i965: Add plumbing for shader time in 32-wide FS dispatch mode.
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "common/gen_l3_config.h"
32 #include "anv_private.h"
33 #include "compiler/brw_nir.h"
34 #include "anv_nir.h"
35 #include "spirv/nir_spirv.h"
36
37 /* Needed for SWIZZLE macros */
38 #include "program/prog_instruction.h"
39
40 // Shader functions
41
42 VkResult anv_CreateShaderModule(
43 VkDevice _device,
44 const VkShaderModuleCreateInfo* pCreateInfo,
45 const VkAllocationCallbacks* pAllocator,
46 VkShaderModule* pShaderModule)
47 {
48 ANV_FROM_HANDLE(anv_device, device, _device);
49 struct anv_shader_module *module;
50
51 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
52 assert(pCreateInfo->flags == 0);
53
54 module = vk_alloc2(&device->alloc, pAllocator,
55 sizeof(*module) + pCreateInfo->codeSize, 8,
56 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
57 if (module == NULL)
58 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
59
60 module->size = pCreateInfo->codeSize;
61 memcpy(module->data, pCreateInfo->pCode, module->size);
62
63 _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65 *pShaderModule = anv_shader_module_to_handle(module);
66
67 return VK_SUCCESS;
68 }
69
70 void anv_DestroyShaderModule(
71 VkDevice _device,
72 VkShaderModule _module,
73 const VkAllocationCallbacks* pAllocator)
74 {
75 ANV_FROM_HANDLE(anv_device, device, _device);
76 ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78 if (!module)
79 return;
80
81 vk_free2(&device->alloc, pAllocator, module);
82 }
83
84 #define SPIR_V_MAGIC_NUMBER 0x07230203
85
86 static const uint64_t stage_to_debug[] = {
87 [MESA_SHADER_VERTEX] = DEBUG_VS,
88 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
89 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
90 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
91 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
92 [MESA_SHADER_COMPUTE] = DEBUG_CS,
93 };
94
95 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
96 * we can't do that yet because we don't have the ability to copy nir.
97 */
98 static nir_shader *
99 anv_shader_compile_to_nir(struct anv_pipeline *pipeline,
100 void *mem_ctx,
101 struct anv_shader_module *module,
102 const char *entrypoint_name,
103 gl_shader_stage stage,
104 const VkSpecializationInfo *spec_info)
105 {
106 const struct anv_device *device = pipeline->device;
107
108 const struct brw_compiler *compiler =
109 device->instance->physicalDevice.compiler;
110 const nir_shader_compiler_options *nir_options =
111 compiler->glsl_compiler_options[stage].NirOptions;
112
113 uint32_t *spirv = (uint32_t *) module->data;
114 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
115 assert(module->size % 4 == 0);
116
117 uint32_t num_spec_entries = 0;
118 struct nir_spirv_specialization *spec_entries = NULL;
119 if (spec_info && spec_info->mapEntryCount > 0) {
120 num_spec_entries = spec_info->mapEntryCount;
121 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
122 for (uint32_t i = 0; i < num_spec_entries; i++) {
123 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
124 const void *data = spec_info->pData + entry.offset;
125 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
126
127 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
128 if (spec_info->dataSize == 8)
129 spec_entries[i].data64 = *(const uint64_t *)data;
130 else
131 spec_entries[i].data32 = *(const uint32_t *)data;
132 }
133 }
134
135 struct spirv_to_nir_options spirv_options = {
136 .lower_workgroup_access_to_offsets = true,
137 .caps = {
138 .float64 = device->instance->physicalDevice.info.gen >= 8,
139 .int64 = device->instance->physicalDevice.info.gen >= 8,
140 .tessellation = true,
141 .device_group = true,
142 .draw_parameters = true,
143 .image_write_without_format = true,
144 .multiview = true,
145 .variable_pointers = true,
146 .storage_16bit = device->instance->physicalDevice.info.gen >= 8,
147 .int16 = device->instance->physicalDevice.info.gen >= 8,
148 .shader_viewport_index_layer = true,
149 .subgroup_arithmetic = true,
150 .subgroup_basic = true,
151 .subgroup_ballot = true,
152 .subgroup_quad = true,
153 .subgroup_shuffle = true,
154 .subgroup_vote = true,
155 .stencil_export = device->instance->physicalDevice.info.gen >= 9,
156 },
157 };
158
159 nir_function *entry_point =
160 spirv_to_nir(spirv, module->size / 4,
161 spec_entries, num_spec_entries,
162 stage, entrypoint_name, &spirv_options, nir_options);
163 nir_shader *nir = entry_point->shader;
164 assert(nir->info.stage == stage);
165 nir_validate_shader(nir);
166 ralloc_steal(mem_ctx, nir);
167
168 free(spec_entries);
169
170 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
171 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
172 gl_shader_stage_name(stage));
173 nir_print_shader(nir, stderr);
174 }
175
176 /* We have to lower away local constant initializers right before we
177 * inline functions. That way they get properly initialized at the top
178 * of the function and not at the top of its caller.
179 */
180 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
181 NIR_PASS_V(nir, nir_lower_returns);
182 NIR_PASS_V(nir, nir_inline_functions);
183 NIR_PASS_V(nir, nir_copy_prop);
184
185 /* Pick off the single entrypoint that we want */
186 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
187 if (func != entry_point)
188 exec_node_remove(&func->node);
189 }
190 assert(exec_list_length(&nir->functions) == 1);
191 entry_point->name = ralloc_strdup(entry_point, "main");
192
193 /* Now that we've deleted all but the main function, we can go ahead and
194 * lower the rest of the constant initializers. We do this here so that
195 * nir_remove_dead_variables and split_per_member_structs below see the
196 * corresponding stores.
197 */
198 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
199
200 /* Split member structs. We do this before lower_io_to_temporaries so that
201 * it doesn't lower system values to temporaries by accident.
202 */
203 NIR_PASS_V(nir, nir_split_var_copies);
204 NIR_PASS_V(nir, nir_split_per_member_structs);
205
206 NIR_PASS_V(nir, nir_remove_dead_variables,
207 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
208
209 if (stage == MESA_SHADER_FRAGMENT)
210 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
211
212 NIR_PASS_V(nir, nir_propagate_invariant);
213 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
214 entry_point->impl, true, false);
215
216 /* Vulkan uses the separate-shader linking model */
217 nir->info.separate_shader = true;
218
219 nir = brw_preprocess_nir(compiler, nir);
220
221 if (stage == MESA_SHADER_FRAGMENT)
222 NIR_PASS_V(nir, anv_nir_lower_input_attachments);
223
224 return nir;
225 }
226
227 void anv_DestroyPipeline(
228 VkDevice _device,
229 VkPipeline _pipeline,
230 const VkAllocationCallbacks* pAllocator)
231 {
232 ANV_FROM_HANDLE(anv_device, device, _device);
233 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
234
235 if (!pipeline)
236 return;
237
238 anv_reloc_list_finish(&pipeline->batch_relocs,
239 pAllocator ? pAllocator : &device->alloc);
240 if (pipeline->blend_state.map)
241 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
242
243 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
244 if (pipeline->shaders[s])
245 anv_shader_bin_unref(device, pipeline->shaders[s]);
246 }
247
248 vk_free2(&device->alloc, pAllocator, pipeline);
249 }
250
251 static const uint32_t vk_to_gen_primitive_type[] = {
252 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
253 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
254 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
255 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
256 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
257 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
258 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
259 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
260 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
261 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
262 };
263
264 static void
265 populate_sampler_prog_key(const struct gen_device_info *devinfo,
266 struct brw_sampler_prog_key_data *key)
267 {
268 /* Almost all multisampled textures are compressed. The only time when we
269 * don't compress a multisampled texture is for 16x MSAA with a surface
270 * width greater than 8k which is a bit of an edge case. Since the sampler
271 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
272 * to tell the compiler to always assume compression.
273 */
274 key->compressed_multisample_layout_mask = ~0;
275
276 /* SkyLake added support for 16x MSAA. With this came a new message for
277 * reading from a 16x MSAA surface with compression. The new message was
278 * needed because now the MCS data is 64 bits instead of 32 or lower as is
279 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
280 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
281 * so we can just use it unconditionally. This may not be quite as
282 * efficient but it saves us from recompiling.
283 */
284 if (devinfo->gen >= 9)
285 key->msaa_16 = ~0;
286
287 /* XXX: Handle texture swizzle on HSW- */
288 for (int i = 0; i < MAX_SAMPLERS; i++) {
289 /* Assume color sampler, no swizzling. (Works for BDW+) */
290 key->swizzles[i] = SWIZZLE_XYZW;
291 }
292 }
293
294 static void
295 populate_vs_prog_key(const struct gen_device_info *devinfo,
296 struct brw_vs_prog_key *key)
297 {
298 memset(key, 0, sizeof(*key));
299
300 populate_sampler_prog_key(devinfo, &key->tex);
301
302 /* XXX: Handle vertex input work-arounds */
303
304 /* XXX: Handle sampler_prog_key */
305 }
306
307 static void
308 populate_gs_prog_key(const struct gen_device_info *devinfo,
309 struct brw_gs_prog_key *key)
310 {
311 memset(key, 0, sizeof(*key));
312
313 populate_sampler_prog_key(devinfo, &key->tex);
314 }
315
316 static void
317 populate_wm_prog_key(const struct anv_pipeline *pipeline,
318 const VkGraphicsPipelineCreateInfo *info,
319 struct brw_wm_prog_key *key)
320 {
321 const struct gen_device_info *devinfo = &pipeline->device->info;
322
323 memset(key, 0, sizeof(*key));
324
325 populate_sampler_prog_key(devinfo, &key->tex);
326
327 /* TODO: we could set this to 0 based on the information in nir_shader, but
328 * this function is called before spirv_to_nir. */
329 const struct brw_vue_map *vue_map =
330 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
331 key->input_slots_valid = vue_map->slots_valid;
332
333 /* Vulkan doesn't specify a default */
334 key->high_quality_derivatives = false;
335
336 /* XXX Vulkan doesn't appear to specify */
337 key->clamp_fragment_color = false;
338
339 key->nr_color_regions = pipeline->subpass->color_count;
340
341 key->replicate_alpha = key->nr_color_regions > 1 &&
342 info->pMultisampleState &&
343 info->pMultisampleState->alphaToCoverageEnable;
344
345 if (info->pMultisampleState) {
346 /* We should probably pull this out of the shader, but it's fairly
347 * harmless to compute it and then let dead-code take care of it.
348 */
349 if (info->pMultisampleState->rasterizationSamples > 1) {
350 key->persample_interp =
351 (info->pMultisampleState->minSampleShading *
352 info->pMultisampleState->rasterizationSamples) > 1;
353 key->multisample_fbo = true;
354 }
355
356 key->frag_coord_adds_sample_pos =
357 info->pMultisampleState->sampleShadingEnable;
358 }
359 }
360
361 static void
362 populate_cs_prog_key(const struct gen_device_info *devinfo,
363 struct brw_cs_prog_key *key)
364 {
365 memset(key, 0, sizeof(*key));
366
367 populate_sampler_prog_key(devinfo, &key->tex);
368 }
369
370 static void
371 anv_pipeline_hash_shader(struct anv_pipeline *pipeline,
372 struct anv_pipeline_layout *layout,
373 struct anv_shader_module *module,
374 const char *entrypoint,
375 gl_shader_stage stage,
376 const VkSpecializationInfo *spec_info,
377 const void *key, size_t key_size,
378 unsigned char *sha1_out)
379 {
380 struct mesa_sha1 ctx;
381
382 _mesa_sha1_init(&ctx);
383 if (stage != MESA_SHADER_COMPUTE) {
384 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
385 sizeof(pipeline->subpass->view_mask));
386 }
387 if (layout)
388 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
389 _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
390 _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
391 _mesa_sha1_update(&ctx, &stage, sizeof(stage));
392 if (spec_info) {
393 _mesa_sha1_update(&ctx, spec_info->pMapEntries,
394 spec_info->mapEntryCount * sizeof(*spec_info->pMapEntries));
395 _mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
396 }
397 _mesa_sha1_update(&ctx, key, key_size);
398 _mesa_sha1_final(&ctx, sha1_out);
399 }
400
401 static nir_shader *
402 anv_pipeline_compile(struct anv_pipeline *pipeline,
403 void *mem_ctx,
404 struct anv_pipeline_layout *layout,
405 struct anv_shader_module *module,
406 const char *entrypoint,
407 gl_shader_stage stage,
408 const VkSpecializationInfo *spec_info,
409 struct brw_stage_prog_data *prog_data,
410 struct anv_pipeline_bind_map *map)
411 {
412 const struct brw_compiler *compiler =
413 pipeline->device->instance->physicalDevice.compiler;
414
415 nir_shader *nir = anv_shader_compile_to_nir(pipeline, mem_ctx,
416 module, entrypoint, stage,
417 spec_info);
418 if (nir == NULL)
419 return NULL;
420
421 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
422
423 NIR_PASS_V(nir, anv_nir_lower_push_constants);
424
425 if (stage != MESA_SHADER_COMPUTE)
426 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
427
428 if (stage == MESA_SHADER_COMPUTE)
429 prog_data->total_shared = nir->num_shared;
430
431 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
432
433 if (nir->num_uniforms > 0) {
434 assert(prog_data->nr_params == 0);
435
436 /* If the shader uses any push constants at all, we'll just give
437 * them the maximum possible number
438 */
439 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
440 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
441 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
442 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
443
444 /* We now set the param values to be offsets into a
445 * anv_push_constant_data structure. Since the compiler doesn't
446 * actually dereference any of the gl_constant_value pointers in the
447 * params array, it doesn't really matter what we put here.
448 */
449 struct anv_push_constants *null_data = NULL;
450 /* Fill out the push constants section of the param array */
451 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
452 prog_data->param[i] = ANV_PARAM_PUSH(
453 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
454 }
455 }
456
457 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
458 pipeline->needs_data_cache = true;
459
460 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
461 if (layout)
462 anv_nir_apply_pipeline_layout(pipeline, layout, nir, prog_data, map);
463
464 if (stage != MESA_SHADER_COMPUTE)
465 brw_nir_analyze_ubo_ranges(compiler, nir, prog_data->ubo_ranges);
466
467 assert(nir->num_uniforms == prog_data->nr_params * 4);
468
469 return nir;
470 }
471
472 static void
473 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
474 {
475 prog_data->binding_table.size_bytes = 0;
476 prog_data->binding_table.texture_start = bias;
477 prog_data->binding_table.gather_texture_start = bias;
478 prog_data->binding_table.ubo_start = bias;
479 prog_data->binding_table.ssbo_start = bias;
480 prog_data->binding_table.image_start = bias;
481 }
482
483 static struct anv_shader_bin *
484 anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
485 struct anv_pipeline_cache *cache,
486 const void *key_data, uint32_t key_size,
487 const void *kernel_data, uint32_t kernel_size,
488 const struct brw_stage_prog_data *prog_data,
489 uint32_t prog_data_size,
490 const struct anv_pipeline_bind_map *bind_map)
491 {
492 if (cache) {
493 return anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
494 kernel_data, kernel_size,
495 prog_data, prog_data_size,
496 bind_map);
497 } else {
498 return anv_shader_bin_create(pipeline->device, key_data, key_size,
499 kernel_data, kernel_size,
500 prog_data, prog_data_size,
501 prog_data->param, bind_map);
502 }
503 }
504
505
506 static void
507 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
508 gl_shader_stage stage,
509 struct anv_shader_bin *shader)
510 {
511 pipeline->shaders[stage] = shader;
512 }
513
514 static VkResult
515 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
516 struct anv_pipeline_cache *cache,
517 const VkGraphicsPipelineCreateInfo *info,
518 struct anv_shader_module *module,
519 const char *entrypoint,
520 const VkSpecializationInfo *spec_info)
521 {
522 const struct brw_compiler *compiler =
523 pipeline->device->instance->physicalDevice.compiler;
524 struct brw_vs_prog_key key;
525 struct anv_shader_bin *bin = NULL;
526 unsigned char sha1[20];
527
528 populate_vs_prog_key(&pipeline->device->info, &key);
529
530 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
531
532 if (cache) {
533 anv_pipeline_hash_shader(pipeline, layout, module, entrypoint,
534 MESA_SHADER_VERTEX, spec_info,
535 &key, sizeof(key), sha1);
536 bin = anv_pipeline_cache_search(cache, sha1, 20);
537 }
538
539 if (bin == NULL) {
540 struct brw_vs_prog_data prog_data = {};
541 struct anv_pipeline_binding surface_to_descriptor[256];
542 struct anv_pipeline_binding sampler_to_descriptor[256];
543
544 struct anv_pipeline_bind_map map = {
545 .surface_to_descriptor = surface_to_descriptor,
546 .sampler_to_descriptor = sampler_to_descriptor
547 };
548
549 void *mem_ctx = ralloc_context(NULL);
550
551 nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout,
552 module, entrypoint,
553 MESA_SHADER_VERTEX, spec_info,
554 &prog_data.base.base, &map);
555 if (nir == NULL) {
556 ralloc_free(mem_ctx);
557 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
558 }
559
560 anv_fill_binding_table(&prog_data.base.base, 0);
561
562 brw_compute_vue_map(&pipeline->device->info,
563 &prog_data.base.vue_map,
564 nir->info.outputs_written,
565 nir->info.separate_shader);
566
567 const unsigned *shader_code =
568 brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
569 -1, NULL);
570 if (shader_code == NULL) {
571 ralloc_free(mem_ctx);
572 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
573 }
574
575 unsigned code_size = prog_data.base.base.program_size;
576 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
577 shader_code, code_size,
578 &prog_data.base.base, sizeof(prog_data),
579 &map);
580 if (!bin) {
581 ralloc_free(mem_ctx);
582 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
583 }
584
585 ralloc_free(mem_ctx);
586 }
587
588 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX, bin);
589
590 return VK_SUCCESS;
591 }
592
593 static void
594 merge_tess_info(struct shader_info *tes_info,
595 const struct shader_info *tcs_info)
596 {
597 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
598 *
599 * "PointMode. Controls generation of points rather than triangles
600 * or lines. This functionality defaults to disabled, and is
601 * enabled if either shader stage includes the execution mode.
602 *
603 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
604 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
605 * and OutputVertices, it says:
606 *
607 * "One mode must be set in at least one of the tessellation
608 * shader stages."
609 *
610 * So, the fields can be set in either the TCS or TES, but they must
611 * agree if set in both. Our backend looks at TES, so bitwise-or in
612 * the values from the TCS.
613 */
614 assert(tcs_info->tess.tcs_vertices_out == 0 ||
615 tes_info->tess.tcs_vertices_out == 0 ||
616 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
617 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
618
619 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
620 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
621 tcs_info->tess.spacing == tes_info->tess.spacing);
622 tes_info->tess.spacing |= tcs_info->tess.spacing;
623
624 assert(tcs_info->tess.primitive_mode == 0 ||
625 tes_info->tess.primitive_mode == 0 ||
626 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
627 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
628 tes_info->tess.ccw |= tcs_info->tess.ccw;
629 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
630 }
631
632 static VkResult
633 anv_pipeline_compile_tcs_tes(struct anv_pipeline *pipeline,
634 struct anv_pipeline_cache *cache,
635 const VkGraphicsPipelineCreateInfo *info,
636 struct anv_shader_module *tcs_module,
637 const char *tcs_entrypoint,
638 const VkSpecializationInfo *tcs_spec_info,
639 struct anv_shader_module *tes_module,
640 const char *tes_entrypoint,
641 const VkSpecializationInfo *tes_spec_info)
642 {
643 const struct gen_device_info *devinfo = &pipeline->device->info;
644 const struct brw_compiler *compiler =
645 pipeline->device->instance->physicalDevice.compiler;
646 struct brw_tcs_prog_key tcs_key = {};
647 struct brw_tes_prog_key tes_key = {};
648 struct anv_shader_bin *tcs_bin = NULL;
649 struct anv_shader_bin *tes_bin = NULL;
650 unsigned char tcs_sha1[40];
651 unsigned char tes_sha1[40];
652
653 populate_sampler_prog_key(&pipeline->device->info, &tcs_key.tex);
654 populate_sampler_prog_key(&pipeline->device->info, &tes_key.tex);
655 tcs_key.input_vertices = info->pTessellationState->patchControlPoints;
656
657 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
658
659 if (cache) {
660 anv_pipeline_hash_shader(pipeline, layout, tcs_module, tcs_entrypoint,
661 MESA_SHADER_TESS_CTRL, tcs_spec_info,
662 &tcs_key, sizeof(tcs_key), tcs_sha1);
663 anv_pipeline_hash_shader(pipeline, layout, tes_module, tes_entrypoint,
664 MESA_SHADER_TESS_EVAL, tes_spec_info,
665 &tes_key, sizeof(tes_key), tes_sha1);
666 memcpy(&tcs_sha1[20], tes_sha1, 20);
667 memcpy(&tes_sha1[20], tcs_sha1, 20);
668 tcs_bin = anv_pipeline_cache_search(cache, tcs_sha1, sizeof(tcs_sha1));
669 tes_bin = anv_pipeline_cache_search(cache, tes_sha1, sizeof(tes_sha1));
670 }
671
672 if (tcs_bin == NULL || tes_bin == NULL) {
673 struct brw_tcs_prog_data tcs_prog_data = {};
674 struct brw_tes_prog_data tes_prog_data = {};
675 struct anv_pipeline_binding tcs_surface_to_descriptor[256];
676 struct anv_pipeline_binding tcs_sampler_to_descriptor[256];
677 struct anv_pipeline_binding tes_surface_to_descriptor[256];
678 struct anv_pipeline_binding tes_sampler_to_descriptor[256];
679
680 struct anv_pipeline_bind_map tcs_map = {
681 .surface_to_descriptor = tcs_surface_to_descriptor,
682 .sampler_to_descriptor = tcs_sampler_to_descriptor
683 };
684 struct anv_pipeline_bind_map tes_map = {
685 .surface_to_descriptor = tes_surface_to_descriptor,
686 .sampler_to_descriptor = tes_sampler_to_descriptor
687 };
688
689 void *mem_ctx = ralloc_context(NULL);
690
691 nir_shader *tcs_nir =
692 anv_pipeline_compile(pipeline, mem_ctx, layout,
693 tcs_module, tcs_entrypoint,
694 MESA_SHADER_TESS_CTRL, tcs_spec_info,
695 &tcs_prog_data.base.base, &tcs_map);
696 nir_shader *tes_nir =
697 anv_pipeline_compile(pipeline, mem_ctx, layout,
698 tes_module, tes_entrypoint,
699 MESA_SHADER_TESS_EVAL, tes_spec_info,
700 &tes_prog_data.base.base, &tes_map);
701 if (tcs_nir == NULL || tes_nir == NULL) {
702 ralloc_free(mem_ctx);
703 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
704 }
705
706 nir_lower_tes_patch_vertices(tes_nir,
707 tcs_nir->info.tess.tcs_vertices_out);
708
709 /* Copy TCS info into the TES info */
710 merge_tess_info(&tes_nir->info, &tcs_nir->info);
711
712 anv_fill_binding_table(&tcs_prog_data.base.base, 0);
713 anv_fill_binding_table(&tes_prog_data.base.base, 0);
714
715 /* Whacking the key after cache lookup is a bit sketchy, but all of
716 * this comes from the SPIR-V, which is part of the hash used for the
717 * pipeline cache. So it should be safe.
718 */
719 tcs_key.tes_primitive_mode = tes_nir->info.tess.primitive_mode;
720 tcs_key.outputs_written = tcs_nir->info.outputs_written;
721 tcs_key.patch_outputs_written = tcs_nir->info.patch_outputs_written;
722 tcs_key.quads_workaround =
723 devinfo->gen < 9 &&
724 tes_nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
725 tes_nir->info.tess.spacing == TESS_SPACING_EQUAL;
726
727 tes_key.inputs_read = tcs_key.outputs_written;
728 tes_key.patch_inputs_read = tcs_key.patch_outputs_written;
729
730 const int shader_time_index = -1;
731 const unsigned *shader_code;
732
733 shader_code =
734 brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_key, &tcs_prog_data,
735 tcs_nir, shader_time_index, NULL);
736 if (shader_code == NULL) {
737 ralloc_free(mem_ctx);
738 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
739 }
740
741 unsigned code_size = tcs_prog_data.base.base.program_size;
742 tcs_bin = anv_pipeline_upload_kernel(pipeline, cache,
743 tcs_sha1, sizeof(tcs_sha1),
744 shader_code, code_size,
745 &tcs_prog_data.base.base,
746 sizeof(tcs_prog_data),
747 &tcs_map);
748 if (!tcs_bin) {
749 ralloc_free(mem_ctx);
750 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
751 }
752
753 shader_code =
754 brw_compile_tes(compiler, NULL, mem_ctx, &tes_key,
755 &tcs_prog_data.base.vue_map, &tes_prog_data, tes_nir,
756 NULL, shader_time_index, NULL);
757 if (shader_code == NULL) {
758 ralloc_free(mem_ctx);
759 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
760 }
761
762 code_size = tes_prog_data.base.base.program_size;
763 tes_bin = anv_pipeline_upload_kernel(pipeline, cache,
764 tes_sha1, sizeof(tes_sha1),
765 shader_code, code_size,
766 &tes_prog_data.base.base,
767 sizeof(tes_prog_data),
768 &tes_map);
769 if (!tes_bin) {
770 ralloc_free(mem_ctx);
771 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
772 }
773
774 ralloc_free(mem_ctx);
775 }
776
777 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
778 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
779
780 return VK_SUCCESS;
781 }
782
783 static VkResult
784 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
785 struct anv_pipeline_cache *cache,
786 const VkGraphicsPipelineCreateInfo *info,
787 struct anv_shader_module *module,
788 const char *entrypoint,
789 const VkSpecializationInfo *spec_info)
790 {
791 const struct brw_compiler *compiler =
792 pipeline->device->instance->physicalDevice.compiler;
793 struct brw_gs_prog_key key;
794 struct anv_shader_bin *bin = NULL;
795 unsigned char sha1[20];
796
797 populate_gs_prog_key(&pipeline->device->info, &key);
798
799 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
800
801 if (cache) {
802 anv_pipeline_hash_shader(pipeline, layout, module, entrypoint,
803 MESA_SHADER_GEOMETRY, spec_info,
804 &key, sizeof(key), sha1);
805 bin = anv_pipeline_cache_search(cache, sha1, 20);
806 }
807
808 if (bin == NULL) {
809 struct brw_gs_prog_data prog_data = {};
810 struct anv_pipeline_binding surface_to_descriptor[256];
811 struct anv_pipeline_binding sampler_to_descriptor[256];
812
813 struct anv_pipeline_bind_map map = {
814 .surface_to_descriptor = surface_to_descriptor,
815 .sampler_to_descriptor = sampler_to_descriptor
816 };
817
818 void *mem_ctx = ralloc_context(NULL);
819
820 nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout,
821 module, entrypoint,
822 MESA_SHADER_GEOMETRY, spec_info,
823 &prog_data.base.base, &map);
824 if (nir == NULL) {
825 ralloc_free(mem_ctx);
826 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
827 }
828
829 anv_fill_binding_table(&prog_data.base.base, 0);
830
831 brw_compute_vue_map(&pipeline->device->info,
832 &prog_data.base.vue_map,
833 nir->info.outputs_written,
834 nir->info.separate_shader);
835
836 const unsigned *shader_code =
837 brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
838 NULL, -1, NULL);
839 if (shader_code == NULL) {
840 ralloc_free(mem_ctx);
841 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
842 }
843
844 /* TODO: SIMD8 GS */
845 const unsigned code_size = prog_data.base.base.program_size;
846 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
847 shader_code, code_size,
848 &prog_data.base.base, sizeof(prog_data),
849 &map);
850 if (!bin) {
851 ralloc_free(mem_ctx);
852 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
853 }
854
855 ralloc_free(mem_ctx);
856 }
857
858 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY, bin);
859
860 return VK_SUCCESS;
861 }
862
863 static VkResult
864 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
865 struct anv_pipeline_cache *cache,
866 const VkGraphicsPipelineCreateInfo *info,
867 struct anv_shader_module *module,
868 const char *entrypoint,
869 const VkSpecializationInfo *spec_info)
870 {
871 const struct brw_compiler *compiler =
872 pipeline->device->instance->physicalDevice.compiler;
873 struct brw_wm_prog_key key;
874 struct anv_shader_bin *bin = NULL;
875 unsigned char sha1[20];
876
877 populate_wm_prog_key(pipeline, info, &key);
878
879 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
880
881 if (cache) {
882 anv_pipeline_hash_shader(pipeline, layout, module, entrypoint,
883 MESA_SHADER_FRAGMENT, spec_info,
884 &key, sizeof(key), sha1);
885 bin = anv_pipeline_cache_search(cache, sha1, 20);
886 }
887
888 if (bin == NULL) {
889 struct brw_wm_prog_data prog_data = {};
890 struct anv_pipeline_binding surface_to_descriptor[256];
891 struct anv_pipeline_binding sampler_to_descriptor[256];
892
893 struct anv_pipeline_bind_map map = {
894 .surface_to_descriptor = surface_to_descriptor + 8,
895 .sampler_to_descriptor = sampler_to_descriptor
896 };
897
898 void *mem_ctx = ralloc_context(NULL);
899
900 nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout,
901 module, entrypoint,
902 MESA_SHADER_FRAGMENT, spec_info,
903 &prog_data.base, &map);
904 if (nir == NULL) {
905 ralloc_free(mem_ctx);
906 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
907 }
908
909 unsigned num_rts = 0;
910 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
911 struct anv_pipeline_binding rt_bindings[max_rt];
912 nir_function_impl *impl = nir_shader_get_entrypoint(nir);
913 int rt_to_bindings[max_rt];
914 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
915 bool rt_used[max_rt];
916 memset(rt_used, 0, sizeof(rt_used));
917
918 /* Flag used render targets */
919 nir_foreach_variable_safe(var, &nir->outputs) {
920 if (var->data.location < FRAG_RESULT_DATA0)
921 continue;
922
923 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
924 /* Out-of-bounds */
925 if (rt >= key.nr_color_regions)
926 continue;
927
928 const unsigned array_len =
929 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
930 assert(rt + array_len <= max_rt);
931
932 for (unsigned i = 0; i < array_len; i++)
933 rt_used[rt + i] = true;
934 }
935
936 /* Set new, compacted, location */
937 for (unsigned i = 0; i < max_rt; i++) {
938 if (!rt_used[i])
939 continue;
940
941 rt_to_bindings[i] = num_rts;
942 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
943 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
944 .binding = 0,
945 .index = i,
946 };
947 num_rts++;
948 }
949
950 nir_foreach_variable_safe(var, &nir->outputs) {
951 if (var->data.location < FRAG_RESULT_DATA0)
952 continue;
953
954 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
955 if (rt >= key.nr_color_regions) {
956 /* Out-of-bounds, throw it away */
957 var->data.mode = nir_var_local;
958 exec_node_remove(&var->node);
959 exec_list_push_tail(&impl->locals, &var->node);
960 continue;
961 }
962
963 /* Give it the new location */
964 assert(rt_to_bindings[rt] != -1);
965 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
966 }
967
968 if (num_rts == 0) {
969 /* If we have no render targets, we need a null render target */
970 rt_bindings[0] = (struct anv_pipeline_binding) {
971 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
972 .binding = 0,
973 .index = UINT32_MAX,
974 };
975 num_rts = 1;
976 }
977
978 assert(num_rts <= max_rt);
979 map.surface_to_descriptor -= num_rts;
980 map.surface_count += num_rts;
981 assert(map.surface_count <= 256);
982 memcpy(map.surface_to_descriptor, rt_bindings,
983 num_rts * sizeof(*rt_bindings));
984
985 anv_fill_binding_table(&prog_data.base, num_rts);
986
987 const unsigned *shader_code =
988 brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
989 NULL, -1, -1, -1, true, false, NULL, NULL);
990 if (shader_code == NULL) {
991 ralloc_free(mem_ctx);
992 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
993 }
994
995 unsigned code_size = prog_data.base.program_size;
996 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
997 shader_code, code_size,
998 &prog_data.base, sizeof(prog_data),
999 &map);
1000 if (!bin) {
1001 ralloc_free(mem_ctx);
1002 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1003 }
1004
1005 ralloc_free(mem_ctx);
1006 }
1007
1008 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT, bin);
1009
1010 return VK_SUCCESS;
1011 }
1012
1013 VkResult
1014 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1015 struct anv_pipeline_cache *cache,
1016 const VkComputePipelineCreateInfo *info,
1017 struct anv_shader_module *module,
1018 const char *entrypoint,
1019 const VkSpecializationInfo *spec_info)
1020 {
1021 const struct brw_compiler *compiler =
1022 pipeline->device->instance->physicalDevice.compiler;
1023 struct brw_cs_prog_key key;
1024 struct anv_shader_bin *bin = NULL;
1025 unsigned char sha1[20];
1026
1027 populate_cs_prog_key(&pipeline->device->info, &key);
1028
1029 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1030
1031 if (cache) {
1032 anv_pipeline_hash_shader(pipeline, layout, module, entrypoint,
1033 MESA_SHADER_COMPUTE, spec_info,
1034 &key, sizeof(key), sha1);
1035 bin = anv_pipeline_cache_search(cache, sha1, 20);
1036 }
1037
1038 if (bin == NULL) {
1039 struct brw_cs_prog_data prog_data = {};
1040 struct anv_pipeline_binding surface_to_descriptor[256];
1041 struct anv_pipeline_binding sampler_to_descriptor[256];
1042
1043 struct anv_pipeline_bind_map map = {
1044 .surface_to_descriptor = surface_to_descriptor,
1045 .sampler_to_descriptor = sampler_to_descriptor
1046 };
1047
1048 void *mem_ctx = ralloc_context(NULL);
1049
1050 nir_shader *nir = anv_pipeline_compile(pipeline, mem_ctx, layout,
1051 module, entrypoint,
1052 MESA_SHADER_COMPUTE, spec_info,
1053 &prog_data.base, &map);
1054 if (nir == NULL) {
1055 ralloc_free(mem_ctx);
1056 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1057 }
1058
1059 NIR_PASS_V(nir, anv_nir_add_base_work_group_id, &prog_data);
1060
1061 anv_fill_binding_table(&prog_data.base, 1);
1062
1063 const unsigned *shader_code =
1064 brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
1065 -1, NULL);
1066 if (shader_code == NULL) {
1067 ralloc_free(mem_ctx);
1068 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1069 }
1070
1071 const unsigned code_size = prog_data.base.program_size;
1072 bin = anv_pipeline_upload_kernel(pipeline, cache, sha1, 20,
1073 shader_code, code_size,
1074 &prog_data.base, sizeof(prog_data),
1075 &map);
1076 if (!bin) {
1077 ralloc_free(mem_ctx);
1078 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1079 }
1080
1081 ralloc_free(mem_ctx);
1082 }
1083
1084 anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE, bin);
1085
1086 return VK_SUCCESS;
1087 }
1088
1089 /**
1090 * Copy pipeline state not marked as dynamic.
1091 * Dynamic state is pipeline state which hasn't been provided at pipeline
1092 * creation time, but is dynamically provided afterwards using various
1093 * vkCmdSet* functions.
1094 *
1095 * The set of state considered "non_dynamic" is determined by the pieces of
1096 * state that have their corresponding VkDynamicState enums omitted from
1097 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1098 *
1099 * @param[out] pipeline Destination non_dynamic state.
1100 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1101 */
1102 static void
1103 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1104 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1105 {
1106 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1107 struct anv_subpass *subpass = pipeline->subpass;
1108
1109 pipeline->dynamic_state = default_dynamic_state;
1110
1111 if (pCreateInfo->pDynamicState) {
1112 /* Remove all of the states that are marked as dynamic */
1113 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1114 for (uint32_t s = 0; s < count; s++)
1115 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1116 }
1117
1118 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1119
1120 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1121 *
1122 * pViewportState is [...] NULL if the pipeline
1123 * has rasterization disabled.
1124 */
1125 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1126 assert(pCreateInfo->pViewportState);
1127
1128 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1129 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1130 typed_memcpy(dynamic->viewport.viewports,
1131 pCreateInfo->pViewportState->pViewports,
1132 pCreateInfo->pViewportState->viewportCount);
1133 }
1134
1135 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1136 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1137 typed_memcpy(dynamic->scissor.scissors,
1138 pCreateInfo->pViewportState->pScissors,
1139 pCreateInfo->pViewportState->scissorCount);
1140 }
1141 }
1142
1143 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1144 assert(pCreateInfo->pRasterizationState);
1145 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1146 }
1147
1148 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1149 assert(pCreateInfo->pRasterizationState);
1150 dynamic->depth_bias.bias =
1151 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1152 dynamic->depth_bias.clamp =
1153 pCreateInfo->pRasterizationState->depthBiasClamp;
1154 dynamic->depth_bias.slope =
1155 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1156 }
1157
1158 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1159 *
1160 * pColorBlendState is [...] NULL if the pipeline has rasterization
1161 * disabled or if the subpass of the render pass the pipeline is
1162 * created against does not use any color attachments.
1163 */
1164 bool uses_color_att = false;
1165 for (unsigned i = 0; i < subpass->color_count; ++i) {
1166 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1167 uses_color_att = true;
1168 break;
1169 }
1170 }
1171
1172 if (uses_color_att &&
1173 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1174 assert(pCreateInfo->pColorBlendState);
1175
1176 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1177 typed_memcpy(dynamic->blend_constants,
1178 pCreateInfo->pColorBlendState->blendConstants, 4);
1179 }
1180
1181 /* If there is no depthstencil attachment, then don't read
1182 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1183 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1184 * no need to override the depthstencil defaults in
1185 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1186 *
1187 * Section 9.2 of the Vulkan 1.0.15 spec says:
1188 *
1189 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1190 * disabled or if the subpass of the render pass the pipeline is created
1191 * against does not use a depth/stencil attachment.
1192 */
1193 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1194 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
1195 assert(pCreateInfo->pDepthStencilState);
1196
1197 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1198 dynamic->depth_bounds.min =
1199 pCreateInfo->pDepthStencilState->minDepthBounds;
1200 dynamic->depth_bounds.max =
1201 pCreateInfo->pDepthStencilState->maxDepthBounds;
1202 }
1203
1204 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1205 dynamic->stencil_compare_mask.front =
1206 pCreateInfo->pDepthStencilState->front.compareMask;
1207 dynamic->stencil_compare_mask.back =
1208 pCreateInfo->pDepthStencilState->back.compareMask;
1209 }
1210
1211 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1212 dynamic->stencil_write_mask.front =
1213 pCreateInfo->pDepthStencilState->front.writeMask;
1214 dynamic->stencil_write_mask.back =
1215 pCreateInfo->pDepthStencilState->back.writeMask;
1216 }
1217
1218 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1219 dynamic->stencil_reference.front =
1220 pCreateInfo->pDepthStencilState->front.reference;
1221 dynamic->stencil_reference.back =
1222 pCreateInfo->pDepthStencilState->back.reference;
1223 }
1224 }
1225
1226 pipeline->dynamic_state_mask = states;
1227 }
1228
1229 static void
1230 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1231 {
1232 #ifdef DEBUG
1233 struct anv_render_pass *renderpass = NULL;
1234 struct anv_subpass *subpass = NULL;
1235
1236 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1237 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1238 */
1239 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1240
1241 renderpass = anv_render_pass_from_handle(info->renderPass);
1242 assert(renderpass);
1243
1244 assert(info->subpass < renderpass->subpass_count);
1245 subpass = &renderpass->subpasses[info->subpass];
1246
1247 assert(info->stageCount >= 1);
1248 assert(info->pVertexInputState);
1249 assert(info->pInputAssemblyState);
1250 assert(info->pRasterizationState);
1251 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1252 assert(info->pViewportState);
1253 assert(info->pMultisampleState);
1254
1255 if (subpass && subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED)
1256 assert(info->pDepthStencilState);
1257
1258 if (subpass && subpass->color_count > 0) {
1259 bool all_color_unused = true;
1260 for (int i = 0; i < subpass->color_count; i++) {
1261 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1262 all_color_unused = false;
1263 }
1264 /* pColorBlendState is ignored if the pipeline has rasterization
1265 * disabled or if the subpass of the render pass the pipeline is
1266 * created against does not use any color attachments.
1267 */
1268 assert(info->pColorBlendState || all_color_unused);
1269 }
1270 }
1271
1272 for (uint32_t i = 0; i < info->stageCount; ++i) {
1273 switch (info->pStages[i].stage) {
1274 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1275 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1276 assert(info->pTessellationState);
1277 break;
1278 default:
1279 break;
1280 }
1281 }
1282 #endif
1283 }
1284
1285 /**
1286 * Calculate the desired L3 partitioning based on the current state of the
1287 * pipeline. For now this simply returns the conservative defaults calculated
1288 * by get_default_l3_weights(), but we could probably do better by gathering
1289 * more statistics from the pipeline state (e.g. guess of expected URB usage
1290 * and bound surfaces), or by using feed-back from performance counters.
1291 */
1292 void
1293 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1294 {
1295 const struct gen_device_info *devinfo = &pipeline->device->info;
1296
1297 const struct gen_l3_weights w =
1298 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1299
1300 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1301 pipeline->urb.total_size =
1302 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1303 }
1304
1305 VkResult
1306 anv_pipeline_init(struct anv_pipeline *pipeline,
1307 struct anv_device *device,
1308 struct anv_pipeline_cache *cache,
1309 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1310 const VkAllocationCallbacks *alloc)
1311 {
1312 VkResult result;
1313
1314 anv_pipeline_validate_create_info(pCreateInfo);
1315
1316 if (alloc == NULL)
1317 alloc = &device->alloc;
1318
1319 pipeline->device = device;
1320
1321 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1322 assert(pCreateInfo->subpass < render_pass->subpass_count);
1323 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1324
1325 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1326 if (result != VK_SUCCESS)
1327 return result;
1328
1329 pipeline->batch.alloc = alloc;
1330 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1331 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1332 pipeline->batch.relocs = &pipeline->batch_relocs;
1333 pipeline->batch.status = VK_SUCCESS;
1334
1335 copy_non_dynamic_state(pipeline, pCreateInfo);
1336 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1337 pCreateInfo->pRasterizationState->depthClampEnable;
1338
1339 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1340 pCreateInfo->pMultisampleState->sampleShadingEnable;
1341
1342 pipeline->needs_data_cache = false;
1343
1344 /* When we free the pipeline, we detect stages based on the NULL status
1345 * of various prog_data pointers. Make them NULL by default.
1346 */
1347 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1348
1349 pipeline->active_stages = 0;
1350
1351 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = {};
1352 struct anv_shader_module *modules[MESA_SHADER_STAGES] = {};
1353 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1354 VkShaderStageFlagBits vk_stage = pCreateInfo->pStages[i].stage;
1355 gl_shader_stage stage = vk_to_mesa_shader_stage(vk_stage);
1356 pStages[stage] = &pCreateInfo->pStages[i];
1357 modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
1358 pipeline->active_stages |= vk_stage;
1359 }
1360
1361 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1362 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1363
1364 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1365
1366 if (modules[MESA_SHADER_VERTEX]) {
1367 result = anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
1368 modules[MESA_SHADER_VERTEX],
1369 pStages[MESA_SHADER_VERTEX]->pName,
1370 pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
1371 if (result != VK_SUCCESS)
1372 goto compile_fail;
1373 }
1374
1375 if (modules[MESA_SHADER_TESS_EVAL]) {
1376 result = anv_pipeline_compile_tcs_tes(pipeline, cache, pCreateInfo,
1377 modules[MESA_SHADER_TESS_CTRL],
1378 pStages[MESA_SHADER_TESS_CTRL]->pName,
1379 pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
1380 modules[MESA_SHADER_TESS_EVAL],
1381 pStages[MESA_SHADER_TESS_EVAL]->pName,
1382 pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo);
1383 if (result != VK_SUCCESS)
1384 goto compile_fail;
1385 }
1386
1387 if (modules[MESA_SHADER_GEOMETRY]) {
1388 result = anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
1389 modules[MESA_SHADER_GEOMETRY],
1390 pStages[MESA_SHADER_GEOMETRY]->pName,
1391 pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
1392 if (result != VK_SUCCESS)
1393 goto compile_fail;
1394 }
1395
1396 if (modules[MESA_SHADER_FRAGMENT]) {
1397 result = anv_pipeline_compile_fs(pipeline, cache, pCreateInfo,
1398 modules[MESA_SHADER_FRAGMENT],
1399 pStages[MESA_SHADER_FRAGMENT]->pName,
1400 pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
1401 if (result != VK_SUCCESS)
1402 goto compile_fail;
1403 }
1404
1405 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1406
1407 anv_pipeline_setup_l3_config(pipeline, false);
1408
1409 const VkPipelineVertexInputStateCreateInfo *vi_info =
1410 pCreateInfo->pVertexInputState;
1411
1412 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1413
1414 pipeline->vb_used = 0;
1415 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1416 const VkVertexInputAttributeDescription *desc =
1417 &vi_info->pVertexAttributeDescriptions[i];
1418
1419 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1420 pipeline->vb_used |= 1 << desc->binding;
1421 }
1422
1423 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1424 const VkVertexInputBindingDescription *desc =
1425 &vi_info->pVertexBindingDescriptions[i];
1426
1427 pipeline->binding_stride[desc->binding] = desc->stride;
1428
1429 /* Step rate is programmed per vertex element (attribute), not
1430 * binding. Set up a map of which bindings step per instance, for
1431 * reference by vertex element setup. */
1432 switch (desc->inputRate) {
1433 default:
1434 case VK_VERTEX_INPUT_RATE_VERTEX:
1435 pipeline->instancing_enable[desc->binding] = false;
1436 break;
1437 case VK_VERTEX_INPUT_RATE_INSTANCE:
1438 pipeline->instancing_enable[desc->binding] = true;
1439 break;
1440 }
1441 }
1442
1443 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1444 pCreateInfo->pInputAssemblyState;
1445 const VkPipelineTessellationStateCreateInfo *tess_info =
1446 pCreateInfo->pTessellationState;
1447 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1448
1449 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1450 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1451 else
1452 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1453
1454 return VK_SUCCESS;
1455
1456 compile_fail:
1457 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1458 if (pipeline->shaders[s])
1459 anv_shader_bin_unref(device, pipeline->shaders[s]);
1460 }
1461
1462 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1463
1464 return result;
1465 }