spirv: Add support for using derefs for UBO/SSBO access
[mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "common/gen_l3_config.h"
32 #include "anv_private.h"
33 #include "compiler/brw_nir.h"
34 #include "anv_nir.h"
35 #include "spirv/nir_spirv.h"
36 #include "vk_util.h"
37
38 /* Needed for SWIZZLE macros */
39 #include "program/prog_instruction.h"
40
41 // Shader functions
42
43 VkResult anv_CreateShaderModule(
44 VkDevice _device,
45 const VkShaderModuleCreateInfo* pCreateInfo,
46 const VkAllocationCallbacks* pAllocator,
47 VkShaderModule* pShaderModule)
48 {
49 ANV_FROM_HANDLE(anv_device, device, _device);
50 struct anv_shader_module *module;
51
52 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
53 assert(pCreateInfo->flags == 0);
54
55 module = vk_alloc2(&device->alloc, pAllocator,
56 sizeof(*module) + pCreateInfo->codeSize, 8,
57 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
58 if (module == NULL)
59 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
60
61 module->size = pCreateInfo->codeSize;
62 memcpy(module->data, pCreateInfo->pCode, module->size);
63
64 _mesa_sha1_compute(module->data, module->size, module->sha1);
65
66 *pShaderModule = anv_shader_module_to_handle(module);
67
68 return VK_SUCCESS;
69 }
70
71 void anv_DestroyShaderModule(
72 VkDevice _device,
73 VkShaderModule _module,
74 const VkAllocationCallbacks* pAllocator)
75 {
76 ANV_FROM_HANDLE(anv_device, device, _device);
77 ANV_FROM_HANDLE(anv_shader_module, module, _module);
78
79 if (!module)
80 return;
81
82 vk_free2(&device->alloc, pAllocator, module);
83 }
84
85 #define SPIR_V_MAGIC_NUMBER 0x07230203
86
87 static const uint64_t stage_to_debug[] = {
88 [MESA_SHADER_VERTEX] = DEBUG_VS,
89 [MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
90 [MESA_SHADER_TESS_EVAL] = DEBUG_TES,
91 [MESA_SHADER_GEOMETRY] = DEBUG_GS,
92 [MESA_SHADER_FRAGMENT] = DEBUG_WM,
93 [MESA_SHADER_COMPUTE] = DEBUG_CS,
94 };
95
96 /* Eventually, this will become part of anv_CreateShader. Unfortunately,
97 * we can't do that yet because we don't have the ability to copy nir.
98 */
99 static nir_shader *
100 anv_shader_compile_to_nir(struct anv_pipeline *pipeline,
101 void *mem_ctx,
102 const struct anv_shader_module *module,
103 const char *entrypoint_name,
104 gl_shader_stage stage,
105 const VkSpecializationInfo *spec_info)
106 {
107 const struct anv_device *device = pipeline->device;
108
109 const struct brw_compiler *compiler =
110 device->instance->physicalDevice.compiler;
111 const nir_shader_compiler_options *nir_options =
112 compiler->glsl_compiler_options[stage].NirOptions;
113
114 uint32_t *spirv = (uint32_t *) module->data;
115 assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
116 assert(module->size % 4 == 0);
117
118 uint32_t num_spec_entries = 0;
119 struct nir_spirv_specialization *spec_entries = NULL;
120 if (spec_info && spec_info->mapEntryCount > 0) {
121 num_spec_entries = spec_info->mapEntryCount;
122 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
123 for (uint32_t i = 0; i < num_spec_entries; i++) {
124 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
125 const void *data = spec_info->pData + entry.offset;
126 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
127
128 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
129 if (spec_info->dataSize == 8)
130 spec_entries[i].data64 = *(const uint64_t *)data;
131 else
132 spec_entries[i].data32 = *(const uint32_t *)data;
133 }
134 }
135
136 struct spirv_to_nir_options spirv_options = {
137 .lower_workgroup_access_to_offsets = true,
138 .lower_ubo_ssbo_access_to_offsets = true,
139 .caps = {
140 .float64 = device->instance->physicalDevice.info.gen >= 8,
141 .int64 = device->instance->physicalDevice.info.gen >= 8,
142 .tessellation = true,
143 .device_group = true,
144 .draw_parameters = true,
145 .image_write_without_format = true,
146 .min_lod = true,
147 .multiview = true,
148 .variable_pointers = true,
149 .storage_16bit = device->instance->physicalDevice.info.gen >= 8,
150 .int16 = device->instance->physicalDevice.info.gen >= 8,
151 .shader_viewport_index_layer = true,
152 .subgroup_arithmetic = true,
153 .subgroup_basic = true,
154 .subgroup_ballot = true,
155 .subgroup_quad = true,
156 .subgroup_shuffle = true,
157 .subgroup_vote = true,
158 .stencil_export = device->instance->physicalDevice.info.gen >= 9,
159 .storage_8bit = device->instance->physicalDevice.info.gen >= 8,
160 .post_depth_coverage = device->instance->physicalDevice.info.gen >= 9,
161 },
162 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
163 .ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
164 .push_const_ptr_type = glsl_uint_type(),
165 .shared_ptr_type = glsl_uint_type(),
166 };
167
168 nir_function *entry_point =
169 spirv_to_nir(spirv, module->size / 4,
170 spec_entries, num_spec_entries,
171 stage, entrypoint_name, &spirv_options, nir_options);
172 nir_shader *nir = entry_point->shader;
173 assert(nir->info.stage == stage);
174 nir_validate_shader(nir, "after spirv_to_nir");
175 ralloc_steal(mem_ctx, nir);
176
177 free(spec_entries);
178
179 if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
180 fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
181 gl_shader_stage_name(stage));
182 nir_print_shader(nir, stderr);
183 }
184
185 /* We have to lower away local constant initializers right before we
186 * inline functions. That way they get properly initialized at the top
187 * of the function and not at the top of its caller.
188 */
189 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
190 NIR_PASS_V(nir, nir_lower_returns);
191 NIR_PASS_V(nir, nir_inline_functions);
192 NIR_PASS_V(nir, nir_opt_deref);
193
194 /* Pick off the single entrypoint that we want */
195 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
196 if (func != entry_point)
197 exec_node_remove(&func->node);
198 }
199 assert(exec_list_length(&nir->functions) == 1);
200
201 /* Now that we've deleted all but the main function, we can go ahead and
202 * lower the rest of the constant initializers. We do this here so that
203 * nir_remove_dead_variables and split_per_member_structs below see the
204 * corresponding stores.
205 */
206 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
207
208 /* Split member structs. We do this before lower_io_to_temporaries so that
209 * it doesn't lower system values to temporaries by accident.
210 */
211 NIR_PASS_V(nir, nir_split_var_copies);
212 NIR_PASS_V(nir, nir_split_per_member_structs);
213
214 NIR_PASS_V(nir, nir_remove_dead_variables,
215 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
216
217 if (stage == MESA_SHADER_FRAGMENT)
218 NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
219
220 NIR_PASS_V(nir, nir_propagate_invariant);
221 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
222 entry_point->impl, true, false);
223
224 /* Vulkan uses the separate-shader linking model */
225 nir->info.separate_shader = true;
226
227 nir = brw_preprocess_nir(compiler, nir);
228
229 if (stage == MESA_SHADER_FRAGMENT)
230 NIR_PASS_V(nir, anv_nir_lower_input_attachments);
231
232 return nir;
233 }
234
235 void anv_DestroyPipeline(
236 VkDevice _device,
237 VkPipeline _pipeline,
238 const VkAllocationCallbacks* pAllocator)
239 {
240 ANV_FROM_HANDLE(anv_device, device, _device);
241 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
242
243 if (!pipeline)
244 return;
245
246 anv_reloc_list_finish(&pipeline->batch_relocs,
247 pAllocator ? pAllocator : &device->alloc);
248 if (pipeline->blend_state.map)
249 anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
250
251 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
252 if (pipeline->shaders[s])
253 anv_shader_bin_unref(device, pipeline->shaders[s]);
254 }
255
256 vk_free2(&device->alloc, pAllocator, pipeline);
257 }
258
259 static const uint32_t vk_to_gen_primitive_type[] = {
260 [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
261 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
262 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
263 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
264 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
265 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
266 [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
267 [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
268 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
269 [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
270 };
271
272 static void
273 populate_sampler_prog_key(const struct gen_device_info *devinfo,
274 struct brw_sampler_prog_key_data *key)
275 {
276 /* Almost all multisampled textures are compressed. The only time when we
277 * don't compress a multisampled texture is for 16x MSAA with a surface
278 * width greater than 8k which is a bit of an edge case. Since the sampler
279 * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
280 * to tell the compiler to always assume compression.
281 */
282 key->compressed_multisample_layout_mask = ~0;
283
284 /* SkyLake added support for 16x MSAA. With this came a new message for
285 * reading from a 16x MSAA surface with compression. The new message was
286 * needed because now the MCS data is 64 bits instead of 32 or lower as is
287 * the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
288 * message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
289 * so we can just use it unconditionally. This may not be quite as
290 * efficient but it saves us from recompiling.
291 */
292 if (devinfo->gen >= 9)
293 key->msaa_16 = ~0;
294
295 /* XXX: Handle texture swizzle on HSW- */
296 for (int i = 0; i < MAX_SAMPLERS; i++) {
297 /* Assume color sampler, no swizzling. (Works for BDW+) */
298 key->swizzles[i] = SWIZZLE_XYZW;
299 }
300 }
301
302 static void
303 populate_vs_prog_key(const struct gen_device_info *devinfo,
304 struct brw_vs_prog_key *key)
305 {
306 memset(key, 0, sizeof(*key));
307
308 populate_sampler_prog_key(devinfo, &key->tex);
309
310 /* XXX: Handle vertex input work-arounds */
311
312 /* XXX: Handle sampler_prog_key */
313 }
314
315 static void
316 populate_tcs_prog_key(const struct gen_device_info *devinfo,
317 unsigned input_vertices,
318 struct brw_tcs_prog_key *key)
319 {
320 memset(key, 0, sizeof(*key));
321
322 populate_sampler_prog_key(devinfo, &key->tex);
323
324 key->input_vertices = input_vertices;
325 }
326
327 static void
328 populate_tes_prog_key(const struct gen_device_info *devinfo,
329 struct brw_tes_prog_key *key)
330 {
331 memset(key, 0, sizeof(*key));
332
333 populate_sampler_prog_key(devinfo, &key->tex);
334 }
335
336 static void
337 populate_gs_prog_key(const struct gen_device_info *devinfo,
338 struct brw_gs_prog_key *key)
339 {
340 memset(key, 0, sizeof(*key));
341
342 populate_sampler_prog_key(devinfo, &key->tex);
343 }
344
345 static void
346 populate_wm_prog_key(const struct gen_device_info *devinfo,
347 const struct anv_subpass *subpass,
348 const VkPipelineMultisampleStateCreateInfo *ms_info,
349 struct brw_wm_prog_key *key)
350 {
351 memset(key, 0, sizeof(*key));
352
353 populate_sampler_prog_key(devinfo, &key->tex);
354
355 /* We set this to 0 here and set to the actual value before we call
356 * brw_compile_fs.
357 */
358 key->input_slots_valid = 0;
359
360 /* Vulkan doesn't specify a default */
361 key->high_quality_derivatives = false;
362
363 /* XXX Vulkan doesn't appear to specify */
364 key->clamp_fragment_color = false;
365
366 assert(subpass->color_count <= MAX_RTS);
367 for (uint32_t i = 0; i < subpass->color_count; i++) {
368 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
369 key->color_outputs_valid |= (1 << i);
370 }
371
372 key->nr_color_regions = util_bitcount(key->color_outputs_valid);
373
374 key->replicate_alpha = key->nr_color_regions > 1 &&
375 ms_info && ms_info->alphaToCoverageEnable;
376
377 if (ms_info) {
378 /* We should probably pull this out of the shader, but it's fairly
379 * harmless to compute it and then let dead-code take care of it.
380 */
381 if (ms_info->rasterizationSamples > 1) {
382 key->persample_interp =
383 (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
384 key->multisample_fbo = true;
385 }
386
387 key->frag_coord_adds_sample_pos = ms_info->sampleShadingEnable;
388 }
389 }
390
391 static void
392 populate_cs_prog_key(const struct gen_device_info *devinfo,
393 struct brw_cs_prog_key *key)
394 {
395 memset(key, 0, sizeof(*key));
396
397 populate_sampler_prog_key(devinfo, &key->tex);
398 }
399
400 struct anv_pipeline_stage {
401 gl_shader_stage stage;
402
403 const struct anv_shader_module *module;
404 const char *entrypoint;
405 const VkSpecializationInfo *spec_info;
406
407 union brw_any_prog_key key;
408
409 struct {
410 gl_shader_stage stage;
411 unsigned char sha1[20];
412 } cache_key;
413
414 nir_shader *nir;
415
416 struct anv_pipeline_binding surface_to_descriptor[256];
417 struct anv_pipeline_binding sampler_to_descriptor[256];
418 struct anv_pipeline_bind_map bind_map;
419
420 union brw_any_prog_data prog_data;
421 };
422
423 static void
424 anv_pipeline_hash_shader(struct mesa_sha1 *ctx,
425 struct anv_pipeline_stage *stage)
426 {
427 _mesa_sha1_update(ctx, stage->module->sha1, sizeof(stage->module->sha1));
428 _mesa_sha1_update(ctx, stage->entrypoint, strlen(stage->entrypoint));
429 _mesa_sha1_update(ctx, &stage->stage, sizeof(stage->stage));
430 if (stage->spec_info) {
431 _mesa_sha1_update(ctx, stage->spec_info->pMapEntries,
432 stage->spec_info->mapEntryCount *
433 sizeof(*stage->spec_info->pMapEntries));
434 _mesa_sha1_update(ctx, stage->spec_info->pData,
435 stage->spec_info->dataSize);
436 }
437 _mesa_sha1_update(ctx, &stage->key, brw_prog_key_size(stage->stage));
438 }
439
440 static void
441 anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
442 struct anv_pipeline_layout *layout,
443 struct anv_pipeline_stage *stages,
444 unsigned char *sha1_out)
445 {
446 struct mesa_sha1 ctx;
447 _mesa_sha1_init(&ctx);
448
449 _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
450 sizeof(pipeline->subpass->view_mask));
451
452 if (layout)
453 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
454
455 const bool rba = pipeline->device->robust_buffer_access;
456 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
457
458 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
459 if (stages[s].entrypoint)
460 anv_pipeline_hash_shader(&ctx, &stages[s]);
461 }
462
463 _mesa_sha1_final(&ctx, sha1_out);
464 }
465
466 static void
467 anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
468 struct anv_pipeline_layout *layout,
469 struct anv_pipeline_stage *stage,
470 unsigned char *sha1_out)
471 {
472 struct mesa_sha1 ctx;
473 _mesa_sha1_init(&ctx);
474
475 if (layout)
476 _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
477
478 const bool rba = pipeline->device->robust_buffer_access;
479 _mesa_sha1_update(&ctx, &rba, sizeof(rba));
480
481 anv_pipeline_hash_shader(&ctx, stage);
482
483 _mesa_sha1_final(&ctx, sha1_out);
484 }
485
486 static void
487 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
488 void *mem_ctx,
489 struct anv_pipeline_stage *stage,
490 struct anv_pipeline_layout *layout)
491 {
492 const struct brw_compiler *compiler =
493 pipeline->device->instance->physicalDevice.compiler;
494
495 struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
496 nir_shader *nir = stage->nir;
497
498 NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
499
500 NIR_PASS_V(nir, anv_nir_lower_push_constants);
501
502 if (nir->info.stage != MESA_SHADER_COMPUTE)
503 NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
504
505 if (nir->info.stage == MESA_SHADER_COMPUTE)
506 prog_data->total_shared = nir->num_shared;
507
508 nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
509
510 if (nir->num_uniforms > 0) {
511 assert(prog_data->nr_params == 0);
512
513 /* If the shader uses any push constants at all, we'll just give
514 * them the maximum possible number
515 */
516 assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
517 nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
518 prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
519 prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
520
521 /* We now set the param values to be offsets into a
522 * anv_push_constant_data structure. Since the compiler doesn't
523 * actually dereference any of the gl_constant_value pointers in the
524 * params array, it doesn't really matter what we put here.
525 */
526 struct anv_push_constants *null_data = NULL;
527 /* Fill out the push constants section of the param array */
528 for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
529 prog_data->param[i] = ANV_PARAM_PUSH(
530 (uintptr_t)&null_data->client_data[i * sizeof(float)]);
531 }
532 }
533
534 if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
535 pipeline->needs_data_cache = true;
536
537 NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
538
539 /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
540 if (layout) {
541 anv_nir_apply_pipeline_layout(&pipeline->device->instance->physicalDevice,
542 pipeline->device->robust_buffer_access,
543 layout, nir, prog_data,
544 &stage->bind_map);
545 }
546
547 if (nir->info.stage != MESA_SHADER_COMPUTE)
548 brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
549
550 assert(nir->num_uniforms == prog_data->nr_params * 4);
551
552 stage->nir = nir;
553 }
554
555 static void
556 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
557 {
558 prog_data->binding_table.size_bytes = 0;
559 prog_data->binding_table.texture_start = bias;
560 prog_data->binding_table.gather_texture_start = bias;
561 prog_data->binding_table.ubo_start = bias;
562 prog_data->binding_table.ssbo_start = bias;
563 prog_data->binding_table.image_start = bias;
564 }
565
566 static void
567 anv_pipeline_link_vs(const struct brw_compiler *compiler,
568 struct anv_pipeline_stage *vs_stage,
569 struct anv_pipeline_stage *next_stage)
570 {
571 anv_fill_binding_table(&vs_stage->prog_data.vs.base.base, 0);
572
573 if (next_stage)
574 brw_nir_link_shaders(compiler, &vs_stage->nir, &next_stage->nir);
575 }
576
577 static const unsigned *
578 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
579 void *mem_ctx,
580 struct anv_pipeline_stage *vs_stage)
581 {
582 brw_compute_vue_map(compiler->devinfo,
583 &vs_stage->prog_data.vs.base.vue_map,
584 vs_stage->nir->info.outputs_written,
585 vs_stage->nir->info.separate_shader);
586
587 return brw_compile_vs(compiler, NULL, mem_ctx, &vs_stage->key.vs,
588 &vs_stage->prog_data.vs, vs_stage->nir, -1, NULL);
589 }
590
591 static void
592 merge_tess_info(struct shader_info *tes_info,
593 const struct shader_info *tcs_info)
594 {
595 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
596 *
597 * "PointMode. Controls generation of points rather than triangles
598 * or lines. This functionality defaults to disabled, and is
599 * enabled if either shader stage includes the execution mode.
600 *
601 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
602 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
603 * and OutputVertices, it says:
604 *
605 * "One mode must be set in at least one of the tessellation
606 * shader stages."
607 *
608 * So, the fields can be set in either the TCS or TES, but they must
609 * agree if set in both. Our backend looks at TES, so bitwise-or in
610 * the values from the TCS.
611 */
612 assert(tcs_info->tess.tcs_vertices_out == 0 ||
613 tes_info->tess.tcs_vertices_out == 0 ||
614 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
615 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
616
617 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
618 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
619 tcs_info->tess.spacing == tes_info->tess.spacing);
620 tes_info->tess.spacing |= tcs_info->tess.spacing;
621
622 assert(tcs_info->tess.primitive_mode == 0 ||
623 tes_info->tess.primitive_mode == 0 ||
624 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
625 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
626 tes_info->tess.ccw |= tcs_info->tess.ccw;
627 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
628 }
629
630 static void
631 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
632 struct anv_pipeline_stage *tcs_stage,
633 struct anv_pipeline_stage *tes_stage)
634 {
635 assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
636
637 anv_fill_binding_table(&tcs_stage->prog_data.tcs.base.base, 0);
638
639 brw_nir_link_shaders(compiler, &tcs_stage->nir, &tes_stage->nir);
640
641 nir_lower_patch_vertices(tes_stage->nir,
642 tcs_stage->nir->info.tess.tcs_vertices_out,
643 NULL);
644
645 /* Copy TCS info into the TES info */
646 merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
647
648 anv_fill_binding_table(&tcs_stage->prog_data.tcs.base.base, 0);
649 anv_fill_binding_table(&tes_stage->prog_data.tes.base.base, 0);
650
651 /* Whacking the key after cache lookup is a bit sketchy, but all of
652 * this comes from the SPIR-V, which is part of the hash used for the
653 * pipeline cache. So it should be safe.
654 */
655 tcs_stage->key.tcs.tes_primitive_mode =
656 tes_stage->nir->info.tess.primitive_mode;
657 tcs_stage->key.tcs.quads_workaround =
658 compiler->devinfo->gen < 9 &&
659 tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
660 tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
661 }
662
663 static const unsigned *
664 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
665 void *mem_ctx,
666 struct anv_pipeline_stage *tcs_stage,
667 struct anv_pipeline_stage *prev_stage)
668 {
669 tcs_stage->key.tcs.outputs_written =
670 tcs_stage->nir->info.outputs_written;
671 tcs_stage->key.tcs.patch_outputs_written =
672 tcs_stage->nir->info.patch_outputs_written;
673
674 return brw_compile_tcs(compiler, NULL, mem_ctx, &tcs_stage->key.tcs,
675 &tcs_stage->prog_data.tcs, tcs_stage->nir,
676 -1, NULL);
677 }
678
679 static void
680 anv_pipeline_link_tes(const struct brw_compiler *compiler,
681 struct anv_pipeline_stage *tes_stage,
682 struct anv_pipeline_stage *next_stage)
683 {
684 anv_fill_binding_table(&tes_stage->prog_data.tes.base.base, 0);
685
686 if (next_stage)
687 brw_nir_link_shaders(compiler, &tes_stage->nir, &next_stage->nir);
688 }
689
690 static const unsigned *
691 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
692 void *mem_ctx,
693 struct anv_pipeline_stage *tes_stage,
694 struct anv_pipeline_stage *tcs_stage)
695 {
696 tes_stage->key.tes.inputs_read =
697 tcs_stage->nir->info.outputs_written;
698 tes_stage->key.tes.patch_inputs_read =
699 tcs_stage->nir->info.patch_outputs_written;
700
701 return brw_compile_tes(compiler, NULL, mem_ctx, &tes_stage->key.tes,
702 &tcs_stage->prog_data.tcs.base.vue_map,
703 &tes_stage->prog_data.tes, tes_stage->nir,
704 NULL, -1, NULL);
705 }
706
707 static void
708 anv_pipeline_link_gs(const struct brw_compiler *compiler,
709 struct anv_pipeline_stage *gs_stage,
710 struct anv_pipeline_stage *next_stage)
711 {
712 anv_fill_binding_table(&gs_stage->prog_data.gs.base.base, 0);
713
714 if (next_stage)
715 brw_nir_link_shaders(compiler, &gs_stage->nir, &next_stage->nir);
716 }
717
718 static const unsigned *
719 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
720 void *mem_ctx,
721 struct anv_pipeline_stage *gs_stage,
722 struct anv_pipeline_stage *prev_stage)
723 {
724 brw_compute_vue_map(compiler->devinfo,
725 &gs_stage->prog_data.gs.base.vue_map,
726 gs_stage->nir->info.outputs_written,
727 gs_stage->nir->info.separate_shader);
728
729 return brw_compile_gs(compiler, NULL, mem_ctx, &gs_stage->key.gs,
730 &gs_stage->prog_data.gs, gs_stage->nir,
731 NULL, -1, NULL);
732 }
733
734 static void
735 anv_pipeline_link_fs(const struct brw_compiler *compiler,
736 struct anv_pipeline_stage *stage)
737 {
738 unsigned num_rts = 0;
739 const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
740 struct anv_pipeline_binding rt_bindings[max_rt];
741 nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
742 int rt_to_bindings[max_rt];
743 memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
744 bool rt_used[max_rt];
745 memset(rt_used, 0, sizeof(rt_used));
746
747 /* Flag used render targets */
748 nir_foreach_variable_safe(var, &stage->nir->outputs) {
749 if (var->data.location < FRAG_RESULT_DATA0)
750 continue;
751
752 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
753 /* Unused or out-of-bounds */
754 if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid & (1 << rt)))
755 continue;
756
757 const unsigned array_len =
758 glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
759 assert(rt + array_len <= max_rt);
760
761 for (unsigned i = 0; i < array_len; i++)
762 rt_used[rt + i] = true;
763 }
764
765 /* Set new, compacted, location */
766 for (unsigned i = 0; i < max_rt; i++) {
767 if (!rt_used[i])
768 continue;
769
770 rt_to_bindings[i] = num_rts;
771 rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
772 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
773 .binding = 0,
774 .index = i,
775 };
776 num_rts++;
777 }
778
779 bool deleted_output = false;
780 nir_foreach_variable_safe(var, &stage->nir->outputs) {
781 if (var->data.location < FRAG_RESULT_DATA0)
782 continue;
783
784 const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
785 if (rt >= MAX_RTS ||
786 !(stage->key.wm.color_outputs_valid & (1 << rt))) {
787 /* Unused or out-of-bounds, throw it away */
788 deleted_output = true;
789 var->data.mode = nir_var_local;
790 exec_node_remove(&var->node);
791 exec_list_push_tail(&impl->locals, &var->node);
792 continue;
793 }
794
795 /* Give it the new location */
796 assert(rt_to_bindings[rt] != -1);
797 var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
798 }
799
800 if (deleted_output)
801 nir_fixup_deref_modes(stage->nir);
802
803 if (num_rts == 0) {
804 /* If we have no render targets, we need a null render target */
805 rt_bindings[0] = (struct anv_pipeline_binding) {
806 .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
807 .binding = 0,
808 .index = UINT32_MAX,
809 };
810 num_rts = 1;
811 }
812
813 /* Now that we've determined the actual number of render targets, adjust
814 * the key accordingly.
815 */
816 stage->key.wm.nr_color_regions = num_rts;
817 stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
818
819 assert(num_rts <= max_rt);
820 assert(stage->bind_map.surface_count == 0);
821 typed_memcpy(stage->bind_map.surface_to_descriptor,
822 rt_bindings, num_rts);
823 stage->bind_map.surface_count += num_rts;
824
825 anv_fill_binding_table(&stage->prog_data.wm.base, 0);
826 }
827
828 static const unsigned *
829 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
830 void *mem_ctx,
831 struct anv_pipeline_stage *fs_stage,
832 struct anv_pipeline_stage *prev_stage)
833 {
834 /* TODO: we could set this to 0 based on the information in nir_shader, but
835 * we need this before we call spirv_to_nir.
836 */
837 assert(prev_stage);
838 fs_stage->key.wm.input_slots_valid =
839 prev_stage->prog_data.vue.vue_map.slots_valid;
840
841 const unsigned *code =
842 brw_compile_fs(compiler, NULL, mem_ctx, &fs_stage->key.wm,
843 &fs_stage->prog_data.wm, fs_stage->nir,
844 NULL, -1, -1, -1, true, false, NULL, NULL);
845
846 if (fs_stage->key.wm.nr_color_regions == 0 &&
847 !fs_stage->prog_data.wm.has_side_effects &&
848 !fs_stage->prog_data.wm.uses_kill &&
849 fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
850 !fs_stage->prog_data.wm.computed_stencil) {
851 /* This fragment shader has no outputs and no side effects. Go ahead
852 * and return the code pointer so we don't accidentally think the
853 * compile failed but zero out prog_data which will set program_size to
854 * zero and disable the stage.
855 */
856 memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
857 }
858
859 return code;
860 }
861
862 static VkResult
863 anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
864 struct anv_pipeline_cache *cache,
865 const VkGraphicsPipelineCreateInfo *info)
866 {
867 const struct brw_compiler *compiler =
868 pipeline->device->instance->physicalDevice.compiler;
869 struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
870
871 pipeline->active_stages = 0;
872
873 VkResult result;
874 for (uint32_t i = 0; i < info->stageCount; i++) {
875 const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
876 gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
877
878 pipeline->active_stages |= sinfo->stage;
879
880 stages[stage].stage = stage;
881 stages[stage].module = anv_shader_module_from_handle(sinfo->module);
882 stages[stage].entrypoint = sinfo->pName;
883 stages[stage].spec_info = sinfo->pSpecializationInfo;
884
885 const struct gen_device_info *devinfo = &pipeline->device->info;
886 switch (stage) {
887 case MESA_SHADER_VERTEX:
888 populate_vs_prog_key(devinfo, &stages[stage].key.vs);
889 break;
890 case MESA_SHADER_TESS_CTRL:
891 populate_tcs_prog_key(devinfo,
892 info->pTessellationState->patchControlPoints,
893 &stages[stage].key.tcs);
894 break;
895 case MESA_SHADER_TESS_EVAL:
896 populate_tes_prog_key(devinfo, &stages[stage].key.tes);
897 break;
898 case MESA_SHADER_GEOMETRY:
899 populate_gs_prog_key(devinfo, &stages[stage].key.gs);
900 break;
901 case MESA_SHADER_FRAGMENT:
902 populate_wm_prog_key(devinfo, pipeline->subpass,
903 info->pMultisampleState,
904 &stages[stage].key.wm);
905 break;
906 default:
907 unreachable("Invalid graphics shader stage");
908 }
909 }
910
911 if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
912 pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
913
914 assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
915
916 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
917
918 unsigned char sha1[20];
919 anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
920
921 unsigned found = 0;
922 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
923 if (!stages[s].entrypoint)
924 continue;
925
926 stages[s].cache_key.stage = s;
927 memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
928
929 struct anv_shader_bin *bin =
930 anv_device_search_for_kernel(pipeline->device, cache,
931 &stages[s].cache_key,
932 sizeof(stages[s].cache_key));
933 if (bin) {
934 found++;
935 pipeline->shaders[s] = bin;
936 }
937 }
938
939 if (found == __builtin_popcount(pipeline->active_stages)) {
940 /* We found all our shaders in the cache. We're done. */
941 goto done;
942 } else if (found > 0) {
943 /* We found some but not all of our shaders. This shouldn't happen
944 * most of the time but it can if we have a partially populated
945 * pipeline cache.
946 */
947 assert(found < __builtin_popcount(pipeline->active_stages));
948
949 vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
950 VK_DEBUG_REPORT_WARNING_BIT_EXT |
951 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
952 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
953 (uint64_t)(uintptr_t)cache,
954 0, 0, "anv",
955 "Found a partial pipeline in the cache. This is "
956 "most likely caused by an incomplete pipeline cache "
957 "import or export");
958
959 /* We're going to have to recompile anyway, so just throw away our
960 * references to the shaders in the cache. We'll get them out of the
961 * cache again as part of the compilation process.
962 */
963 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
964 if (pipeline->shaders[s]) {
965 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
966 pipeline->shaders[s] = NULL;
967 }
968 }
969 }
970
971 void *pipeline_ctx = ralloc_context(NULL);
972
973 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
974 if (!stages[s].entrypoint)
975 continue;
976
977 assert(stages[s].stage == s);
978 assert(pipeline->shaders[s] == NULL);
979
980 stages[s].bind_map = (struct anv_pipeline_bind_map) {
981 .surface_to_descriptor = stages[s].surface_to_descriptor,
982 .sampler_to_descriptor = stages[s].sampler_to_descriptor
983 };
984
985 stages[s].nir = anv_shader_compile_to_nir(pipeline, pipeline_ctx,
986 stages[s].module,
987 stages[s].entrypoint,
988 stages[s].stage,
989 stages[s].spec_info);
990 if (stages[s].nir == NULL) {
991 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
992 goto fail;
993 }
994 }
995
996 /* Walk backwards to link */
997 struct anv_pipeline_stage *next_stage = NULL;
998 for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
999 if (!stages[s].entrypoint)
1000 continue;
1001
1002 switch (s) {
1003 case MESA_SHADER_VERTEX:
1004 anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1005 break;
1006 case MESA_SHADER_TESS_CTRL:
1007 anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1008 break;
1009 case MESA_SHADER_TESS_EVAL:
1010 anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1011 break;
1012 case MESA_SHADER_GEOMETRY:
1013 anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1014 break;
1015 case MESA_SHADER_FRAGMENT:
1016 anv_pipeline_link_fs(compiler, &stages[s]);
1017 break;
1018 default:
1019 unreachable("Invalid graphics shader stage");
1020 }
1021
1022 next_stage = &stages[s];
1023 }
1024
1025 struct anv_pipeline_stage *prev_stage = NULL;
1026 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1027 if (!stages[s].entrypoint)
1028 continue;
1029
1030 void *stage_ctx = ralloc_context(NULL);
1031
1032 anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
1033
1034 const unsigned *code;
1035 switch (s) {
1036 case MESA_SHADER_VERTEX:
1037 code = anv_pipeline_compile_vs(compiler, stage_ctx, &stages[s]);
1038 break;
1039 case MESA_SHADER_TESS_CTRL:
1040 code = anv_pipeline_compile_tcs(compiler, stage_ctx,
1041 &stages[s], prev_stage);
1042 break;
1043 case MESA_SHADER_TESS_EVAL:
1044 code = anv_pipeline_compile_tes(compiler, stage_ctx,
1045 &stages[s], prev_stage);
1046 break;
1047 case MESA_SHADER_GEOMETRY:
1048 code = anv_pipeline_compile_gs(compiler, stage_ctx,
1049 &stages[s], prev_stage);
1050 break;
1051 case MESA_SHADER_FRAGMENT:
1052 code = anv_pipeline_compile_fs(compiler, stage_ctx,
1053 &stages[s], prev_stage);
1054 break;
1055 default:
1056 unreachable("Invalid graphics shader stage");
1057 }
1058 if (code == NULL) {
1059 ralloc_free(stage_ctx);
1060 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1061 goto fail;
1062 }
1063
1064 struct anv_shader_bin *bin =
1065 anv_device_upload_kernel(pipeline->device, cache,
1066 &stages[s].cache_key,
1067 sizeof(stages[s].cache_key),
1068 code, stages[s].prog_data.base.program_size,
1069 stages[s].nir->constant_data,
1070 stages[s].nir->constant_data_size,
1071 &stages[s].prog_data.base,
1072 brw_prog_data_size(s),
1073 &stages[s].bind_map);
1074 if (!bin) {
1075 ralloc_free(stage_ctx);
1076 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1077 goto fail;
1078 }
1079
1080 pipeline->shaders[s] = bin;
1081 ralloc_free(stage_ctx);
1082
1083 prev_stage = &stages[s];
1084 }
1085
1086 ralloc_free(pipeline_ctx);
1087
1088 done:
1089
1090 if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1091 pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1092 /* This can happen if we decided to implicitly disable the fragment
1093 * shader. See anv_pipeline_compile_fs().
1094 */
1095 anv_shader_bin_unref(pipeline->device,
1096 pipeline->shaders[MESA_SHADER_FRAGMENT]);
1097 pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1098 pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1099 }
1100
1101 return VK_SUCCESS;
1102
1103 fail:
1104 ralloc_free(pipeline_ctx);
1105
1106 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1107 if (pipeline->shaders[s])
1108 anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
1109 }
1110
1111 return result;
1112 }
1113
1114 VkResult
1115 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1116 struct anv_pipeline_cache *cache,
1117 const VkComputePipelineCreateInfo *info,
1118 const struct anv_shader_module *module,
1119 const char *entrypoint,
1120 const VkSpecializationInfo *spec_info)
1121 {
1122 const struct brw_compiler *compiler =
1123 pipeline->device->instance->physicalDevice.compiler;
1124
1125 struct anv_pipeline_stage stage = {
1126 .stage = MESA_SHADER_COMPUTE,
1127 .module = module,
1128 .entrypoint = entrypoint,
1129 .spec_info = spec_info,
1130 .cache_key = {
1131 .stage = MESA_SHADER_COMPUTE,
1132 }
1133 };
1134
1135 struct anv_shader_bin *bin = NULL;
1136
1137 populate_cs_prog_key(&pipeline->device->info, &stage.key.cs);
1138
1139 ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1140
1141 anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1142 bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
1143 sizeof(stage.cache_key));
1144
1145 if (bin == NULL) {
1146 stage.bind_map = (struct anv_pipeline_bind_map) {
1147 .surface_to_descriptor = stage.surface_to_descriptor,
1148 .sampler_to_descriptor = stage.sampler_to_descriptor
1149 };
1150
1151 void *mem_ctx = ralloc_context(NULL);
1152
1153 stage.nir = anv_shader_compile_to_nir(pipeline, mem_ctx,
1154 stage.module,
1155 stage.entrypoint,
1156 stage.stage,
1157 stage.spec_info);
1158 if (stage.nir == NULL) {
1159 ralloc_free(mem_ctx);
1160 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1161 }
1162
1163 anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
1164
1165 NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
1166 &stage.prog_data.cs);
1167
1168 anv_fill_binding_table(&stage.prog_data.cs.base, 1);
1169
1170 const unsigned *shader_code =
1171 brw_compile_cs(compiler, NULL, mem_ctx, &stage.key.cs,
1172 &stage.prog_data.cs, stage.nir, -1, NULL);
1173 if (shader_code == NULL) {
1174 ralloc_free(mem_ctx);
1175 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1176 }
1177
1178 const unsigned code_size = stage.prog_data.base.program_size;
1179 bin = anv_device_upload_kernel(pipeline->device, cache,
1180 &stage.cache_key, sizeof(stage.cache_key),
1181 shader_code, code_size,
1182 stage.nir->constant_data,
1183 stage.nir->constant_data_size,
1184 &stage.prog_data.base,
1185 sizeof(stage.prog_data.cs),
1186 &stage.bind_map);
1187 if (!bin) {
1188 ralloc_free(mem_ctx);
1189 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1190 }
1191
1192 ralloc_free(mem_ctx);
1193 }
1194
1195 pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
1196 pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
1197
1198 return VK_SUCCESS;
1199 }
1200
1201 /**
1202 * Copy pipeline state not marked as dynamic.
1203 * Dynamic state is pipeline state which hasn't been provided at pipeline
1204 * creation time, but is dynamically provided afterwards using various
1205 * vkCmdSet* functions.
1206 *
1207 * The set of state considered "non_dynamic" is determined by the pieces of
1208 * state that have their corresponding VkDynamicState enums omitted from
1209 * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1210 *
1211 * @param[out] pipeline Destination non_dynamic state.
1212 * @param[in] pCreateInfo Source of non_dynamic state to be copied.
1213 */
1214 static void
1215 copy_non_dynamic_state(struct anv_pipeline *pipeline,
1216 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1217 {
1218 anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1219 struct anv_subpass *subpass = pipeline->subpass;
1220
1221 pipeline->dynamic_state = default_dynamic_state;
1222
1223 if (pCreateInfo->pDynamicState) {
1224 /* Remove all of the states that are marked as dynamic */
1225 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1226 for (uint32_t s = 0; s < count; s++)
1227 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1228 }
1229
1230 struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1231
1232 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1233 *
1234 * pViewportState is [...] NULL if the pipeline
1235 * has rasterization disabled.
1236 */
1237 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1238 assert(pCreateInfo->pViewportState);
1239
1240 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1241 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1242 typed_memcpy(dynamic->viewport.viewports,
1243 pCreateInfo->pViewportState->pViewports,
1244 pCreateInfo->pViewportState->viewportCount);
1245 }
1246
1247 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1248 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1249 typed_memcpy(dynamic->scissor.scissors,
1250 pCreateInfo->pViewportState->pScissors,
1251 pCreateInfo->pViewportState->scissorCount);
1252 }
1253 }
1254
1255 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1256 assert(pCreateInfo->pRasterizationState);
1257 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1258 }
1259
1260 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1261 assert(pCreateInfo->pRasterizationState);
1262 dynamic->depth_bias.bias =
1263 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1264 dynamic->depth_bias.clamp =
1265 pCreateInfo->pRasterizationState->depthBiasClamp;
1266 dynamic->depth_bias.slope =
1267 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1268 }
1269
1270 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1271 *
1272 * pColorBlendState is [...] NULL if the pipeline has rasterization
1273 * disabled or if the subpass of the render pass the pipeline is
1274 * created against does not use any color attachments.
1275 */
1276 bool uses_color_att = false;
1277 for (unsigned i = 0; i < subpass->color_count; ++i) {
1278 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1279 uses_color_att = true;
1280 break;
1281 }
1282 }
1283
1284 if (uses_color_att &&
1285 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1286 assert(pCreateInfo->pColorBlendState);
1287
1288 if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1289 typed_memcpy(dynamic->blend_constants,
1290 pCreateInfo->pColorBlendState->blendConstants, 4);
1291 }
1292
1293 /* If there is no depthstencil attachment, then don't read
1294 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1295 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1296 * no need to override the depthstencil defaults in
1297 * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1298 *
1299 * Section 9.2 of the Vulkan 1.0.15 spec says:
1300 *
1301 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1302 * disabled or if the subpass of the render pass the pipeline is created
1303 * against does not use a depth/stencil attachment.
1304 */
1305 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1306 subpass->depth_stencil_attachment) {
1307 assert(pCreateInfo->pDepthStencilState);
1308
1309 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1310 dynamic->depth_bounds.min =
1311 pCreateInfo->pDepthStencilState->minDepthBounds;
1312 dynamic->depth_bounds.max =
1313 pCreateInfo->pDepthStencilState->maxDepthBounds;
1314 }
1315
1316 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1317 dynamic->stencil_compare_mask.front =
1318 pCreateInfo->pDepthStencilState->front.compareMask;
1319 dynamic->stencil_compare_mask.back =
1320 pCreateInfo->pDepthStencilState->back.compareMask;
1321 }
1322
1323 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1324 dynamic->stencil_write_mask.front =
1325 pCreateInfo->pDepthStencilState->front.writeMask;
1326 dynamic->stencil_write_mask.back =
1327 pCreateInfo->pDepthStencilState->back.writeMask;
1328 }
1329
1330 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1331 dynamic->stencil_reference.front =
1332 pCreateInfo->pDepthStencilState->front.reference;
1333 dynamic->stencil_reference.back =
1334 pCreateInfo->pDepthStencilState->back.reference;
1335 }
1336 }
1337
1338 pipeline->dynamic_state_mask = states;
1339 }
1340
1341 static void
1342 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1343 {
1344 #ifdef DEBUG
1345 struct anv_render_pass *renderpass = NULL;
1346 struct anv_subpass *subpass = NULL;
1347
1348 /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1349 * present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
1350 */
1351 assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1352
1353 renderpass = anv_render_pass_from_handle(info->renderPass);
1354 assert(renderpass);
1355
1356 assert(info->subpass < renderpass->subpass_count);
1357 subpass = &renderpass->subpasses[info->subpass];
1358
1359 assert(info->stageCount >= 1);
1360 assert(info->pVertexInputState);
1361 assert(info->pInputAssemblyState);
1362 assert(info->pRasterizationState);
1363 if (!info->pRasterizationState->rasterizerDiscardEnable) {
1364 assert(info->pViewportState);
1365 assert(info->pMultisampleState);
1366
1367 if (subpass && subpass->depth_stencil_attachment)
1368 assert(info->pDepthStencilState);
1369
1370 if (subpass && subpass->color_count > 0) {
1371 bool all_color_unused = true;
1372 for (int i = 0; i < subpass->color_count; i++) {
1373 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
1374 all_color_unused = false;
1375 }
1376 /* pColorBlendState is ignored if the pipeline has rasterization
1377 * disabled or if the subpass of the render pass the pipeline is
1378 * created against does not use any color attachments.
1379 */
1380 assert(info->pColorBlendState || all_color_unused);
1381 }
1382 }
1383
1384 for (uint32_t i = 0; i < info->stageCount; ++i) {
1385 switch (info->pStages[i].stage) {
1386 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1387 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1388 assert(info->pTessellationState);
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394 #endif
1395 }
1396
1397 /**
1398 * Calculate the desired L3 partitioning based on the current state of the
1399 * pipeline. For now this simply returns the conservative defaults calculated
1400 * by get_default_l3_weights(), but we could probably do better by gathering
1401 * more statistics from the pipeline state (e.g. guess of expected URB usage
1402 * and bound surfaces), or by using feed-back from performance counters.
1403 */
1404 void
1405 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
1406 {
1407 const struct gen_device_info *devinfo = &pipeline->device->info;
1408
1409 const struct gen_l3_weights w =
1410 gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
1411
1412 pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
1413 pipeline->urb.total_size =
1414 gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
1415 }
1416
1417 VkResult
1418 anv_pipeline_init(struct anv_pipeline *pipeline,
1419 struct anv_device *device,
1420 struct anv_pipeline_cache *cache,
1421 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1422 const VkAllocationCallbacks *alloc)
1423 {
1424 VkResult result;
1425
1426 anv_pipeline_validate_create_info(pCreateInfo);
1427
1428 if (alloc == NULL)
1429 alloc = &device->alloc;
1430
1431 pipeline->device = device;
1432
1433 ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
1434 assert(pCreateInfo->subpass < render_pass->subpass_count);
1435 pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
1436
1437 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1438 if (result != VK_SUCCESS)
1439 return result;
1440
1441 pipeline->batch.alloc = alloc;
1442 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1443 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1444 pipeline->batch.relocs = &pipeline->batch_relocs;
1445 pipeline->batch.status = VK_SUCCESS;
1446
1447 copy_non_dynamic_state(pipeline, pCreateInfo);
1448 pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1449 pCreateInfo->pRasterizationState->depthClampEnable;
1450
1451 pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
1452 pCreateInfo->pMultisampleState->sampleShadingEnable;
1453
1454 pipeline->needs_data_cache = false;
1455
1456 /* When we free the pipeline, we detect stages based on the NULL status
1457 * of various prog_data pointers. Make them NULL by default.
1458 */
1459 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1460
1461 result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
1462 if (result != VK_SUCCESS) {
1463 anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
1464 return result;
1465 }
1466
1467 assert(pipeline->shaders[MESA_SHADER_VERTEX]);
1468
1469 anv_pipeline_setup_l3_config(pipeline, false);
1470
1471 const VkPipelineVertexInputStateCreateInfo *vi_info =
1472 pCreateInfo->pVertexInputState;
1473
1474 const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1475
1476 pipeline->vb_used = 0;
1477 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1478 const VkVertexInputAttributeDescription *desc =
1479 &vi_info->pVertexAttributeDescriptions[i];
1480
1481 if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
1482 pipeline->vb_used |= 1 << desc->binding;
1483 }
1484
1485 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1486 const VkVertexInputBindingDescription *desc =
1487 &vi_info->pVertexBindingDescriptions[i];
1488
1489 pipeline->vb[desc->binding].stride = desc->stride;
1490
1491 /* Step rate is programmed per vertex element (attribute), not
1492 * binding. Set up a map of which bindings step per instance, for
1493 * reference by vertex element setup. */
1494 switch (desc->inputRate) {
1495 default:
1496 case VK_VERTEX_INPUT_RATE_VERTEX:
1497 pipeline->vb[desc->binding].instanced = false;
1498 break;
1499 case VK_VERTEX_INPUT_RATE_INSTANCE:
1500 pipeline->vb[desc->binding].instanced = true;
1501 break;
1502 }
1503
1504 pipeline->vb[desc->binding].instance_divisor = 1;
1505 }
1506
1507 const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
1508 vk_find_struct_const(vi_info->pNext,
1509 PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1510 if (vi_div_state) {
1511 for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
1512 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1513 &vi_div_state->pVertexBindingDivisors[i];
1514
1515 pipeline->vb[desc->binding].instance_divisor = desc->divisor;
1516 }
1517 }
1518
1519 /* Our implementation of VK_KHR_multiview uses instancing to draw the
1520 * different views. If the client asks for instancing, we need to multiply
1521 * the instance divisor by the number of views ensure that we repeat the
1522 * client's per-instance data once for each view.
1523 */
1524 if (pipeline->subpass->view_mask) {
1525 const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
1526 for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
1527 if (pipeline->vb[vb].instanced)
1528 pipeline->vb[vb].instance_divisor *= view_count;
1529 }
1530 }
1531
1532 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1533 pCreateInfo->pInputAssemblyState;
1534 const VkPipelineTessellationStateCreateInfo *tess_info =
1535 pCreateInfo->pTessellationState;
1536 pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1537
1538 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1539 pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1540 else
1541 pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1542
1543 return VK_SUCCESS;
1544 }