intel/compiler: Fill a compiler statistics struct
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "anv_private.h"
34 #include "compiler/brw_nir.h"
35 #include "anv_nir.h"
36 #include "nir/nir_xfb_info.h"
37 #include "spirv/nir_spirv.h"
38 #include "vk_util.h"
39
40 /* Needed for SWIZZLE macros */
41 #include "program/prog_instruction.h"
42
43 // Shader functions
44
45 VkResult anv_CreateShaderModule(
46 VkDevice _device,
47 const VkShaderModuleCreateInfo* pCreateInfo,
48 const VkAllocationCallbacks* pAllocator,
49 VkShaderModule* pShaderModule)
50 {
51 ANV_FROM_HANDLE(anv_device, device, _device);
52 struct anv_shader_module *module;
53
54 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
55 assert(pCreateInfo->flags == 0);
56
57 module = vk_alloc2(&device->alloc, pAllocator,
58 sizeof(*module) + pCreateInfo->codeSize, 8,
59 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
60 if (module == NULL)
61 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
62
63 module->size = pCreateInfo->codeSize;
64 memcpy(module->data, pCreateInfo->pCode, module->size);
65
66 _mesa_sha1_compute(module->data, module->size, module->sha1);
67
68 *pShaderModule = anv_shader_module_to_handle(module);
69
70 return VK_SUCCESS;
71 }
72
73 void anv_DestroyShaderModule(
74 VkDevice _device,
75 VkShaderModule _module,
76 const VkAllocationCallbacks* pAllocator)
77 {
78 ANV_FROM_HANDLE(anv_device, device, _device);
79 ANV_FROM_HANDLE(anv_shader_module, module, _module);
80
81 if (!module)
82 return;
83
84 vk_free2(&device->alloc, pAllocator, module);
85 }
86
87 #define SPIR_V_MAGIC_NUMBER 0x07230203
88
89 static const uint64_t stage_to_debug[] = {
90 [MESA_SHADER_VERTEX] = DEBUG_VS,
91 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
92 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
93 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
94 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
95 [MESA_SHADER_COMPUTE] = DEBUG_CS,
96 };
97
98 struct anv_spirv_debug_data {
99 struct anv_device *device;
100 const struct anv_shader_module *module;
101 };
102
103 static void anv_spirv_nir_debug(void *private_data,
104 enum nir_spirv_debug_level level,
105 size_t spirv_offset,
106 const char *message)
107 {
108 struct anv_spirv_debug_data *debug_data = private_data;
109 static const VkDebugReportFlagsEXT vk_flags[] = {
110 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
111 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
112 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
113 };
114 char buffer[256];
115
116 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
117
118 vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
119 vk_flags[level],
120 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
121 (uint64_t) (uintptr_t) debug_data->module,
122 0, 0, "anv", buffer);
123 }
124
125 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
126 * we can't do that yet because we don't have the ability to copy nir.
127 */
128 static nir_shader *
129 anv_shader_compile_to_nir(struct anv_device *device,
130 void *mem_ctx,
131 const struct anv_shader_module *module,
132 const char *entrypoint_name,
133 gl_shader_stage stage,
134 const VkSpecializationInfo *spec_info)
135 {
136 const struct anv_physical_device *pdevice =
137 &device->instance->physicalDevice;
138 const struct brw_compiler *compiler = pdevice->compiler;
139 const nir_shader_compiler_options *nir_options =
140 compiler->glsl_compiler_options[stage].NirOptions;
141
142 uint32_t *spirv = (uint32_t *) module->data;
143 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
144 assert(module->size % 4 == 0);
145
146 uint32_t num_spec_entries = 0;
147 struct nir_spirv_specialization *spec_entries = NULL;
148 if (spec_info && spec_info->mapEntryCount > 0) {
149 num_spec_entries = spec_info->mapEntryCount;
150 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
151 for (uint32_t i = 0; i < num_spec_entries; i++) {
152 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
153 const void *data = spec_info->pData + entry.offset;
154 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
155
156 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
157 if (spec_info->dataSize == 8)
158 spec_entries[i].data64 = *(const uint64_t *)data;
159 else
160 spec_entries[i].data32 = *(const uint32_t *)data;
161 }
162 }
163
164 struct anv_spirv_debug_data spirv_debug_data = {
165 .device = device,
166 .module = module,
167 };
168 struct spirv_to_nir_options spirv_options = {
169 .frag_coord_is_sysval = true,
170 .caps = {
171 .demote_to_helper_invocation = true,
172 .derivative_group = true,
173 .descriptor_array_dynamic_indexing = true,
174 .descriptor_array_non_uniform_indexing = true,
175 .descriptor_indexing = true,
176 .device_group = true,
177 .draw_parameters = true,
178 .float16 = pdevice->info.gen >= 8,
179 .float64 = pdevice->info.gen >= 8,
180 .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
181 .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
182 .geometry_streams = true,
183 .image_write_without_format = true,
184 .int8 = pdevice->info.gen >= 8,
185 .int16 = pdevice->info.gen >= 8,
186 .int64 = pdevice->info.gen >= 8,
187 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
188 .min_lod = true,
189 .multiview = true,
190 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
191 .post_depth_coverage = pdevice->info.gen >= 9,
192 .runtime_descriptor_array = true,
193 .shader_viewport_index_layer = true,
194 .stencil_export = pdevice->info.gen >= 9,
195 .storage_8bit = pdevice->info.gen >= 8,
196 .storage_16bit = pdevice->info.gen >= 8,
197 .subgroup_arithmetic = true,
198 .subgroup_basic = true,
199 .subgroup_ballot = true,
200 .subgroup_quad = true,
201 .subgroup_shuffle = true,
202 .subgroup_vote = true,
203 .tessellation = true,
204 .transform_feedback = pdevice->info.gen >= 8,
205 .variable_pointers = true,
206 },
207 .ubo_addr_format = nir_address_format_32bit_index_offset,
208 .ssbo_addr_format =
209 anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
210 .phys_ssbo_addr_format = nir_address_format_64bit_global,
211 .push_const_addr_format = nir_address_format_logical,
212
213 /* TODO: Consider changing this to an address format that has the NULL
214 * pointer equals to 0. That might be a better format to play nice
215 * with certain code / code generators.
216 */
217 .shared_addr_format = nir_address_format_32bit_offset,
218 .debug = {
219 .func = anv_spirv_nir_debug,
220 .private_data = &spirv_debug_data,
221 },
222 };
223
224
225 nir_shader *nir =
226 spirv_to_nir(spirv, module->size / 4,
227 spec_entries, num_spec_entries,
228 stage, entrypoint_name, &spirv_options, nir_options);
229 assert(nir->info.stage == stage);
230 nir_validate_shader(nir, "after spirv_to_nir");
231 ralloc_steal(mem_ctx, nir);
232
233 free(spec_entries);
234
235 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
236 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
237 gl_shader_stage_name(stage));
238 nir_print_shader(nir, stderr);
239 }
240
241 /* We have to lower away local constant initializers right before we
242 * inline functions. That way they get properly initialized at the top
243 * of the function and not at the top of its caller.
244 */
245 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
246 NIR_PASS_V(nir, nir_lower_returns);
247 NIR_PASS_V(nir, nir_inline_functions);
248 NIR_PASS_V(nir, nir_opt_deref);
249
250 /* Pick off the single entrypoint that we want */
251 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
252 if (!func->is_entrypoint)
253 exec_node_remove(&func->node);
254 }
255 assert(exec_list_length(&nir->functions) == 1);
256
257 /* Now that we've deleted all but the main function, we can go ahead and
258 * lower the rest of the constant initializers. We do this here so that
259 * nir_remove_dead_variables and split_per_member_structs below see the
260 * corresponding stores.
261 */
262 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
263
264 /* Split member structs. We do this before lower_io_to_temporaries so that
265 * it doesn't lower system values to temporaries by accident.
266 */
267 NIR_PASS_V(nir, nir_split_var_copies);
268 NIR_PASS_V(nir, nir_split_per_member_structs);
269
270 NIR_PASS_V(nir, nir_remove_dead_variables,
271 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
272
273 NIR_PASS_V(nir, nir_propagate_invariant);
274 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
275 nir_shader_get_entrypoint(nir), true, false);
276
277 NIR_PASS_V(nir, nir_lower_frexp);
278
279 /* Vulkan uses the separate-shader linking model */
280 nir->info.separate_shader = true;
281
282 brw_preprocess_nir(compiler, nir, NULL);
283
284 return nir;
285 }
286
287 void anv_DestroyPipeline(
288 VkDevice _device,
289 VkPipeline _pipeline,
290 const VkAllocationCallbacks* pAllocator)
291 {
292 ANV_FROM_HANDLE(anv_device, device, _device);
293 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
294
295 if (!pipeline)
296 return;
297
298 anv_reloc_list_finish(&pipeline->batch_relocs,
299 pAllocator ? pAllocator : &device->alloc);
300 if (pipeline->blend_state.map)
301 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
302
303 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
304 if (pipeline->shaders[s])
305 anv_shader_bin_unref(device, pipeline->shaders[s]);
306 }
307
308 vk_free2(&device->alloc, pAllocator, pipeline);
309 }
310
311 static const uint32_t vk_to_gen_primitive_type[] = {
312 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
313 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
314 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
315 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
316 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
317 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
318 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
319 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
320 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
321 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
322 };
323
324 static void
325 populate_sampler_prog_key(const struct gen_device_info *devinfo,
326 struct brw_sampler_prog_key_data *key)
327 {
328 /* Almost all multisampled textures are compressed. The only time when we
329 * don't compress a multisampled texture is for 16x MSAA with a surface
330 * width greater than 8k which is a bit of an edge case. Since the sampler
331 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
332 * to tell the compiler to always assume compression.
333 */
334 key->compressed_multisample_layout_mask = ~0;
335
336 /* SkyLake added support for 16x MSAA. With this came a new message for
337 * reading from a 16x MSAA surface with compression. The new message was
338 * needed because now the MCS data is 64 bits instead of 32 or lower as is
339 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
340 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
341 * so we can just use it unconditionally. This may not be quite as
342 * efficient but it saves us from recompiling.
343 */
344 if (devinfo->gen >= 9)
345 key->msaa_16 = ~0;
346
347 /* XXX: Handle texture swizzle on HSW- */
348 for (int i = 0; i < MAX_SAMPLERS; i++) {
349 /* Assume color sampler, no swizzling. (Works for BDW+) */
350 key->swizzles[i] = SWIZZLE_XYZW;
351 }
352 }
353
354 static void
355 populate_base_prog_key(const struct gen_device_info *devinfo,
356 VkPipelineShaderStageCreateFlags flags,
357 struct brw_base_prog_key *key)
358 {
359 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
360 key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
361 else
362 key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
363
364 populate_sampler_prog_key(devinfo, &key->tex);
365 }
366
367 static void
368 populate_vs_prog_key(const struct gen_device_info *devinfo,
369 VkPipelineShaderStageCreateFlags flags,
370 struct brw_vs_prog_key *key)
371 {
372 memset(key, 0, sizeof(*key));
373
374 populate_base_prog_key(devinfo, flags, &key->base);
375
376 /* XXX: Handle vertex input work-arounds */
377
378 /* XXX: Handle sampler_prog_key */
379 }
380
381 static void
382 populate_tcs_prog_key(const struct gen_device_info *devinfo,
383 VkPipelineShaderStageCreateFlags flags,
384 unsigned input_vertices,
385 struct brw_tcs_prog_key *key)
386 {
387 memset(key, 0, sizeof(*key));
388
389 populate_base_prog_key(devinfo, flags, &key->base);
390
391 key->input_vertices = input_vertices;
392 }
393
394 static void
395 populate_tes_prog_key(const struct gen_device_info *devinfo,
396 VkPipelineShaderStageCreateFlags flags,
397 struct brw_tes_prog_key *key)
398 {
399 memset(key, 0, sizeof(*key));
400
401 populate_base_prog_key(devinfo, flags, &key->base);
402 }
403
404 static void
405 populate_gs_prog_key(const struct gen_device_info *devinfo,
406 VkPipelineShaderStageCreateFlags flags,
407 struct brw_gs_prog_key *key)
408 {
409 memset(key, 0, sizeof(*key));
410
411 populate_base_prog_key(devinfo, flags, &key->base);
412 }
413
414 static void
415 populate_wm_prog_key(const struct gen_device_info *devinfo,
416 VkPipelineShaderStageCreateFlags flags,
417 const struct anv_subpass *subpass,
418 const VkPipelineMultisampleStateCreateInfo *ms_info,
419 struct brw_wm_prog_key *key)
420 {
421 memset(key, 0, sizeof(*key));
422
423 populate_base_prog_key(devinfo, flags, &key->base);
424
425 /* We set this to 0 here and set to the actual value before we call
426 * brw_compile_fs.
427 */
428 key->input_slots_valid = 0;
429
430 /* Vulkan doesn't specify a default */
431 key->high_quality_derivatives = false;
432
433 /* XXX Vulkan doesn't appear to specify */
434 key->clamp_fragment_color = false;
435
436 assert(subpass->color_count <= MAX_RTS);
437 for (uint32_t i = 0; i < subpass->color_count; i++) {
438 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
439 key->color_outputs_valid |= (1 << i);
440 }
441
442 key->nr_color_regions = util_bitcount(key->color_outputs_valid);
443
444 /* To reduce possible shader recompilations we would need to know if
445 * there is a SampleMask output variable to compute if we should emit
446 * code to workaround the issue that hardware disables alpha to coverage
447 * when there is SampleMask output.
448 */
449 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
450
451 /* Vulkan doesn't support fixed-function alpha test */
452 key->alpha_test_replicate_alpha = false;
453
454 if (ms_info) {
455 /* We should probably pull this out of the shader, but it's fairly
456 * harmless to compute it and then let dead-code take care of it.
457 */
458 if (ms_info->rasterizationSamples > 1) {
459 key->persample_interp = ms_info->sampleShadingEnable &&
460 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
461 key->multisample_fbo = true;
462 }
463
464 key->frag_coord_adds_sample_pos = key->persample_interp;
465 }
466 }
467
468 static void
469 populate_cs_prog_key(const struct gen_device_info *devinfo,
470 VkPipelineShaderStageCreateFlags flags,
471 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
472 struct brw_cs_prog_key *key)
473 {
474 memset(key, 0, sizeof(*key));
475
476 populate_base_prog_key(devinfo, flags, &key->base);
477
478 if (rss_info) {
479 assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
480
481 /* These enum values are expressly chosen to be equal to the subgroup
482 * size that they require.
483 */
484 assert(rss_info->requiredSubgroupSize == 8 ||
485 rss_info->requiredSubgroupSize == 16 ||
486 rss_info->requiredSubgroupSize == 32);
487 key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
488 } else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
489 /* If the client expressly requests full subgroups and they don't
490 * specify a subgroup size, we need to pick one. If they're requested
491 * varying subgroup sizes, we set it to UNIFORM and let the back-end
492 * compiler pick. Otherwise, we specify the API value of 32.
493 * Performance will likely be terrible in this case but there's nothing
494 * we can do about that. The client should have chosen a size.
495 */
496 if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
497 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
498 else
499 key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
500 }
501 }
502
503 struct anv_pipeline_stage {
504 gl_shader_stage stage;
505
506 const struct anv_shader_module *module;
507 const char *entrypoint;
508 const VkSpecializationInfo *spec_info;
509
510 unsigned char shader_sha1[20];
511
512 union brw_any_prog_key key;
513
514 struct {
515 gl_shader_stage stage;
516 unsigned char sha1[20];
517 } cache_key;
518
519 nir_shader *nir;
520
521 struct anv_pipeline_binding surface_to_descriptor[256];
522 struct anv_pipeline_binding sampler_to_descriptor[256];
523 struct anv_pipeline_bind_map bind_map;
524
525 union brw_any_prog_data prog_data;
526
527 VkPipelineCreationFeedbackEXT feedback;
528 };
529
530 static void
531 anv_pipeline_hash_shader(const struct anv_shader_module *module,
532 const char *entrypoint,
533 gl_shader_stage stage,
534 const VkSpecializationInfo *spec_info,
535 unsigned char *sha1_out)
536 {
537 struct mesa_sha1 ctx;
538 _mesa_sha1_init(&ctx);
539
540 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
541 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
542 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
543 if (spec_info) {
544 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
545 spec_info->mapEntryCount *
546 sizeof(*spec_info->pMapEntries));
547 _mesa_sha1_update(&ctx, spec_info->pData,
548 spec_info->dataSize);
549 }
550
551 _mesa_sha1_final(&ctx, sha1_out);
552 }
553
554 static void
555 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
556 struct anv_pipeline_layout *layout,
557 struct anv_pipeline_stage *stages,
558 unsigned char *sha1_out)
559 {
560 struct mesa_sha1 ctx;
561 _mesa_sha1_init(&ctx);
562
563 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
564 sizeof(pipeline->subpass->view_mask));
565
566 if (layout)
567 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
568
569 const bool rba = pipeline->device->robust_buffer_access;
570 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
571
572 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
573 if (stages[s].entrypoint) {
574 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
575 sizeof(stages[s].shader_sha1));
576 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
577 }
578 }
579
580 _mesa_sha1_final(&ctx, sha1_out);
581 }
582
583 static void
584 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
585 struct anv_pipeline_layout *layout,
586 struct anv_pipeline_stage *stage,
587 unsigned char *sha1_out)
588 {
589 struct mesa_sha1 ctx;
590 _mesa_sha1_init(&ctx);
591
592 if (layout)
593 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
594
595 const bool rba = pipeline->device->robust_buffer_access;
596 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
597
598 _mesa_sha1_update(&ctx, stage->shader_sha1,
599 sizeof(stage->shader_sha1));
600 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
601
602 _mesa_sha1_final(&ctx, sha1_out);
603 }
604
605 static nir_shader *
606 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
607 struct anv_pipeline_cache *cache,
608 void *mem_ctx,
609 struct anv_pipeline_stage *stage)
610 {
611 const struct brw_compiler *compiler =
612 pipeline->device->instance->physicalDevice.compiler;
613 const nir_shader_compiler_options *nir_options =
614 compiler->glsl_compiler_options[stage->stage].NirOptions;
615 nir_shader *nir;
616
617 nir = anv_device_search_for_nir(pipeline->device, cache,
618 nir_options,
619 stage->shader_sha1,
620 mem_ctx);
621 if (nir) {
622 assert(nir->info.stage == stage->stage);
623 return nir;
624 }
625
626 nir = anv_shader_compile_to_nir(pipeline->device,
627 mem_ctx,
628 stage->module,
629 stage->entrypoint,
630 stage->stage,
631 stage->spec_info);
632 if (nir) {
633 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
634 return nir;
635 }
636
637 return NULL;
638 }
639
640 static void
641 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
642 void *mem_ctx,
643 struct anv_pipeline_stage *stage,
644 struct anv_pipeline_layout *layout)
645 {
646 const struct anv_physical_device *pdevice =
647 &pipeline->device->instance->physicalDevice;
648 const struct brw_compiler *compiler = pdevice->compiler;
649
650 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
651 nir_shader *nir = stage->nir;
652
653 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
654 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
655 NIR_PASS_V(nir, nir_lower_input_attachments, true);
656 }
657
658 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
659
660 NIR_PASS_V(nir, anv_nir_lower_push_constants);
661
662 if (nir->info.stage != MESA_SHADER_COMPUTE)
663 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
664
665 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
666
667 if (nir->num_uniforms > 0) {
668 assert(prog_data->nr_params == 0);
669
670 /* If the shader uses any push constants at all, we'll just give
671 * them the maximum possible number
672 */
673 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
674 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
675 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
676 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
677
678 /* We now set the param values to be offsets into a
679 * anv_push_constant_data structure. Since the compiler doesn't
680 * actually dereference any of the gl_constant_value pointers in the
681 * params array, it doesn't really matter what we put here.
682 */
683 struct anv_push_constants *null_data = NULL;
684 /* Fill out the push constants section of the param array */
685 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
686 prog_data->param[i] = ANV_PARAM_PUSH(
687 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
688 }
689 }
690
691 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
692 pipeline->needs_data_cache = true;
693
694 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
695
696 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
697 nir_address_format_64bit_global);
698
699 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
700 if (layout) {
701 anv_nir_apply_pipeline_layout(pdevice,
702 pipeline->device->robust_buffer_access,
703 layout, nir, prog_data,
704 &stage->bind_map);
705
706 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
707 nir_address_format_32bit_index_offset);
708 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
709 anv_nir_ssbo_addr_format(pdevice,
710 pipeline->device->robust_buffer_access));
711
712 NIR_PASS_V(nir, nir_opt_constant_folding);
713
714 /* We don't support non-uniform UBOs and non-uniform SSBO access is
715 * handled naturally by falling back to A64 messages.
716 */
717 NIR_PASS_V(nir, nir_lower_non_uniform_access,
718 nir_lower_non_uniform_texture_access |
719 nir_lower_non_uniform_image_access);
720 }
721
722 if (nir->info.stage != MESA_SHADER_COMPUTE)
723 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
724
725 assert(nir->num_uniforms == prog_data->nr_params * 4);
726
727 stage->nir = nir;
728 }
729
730 static void
731 anv_pipeline_link_vs(const struct brw_compiler *compiler,
732 struct anv_pipeline_stage *vs_stage,
733 struct anv_pipeline_stage *next_stage)
734 {
735 if (next_stage)
736 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
737 }
738
739 static const unsigned *
740 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
741 void *mem_ctx,
742 struct anv_device *device,
743 struct anv_pipeline_stage *vs_stage)
744 {
745 brw_compute_vue_map(compiler->devinfo,
746 &vs_stage->prog_data.vs.base.vue_map,
747 vs_stage->nir->info.outputs_written,
748 vs_stage->nir->info.separate_shader);
749
750 return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs,
751 &vs_stage->prog_data.vs, vs_stage->nir, -1,
752 NULL, NULL);
753 }
754
755 static void
756 merge_tess_info(struct shader_info *tes_info,
757 const struct shader_info *tcs_info)
758 {
759 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
760 *
761 * "PointMode. Controls generation of points rather than triangles
762 * or lines. This functionality defaults to disabled, and is
763 * enabled if either shader stage includes the execution mode.
764 *
765 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
766 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
767 * and OutputVertices, it says:
768 *
769 * "One mode must be set in at least one of the tessellation
770 * shader stages."
771 *
772 * So, the fields can be set in either the TCS or TES, but they must
773 * agree if set in both. Our backend looks at TES, so bitwise-or in
774 * the values from the TCS.
775 */
776 assert(tcs_info->tess.tcs_vertices_out == 0 ||
777 tes_info->tess.tcs_vertices_out == 0 ||
778 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
779 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
780
781 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
782 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
783 tcs_info->tess.spacing == tes_info->tess.spacing);
784 tes_info->tess.spacing |= tcs_info->tess.spacing;
785
786 assert(tcs_info->tess.primitive_mode == 0 ||
787 tes_info->tess.primitive_mode == 0 ||
788 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
789 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
790 tes_info->tess.ccw |= tcs_info->tess.ccw;
791 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
792 }
793
794 static void
795 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
796 struct anv_pipeline_stage *tcs_stage,
797 struct anv_pipeline_stage *tes_stage)
798 {
799 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
800
801 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
802
803 nir_lower_patch_vertices(tes_stage->nir,
804 tcs_stage->nir->info.tess.tcs_vertices_out,
805 NULL);
806
807 /* Copy TCS info into the TES info */
808 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
809
810 /* Whacking the key after cache lookup is a bit sketchy, but all of
811 * this comes from the SPIR-V, which is part of the hash used for the
812 * pipeline cache. So it should be safe.
813 */
814 tcs_stage->key.tcs.tes_primitive_mode =
815 tes_stage->nir->info.tess.primitive_mode;
816 tcs_stage->key.tcs.quads_workaround =
817 compiler->devinfo->gen < 9 &&
818 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
819 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
820 }
821
822 static const unsigned *
823 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
824 void *mem_ctx,
825 struct anv_device *device,
826 struct anv_pipeline_stage *tcs_stage,
827 struct anv_pipeline_stage *prev_stage)
828 {
829 tcs_stage->key.tcs.outputs_written =
830 tcs_stage->nir->info.outputs_written;
831 tcs_stage->key.tcs.patch_outputs_written =
832 tcs_stage->nir->info.patch_outputs_written;
833
834 return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs,
835 &tcs_stage->prog_data.tcs, tcs_stage->nir,
836 -1, NULL, NULL);
837 }
838
839 static void
840 anv_pipeline_link_tes(const struct brw_compiler *compiler,
841 struct anv_pipeline_stage *tes_stage,
842 struct anv_pipeline_stage *next_stage)
843 {
844 if (next_stage)
845 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
846 }
847
848 static const unsigned *
849 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
850 void *mem_ctx,
851 struct anv_device *device,
852 struct anv_pipeline_stage *tes_stage,
853 struct anv_pipeline_stage *tcs_stage)
854 {
855 tes_stage->key.tes.inputs_read =
856 tcs_stage->nir->info.outputs_written;
857 tes_stage->key.tes.patch_inputs_read =
858 tcs_stage->nir->info.patch_outputs_written;
859
860 return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes,
861 &tcs_stage->prog_data.tcs.base.vue_map,
862 &tes_stage->prog_data.tes, tes_stage->nir,
863 NULL, -1, NULL, NULL);
864 }
865
866 static void
867 anv_pipeline_link_gs(const struct brw_compiler *compiler,
868 struct anv_pipeline_stage *gs_stage,
869 struct anv_pipeline_stage *next_stage)
870 {
871 if (next_stage)
872 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
873 }
874
875 static const unsigned *
876 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
877 void *mem_ctx,
878 struct anv_device *device,
879 struct anv_pipeline_stage *gs_stage,
880 struct anv_pipeline_stage *prev_stage)
881 {
882 brw_compute_vue_map(compiler->devinfo,
883 &gs_stage->prog_data.gs.base.vue_map,
884 gs_stage->nir->info.outputs_written,
885 gs_stage->nir->info.separate_shader);
886
887 return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs,
888 &gs_stage->prog_data.gs, gs_stage->nir,
889 NULL, -1, NULL, NULL);
890 }
891
892 static void
893 anv_pipeline_link_fs(const struct brw_compiler *compiler,
894 struct anv_pipeline_stage *stage)
895 {
896 unsigned num_rts = 0;
897 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
898 struct anv_pipeline_binding rt_bindings[max_rt];
899 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
900 int rt_to_bindings[max_rt];
901 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
902 bool rt_used[max_rt];
903 memset(rt_used, 0, sizeof(rt_used));
904
905 /* Flag used render targets */
906 nir_foreach_variable_safe(var, &stage->nir->outputs) {
907 if (var->data.location < FRAG_RESULT_DATA0)
908 continue;
909
910 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
911 /* Out-of-bounds */
912 if (rt >= MAX_RTS)
913 continue;
914
915 const unsigned array_len =
916 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
917 assert(rt + array_len <= max_rt);
918
919 /* Unused */
920 if (!(stage->key.wm.color_outputs_valid & BITFIELD_RANGE(rt, array_len))) {
921 /* If this is the RT at location 0 and we have alpha to coverage
922 * enabled we will have to create a null RT for it, so mark it as
923 * used.
924 */
925 if (rt > 0 || !stage->key.wm.alpha_to_coverage)
926 continue;
927 }
928
929 for (unsigned i = 0; i < array_len; i++)
930 rt_used[rt + i] = true;
931 }
932
933 /* Set new, compacted, location */
934 for (unsigned i = 0; i < max_rt; i++) {
935 if (!rt_used[i])
936 continue;
937
938 rt_to_bindings[i] = num_rts;
939
940 if (stage->key.wm.color_outputs_valid & (1 << i)) {
941 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
942 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
943 .binding = 0,
944 .index = i,
945 };
946 } else {
947 /* Setup a null render target */
948 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
949 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
950 .binding = 0,
951 .index = UINT32_MAX,
952 };
953 }
954
955 num_rts++;
956 }
957
958 bool deleted_output = false;
959 nir_foreach_variable_safe(var, &stage->nir->outputs) {
960 if (var->data.location < FRAG_RESULT_DATA0)
961 continue;
962
963 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
964
965 if (rt >= MAX_RTS || !rt_used[rt]) {
966 /* Unused or out-of-bounds, throw it away, unless it is the first
967 * RT and we have alpha to coverage enabled.
968 */
969 deleted_output = true;
970 var->data.mode = nir_var_function_temp;
971 exec_node_remove(&var->node);
972 exec_list_push_tail(&impl->locals, &var->node);
973 continue;
974 }
975
976 /* Give it the new location */
977 assert(rt_to_bindings[rt] != -1);
978 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
979 }
980
981 if (deleted_output)
982 nir_fixup_deref_modes(stage->nir);
983
984 if (num_rts == 0) {
985 /* If we have no render targets, we need a null render target */
986 rt_bindings[0] = (struct anv_pipeline_binding) {
987 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
988 .binding = 0,
989 .index = UINT32_MAX,
990 };
991 num_rts = 1;
992 }
993
994 /* Now that we've determined the actual number of render targets, adjust
995 * the key accordingly.
996 */
997 stage->key.wm.nr_color_regions = num_rts;
998 stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
999
1000 assert(num_rts <= max_rt);
1001 assert(stage->bind_map.surface_count == 0);
1002 typed_memcpy(stage->bind_map.surface_to_descriptor,
1003 rt_bindings, num_rts);
1004 stage->bind_map.surface_count += num_rts;
1005 }
1006
1007 static const unsigned *
1008 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1009 void *mem_ctx,
1010 struct anv_device *device,
1011 struct anv_pipeline_stage *fs_stage,
1012 struct anv_pipeline_stage *prev_stage)
1013 {
1014 /* TODO: we could set this to 0 based on the information in nir_shader, but
1015 * we need this before we call spirv_to_nir.
1016 */
1017 assert(prev_stage);
1018 fs_stage->key.wm.input_slots_valid =
1019 prev_stage->prog_data.vue.vue_map.slots_valid;
1020
1021 const unsigned *code =
1022 brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm,
1023 &fs_stage->prog_data.wm, fs_stage->nir,
1024 NULL, -1, -1, -1, true, false, NULL, NULL, NULL);
1025
1026 if (fs_stage->key.wm.nr_color_regions == 0 &&
1027 !fs_stage->prog_data.wm.has_side_effects &&
1028 !fs_stage->prog_data.wm.uses_kill &&
1029 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
1030 !fs_stage->prog_data.wm.computed_stencil) {
1031 /* This fragment shader has no outputs and no side effects. Go ahead
1032 * and return the code pointer so we don't accidentally think the
1033 * compile failed but zero out prog_data which will set program_size to
1034 * zero and disable the stage.
1035 */
1036 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1037 }
1038
1039 return code;
1040 }
1041
1042 static VkResult
1043 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
1044 struct anv_pipeline_cache *cache,
1045 const VkGraphicsPipelineCreateInfo *info)
1046 {
1047 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1048 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1049 };
1050 int64_t pipeline_start = os_time_get_nano();
1051
1052 const struct brw_compiler *compiler =
1053 pipeline->device->instance->physicalDevice.compiler;
1054 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1055
1056 pipeline->active_stages = 0;
1057
1058 VkResult result;
1059 for (uint32_t i = 0; i < info->stageCount; i++) {
1060 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1061 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1062
1063 pipeline->active_stages |= sinfo->stage;
1064
1065 int64_t stage_start = os_time_get_nano();
1066
1067 stages[stage].stage = stage;
1068 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1069 stages[stage].entrypoint = sinfo->pName;
1070 stages[stage].spec_info = sinfo->pSpecializationInfo;
1071 anv_pipeline_hash_shader(stages[stage].module,
1072 stages[stage].entrypoint,
1073 stage,
1074 stages[stage].spec_info,
1075 stages[stage].shader_sha1);
1076
1077 const struct gen_device_info *devinfo = &pipeline->device->info;
1078 switch (stage) {
1079 case MESA_SHADER_VERTEX:
1080 populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
1081 break;
1082 case MESA_SHADER_TESS_CTRL:
1083 populate_tcs_prog_key(devinfo, sinfo->flags,
1084 info->pTessellationState->patchControlPoints,
1085 &stages[stage].key.tcs);
1086 break;
1087 case MESA_SHADER_TESS_EVAL:
1088 populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
1089 break;
1090 case MESA_SHADER_GEOMETRY:
1091 populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
1092 break;
1093 case MESA_SHADER_FRAGMENT:
1094 populate_wm_prog_key(devinfo, sinfo->flags,
1095 pipeline->subpass,
1096 info->pMultisampleState,
1097 &stages[stage].key.wm);
1098 break;
1099 default:
1100 unreachable("Invalid graphics shader stage");
1101 }
1102
1103 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1104 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1105 }
1106
1107 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1108 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1109
1110 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1111
1112 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1113
1114 unsigned char sha1[20];
1115 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1116
1117 unsigned found = 0;
1118 unsigned cache_hits = 0;
1119 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1120 if (!stages[s].entrypoint)
1121 continue;
1122
1123 int64_t stage_start = os_time_get_nano();
1124
1125 stages[s].cache_key.stage = s;
1126 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1127
1128 bool cache_hit;
1129 struct anv_shader_bin *bin =
1130 anv_device_search_for_kernel(pipeline->device, cache,
1131 &stages[s].cache_key,
1132 sizeof(stages[s].cache_key), &cache_hit);
1133 if (bin) {
1134 found++;
1135 pipeline->shaders[s] = bin;
1136 }
1137
1138 if (cache_hit) {
1139 cache_hits++;
1140 stages[s].feedback.flags |=
1141 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1142 }
1143 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1144 }
1145
1146 if (found == __builtin_popcount(pipeline->active_stages)) {
1147 if (cache_hits == found) {
1148 pipeline_feedback.flags |=
1149 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1150 }
1151 /* We found all our shaders in the cache. We're done. */
1152 goto done;
1153 } else if (found > 0) {
1154 /* We found some but not all of our shaders. This shouldn't happen
1155 * most of the time but it can if we have a partially populated
1156 * pipeline cache.
1157 */
1158 assert(found < __builtin_popcount(pipeline->active_stages));
1159
1160 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1161 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1162 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1163 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1164 (uint64_t)(uintptr_t)cache,
1165 0, 0, "anv",
1166 "Found a partial pipeline in the cache. This is "
1167 "most likely caused by an incomplete pipeline cache "
1168 "import or export");
1169
1170 /* We're going to have to recompile anyway, so just throw away our
1171 * references to the shaders in the cache. We'll get them out of the
1172 * cache again as part of the compilation process.
1173 */
1174 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1175 stages[s].feedback.flags = 0;
1176 if (pipeline->shaders[s]) {
1177 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1178 pipeline->shaders[s] = NULL;
1179 }
1180 }
1181 }
1182
1183 void *pipeline_ctx = ralloc_context(NULL);
1184
1185 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1186 if (!stages[s].entrypoint)
1187 continue;
1188
1189 int64_t stage_start = os_time_get_nano();
1190
1191 assert(stages[s].stage == s);
1192 assert(pipeline->shaders[s] == NULL);
1193
1194 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1195 .surface_to_descriptor = stages[s].surface_to_descriptor,
1196 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1197 };
1198
1199 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1200 pipeline_ctx,
1201 &stages[s]);
1202 if (stages[s].nir == NULL) {
1203 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1204 goto fail;
1205 }
1206
1207 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1208 }
1209
1210 /* Walk backwards to link */
1211 struct anv_pipeline_stage *next_stage = NULL;
1212 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1213 if (!stages[s].entrypoint)
1214 continue;
1215
1216 switch (s) {
1217 case MESA_SHADER_VERTEX:
1218 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1219 break;
1220 case MESA_SHADER_TESS_CTRL:
1221 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1222 break;
1223 case MESA_SHADER_TESS_EVAL:
1224 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1225 break;
1226 case MESA_SHADER_GEOMETRY:
1227 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1228 break;
1229 case MESA_SHADER_FRAGMENT:
1230 anv_pipeline_link_fs(compiler, &stages[s]);
1231 break;
1232 default:
1233 unreachable("Invalid graphics shader stage");
1234 }
1235
1236 next_stage = &stages[s];
1237 }
1238
1239 struct anv_pipeline_stage *prev_stage = NULL;
1240 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1241 if (!stages[s].entrypoint)
1242 continue;
1243
1244 int64_t stage_start = os_time_get_nano();
1245
1246 void *stage_ctx = ralloc_context(NULL);
1247
1248 nir_xfb_info *xfb_info = NULL;
1249 if (s == MESA_SHADER_VERTEX ||
1250 s == MESA_SHADER_TESS_EVAL ||
1251 s == MESA_SHADER_GEOMETRY)
1252 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1253
1254 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1255
1256 const unsigned *code;
1257 switch (s) {
1258 case MESA_SHADER_VERTEX:
1259 code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1260 &stages[s]);
1261 break;
1262 case MESA_SHADER_TESS_CTRL:
1263 code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1264 &stages[s], prev_stage);
1265 break;
1266 case MESA_SHADER_TESS_EVAL:
1267 code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1268 &stages[s], prev_stage);
1269 break;
1270 case MESA_SHADER_GEOMETRY:
1271 code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1272 &stages[s], prev_stage);
1273 break;
1274 case MESA_SHADER_FRAGMENT:
1275 code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1276 &stages[s], prev_stage);
1277 break;
1278 default:
1279 unreachable("Invalid graphics shader stage");
1280 }
1281 if (code == NULL) {
1282 ralloc_free(stage_ctx);
1283 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1284 goto fail;
1285 }
1286
1287 struct anv_shader_bin *bin =
1288 anv_device_upload_kernel(pipeline->device, cache,
1289 &stages[s].cache_key,
1290 sizeof(stages[s].cache_key),
1291 code, stages[s].prog_data.base.program_size,
1292 stages[s].nir->constant_data,
1293 stages[s].nir->constant_data_size,
1294 &stages[s].prog_data.base,
1295 brw_prog_data_size(s),
1296 xfb_info, &stages[s].bind_map);
1297 if (!bin) {
1298 ralloc_free(stage_ctx);
1299 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1300 goto fail;
1301 }
1302
1303 pipeline->shaders[s] = bin;
1304 ralloc_free(stage_ctx);
1305
1306 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1307
1308 prev_stage = &stages[s];
1309 }
1310
1311 ralloc_free(pipeline_ctx);
1312
1313 done:
1314
1315 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1316 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1317 /* This can happen if we decided to implicitly disable the fragment
1318 * shader. See anv_pipeline_compile_fs().
1319 */
1320 anv_shader_bin_unref(pipeline->device,
1321 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1322 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1323 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1324 }
1325
1326 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1327
1328 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1329 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1330 if (create_feedback) {
1331 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1332
1333 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1334 for (uint32_t i = 0; i < info->stageCount; i++) {
1335 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1336 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1337 }
1338 }
1339
1340 return VK_SUCCESS;
1341
1342 fail:
1343 ralloc_free(pipeline_ctx);
1344
1345 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1346 if (pipeline->shaders[s])
1347 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1348 }
1349
1350 return result;
1351 }
1352
1353 static void
1354 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
1355 {
1356 assert(glsl_type_is_vector_or_scalar(type));
1357
1358 uint32_t comp_size = glsl_type_is_boolean(type)
1359 ? 4 : glsl_get_bit_size(type) / 8;
1360 unsigned length = glsl_get_vector_elements(type);
1361 *size = comp_size * length,
1362 *align = comp_size * (length == 3 ? 4 : length);
1363 }
1364
1365 VkResult
1366 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1367 struct anv_pipeline_cache *cache,
1368 const VkComputePipelineCreateInfo *info,
1369 const struct anv_shader_module *module,
1370 const char *entrypoint,
1371 const VkSpecializationInfo *spec_info)
1372 {
1373 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1374 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1375 };
1376 int64_t pipeline_start = os_time_get_nano();
1377
1378 const struct brw_compiler *compiler =
1379 pipeline->device->instance->physicalDevice.compiler;
1380
1381 struct anv_pipeline_stage stage = {
1382 .stage = MESA_SHADER_COMPUTE,
1383 .module = module,
1384 .entrypoint = entrypoint,
1385 .spec_info = spec_info,
1386 .cache_key = {
1387 .stage = MESA_SHADER_COMPUTE,
1388 },
1389 .feedback = {
1390 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1391 },
1392 };
1393 anv_pipeline_hash_shader(stage.module,
1394 stage.entrypoint,
1395 MESA_SHADER_COMPUTE,
1396 stage.spec_info,
1397 stage.shader_sha1);
1398
1399 struct anv_shader_bin *bin = NULL;
1400
1401 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
1402 vk_find_struct_const(info->stage.pNext,
1403 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
1404
1405 populate_cs_prog_key(&pipeline->device->info, info->stage.flags,
1406 rss_info, &stage.key.cs);
1407
1408 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1409
1410 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1411 bool cache_hit;
1412 bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
1413 sizeof(stage.cache_key), &cache_hit);
1414
1415 if (bin == NULL) {
1416 int64_t stage_start = os_time_get_nano();
1417
1418 stage.bind_map = (struct anv_pipeline_bind_map) {
1419 .surface_to_descriptor = stage.surface_to_descriptor,
1420 .sampler_to_descriptor = stage.sampler_to_descriptor
1421 };
1422
1423 /* Set up a binding for the gl_NumWorkGroups */
1424 stage.bind_map.surface_count = 1;
1425 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1426 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1427 };
1428
1429 void *mem_ctx = ralloc_context(NULL);
1430
1431 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1432 if (stage.nir == NULL) {
1433 ralloc_free(mem_ctx);
1434 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1435 }
1436
1437 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1438
1439 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
1440 &stage.prog_data.cs);
1441
1442 NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
1443 nir_var_mem_shared, shared_type_info);
1444 NIR_PASS_V(stage.nir, nir_lower_explicit_io,
1445 nir_var_mem_shared, nir_address_format_32bit_offset);
1446
1447 const unsigned *shader_code =
1448 brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs,
1449 &stage.prog_data.cs, stage.nir, -1, NULL, NULL);
1450 if (shader_code == NULL) {
1451 ralloc_free(mem_ctx);
1452 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1453 }
1454
1455 const unsigned code_size = stage.prog_data.base.program_size;
1456 bin = anv_device_upload_kernel(pipeline->device, cache,
1457 &stage.cache_key, sizeof(stage.cache_key),
1458 shader_code, code_size,
1459 stage.nir->constant_data,
1460 stage.nir->constant_data_size,
1461 &stage.prog_data.base,
1462 sizeof(stage.prog_data.cs),
1463 NULL, &stage.bind_map);
1464 if (!bin) {
1465 ralloc_free(mem_ctx);
1466 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1467 }
1468
1469 ralloc_free(mem_ctx);
1470
1471 stage.feedback.duration = os_time_get_nano() - stage_start;
1472 }
1473
1474 if (cache_hit) {
1475 stage.feedback.flags |=
1476 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1477 pipeline_feedback.flags |=
1478 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1479 }
1480 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1481
1482 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1483 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1484 if (create_feedback) {
1485 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1486
1487 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1488 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1489 }
1490
1491 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1492 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1493
1494 return VK_SUCCESS;
1495 }
1496
1497 /**
1498 * Copy pipeline state not marked as dynamic.
1499 * Dynamic state is pipeline state which hasn't been provided at pipeline
1500 * creation time, but is dynamically provided afterwards using various
1501 * vkCmdSet* functions.
1502 *
1503 * The set of state considered "non_dynamic" is determined by the pieces of
1504 * state that have their corresponding VkDynamicState enums omitted from
1505 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1506 *
1507 * @param[out] pipeline Destination non_dynamic state.
1508 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1509 */
1510 static void
1511 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1512 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1513 {
1514 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1515 struct anv_subpass *subpass = pipeline->subpass;
1516
1517 pipeline->dynamic_state = default_dynamic_state;
1518
1519 if (pCreateInfo->pDynamicState) {
1520 /* Remove all of the states that are marked as dynamic */
1521 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1522 for (uint32_t s = 0; s < count; s++) {
1523 states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
1524 pCreateInfo->pDynamicState->pDynamicStates[s]);
1525 }
1526 }
1527
1528 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1529
1530 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1531 *
1532 * pViewportState is [...] NULL if the pipeline
1533 * has rasterization disabled.
1534 */
1535 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1536 assert(pCreateInfo->pViewportState);
1537
1538 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1539 if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
1540 typed_memcpy(dynamic->viewport.viewports,
1541 pCreateInfo->pViewportState->pViewports,
1542 pCreateInfo->pViewportState->viewportCount);
1543 }
1544
1545 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1546 if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
1547 typed_memcpy(dynamic->scissor.scissors,
1548 pCreateInfo->pViewportState->pScissors,
1549 pCreateInfo->pViewportState->scissorCount);
1550 }
1551 }
1552
1553 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
1554 assert(pCreateInfo->pRasterizationState);
1555 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1556 }
1557
1558 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
1559 assert(pCreateInfo->pRasterizationState);
1560 dynamic->depth_bias.bias =
1561 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1562 dynamic->depth_bias.clamp =
1563 pCreateInfo->pRasterizationState->depthBiasClamp;
1564 dynamic->depth_bias.slope =
1565 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1566 }
1567
1568 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1569 *
1570 * pColorBlendState is [...] NULL if the pipeline has rasterization
1571 * disabled or if the subpass of the render pass the pipeline is
1572 * created against does not use any color attachments.
1573 */
1574 bool uses_color_att = false;
1575 for (unsigned i = 0; i < subpass->color_count; ++i) {
1576 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1577 uses_color_att = true;
1578 break;
1579 }
1580 }
1581
1582 if (uses_color_att &&
1583 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1584 assert(pCreateInfo->pColorBlendState);
1585
1586 if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
1587 typed_memcpy(dynamic->blend_constants,
1588 pCreateInfo->pColorBlendState->blendConstants, 4);
1589 }
1590
1591 /* If there is no depthstencil attachment, then don't read
1592 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1593 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1594 * no need to override the depthstencil defaults in
1595 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1596 *
1597 * Section 9.2 of the Vulkan 1.0.15 spec says:
1598 *
1599 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1600 * disabled or if the subpass of the render pass the pipeline is created
1601 * against does not use a depth/stencil attachment.
1602 */
1603 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1604 subpass->depth_stencil_attachment) {
1605 assert(pCreateInfo->pDepthStencilState);
1606
1607 if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
1608 dynamic->depth_bounds.min =
1609 pCreateInfo->pDepthStencilState->minDepthBounds;
1610 dynamic->depth_bounds.max =
1611 pCreateInfo->pDepthStencilState->maxDepthBounds;
1612 }
1613
1614 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
1615 dynamic->stencil_compare_mask.front =
1616 pCreateInfo->pDepthStencilState->front.compareMask;
1617 dynamic->stencil_compare_mask.back =
1618 pCreateInfo->pDepthStencilState->back.compareMask;
1619 }
1620
1621 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
1622 dynamic->stencil_write_mask.front =
1623 pCreateInfo->pDepthStencilState->front.writeMask;
1624 dynamic->stencil_write_mask.back =
1625 pCreateInfo->pDepthStencilState->back.writeMask;
1626 }
1627
1628 if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
1629 dynamic->stencil_reference.front =
1630 pCreateInfo->pDepthStencilState->front.reference;
1631 dynamic->stencil_reference.back =
1632 pCreateInfo->pDepthStencilState->back.reference;
1633 }
1634 }
1635
1636 const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
1637 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1638 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1639 if (line_state) {
1640 if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
1641 dynamic->line_stipple.factor = line_state->lineStippleFactor;
1642 dynamic->line_stipple.pattern = line_state->lineStipplePattern;
1643 }
1644 }
1645
1646 pipeline->dynamic_state_mask = states;
1647 }
1648
1649 static void
1650 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1651 {
1652 #ifdef DEBUG
1653 struct anv_render_pass *renderpass = NULL;
1654 struct anv_subpass *subpass = NULL;
1655
1656 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1657 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1658 */
1659 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1660
1661 renderpass = anv_render_pass_from_handle(info->renderPass);
1662 assert(renderpass);
1663
1664 assert(info->subpass < renderpass->subpass_count);
1665 subpass = &renderpass->subpasses[info->subpass];
1666
1667 assert(info->stageCount >= 1);
1668 assert(info->pVertexInputState);
1669 assert(info->pInputAssemblyState);
1670 assert(info->pRasterizationState);
1671 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1672 assert(info->pViewportState);
1673 assert(info->pMultisampleState);
1674
1675 if (subpass && subpass->depth_stencil_attachment)
1676 assert(info->pDepthStencilState);
1677
1678 if (subpass && subpass->color_count > 0) {
1679 bool all_color_unused = true;
1680 for (int i = 0; i < subpass->color_count; i++) {
1681 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1682 all_color_unused = false;
1683 }
1684 /* pColorBlendState is ignored if the pipeline has rasterization
1685 * disabled or if the subpass of the render pass the pipeline is
1686 * created against does not use any color attachments.
1687 */
1688 assert(info->pColorBlendState || all_color_unused);
1689 }
1690 }
1691
1692 for (uint32_t i = 0; i < info->stageCount; ++i) {
1693 switch (info->pStages[i].stage) {
1694 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1695 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1696 assert(info->pTessellationState);
1697 break;
1698 default:
1699 break;
1700 }
1701 }
1702 #endif
1703 }
1704
1705 /**
1706 * Calculate the desired L3 partitioning based on the current state of the
1707 * pipeline. For now this simply returns the conservative defaults calculated
1708 * by get_default_l3_weights(), but we could probably do better by gathering
1709 * more statistics from the pipeline state (e.g. guess of expected URB usage
1710 * and bound surfaces), or by using feed-back from performance counters.
1711 */
1712 void
1713 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1714 {
1715 const struct gen_device_info *devinfo = &pipeline->device->info;
1716
1717 const struct gen_l3_weights w =
1718 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1719
1720 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1721 pipeline->urb.total_size =
1722 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1723 }
1724
1725 VkResult
1726 anv_pipeline_init(struct anv_pipeline *pipeline,
1727 struct anv_device *device,
1728 struct anv_pipeline_cache *cache,
1729 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1730 const VkAllocationCallbacks *alloc)
1731 {
1732 VkResult result;
1733
1734 anv_pipeline_validate_create_info(pCreateInfo);
1735
1736 if (alloc == NULL)
1737 alloc = &device->alloc;
1738
1739 pipeline->device = device;
1740
1741 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1742 assert(pCreateInfo->subpass < render_pass->subpass_count);
1743 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1744
1745 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1746 if (result != VK_SUCCESS)
1747 return result;
1748
1749 pipeline->batch.alloc = alloc;
1750 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1751 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1752 pipeline->batch.relocs = &pipeline->batch_relocs;
1753 pipeline->batch.status = VK_SUCCESS;
1754
1755 copy_non_dynamic_state(pipeline, pCreateInfo);
1756 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1757 pCreateInfo->pRasterizationState->depthClampEnable;
1758
1759 /* Previously we enabled depth clipping when !depthClampEnable.
1760 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1761 * clipping info is available, use its enable value to determine clipping,
1762 * otherwise fallback to the previous !depthClampEnable logic.
1763 */
1764 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1765 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1766 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1767 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1768
1769 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1770 pCreateInfo->pMultisampleState->sampleShadingEnable;
1771
1772 pipeline->needs_data_cache = false;
1773
1774 /* When we free the pipeline, we detect stages based on the NULL status
1775 * of various prog_data pointers. Make them NULL by default.
1776 */
1777 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1778
1779 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1780 if (result != VK_SUCCESS) {
1781 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1782 return result;
1783 }
1784
1785 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1786
1787 anv_pipeline_setup_l3_config(pipeline, false);
1788
1789 const VkPipelineVertexInputStateCreateInfo *vi_info =
1790 pCreateInfo->pVertexInputState;
1791
1792 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1793
1794 pipeline->vb_used = 0;
1795 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1796 const VkVertexInputAttributeDescription *desc =
1797 &vi_info->pVertexAttributeDescriptions[i];
1798
1799 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1800 pipeline->vb_used |= 1 << desc->binding;
1801 }
1802
1803 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1804 const VkVertexInputBindingDescription *desc =
1805 &vi_info->pVertexBindingDescriptions[i];
1806
1807 pipeline->vb[desc->binding].stride = desc->stride;
1808
1809 /* Step rate is programmed per vertex element (attribute), not
1810 * binding. Set up a map of which bindings step per instance, for
1811 * reference by vertex element setup. */
1812 switch (desc->inputRate) {
1813 default:
1814 case VK_VERTEX_INPUT_RATE_VERTEX:
1815 pipeline->vb[desc->binding].instanced = false;
1816 break;
1817 case VK_VERTEX_INPUT_RATE_INSTANCE:
1818 pipeline->vb[desc->binding].instanced = true;
1819 break;
1820 }
1821
1822 pipeline->vb[desc->binding].instance_divisor = 1;
1823 }
1824
1825 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1826 vk_find_struct_const(vi_info->pNext,
1827 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1828 if (vi_div_state) {
1829 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1830 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1831 &vi_div_state->pVertexBindingDivisors[i];
1832
1833 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1834 }
1835 }
1836
1837 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1838 * different views. If the client asks for instancing, we need to multiply
1839 * the instance divisor by the number of views ensure that we repeat the
1840 * client's per-instance data once for each view.
1841 */
1842 if (pipeline->subpass->view_mask) {
1843 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1844 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1845 if (pipeline->vb[vb].instanced)
1846 pipeline->vb[vb].instance_divisor *= view_count;
1847 }
1848 }
1849
1850 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1851 pCreateInfo->pInputAssemblyState;
1852 const VkPipelineTessellationStateCreateInfo *tess_info =
1853 pCreateInfo->pTessellationState;
1854 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1855
1856 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1857 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1858 else
1859 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1860
1861 return VK_SUCCESS;
1862 }