 nir_lower_tes_patch_vertices(tes_nir,
663 tcs_nir->info.tess.tcs_vertices_out);
664
665 /* Copy TCS info into the TES info */
666 merge_tess_info(&tes_nir->info, &tcs_nir->info);
667
668 anv_fill_binding_table(&tcs_prog_data.base.base, 0);
669 anv_fill_binding_table(&tes_prog_data.base.base, 0);
670
671 void *mem_ctx = ralloc_context(NULL);
672
673 ralloc_steal(mem_ctx, tcs_nir);
674 ralloc_steal(mem_ctx, tes_nir);
675
676 /* Whacking the key after cache lookup is a bit sketchy, but all of
677 * this comes from the SPIR-V, which is part of the hash used for the
678 * pipeline cache. So it should be safe.
679 */
680 tcs_key.tes_primitive_mode = tes_nir->info.tess.primitive_mode;
681 tcs_key.outputs_written = tcs_nir->info.outputs_written;
682 tcs_key.patch_outputs_written = tcs_nir->info.patch_outputs_written;
683 tcs_key.quads_workaround =
684 devinfo->gen < 9 &&
685 tes_nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
686 tes_nir->info.tess.spacing == TESS_SPACING_EQUAL;
687
688 tes_key.inputs_read = tcs_key.outputs_written;
689 tes_key.patch_inputs_read = tcs_key.patch_outputs_written;
690
691 unsigned code_size;
692 const int shader_time_index = -1;
693 const unsigned *shader_code;
694
695 shader_code =
696 brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data,
697 tcs_nir, shader_time_index, &code_size, NULL);
698 if (shader_code == NULL) {
699 ralloc_free(mem_ctx);
700 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
701 }
702
703 tcs_bin = anv_pipeline_upload_kernel(pipeline, cache,
704 tcs_sha1, sizeof(tcs_sha1),
705 shader_code, code_size,
706 &tcs_prog_data.base.base,
707 sizeof(tcs_prog_data),
708 &tcs_map);
709 if (!tcs_bin) {
710 ralloc_free(mem_ctx);
711 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
712 }
713
714 shader_code =
715 brw_compile_tes(compiler, NULL, mem_ctx, &tes_key,
716 &tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir,
717 NULL, shader_time_index, &code_size, NULL);
718 if (shader_code == NULL) {
719 ralloc_free(mem_ctx);
720 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
721 }
722
723 tes_bin = anv_pipeline_upload_kernel(pipeline, cache,
724 tes_sha1, sizeof(tes_sha1),
725 shader_code, code_size,
726 &tes_prog_data.base.base,
727 sizeof(tes_prog_data),
728 &tes_map);
729 if (!tes_bin) {
730 ralloc_free(mem_ctx);
731 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
732 }
733
734 ralloc_free(mem_ctx);
735 }
736
737 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
738 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
739
740 return VK_SUCCESS;
741 }
742
743 static VkResult
744 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
745 struct anv_pipeline_cache *cache,
746 const VkGraphicsPipelineCreateInfo *info,
747 struct anv_shader_module *module,
748 const char *entrypoint,
749 const VkSpecializationInfo *spec_info)
750 {
751 const struct brw_compiler *compiler =
752 pipeline->device->instance->physicalDevice.compiler;
753 struct anv_pipeline_bind_map map;
754 struct brw_gs_prog_key key;
755 struct anv_shader_bin *bin = NULL;
756 unsigned char sha1[20];
757
758 populate_gs_prog_key(&pipeline->device->info, &key);
759
760 if (cache) {
761 anv_pipeline_hash_shader(pipeline, module, entrypoint,
762 MESA_SHADER_GEOMETRY, spec_info,
763 &key, sizeof(key), sha1);
764 bin = anv_pipeline_cache_search(cache, sha1, 20);
765 }
766
767 if (bin == NULL) {
768 struct brw_gs_prog_data prog_data = { 0, };
769 struct anv_pipeline_binding surface_to_descriptor[256];
770 struct anv_pipeline_binding sampler_to_descriptor[256];
771
772 map = (struct anv_pipeline_bind_map) {
773 .surface_to_descriptor = surface_to_descriptor,
774 .sampler_to_descriptor = sampler_to_descriptor
775 };
776
777 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
778 MESA_SHADER_GEOMETRY, spec_info,
779 &prog_data.base.base, &map);
780 if (nir == NULL)
781 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
782
783 anv_fill_binding_table(&prog_data.base.base, 0);
784
785 void *mem_ctx = ralloc_context(NULL);
786
787 ralloc_steal(mem_ctx, nir);
788
789 brw_compute_vue_map(&pipeline->device->info,
790 &prog_data.base.vue_map,
791 nir->info.outputs_written,
792 nir->info.separate_shader);
793
794 unsigned code_size;
795 const unsigned *shader_code =
796 brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
797 NULL, -1, &code_size, NULL);
798 if (shader_code == NULL) {
799 ralloc_free(mem_ctx);
800 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
801 }
802
803 /* TODO: SIMD8 GS */
804 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
805 shader_code, code_size,
806 &prog_data.base.base, sizeof(prog_data),
807 &map);
808 if (!bin) {
809 ralloc_free(mem_ctx);
810 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
811 }
812
813 ralloc_free(mem_ctx);
814 }
815
816 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
817
818 return VK_SUCCESS;
819 }
820
821 static VkResult
822 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
823 struct anv_pipeline_cache *cache,
824 const VkGraphicsPipelineCreateInfo *info,
825 struct anv_shader_module *module,
826 const char *entrypoint,
827 const VkSpecializationInfo *spec_info)
828 {
829 const struct brw_compiler *compiler =
830 pipeline->device->instance->physicalDevice.compiler;
831 struct anv_pipeline_bind_map map;
832 struct brw_wm_prog_key key;
833 struct anv_shader_bin *bin = NULL;
834 unsigned char sha1[20];
835
836 populate_wm_prog_key(pipeline, info, &key);
837
838 if (cache) {
839 anv_pipeline_hash_shader(pipeline, module, entrypoint,
840 MESA_SHADER_FRAGMENT, spec_info,
841 &key, sizeof(key), sha1);
842 bin = anv_pipeline_cache_search(cache, sha1, 20);
843 }
844
845 if (bin == NULL) {
846 struct brw_wm_prog_data prog_data = { 0, };
847 struct anv_pipeline_binding surface_to_descriptor[256];
848 struct anv_pipeline_binding sampler_to_descriptor[256];
849
850 map = (struct anv_pipeline_bind_map) {
851 .surface_to_descriptor = surface_to_descriptor + 8,
852 .sampler_to_descriptor = sampler_to_descriptor
853 };
854
855 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
856 MESA_SHADER_FRAGMENT, spec_info,
857 &prog_data.base, &map);
858 if (nir == NULL)
859 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
860
861 unsigned num_rts = 0;
862 struct anv_pipeline_binding rt_bindings[8];
863 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
864 nir_foreach_variable_safe(var, &nir->outputs) {
865 if (var->data.location < FRAG_RESULT_DATA0)
866 continue;
867
868 unsigned rt = var->data.location - FRAG_RESULT_DATA0;
869 if (rt >= key.nr_color_regions) {
870 /* Out-of-bounds, throw it away */
871 var->data.mode = nir_var_local;
872 exec_node_remove(&var->node);
873 exec_list_push_tail(&impl->locals, &var->node);
874 continue;
875 }
876
877 /* Give it a new, compacted, location */
878 var->data.location = FRAG_RESULT_DATA0 + num_rts;
879
880 unsigned array_len =
881 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
882 assert(num_rts + array_len <= 8);
883
884 for (unsigned i = 0; i < array_len; i++) {
885 rt_bindings[num_rts + i] = (struct anv_pipeline_binding) {
886 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
887 .binding = 0,
888 .index = rt + i,
889 };
890 }
891
892 num_rts += array_len;
893 }
894
895 if (num_rts == 0) {
896 /* If we have no render targets, we need a null render target */
897 rt_bindings[0] = (struct anv_pipeline_binding) {
898 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
899 .binding = 0,
900 .index = UINT8_MAX,
901 };
902 num_rts = 1;
903 }
904
905 assert(num_rts <= 8);
906 map.surface_to_descriptor -= num_rts;
907 map.surface_count += num_rts;
908 assert(map.surface_count <= 256);
909 memcpy(map.surface_to_descriptor, rt_bindings,
910 num_rts * sizeof(*rt_bindings));
911
912 anv_fill_binding_table(&prog_data.base, num_rts);
913
914 void *mem_ctx = ralloc_context(NULL);
915
916 ralloc_steal(mem_ctx, nir);
917
918 unsigned code_size;
919 const unsigned *shader_code =
920 brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
921 NULL, -1, -1, true, false, NULL, &code_size, NULL);
922 if (shader_code == NULL) {
923 ralloc_free(mem_ctx);
924 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
925 }
926
927 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
928 shader_code, code_size,
929 &prog_data.base, sizeof(prog_data),
930 &map);
931 if (!bin) {
932 ralloc_free(mem_ctx);
933 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
934 }
935
936 ralloc_free(mem_ctx);
937 }
938
939 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
940
941 return VK_SUCCESS;
942 }
943
944 VkResult
945 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
946 struct anv_pipeline_cache *cache,
947 const VkComputePipelineCreateInfo *info,
948 struct anv_shader_module *module,
949 const char *entrypoint,
950 const VkSpecializationInfo *spec_info)
951 {
952 const struct brw_compiler *compiler =
953 pipeline->device->instance->physicalDevice.compiler;
954 struct anv_pipeline_bind_map map;
955 struct brw_cs_prog_key key;
956 struct anv_shader_bin *bin = NULL;
957 unsigned char sha1[20];
958
959 populate_cs_prog_key(&pipeline->device->info, &key);
960
961 if (cache) {
962 anv_pipeline_hash_shader(pipeline, module, entrypoint,
963 MESA_SHADER_COMPUTE, spec_info,
964 &key, sizeof(key), sha1);
965 bin = anv_pipeline_cache_search(cache, sha1, 20);
966 }
967
968 if (bin == NULL) {
969 struct brw_cs_prog_data prog_data = { 0, };
970 struct anv_pipeline_binding surface_to_descriptor[256];
971 struct anv_pipeline_binding sampler_to_descriptor[256];
972
973 map = (struct anv_pipeline_bind_map) {
974 .surface_to_descriptor = surface_to_descriptor,
975 .sampler_to_descriptor = sampler_to_descriptor
976 };
977
978 nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
979 MESA_SHADER_COMPUTE, spec_info,
980 &prog_data.base, &map);
981 if (nir == NULL)
982 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
983
984 anv_fill_binding_table(&prog_data.base, 1);
985
986 void *mem_ctx = ralloc_context(NULL);
987
988 ralloc_steal(mem_ctx, nir);
989
990 unsigned code_size;
991 const unsigned *shader_code =
992 brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
993 -1, &code_size, NULL);
994 if (shader_code == NULL) {
995 ralloc_free(mem_ctx);
996 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
997 }
998
999 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
1000 shader_code, code_size,
1001 &prog_data.base, sizeof(prog_data),
1002 &map);
1003 if (!bin) {
1004 ralloc_free(mem_ctx);
1005 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1006 }
1007
1008 ralloc_free(mem_ctx);
1009 }
1010
1011 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
1012
1013 return VK_SUCCESS;
1014 }
1015
1016 /**
1017 * Copy pipeline state not marked as dynamic.
1018 * Dynamic state is pipeline state which hasn't been provided at pipeline
1019 * creation time, but is dynamically provided afterwards using various
1020 * vkCmdSet* functions.
1021 *
1022 * The set of state considered "non_dynamic" is determined by the pieces of
1023 * state that have their corresponding VkDynamicState enums omitted from
1024 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1025 *
1026 * @param[out] pipeline Destination non_dynamic state.
1027 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1028 */
1029 static void
1030 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1031 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1032 {
1033 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1034 struct anv_subpass *subpass = pipeline->subpass;
1035
1036 pipeline->dynamic_state = default_dynamic_state;
1037
1038 if (pCreateInfo->pDynamicState) {
1039 /* Remove all of the states that are marked as dynamic */
1040 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1041 for (uint32_t s = 0; s < count; s++)
1042 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1043 }
1044
1045 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1046
1047 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1048 *
1049 * pViewportState is [...] NULL if the pipeline
1050 * has rasterization disabled.
1051 */
1052 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1053 assert(pCreateInfo->pViewportState);
1054
1055 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1056 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1057 typed_memcpy(dynamic->viewport.viewports,
1058 pCreateInfo->pViewportState->pViewports,
1059 pCreateInfo->pViewportState->viewportCount);
1060 }
1061
1062 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1063 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1064 typed_memcpy(dynamic->scissor.scissors,
1065 pCreateInfo->pViewportState->pScissors,
1066 pCreateInfo->pViewportState->scissorCount);
1067 }
1068 }
1069
1070 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1071 assert(pCreateInfo->pRasterizationState);
1072 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1073 }
1074
1075 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1076 assert(pCreateInfo->pRasterizationState);
1077 dynamic->depth_bias.bias =
1078 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1079 dynamic->depth_bias.clamp =
1080 pCreateInfo->pRasterizationState->depthBiasClamp;
1081 dynamic->depth_bias.slope =
1082 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1083 }
1084
1085 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1086 *
1087 * pColorBlendState is [...] NULL if the pipeline has rasterization
1088 * disabled or if the subpass of the render pass the pipeline is
1089 * created against does not use any color attachments.
1090 */
1091 bool uses_color_att = false;
1092 for (unsigned i = 0; i < subpass->color_count; ++i) {
1093 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1094 uses_color_att = true;
1095 break;
1096 }
1097 }
1098
1099 if (uses_color_att &&
1100 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1101 assert(pCreateInfo->pColorBlendState);
1102
1103 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1104 typed_memcpy(dynamic->blend_constants,
1105 pCreateInfo->pColorBlendState->blendConstants, 4);
1106 }
1107
1108 /* If there is no depthstencil attachment, then don't read
1109 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1110 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1111 * no need to override the depthstencil defaults in
1112 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1113 *
1114 * Section 9.2 of the Vulkan 1.0.15 spec says:
1115 *
1116 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1117 * disabled or if the subpass of the render pass the pipeline is created
1118 * against does not use a depth/stencil attachment.
1119 */
1120 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1121 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
1122 assert(pCreateInfo->pDepthStencilState);
1123
1124 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1125 dynamic->depth_bounds.min =
1126 pCreateInfo->pDepthStencilState->minDepthBounds;
1127 dynamic->depth_bounds.max =
1128 pCreateInfo->pDepthStencilState->maxDepthBounds;
1129 }
1130
1131 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1132 dynamic->stencil_compare_mask.front =
1133 pCreateInfo->pDepthStencilState->front.compareMask;
1134 dynamic->stencil_compare_mask.back =
1135 pCreateInfo->pDepthStencilState->back.compareMask;
1136 }
1137
1138 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1139 dynamic->stencil_write_mask.front =
1140 pCreateInfo->pDepthStencilState->front.writeMask;
1141 dynamic->stencil_write_mask.back =
1142 pCreateInfo->pDepthStencilState->back.writeMask;
1143 }
1144
1145 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1146 dynamic->stencil_reference.front =
1147 pCreateInfo->pDepthStencilState->front.reference;
1148 dynamic->stencil_reference.back =
1149 pCreateInfo->pDepthStencilState->back.reference;
1150 }
1151 }
1152
1153 pipeline->dynamic_state_mask = states;
1154 }
1155
1156 static void
1157 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1158 {
1159 #ifdef DEBUG
1160 struct anv_render_pass *renderpass = NULL;
1161 struct anv_subpass *subpass = NULL;
1162
1163 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1164 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1165 */
1166 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1167
1168 renderpass = anv_render_pass_from_handle(info->renderPass);
1169 assert(renderpass);
1170
1171 assert(info->subpass < renderpass->subpass_count);
1172 subpass = &renderpass->subpasses[info->subpass];
1173
1174 assert(info->stageCount >= 1);
1175 assert(info->pVertexInputState);
1176 assert(info->pInputAssemblyState);
1177 assert(info->pRasterizationState);
1178 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1179 assert(info->pViewportState);
1180 assert(info->pMultisampleState);
1181
1182 if (subpass && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
1183 assert(info->pDepthStencilState);
1184
1185 if (subpass && subpass->color_count > 0)
1186 assert(info->pColorBlendState);
1187 }
1188
1189 for (uint32_t i = 0; i < info->stageCount; ++i) {
1190 switch (info->pStages[i].stage) {
1191 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1192 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1193 assert(info->pTessellationState);
1194 break;
1195 default:
1196 break;
1197 }
1198 }
1199 #endif
1200 }
1201
1202 /**
1203 * Calculate the desired L3 partitioning based on the current state of the
1204 * pipeline. For now this simply returns the conservative defaults calculated
1205 * by get_default_l3_weights(), but we could probably do better by gathering
1206 * more statistics from the pipeline state (e.g. guess of expected URB usage
1207 * and bound surfaces), or by using feed-back from performance counters.
1208 */
1209 void
1210 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1211 {
1212 const struct gen_device_info *devinfo = &pipeline->device->info;
1213
1214 const struct gen_l3_weights w =
1215 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1216
1217 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1218 pipeline->urb.total_size =
1219 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1220 }
1221
1222 VkResult
1223 anv_pipeline_init(struct anv_pipeline *pipeline,
1224 struct anv_device *device,
1225 struct anv_pipeline_cache *cache,
1226 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1227 const VkAllocationCallbacks *alloc)
1228 {
1229 VkResult result;
1230
1231 anv_pipeline_validate_create_info(pCreateInfo);
1232
1233 if (alloc == NULL)
1234 alloc = &device->alloc;
1235
1236 pipeline->device = device;
1237
1238 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1239 assert(pCreateInfo->subpass < render_pass->subpass_count);
1240 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1241
1242 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1243
1244 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1245 if (result != VK_SUCCESS)
1246 return result;
1247
1248 pipeline->batch.alloc = alloc;
1249 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1250 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1251 pipeline->batch.relocs = &pipeline->batch_relocs;
1252 pipeline->batch.status = VK_SUCCESS;
1253
1254 copy_non_dynamic_state(pipeline, pCreateInfo);
1255 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1256 pCreateInfo->pRasterizationState->depthClampEnable;
1257
1258 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1259 pCreateInfo->pMultisampleState->sampleShadingEnable;
1260
1261 pipeline->needs_data_cache = false;
1262
1263 /* When we free the pipeline, we detect stages based on the NULL status
1264 * of various prog_data pointers. Make them NULL by default.
1265 */
1266 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1267
1268 pipeline->active_stages = 0;
1269
1270 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
1271 struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1272 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1273 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
1274 pStages[stage] = &pCreateInfo->pStages[i];
1275 modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
1276 }
1277
1278 if (modules[MESA_SHADER_VERTEX]) {
1279 result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
1280 modules[MESA_SHADER_VERTEX],
1281 pStages[MESA_SHADER_VERTEX]->pName,
1282 pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
1283 if (result != VK_SUCCESS)
1284 goto compile_fail;
1285 }
1286
1287 if (modules[MESA_SHADER_TESS_EVAL]) {
1288 anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo,
1289 modules[MESA_SHADER_TESS_CTRL],
1290 pStages[MESA_SHADER_TESS_CTRL]->pName,
1291 pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
1292 modules[MESA_SHADER_TESS_EVAL],
1293 pStages[MESA_SHADER_TESS_EVAL]->pName,
1294 pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo);
1295 }
1296
1297 if (modules[MESA_SHADER_GEOMETRY]) {
1298 result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
1299 modules[MESA_SHADER_GEOMETRY],
1300 pStages[MESA_SHADER_GEOMETRY]->pName,
1301 pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
1302 if (result != VK_SUCCESS)
1303 goto compile_fail;
1304 }
1305
1306 if (modules[MESA_SHADER_FRAGMENT]) {
1307 result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
1308 modules[MESA_SHADER_FRAGMENT],
1309 pStages[MESA_SHADER_FRAGMENT]->pName,
1310 pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
1311 if (result != VK_SUCCESS)
1312 goto compile_fail;
1313 }
1314
1315 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1316
1317 anv_pipeline_setup_l3_config(pipeline, false);
1318
1319 const VkPipelineVertexInputStateCreateInfo *vi_info =
1320 pCreateInfo->pVertexInputState;
1321
1322 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1323
1324 pipeline->vb_used = 0;
1325 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1326 const VkVertexInputAttributeDescription *desc =
1327 &vi_info->pVertexAttributeDescriptions[i];
1328
1329 if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1330 pipeline->vb_used |= 1 << desc->binding;
1331 }
1332
1333 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1334 const VkVertexInputBindingDescription *desc =
1335 &vi_info->pVertexBindingDescriptions[i];
1336
1337 pipeline->binding_stride[desc->binding] = desc->stride;
1338
1339 /* Step rate is programmed per vertex element (attribute), not
1340 * binding. Set up a map of which bindings step per instance, for
1341 * reference by vertex element setup. */
1342 switch (desc->inputRate) {
1343 default:
1344 case VK_VERTEX_INPUT_RATE_VERTEX:
1345 pipeline->instancing_enable[desc->binding] = false;
1346 break;
1347 case VK_VERTEX_INPUT_RATE_INSTANCE:
1348 pipeline->instancing_enable[desc->binding] = true;
1349 break;
1350 }
1351 }
1352
1353 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1354 pCreateInfo->pInputAssemblyState;
1355 const VkPipelineTessellationStateCreateInfo *tess_info =
1356 pCreateInfo->pTessellationState;
1357 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1358
1359 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1360 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1361 else
1362 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1363
1364 return VK_SUCCESS;
1365
1366 compile_fail:
1367 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1368 if (pipeline->shaders[s])
1369 anv_shader_bin_unref(device, pipeline->shaders[s]);
1370 }
1371
1372 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1373
1374 return result;
1375 }