intel/compiler: Add a "base class" for program keys
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "anv_private.h"
34 #include "compiler/brw_nir.h"
35 #include "anv_nir.h"
36 #include "nir/nir_xfb_info.h"
37 #include "spirv/nir_spirv.h"
38 #include "vk_util.h"
39
40 /* Needed for SWIZZLE macros */
41 #include "program/prog_instruction.h"
42
43 // Shader functions
44
45 VkResult anv_CreateShaderModule(
46 VkDevice _device,
47 const VkShaderModuleCreateInfo* pCreateInfo,
48 const VkAllocationCallbacks* pAllocator,
49 VkShaderModule* pShaderModule)
50 {
51 ANV_FROM_HANDLE(anv_device, device, _device);
52 struct anv_shader_module *module;
53
54 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
55 assert(pCreateInfo->flags == 0);
56
57 module = vk_alloc2(&device->alloc, pAllocator,
58 sizeof(*module) + pCreateInfo->codeSize, 8,
59 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
60 if (module == NULL)
61 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
62
63 module->size = pCreateInfo->codeSize;
64 memcpy(module->data, pCreateInfo->pCode, module->size);
65
66 _mesa_sha1_compute(module->data, module->size, module->sha1);
67
68 *pShaderModule = anv_shader_module_to_handle(module);
69
70 return VK_SUCCESS;
71 }
72
73 void anv_DestroyShaderModule(
74 VkDevice _device,
75 VkShaderModule _module,
76 const VkAllocationCallbacks* pAllocator)
77 {
78 ANV_FROM_HANDLE(anv_device, device, _device);
79 ANV_FROM_HANDLE(anv_shader_module, module, _module);
80
81 if (!module)
82 return;
83
84 vk_free2(&device->alloc, pAllocator, module);
85 }
86
87 #define SPIR_V_MAGIC_NUMBER 0x07230203
88
89 static const uint64_t stage_to_debug[] = {
90 [MESA_SHADER_VERTEX] = DEBUG_VS,
91 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
92 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
93 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
94 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
95 [MESA_SHADER_COMPUTE] = DEBUG_CS,
96 };
97
98 struct anv_spirv_debug_data {
99 struct anv_device *device;
100 const struct anv_shader_module *module;
101 };
102
103 static void anv_spirv_nir_debug(void *private_data,
104 enum nir_spirv_debug_level level,
105 size_t spirv_offset,
106 const char *message)
107 {
108 struct anv_spirv_debug_data *debug_data = private_data;
109 static const VkDebugReportFlagsEXT vk_flags[] = {
110 [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
111 [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
112 [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
113 };
114 char buffer[256];
115
116 snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
117
118 vk_debug_report(&debug_data->device->instance->debug_report_callbacks,
119 vk_flags[level],
120 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
121 (uint64_t) (uintptr_t) debug_data->module,
122 0, 0, "anv", buffer);
123 }
124
125 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
126 * we can't do that yet because we don't have the ability to copy nir.
127 */
128 static nir_shader *
129 anv_shader_compile_to_nir(struct anv_device *device,
130 void *mem_ctx,
131 const struct anv_shader_module *module,
132 const char *entrypoint_name,
133 gl_shader_stage stage,
134 const VkSpecializationInfo *spec_info)
135 {
136 const struct anv_physical_device *pdevice =
137 &device->instance->physicalDevice;
138 const struct brw_compiler *compiler = pdevice->compiler;
139 const nir_shader_compiler_options *nir_options =
140 compiler->glsl_compiler_options[stage].NirOptions;
141
142 uint32_t *spirv = (uint32_t *) module->data;
143 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
144 assert(module->size % 4 == 0);
145
146 uint32_t num_spec_entries = 0;
147 struct nir_spirv_specialization *spec_entries = NULL;
148 if (spec_info && spec_info->mapEntryCount > 0) {
149 num_spec_entries = spec_info->mapEntryCount;
150 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
151 for (uint32_t i = 0; i < num_spec_entries; i++) {
152 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
153 const void *data = spec_info->pData + entry.offset;
154 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
155
156 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
157 if (spec_info->dataSize == 8)
158 spec_entries[i].data64 = *(const uint64_t *)data;
159 else
160 spec_entries[i].data32 = *(const uint32_t *)data;
161 }
162 }
163
164 struct anv_spirv_debug_data spirv_debug_data = {
165 .device = device,
166 .module = module,
167 };
168 struct spirv_to_nir_options spirv_options = {
169 .lower_workgroup_access_to_offsets = true,
170 .caps = {
171 .demote_to_helper_invocation = true,
172 .derivative_group = true,
173 .descriptor_array_dynamic_indexing = true,
174 .descriptor_array_non_uniform_indexing = true,
175 .descriptor_indexing = true,
176 .device_group = true,
177 .draw_parameters = true,
178 .float16 = pdevice->info.gen >= 8,
179 .float64 = pdevice->info.gen >= 8,
180 .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
181 .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
182 .geometry_streams = true,
183 .image_write_without_format = true,
184 .int8 = pdevice->info.gen >= 8,
185 .int16 = pdevice->info.gen >= 8,
186 .int64 = pdevice->info.gen >= 8,
187 .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
188 .min_lod = true,
189 .multiview = true,
190 .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
191 .post_depth_coverage = pdevice->info.gen >= 9,
192 .runtime_descriptor_array = true,
193 .shader_viewport_index_layer = true,
194 .stencil_export = pdevice->info.gen >= 9,
195 .storage_8bit = pdevice->info.gen >= 8,
196 .storage_16bit = pdevice->info.gen >= 8,
197 .subgroup_arithmetic = true,
198 .subgroup_basic = true,
199 .subgroup_ballot = true,
200 .subgroup_quad = true,
201 .subgroup_shuffle = true,
202 .subgroup_vote = true,
203 .tessellation = true,
204 .transform_feedback = pdevice->info.gen >= 8,
205 .variable_pointers = true,
206 },
207 .ubo_addr_format = nir_address_format_32bit_index_offset,
208 .ssbo_addr_format =
209 anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
210 .phys_ssbo_addr_format = nir_address_format_64bit_global,
211 .push_const_addr_format = nir_address_format_logical,
212
213 /* TODO: Consider changing this to an address format that has the NULL
214 * pointer equals to 0. That might be a better format to play nice
215 * with certain code / code generators.
216 */
217 .shared_addr_format = nir_address_format_32bit_offset,
218 .debug = {
219 .func = anv_spirv_nir_debug,
220 .private_data = &spirv_debug_data,
221 },
222 };
223
224
225 nir_shader *nir =
226 spirv_to_nir(spirv, module->size / 4,
227 spec_entries, num_spec_entries,
228 stage, entrypoint_name, &spirv_options, nir_options);
229 assert(nir->info.stage == stage);
230 nir_validate_shader(nir, "after spirv_to_nir");
231 ralloc_steal(mem_ctx, nir);
232
233 free(spec_entries);
234
235 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
236 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
237 gl_shader_stage_name(stage));
238 nir_print_shader(nir, stderr);
239 }
240
241 /* We have to lower away local constant initializers right before we
242 * inline functions. That way they get properly initialized at the top
243 * of the function and not at the top of its caller.
244 */
245 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
246 NIR_PASS_V(nir, nir_lower_returns);
247 NIR_PASS_V(nir, nir_inline_functions);
248 NIR_PASS_V(nir, nir_opt_deref);
249
250 /* Pick off the single entrypoint that we want */
251 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
252 if (!func->is_entrypoint)
253 exec_node_remove(&func->node);
254 }
255 assert(exec_list_length(&nir->functions) == 1);
256
257 /* Now that we've deleted all but the main function, we can go ahead and
258 * lower the rest of the constant initializers. We do this here so that
259 * nir_remove_dead_variables and split_per_member_structs below see the
260 * corresponding stores.
261 */
262 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
263
264 /* Split member structs. We do this before lower_io_to_temporaries so that
265 * it doesn't lower system values to temporaries by accident.
266 */
267 NIR_PASS_V(nir, nir_split_var_copies);
268 NIR_PASS_V(nir, nir_split_per_member_structs);
269
270 NIR_PASS_V(nir, nir_remove_dead_variables,
271 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
272
273 NIR_PASS_V(nir, nir_propagate_invariant);
274 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
275 nir_shader_get_entrypoint(nir), true, false);
276
277 NIR_PASS_V(nir, nir_lower_frexp);
278
279 /* Vulkan uses the separate-shader linking model */
280 nir->info.separate_shader = true;
281
282 brw_preprocess_nir(compiler, nir, NULL);
283
284 return nir;
285 }
286
287 void anv_DestroyPipeline(
288 VkDevice _device,
289 VkPipeline _pipeline,
290 const VkAllocationCallbacks* pAllocator)
291 {
292 ANV_FROM_HANDLE(anv_device, device, _device);
293 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
294
295 if (!pipeline)
296 return;
297
298 anv_reloc_list_finish(&pipeline->batch_relocs,
299 pAllocator ? pAllocator : &device->alloc);
300 if (pipeline->blend_state.map)
301 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
302
303 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
304 if (pipeline->shaders[s])
305 anv_shader_bin_unref(device, pipeline->shaders[s]);
306 }
307
308 vk_free2(&device->alloc, pAllocator, pipeline);
309 }
310
311 static const uint32_t vk_to_gen_primitive_type[] = {
312 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
313 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
314 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
315 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
316 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
317 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
318 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
319 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
320 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
321 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
322 };
323
324 static void
325 populate_sampler_prog_key(const struct gen_device_info *devinfo,
326 struct brw_sampler_prog_key_data *key)
327 {
328 /* Almost all multisampled textures are compressed. The only time when we
329 * don't compress a multisampled texture is for 16x MSAA with a surface
330 * width greater than 8k which is a bit of an edge case. Since the sampler
331 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
332 * to tell the compiler to always assume compression.
333 */
334 key->compressed_multisample_layout_mask = ~0;
335
336 /* SkyLake added support for 16x MSAA. With this came a new message for
337 * reading from a 16x MSAA surface with compression. The new message was
338 * needed because now the MCS data is 64 bits instead of 32 or lower as is
339 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
340 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
341 * so we can just use it unconditionally. This may not be quite as
342 * efficient but it saves us from recompiling.
343 */
344 if (devinfo->gen >= 9)
345 key->msaa_16 = ~0;
346
347 /* XXX: Handle texture swizzle on HSW- */
348 for (int i = 0; i < MAX_SAMPLERS; i++) {
349 /* Assume color sampler, no swizzling. (Works for BDW+) */
350 key->swizzles[i] = SWIZZLE_XYZW;
351 }
352 }
353
354 static void
355 populate_base_prog_key(const struct gen_device_info *devinfo,
356 struct brw_base_prog_key *key)
357 {
358 populate_sampler_prog_key(devinfo, &key->tex);
359 }
360
361 static void
362 populate_vs_prog_key(const struct gen_device_info *devinfo,
363 struct brw_vs_prog_key *key)
364 {
365 memset(key, 0, sizeof(*key));
366
367 populate_base_prog_key(devinfo, &key->base);
368
369 /* XXX: Handle vertex input work-arounds */
370
371 /* XXX: Handle sampler_prog_key */
372 }
373
374 static void
375 populate_tcs_prog_key(const struct gen_device_info *devinfo,
376 unsigned input_vertices,
377 struct brw_tcs_prog_key *key)
378 {
379 memset(key, 0, sizeof(*key));
380
381 populate_base_prog_key(devinfo, &key->base);
382
383 key->input_vertices = input_vertices;
384 }
385
386 static void
387 populate_tes_prog_key(const struct gen_device_info *devinfo,
388 struct brw_tes_prog_key *key)
389 {
390 memset(key, 0, sizeof(*key));
391
392 populate_base_prog_key(devinfo, &key->base);
393 }
394
395 static void
396 populate_gs_prog_key(const struct gen_device_info *devinfo,
397 struct brw_gs_prog_key *key)
398 {
399 memset(key, 0, sizeof(*key));
400
401 populate_base_prog_key(devinfo, &key->base);
402 }
403
404 static void
405 populate_wm_prog_key(const struct gen_device_info *devinfo,
406 const struct anv_subpass *subpass,
407 const VkPipelineMultisampleStateCreateInfo *ms_info,
408 struct brw_wm_prog_key *key)
409 {
410 memset(key, 0, sizeof(*key));
411
412 populate_base_prog_key(devinfo, &key->base);
413
414 /* We set this to 0 here and set to the actual value before we call
415 * brw_compile_fs.
416 */
417 key->input_slots_valid = 0;
418
419 /* Vulkan doesn't specify a default */
420 key->high_quality_derivatives = false;
421
422 /* XXX Vulkan doesn't appear to specify */
423 key->clamp_fragment_color = false;
424
425 assert(subpass->color_count <= MAX_RTS);
426 for (uint32_t i = 0; i < subpass->color_count; i++) {
427 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
428 key->color_outputs_valid |= (1 << i);
429 }
430
431 key->nr_color_regions = util_bitcount(key->color_outputs_valid);
432
433 /* To reduce possible shader recompilations we would need to know if
434 * there is a SampleMask output variable to compute if we should emit
435 * code to workaround the issue that hardware disables alpha to coverage
436 * when there is SampleMask output.
437 */
438 key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
439
440 /* Vulkan doesn't support fixed-function alpha test */
441 key->alpha_test_replicate_alpha = false;
442
443 if (ms_info) {
444 /* We should probably pull this out of the shader, but it's fairly
445 * harmless to compute it and then let dead-code take care of it.
446 */
447 if (ms_info->rasterizationSamples > 1) {
448 key->persample_interp = ms_info->sampleShadingEnable &&
449 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
450 key->multisample_fbo = true;
451 }
452
453 key->frag_coord_adds_sample_pos = key->persample_interp;
454 }
455 }
456
457 static void
458 populate_cs_prog_key(const struct gen_device_info *devinfo,
459 struct brw_cs_prog_key *key)
460 {
461 memset(key, 0, sizeof(*key));
462
463 populate_base_prog_key(devinfo, &key->base);
464 }
465
466 struct anv_pipeline_stage {
467 gl_shader_stage stage;
468
469 const struct anv_shader_module *module;
470 const char *entrypoint;
471 const VkSpecializationInfo *spec_info;
472
473 unsigned char shader_sha1[20];
474
475 union brw_any_prog_key key;
476
477 struct {
478 gl_shader_stage stage;
479 unsigned char sha1[20];
480 } cache_key;
481
482 nir_shader *nir;
483
484 struct anv_pipeline_binding surface_to_descriptor[256];
485 struct anv_pipeline_binding sampler_to_descriptor[256];
486 struct anv_pipeline_bind_map bind_map;
487
488 union brw_any_prog_data prog_data;
489
490 VkPipelineCreationFeedbackEXT feedback;
491 };
492
493 static void
494 anv_pipeline_hash_shader(const struct anv_shader_module *module,
495 const char *entrypoint,
496 gl_shader_stage stage,
497 const VkSpecializationInfo *spec_info,
498 unsigned char *sha1_out)
499 {
500 struct mesa_sha1 ctx;
501 _mesa_sha1_init(&ctx);
502
503 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
504 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
505 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
506 if (spec_info) {
507 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
508 spec_info->mapEntryCount *
509 sizeof(*spec_info->pMapEntries));
510 _mesa_sha1_update(&ctx, spec_info->pData,
511 spec_info->dataSize);
512 }
513
514 _mesa_sha1_final(&ctx, sha1_out);
515 }
516
517 static void
518 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
519 struct anv_pipeline_layout *layout,
520 struct anv_pipeline_stage *stages,
521 unsigned char *sha1_out)
522 {
523 struct mesa_sha1 ctx;
524 _mesa_sha1_init(&ctx);
525
526 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
527 sizeof(pipeline->subpass->view_mask));
528
529 if (layout)
530 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
531
532 const bool rba = pipeline->device->robust_buffer_access;
533 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
534
535 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
536 if (stages[s].entrypoint) {
537 _mesa_sha1_update(&ctx, stages[s].shader_sha1,
538 sizeof(stages[s].shader_sha1));
539 _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
540 }
541 }
542
543 _mesa_sha1_final(&ctx, sha1_out);
544 }
545
546 static void
547 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
548 struct anv_pipeline_layout *layout,
549 struct anv_pipeline_stage *stage,
550 unsigned char *sha1_out)
551 {
552 struct mesa_sha1 ctx;
553 _mesa_sha1_init(&ctx);
554
555 if (layout)
556 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
557
558 const bool rba = pipeline->device->robust_buffer_access;
559 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
560
561 _mesa_sha1_update(&ctx, stage->shader_sha1,
562 sizeof(stage->shader_sha1));
563 _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
564
565 _mesa_sha1_final(&ctx, sha1_out);
566 }
567
568 static nir_shader *
569 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
570 struct anv_pipeline_cache *cache,
571 void *mem_ctx,
572 struct anv_pipeline_stage *stage)
573 {
574 const struct brw_compiler *compiler =
575 pipeline->device->instance->physicalDevice.compiler;
576 const nir_shader_compiler_options *nir_options =
577 compiler->glsl_compiler_options[stage->stage].NirOptions;
578 nir_shader *nir;
579
580 nir = anv_device_search_for_nir(pipeline->device, cache,
581 nir_options,
582 stage->shader_sha1,
583 mem_ctx);
584 if (nir) {
585 assert(nir->info.stage == stage->stage);
586 return nir;
587 }
588
589 nir = anv_shader_compile_to_nir(pipeline->device,
590 mem_ctx,
591 stage->module,
592 stage->entrypoint,
593 stage->stage,
594 stage->spec_info);
595 if (nir) {
596 anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
597 return nir;
598 }
599
600 return NULL;
601 }
602
603 static void
604 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
605 void *mem_ctx,
606 struct anv_pipeline_stage *stage,
607 struct anv_pipeline_layout *layout)
608 {
609 const struct anv_physical_device *pdevice =
610 &pipeline->device->instance->physicalDevice;
611 const struct brw_compiler *compiler = pdevice->compiler;
612
613 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
614 nir_shader *nir = stage->nir;
615
616 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
617 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
618 NIR_PASS_V(nir, nir_lower_input_attachments, false);
619 }
620
621 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
622
623 NIR_PASS_V(nir, anv_nir_lower_push_constants);
624
625 if (nir->info.stage != MESA_SHADER_COMPUTE)
626 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
627
628 if (nir->info.stage == MESA_SHADER_COMPUTE)
629 prog_data->total_shared = nir->num_shared;
630
631 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
632
633 if (nir->num_uniforms > 0) {
634 assert(prog_data->nr_params == 0);
635
636 /* If the shader uses any push constants at all, we'll just give
637 * them the maximum possible number
638 */
639 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
640 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
641 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
642 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
643
644 /* We now set the param values to be offsets into a
645 * anv_push_constant_data structure. Since the compiler doesn't
646 * actually dereference any of the gl_constant_value pointers in the
647 * params array, it doesn't really matter what we put here.
648 */
649 struct anv_push_constants *null_data = NULL;
650 /* Fill out the push constants section of the param array */
651 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
652 prog_data->param[i] = ANV_PARAM_PUSH(
653 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
654 }
655 }
656
657 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
658 pipeline->needs_data_cache = true;
659
660 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
661
662 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
663 nir_address_format_64bit_global);
664
665 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
666 if (layout) {
667 anv_nir_apply_pipeline_layout(pdevice,
668 pipeline->device->robust_buffer_access,
669 layout, nir, prog_data,
670 &stage->bind_map);
671
672 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
673 nir_address_format_32bit_index_offset);
674 NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
675 anv_nir_ssbo_addr_format(pdevice,
676 pipeline->device->robust_buffer_access));
677
678 NIR_PASS_V(nir, nir_opt_constant_folding);
679
680 /* We don't support non-uniform UBOs and non-uniform SSBO access is
681 * handled naturally by falling back to A64 messages.
682 */
683 NIR_PASS_V(nir, nir_lower_non_uniform_access,
684 nir_lower_non_uniform_texture_access |
685 nir_lower_non_uniform_image_access);
686 }
687
688 if (nir->info.stage != MESA_SHADER_COMPUTE)
689 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
690
691 assert(nir->num_uniforms == prog_data->nr_params * 4);
692
693 stage->nir = nir;
694 }
695
696 static void
697 anv_pipeline_link_vs(const struct brw_compiler *compiler,
698 struct anv_pipeline_stage *vs_stage,
699 struct anv_pipeline_stage *next_stage)
700 {
701 if (next_stage)
702 brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
703 }
704
705 static const unsigned *
706 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
707 void *mem_ctx,
708 struct anv_device *device,
709 struct anv_pipeline_stage *vs_stage)
710 {
711 brw_compute_vue_map(compiler->devinfo,
712 &vs_stage->prog_data.vs.base.vue_map,
713 vs_stage->nir->info.outputs_written,
714 vs_stage->nir->info.separate_shader);
715
716 return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs,
717 &vs_stage->prog_data.vs, vs_stage->nir, -1, NULL);
718 }
719
720 static void
721 merge_tess_info(struct shader_info *tes_info,
722 const struct shader_info *tcs_info)
723 {
724 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
725 *
726 * "PointMode. Controls generation of points rather than triangles
727 * or lines. This functionality defaults to disabled, and is
728 * enabled if either shader stage includes the execution mode.
729 *
730 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
731 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
732 * and OutputVertices, it says:
733 *
734 * "One mode must be set in at least one of the tessellation
735 * shader stages."
736 *
737 * So, the fields can be set in either the TCS or TES, but they must
738 * agree if set in both. Our backend looks at TES, so bitwise-or in
739 * the values from the TCS.
740 */
741 assert(tcs_info->tess.tcs_vertices_out == 0 ||
742 tes_info->tess.tcs_vertices_out == 0 ||
743 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
744 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
745
746 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
747 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
748 tcs_info->tess.spacing == tes_info->tess.spacing);
749 tes_info->tess.spacing |= tcs_info->tess.spacing;
750
751 assert(tcs_info->tess.primitive_mode == 0 ||
752 tes_info->tess.primitive_mode == 0 ||
753 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
754 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
755 tes_info->tess.ccw |= tcs_info->tess.ccw;
756 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
757 }
758
759 static void
760 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
761 struct anv_pipeline_stage *tcs_stage,
762 struct anv_pipeline_stage *tes_stage)
763 {
764 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
765
766 brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
767
768 nir_lower_patch_vertices(tes_stage->nir,
769 tcs_stage->nir->info.tess.tcs_vertices_out,
770 NULL);
771
772 /* Copy TCS info into the TES info */
773 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
774
775 /* Whacking the key after cache lookup is a bit sketchy, but all of
776 * this comes from the SPIR-V, which is part of the hash used for the
777 * pipeline cache. So it should be safe.
778 */
779 tcs_stage->key.tcs.tes_primitive_mode =
780 tes_stage->nir->info.tess.primitive_mode;
781 tcs_stage->key.tcs.quads_workaround =
782 compiler->devinfo->gen < 9 &&
783 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
784 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
785 }
786
787 static const unsigned *
788 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
789 void *mem_ctx,
790 struct anv_device *device,
791 struct anv_pipeline_stage *tcs_stage,
792 struct anv_pipeline_stage *prev_stage)
793 {
794 tcs_stage->key.tcs.outputs_written =
795 tcs_stage->nir->info.outputs_written;
796 tcs_stage->key.tcs.patch_outputs_written =
797 tcs_stage->nir->info.patch_outputs_written;
798
799 return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs,
800 &tcs_stage->prog_data.tcs, tcs_stage->nir,
801 -1, NULL);
802 }
803
804 static void
805 anv_pipeline_link_tes(const struct brw_compiler *compiler,
806 struct anv_pipeline_stage *tes_stage,
807 struct anv_pipeline_stage *next_stage)
808 {
809 if (next_stage)
810 brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
811 }
812
813 static const unsigned *
814 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
815 void *mem_ctx,
816 struct anv_device *device,
817 struct anv_pipeline_stage *tes_stage,
818 struct anv_pipeline_stage *tcs_stage)
819 {
820 tes_stage->key.tes.inputs_read =
821 tcs_stage->nir->info.outputs_written;
822 tes_stage->key.tes.patch_inputs_read =
823 tcs_stage->nir->info.patch_outputs_written;
824
825 return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes,
826 &tcs_stage->prog_data.tcs.base.vue_map,
827 &tes_stage->prog_data.tes, tes_stage->nir,
828 NULL, -1, NULL);
829 }
830
831 static void
832 anv_pipeline_link_gs(const struct brw_compiler *compiler,
833 struct anv_pipeline_stage *gs_stage,
834 struct anv_pipeline_stage *next_stage)
835 {
836 if (next_stage)
837 brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
838 }
839
840 static const unsigned *
841 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
842 void *mem_ctx,
843 struct anv_device *device,
844 struct anv_pipeline_stage *gs_stage,
845 struct anv_pipeline_stage *prev_stage)
846 {
847 brw_compute_vue_map(compiler->devinfo,
848 &gs_stage->prog_data.gs.base.vue_map,
849 gs_stage->nir->info.outputs_written,
850 gs_stage->nir->info.separate_shader);
851
852 return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs,
853 &gs_stage->prog_data.gs, gs_stage->nir,
854 NULL, -1, NULL);
855 }
856
857 static void
858 anv_pipeline_link_fs(const struct brw_compiler *compiler,
859 struct anv_pipeline_stage *stage)
860 {
861 unsigned num_rts = 0;
862 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
863 struct anv_pipeline_binding rt_bindings[max_rt];
864 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
865 int rt_to_bindings[max_rt];
866 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
867 bool rt_used[max_rt];
868 memset(rt_used, 0, sizeof(rt_used));
869
870 /* Flag used render targets */
871 nir_foreach_variable_safe(var, &stage->nir->outputs) {
872 if (var->data.location < FRAG_RESULT_DATA0)
873 continue;
874
875 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
876 /* Out-of-bounds */
877 if (rt >= MAX_RTS)
878 continue;
879
880 const unsigned array_len =
881 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
882 assert(rt + array_len <= max_rt);
883
884 /* Unused */
885 if (!(stage->key.wm.color_outputs_valid & BITFIELD_RANGE(rt, array_len))) {
886 /* If this is the RT at location 0 and we have alpha to coverage
887 * enabled we will have to create a null RT for it, so mark it as
888 * used.
889 */
890 if (rt > 0 || !stage->key.wm.alpha_to_coverage)
891 continue;
892 }
893
894 for (unsigned i = 0; i < array_len; i++)
895 rt_used[rt + i] = true;
896 }
897
898 /* Set new, compacted, location */
899 for (unsigned i = 0; i < max_rt; i++) {
900 if (!rt_used[i])
901 continue;
902
903 rt_to_bindings[i] = num_rts;
904
905 if (stage->key.wm.color_outputs_valid & (1 << i)) {
906 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
907 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
908 .binding = 0,
909 .index = i,
910 };
911 } else {
912 /* Setup a null render target */
913 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
914 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
915 .binding = 0,
916 .index = UINT32_MAX,
917 };
918 }
919
920 num_rts++;
921 }
922
923 bool deleted_output = false;
924 nir_foreach_variable_safe(var, &stage->nir->outputs) {
925 if (var->data.location < FRAG_RESULT_DATA0)
926 continue;
927
928 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
929
930 if (rt >= MAX_RTS || !rt_used[rt]) {
931 /* Unused or out-of-bounds, throw it away, unless it is the first
932 * RT and we have alpha to coverage enabled.
933 */
934 deleted_output = true;
935 var->data.mode = nir_var_function_temp;
936 exec_node_remove(&var->node);
937 exec_list_push_tail(&impl->locals, &var->node);
938 continue;
939 }
940
941 /* Give it the new location */
942 assert(rt_to_bindings[rt] != -1);
943 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
944 }
945
946 if (deleted_output)
947 nir_fixup_deref_modes(stage->nir);
948
949 if (num_rts == 0) {
950 /* If we have no render targets, we need a null render target */
951 rt_bindings[0] = (struct anv_pipeline_binding) {
952 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
953 .binding = 0,
954 .index = UINT32_MAX,
955 };
956 num_rts = 1;
957 }
958
959 /* Now that we've determined the actual number of render targets, adjust
960 * the key accordingly.
961 */
962 stage->key.wm.nr_color_regions = num_rts;
963 stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
964
965 assert(num_rts <= max_rt);
966 assert(stage->bind_map.surface_count == 0);
967 typed_memcpy(stage->bind_map.surface_to_descriptor,
968 rt_bindings, num_rts);
969 stage->bind_map.surface_count += num_rts;
970 }
971
972 static const unsigned *
973 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
974 void *mem_ctx,
975 struct anv_device *device,
976 struct anv_pipeline_stage *fs_stage,
977 struct anv_pipeline_stage *prev_stage)
978 {
979 /* TODO: we could set this to 0 based on the information in nir_shader, but
980 * we need this before we call spirv_to_nir.
981 */
982 assert(prev_stage);
983 fs_stage->key.wm.input_slots_valid =
984 prev_stage->prog_data.vue.vue_map.slots_valid;
985
986 const unsigned *code =
987 brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm,
988 &fs_stage->prog_data.wm, fs_stage->nir,
989 NULL, -1, -1, -1, true, false, NULL, NULL);
990
991 if (fs_stage->key.wm.nr_color_regions == 0 &&
992 !fs_stage->prog_data.wm.has_side_effects &&
993 !fs_stage->prog_data.wm.uses_kill &&
994 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
995 !fs_stage->prog_data.wm.computed_stencil) {
996 /* This fragment shader has no outputs and no side effects. Go ahead
997 * and return the code pointer so we don't accidentally think the
998 * compile failed but zero out prog_data which will set program_size to
999 * zero and disable the stage.
1000 */
1001 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1002 }
1003
1004 return code;
1005 }
1006
1007 static VkResult
1008 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
1009 struct anv_pipeline_cache *cache,
1010 const VkGraphicsPipelineCreateInfo *info)
1011 {
1012 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1013 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1014 };
1015 int64_t pipeline_start = os_time_get_nano();
1016
1017 const struct brw_compiler *compiler =
1018 pipeline->device->instance->physicalDevice.compiler;
1019 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1020
1021 pipeline->active_stages = 0;
1022
1023 VkResult result;
1024 for (uint32_t i = 0; i < info->stageCount; i++) {
1025 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1026 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1027
1028 pipeline->active_stages |= sinfo->stage;
1029
1030 int64_t stage_start = os_time_get_nano();
1031
1032 stages[stage].stage = stage;
1033 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1034 stages[stage].entrypoint = sinfo->pName;
1035 stages[stage].spec_info = sinfo->pSpecializationInfo;
1036 anv_pipeline_hash_shader(stages[stage].module,
1037 stages[stage].entrypoint,
1038 stage,
1039 stages[stage].spec_info,
1040 stages[stage].shader_sha1);
1041
1042 const struct gen_device_info *devinfo = &pipeline->device->info;
1043 switch (stage) {
1044 case MESA_SHADER_VERTEX:
1045 populate_vs_prog_key(devinfo, &stages[stage].key.vs);
1046 break;
1047 case MESA_SHADER_TESS_CTRL:
1048 populate_tcs_prog_key(devinfo,
1049 info->pTessellationState->patchControlPoints,
1050 &stages[stage].key.tcs);
1051 break;
1052 case MESA_SHADER_TESS_EVAL:
1053 populate_tes_prog_key(devinfo, &stages[stage].key.tes);
1054 break;
1055 case MESA_SHADER_GEOMETRY:
1056 populate_gs_prog_key(devinfo, &stages[stage].key.gs);
1057 break;
1058 case MESA_SHADER_FRAGMENT:
1059 populate_wm_prog_key(devinfo, pipeline->subpass,
1060 info->pMultisampleState,
1061 &stages[stage].key.wm);
1062 break;
1063 default:
1064 unreachable("Invalid graphics shader stage");
1065 }
1066
1067 stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1068 stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1069 }
1070
1071 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1072 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1073
1074 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1075
1076 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1077
1078 unsigned char sha1[20];
1079 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1080
1081 unsigned found = 0;
1082 unsigned cache_hits = 0;
1083 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1084 if (!stages[s].entrypoint)
1085 continue;
1086
1087 int64_t stage_start = os_time_get_nano();
1088
1089 stages[s].cache_key.stage = s;
1090 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1091
1092 bool cache_hit;
1093 struct anv_shader_bin *bin =
1094 anv_device_search_for_kernel(pipeline->device, cache,
1095 &stages[s].cache_key,
1096 sizeof(stages[s].cache_key), &cache_hit);
1097 if (bin) {
1098 found++;
1099 pipeline->shaders[s] = bin;
1100 }
1101
1102 if (cache_hit) {
1103 cache_hits++;
1104 stages[s].feedback.flags |=
1105 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1106 }
1107 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1108 }
1109
1110 if (found == __builtin_popcount(pipeline->active_stages)) {
1111 if (cache_hits == found) {
1112 pipeline_feedback.flags |=
1113 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1114 }
1115 /* We found all our shaders in the cache. We're done. */
1116 goto done;
1117 } else if (found > 0) {
1118 /* We found some but not all of our shaders. This shouldn't happen
1119 * most of the time but it can if we have a partially populated
1120 * pipeline cache.
1121 */
1122 assert(found < __builtin_popcount(pipeline->active_stages));
1123
1124 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
1125 VK_DEBUG_REPORT_WARNING_BIT_EXT |
1126 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1127 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1128 (uint64_t)(uintptr_t)cache,
1129 0, 0, "anv",
1130 "Found a partial pipeline in the cache. This is "
1131 "most likely caused by an incomplete pipeline cache "
1132 "import or export");
1133
1134 /* We're going to have to recompile anyway, so just throw away our
1135 * references to the shaders in the cache. We'll get them out of the
1136 * cache again as part of the compilation process.
1137 */
1138 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1139 stages[s].feedback.flags = 0;
1140 if (pipeline->shaders[s]) {
1141 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1142 pipeline->shaders[s] = NULL;
1143 }
1144 }
1145 }
1146
1147 void *pipeline_ctx = ralloc_context(NULL);
1148
1149 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1150 if (!stages[s].entrypoint)
1151 continue;
1152
1153 int64_t stage_start = os_time_get_nano();
1154
1155 assert(stages[s].stage == s);
1156 assert(pipeline->shaders[s] == NULL);
1157
1158 stages[s].bind_map = (struct anv_pipeline_bind_map) {
1159 .surface_to_descriptor = stages[s].surface_to_descriptor,
1160 .sampler_to_descriptor = stages[s].sampler_to_descriptor
1161 };
1162
1163 stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
1164 pipeline_ctx,
1165 &stages[s]);
1166 if (stages[s].nir == NULL) {
1167 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1168 goto fail;
1169 }
1170
1171 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1172 }
1173
1174 /* Walk backwards to link */
1175 struct anv_pipeline_stage *next_stage = NULL;
1176 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1177 if (!stages[s].entrypoint)
1178 continue;
1179
1180 switch (s) {
1181 case MESA_SHADER_VERTEX:
1182 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1183 break;
1184 case MESA_SHADER_TESS_CTRL:
1185 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1186 break;
1187 case MESA_SHADER_TESS_EVAL:
1188 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1189 break;
1190 case MESA_SHADER_GEOMETRY:
1191 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1192 break;
1193 case MESA_SHADER_FRAGMENT:
1194 anv_pipeline_link_fs(compiler, &stages[s]);
1195 break;
1196 default:
1197 unreachable("Invalid graphics shader stage");
1198 }
1199
1200 next_stage = &stages[s];
1201 }
1202
1203 struct anv_pipeline_stage *prev_stage = NULL;
1204 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1205 if (!stages[s].entrypoint)
1206 continue;
1207
1208 int64_t stage_start = os_time_get_nano();
1209
1210 void *stage_ctx = ralloc_context(NULL);
1211
1212 nir_xfb_info *xfb_info = NULL;
1213 if (s == MESA_SHADER_VERTEX ||
1214 s == MESA_SHADER_TESS_EVAL ||
1215 s == MESA_SHADER_GEOMETRY)
1216 xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1217
1218 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1219
1220 const unsigned *code;
1221 switch (s) {
1222 case MESA_SHADER_VERTEX:
1223 code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
1224 &stages[s]);
1225 break;
1226 case MESA_SHADER_TESS_CTRL:
1227 code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
1228 &stages[s], prev_stage);
1229 break;
1230 case MESA_SHADER_TESS_EVAL:
1231 code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
1232 &stages[s], prev_stage);
1233 break;
1234 case MESA_SHADER_GEOMETRY:
1235 code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
1236 &stages[s], prev_stage);
1237 break;
1238 case MESA_SHADER_FRAGMENT:
1239 code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
1240 &stages[s], prev_stage);
1241 break;
1242 default:
1243 unreachable("Invalid graphics shader stage");
1244 }
1245 if (code == NULL) {
1246 ralloc_free(stage_ctx);
1247 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1248 goto fail;
1249 }
1250
1251 struct anv_shader_bin *bin =
1252 anv_device_upload_kernel(pipeline->device, cache,
1253 &stages[s].cache_key,
1254 sizeof(stages[s].cache_key),
1255 code, stages[s].prog_data.base.program_size,
1256 stages[s].nir->constant_data,
1257 stages[s].nir->constant_data_size,
1258 &stages[s].prog_data.base,
1259 brw_prog_data_size(s),
1260 xfb_info, &stages[s].bind_map);
1261 if (!bin) {
1262 ralloc_free(stage_ctx);
1263 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1264 goto fail;
1265 }
1266
1267 pipeline->shaders[s] = bin;
1268 ralloc_free(stage_ctx);
1269
1270 stages[s].feedback.duration += os_time_get_nano() - stage_start;
1271
1272 prev_stage = &stages[s];
1273 }
1274
1275 ralloc_free(pipeline_ctx);
1276
1277 done:
1278
1279 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1280 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1281 /* This can happen if we decided to implicitly disable the fragment
1282 * shader. See anv_pipeline_compile_fs().
1283 */
1284 anv_shader_bin_unref(pipeline->device,
1285 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1286 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1287 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1288 }
1289
1290 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1291
1292 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1293 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1294 if (create_feedback) {
1295 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1296
1297 assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1298 for (uint32_t i = 0; i < info->stageCount; i++) {
1299 gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1300 create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1301 }
1302 }
1303
1304 return VK_SUCCESS;
1305
1306 fail:
1307 ralloc_free(pipeline_ctx);
1308
1309 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1310 if (pipeline->shaders[s])
1311 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1312 }
1313
1314 return result;
1315 }
1316
1317 VkResult
1318 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1319 struct anv_pipeline_cache *cache,
1320 const VkComputePipelineCreateInfo *info,
1321 const struct anv_shader_module *module,
1322 const char *entrypoint,
1323 const VkSpecializationInfo *spec_info)
1324 {
1325 VkPipelineCreationFeedbackEXT pipeline_feedback = {
1326 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1327 };
1328 int64_t pipeline_start = os_time_get_nano();
1329
1330 const struct brw_compiler *compiler =
1331 pipeline->device->instance->physicalDevice.compiler;
1332
1333 struct anv_pipeline_stage stage = {
1334 .stage = MESA_SHADER_COMPUTE,
1335 .module = module,
1336 .entrypoint = entrypoint,
1337 .spec_info = spec_info,
1338 .cache_key = {
1339 .stage = MESA_SHADER_COMPUTE,
1340 },
1341 .feedback = {
1342 .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1343 },
1344 };
1345 anv_pipeline_hash_shader(stage.module,
1346 stage.entrypoint,
1347 MESA_SHADER_COMPUTE,
1348 stage.spec_info,
1349 stage.shader_sha1);
1350
1351 struct anv_shader_bin *bin = NULL;
1352
1353 populate_cs_prog_key(&pipeline->device->info, &stage.key.cs);
1354
1355 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1356
1357 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1358 bool cache_hit;
1359 bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
1360 sizeof(stage.cache_key), &cache_hit);
1361
1362 if (bin == NULL) {
1363 int64_t stage_start = os_time_get_nano();
1364
1365 stage.bind_map = (struct anv_pipeline_bind_map) {
1366 .surface_to_descriptor = stage.surface_to_descriptor,
1367 .sampler_to_descriptor = stage.sampler_to_descriptor
1368 };
1369
1370 /* Set up a binding for the gl_NumWorkGroups */
1371 stage.bind_map.surface_count = 1;
1372 stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1373 .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1374 };
1375
1376 void *mem_ctx = ralloc_context(NULL);
1377
1378 stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
1379 if (stage.nir == NULL) {
1380 ralloc_free(mem_ctx);
1381 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1382 }
1383
1384 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1385
1386 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
1387 &stage.prog_data.cs);
1388
1389 const unsigned *shader_code =
1390 brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs,
1391 &stage.prog_data.cs, stage.nir, -1, NULL);
1392 if (shader_code == NULL) {
1393 ralloc_free(mem_ctx);
1394 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1395 }
1396
1397 const unsigned code_size = stage.prog_data.base.program_size;
1398 bin = anv_device_upload_kernel(pipeline->device, cache,
1399 &stage.cache_key, sizeof(stage.cache_key),
1400 shader_code, code_size,
1401 stage.nir->constant_data,
1402 stage.nir->constant_data_size,
1403 &stage.prog_data.base,
1404 sizeof(stage.prog_data.cs),
1405 NULL, &stage.bind_map);
1406 if (!bin) {
1407 ralloc_free(mem_ctx);
1408 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1409 }
1410
1411 ralloc_free(mem_ctx);
1412
1413 stage.feedback.duration = os_time_get_nano() - stage_start;
1414 }
1415
1416 if (cache_hit) {
1417 stage.feedback.flags |=
1418 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1419 pipeline_feedback.flags |=
1420 VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1421 }
1422 pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1423
1424 const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1425 vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1426 if (create_feedback) {
1427 *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1428
1429 assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1430 create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1431 }
1432
1433 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1434 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1435
1436 return VK_SUCCESS;
1437 }
1438
1439 /**
1440 * Copy pipeline state not marked as dynamic.
1441 * Dynamic state is pipeline state which hasn't been provided at pipeline
1442 * creation time, but is dynamically provided afterwards using various
1443 * vkCmdSet* functions.
1444 *
1445 * The set of state considered "non_dynamic" is determined by the pieces of
1446 * state that have their corresponding VkDynamicState enums omitted from
1447 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1448 *
1449 * @param[out] pipeline Destination non_dynamic state.
1450 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1451 */
1452 static void
1453 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1454 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1455 {
1456 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1457 struct anv_subpass *subpass = pipeline->subpass;
1458
1459 pipeline->dynamic_state = default_dynamic_state;
1460
1461 if (pCreateInfo->pDynamicState) {
1462 /* Remove all of the states that are marked as dynamic */
1463 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1464 for (uint32_t s = 0; s < count; s++)
1465 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1466 }
1467
1468 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1469
1470 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1471 *
1472 * pViewportState is [...] NULL if the pipeline
1473 * has rasterization disabled.
1474 */
1475 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1476 assert(pCreateInfo->pViewportState);
1477
1478 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1479 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1480 typed_memcpy(dynamic->viewport.viewports,
1481 pCreateInfo->pViewportState->pViewports,
1482 pCreateInfo->pViewportState->viewportCount);
1483 }
1484
1485 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1486 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1487 typed_memcpy(dynamic->scissor.scissors,
1488 pCreateInfo->pViewportState->pScissors,
1489 pCreateInfo->pViewportState->scissorCount);
1490 }
1491 }
1492
1493 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1494 assert(pCreateInfo->pRasterizationState);
1495 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1496 }
1497
1498 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1499 assert(pCreateInfo->pRasterizationState);
1500 dynamic->depth_bias.bias =
1501 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1502 dynamic->depth_bias.clamp =
1503 pCreateInfo->pRasterizationState->depthBiasClamp;
1504 dynamic->depth_bias.slope =
1505 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1506 }
1507
1508 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1509 *
1510 * pColorBlendState is [...] NULL if the pipeline has rasterization
1511 * disabled or if the subpass of the render pass the pipeline is
1512 * created against does not use any color attachments.
1513 */
1514 bool uses_color_att = false;
1515 for (unsigned i = 0; i < subpass->color_count; ++i) {
1516 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1517 uses_color_att = true;
1518 break;
1519 }
1520 }
1521
1522 if (uses_color_att &&
1523 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1524 assert(pCreateInfo->pColorBlendState);
1525
1526 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1527 typed_memcpy(dynamic->blend_constants,
1528 pCreateInfo->pColorBlendState->blendConstants, 4);
1529 }
1530
1531 /* If there is no depthstencil attachment, then don't read
1532 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1533 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1534 * no need to override the depthstencil defaults in
1535 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1536 *
1537 * Section 9.2 of the Vulkan 1.0.15 spec says:
1538 *
1539 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1540 * disabled or if the subpass of the render pass the pipeline is created
1541 * against does not use a depth/stencil attachment.
1542 */
1543 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1544 subpass->depth_stencil_attachment) {
1545 assert(pCreateInfo->pDepthStencilState);
1546
1547 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1548 dynamic->depth_bounds.min =
1549 pCreateInfo->pDepthStencilState->minDepthBounds;
1550 dynamic->depth_bounds.max =
1551 pCreateInfo->pDepthStencilState->maxDepthBounds;
1552 }
1553
1554 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1555 dynamic->stencil_compare_mask.front =
1556 pCreateInfo->pDepthStencilState->front.compareMask;
1557 dynamic->stencil_compare_mask.back =
1558 pCreateInfo->pDepthStencilState->back.compareMask;
1559 }
1560
1561 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1562 dynamic->stencil_write_mask.front =
1563 pCreateInfo->pDepthStencilState->front.writeMask;
1564 dynamic->stencil_write_mask.back =
1565 pCreateInfo->pDepthStencilState->back.writeMask;
1566 }
1567
1568 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1569 dynamic->stencil_reference.front =
1570 pCreateInfo->pDepthStencilState->front.reference;
1571 dynamic->stencil_reference.back =
1572 pCreateInfo->pDepthStencilState->back.reference;
1573 }
1574 }
1575
1576 pipeline->dynamic_state_mask = states;
1577 }
1578
1579 static void
1580 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1581 {
1582 #ifdef DEBUG
1583 struct anv_render_pass *renderpass = NULL;
1584 struct anv_subpass *subpass = NULL;
1585
1586 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1587 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1588 */
1589 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1590
1591 renderpass = anv_render_pass_from_handle(info->renderPass);
1592 assert(renderpass);
1593
1594 assert(info->subpass < renderpass->subpass_count);
1595 subpass = &renderpass->subpasses[info->subpass];
1596
1597 assert(info->stageCount >= 1);
1598 assert(info->pVertexInputState);
1599 assert(info->pInputAssemblyState);
1600 assert(info->pRasterizationState);
1601 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1602 assert(info->pViewportState);
1603 assert(info->pMultisampleState);
1604
1605 if (subpass && subpass->depth_stencil_attachment)
1606 assert(info->pDepthStencilState);
1607
1608 if (subpass && subpass->color_count > 0) {
1609 bool all_color_unused = true;
1610 for (int i = 0; i < subpass->color_count; i++) {
1611 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1612 all_color_unused = false;
1613 }
1614 /* pColorBlendState is ignored if the pipeline has rasterization
1615 * disabled or if the subpass of the render pass the pipeline is
1616 * created against does not use any color attachments.
1617 */
1618 assert(info->pColorBlendState || all_color_unused);
1619 }
1620 }
1621
1622 for (uint32_t i = 0; i < info->stageCount; ++i) {
1623 switch (info->pStages[i].stage) {
1624 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1625 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1626 assert(info->pTessellationState);
1627 break;
1628 default:
1629 break;
1630 }
1631 }
1632 #endif
1633 }
1634
1635 /**
1636 * Calculate the desired L3 partitioning based on the current state of the
1637 * pipeline. For now this simply returns the conservative defaults calculated
1638 * by get_default_l3_weights(), but we could probably do better by gathering
1639 * more statistics from the pipeline state (e.g. guess of expected URB usage
1640 * and bound surfaces), or by using feed-back from performance counters.
1641 */
1642 void
1643 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1644 {
1645 const struct gen_device_info *devinfo = &pipeline->device->info;
1646
1647 const struct gen_l3_weights w =
1648 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1649
1650 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1651 pipeline->urb.total_size =
1652 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1653 }
1654
1655 VkResult
1656 anv_pipeline_init(struct anv_pipeline *pipeline,
1657 struct anv_device *device,
1658 struct anv_pipeline_cache *cache,
1659 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1660 const VkAllocationCallbacks *alloc)
1661 {
1662 VkResult result;
1663
1664 anv_pipeline_validate_create_info(pCreateInfo);
1665
1666 if (alloc == NULL)
1667 alloc = &device->alloc;
1668
1669 pipeline->device = device;
1670
1671 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1672 assert(pCreateInfo->subpass < render_pass->subpass_count);
1673 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1674
1675 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1676 if (result != VK_SUCCESS)
1677 return result;
1678
1679 pipeline->batch.alloc = alloc;
1680 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1681 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1682 pipeline->batch.relocs = &pipeline->batch_relocs;
1683 pipeline->batch.status = VK_SUCCESS;
1684
1685 copy_non_dynamic_state(pipeline, pCreateInfo);
1686 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1687 pCreateInfo->pRasterizationState->depthClampEnable;
1688
1689 /* Previously we enabled depth clipping when !depthClampEnable.
1690 * DepthClipStateCreateInfo now makes depth clipping explicit so if the
1691 * clipping info is available, use its enable value to determine clipping,
1692 * otherwise fallback to the previous !depthClampEnable logic.
1693 */
1694 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
1695 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1696 PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
1697 pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
1698
1699 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1700 pCreateInfo->pMultisampleState->sampleShadingEnable;
1701
1702 pipeline->needs_data_cache = false;
1703
1704 /* When we free the pipeline, we detect stages based on the NULL status
1705 * of various prog_data pointers. Make them NULL by default.
1706 */
1707 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1708
1709 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1710 if (result != VK_SUCCESS) {
1711 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1712 return result;
1713 }
1714
1715 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1716
1717 anv_pipeline_setup_l3_config(pipeline, false);
1718
1719 const VkPipelineVertexInputStateCreateInfo *vi_info =
1720 pCreateInfo->pVertexInputState;
1721
1722 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1723
1724 pipeline->vb_used = 0;
1725 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1726 const VkVertexInputAttributeDescription *desc =
1727 &vi_info->pVertexAttributeDescriptions[i];
1728
1729 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1730 pipeline->vb_used |= 1 << desc->binding;
1731 }
1732
1733 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1734 const VkVertexInputBindingDescription *desc =
1735 &vi_info->pVertexBindingDescriptions[i];
1736
1737 pipeline->vb[desc->binding].stride = desc->stride;
1738
1739 /* Step rate is programmed per vertex element (attribute), not
1740 * binding. Set up a map of which bindings step per instance, for
1741 * reference by vertex element setup. */
1742 switch (desc->inputRate) {
1743 default:
1744 case VK_VERTEX_INPUT_RATE_VERTEX:
1745 pipeline->vb[desc->binding].instanced = false;
1746 break;
1747 case VK_VERTEX_INPUT_RATE_INSTANCE:
1748 pipeline->vb[desc->binding].instanced = true;
1749 break;
1750 }
1751
1752 pipeline->vb[desc->binding].instance_divisor = 1;
1753 }
1754
1755 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1756 vk_find_struct_const(vi_info->pNext,
1757 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1758 if (vi_div_state) {
1759 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1760 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1761 &vi_div_state->pVertexBindingDivisors[i];
1762
1763 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1764 }
1765 }
1766
1767 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1768 * different views. If the client asks for instancing, we need to multiply
1769 * the instance divisor by the number of views ensure that we repeat the
1770 * client's per-instance data once for each view.
1771 */
1772 if (pipeline->subpass->view_mask) {
1773 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1774 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1775 if (pipeline->vb[vb].instanced)
1776 pipeline->vb[vb].instance_divisor *= view_count;
1777 }
1778 }
1779
1780 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1781 pCreateInfo->pInputAssemblyState;
1782 const VkPipelineTessellationStateCreateInfo *tess_info =
1783 pCreateInfo->pTessellationState;
1784 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1785
1786 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1787 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1788 else
1789 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1790
1791 return VK_SUCCESS;
1792 }