0ddcea69e534dc6d121295c0c7f6b36fb75a67ba
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 struct anv_bo {
601 uint32_t gem_handle;
602
603 uint32_t refcount;
604
605 /* Index into the current validation list. This is used by the
606 * validation list building alrogithm to track which buffers are already
607 * in the validation list so that we can ensure uniqueness.
608 */
609 uint32_t index;
610
611 /* Index for use with util_sparse_array_free_list */
612 uint32_t free_index;
613
614 /* Last known offset. This value is provided by the kernel when we
615 * execbuf and is used as the presumed offset for the next bunch of
616 * relocations.
617 */
618 uint64_t offset;
619
620 uint64_t size;
621
622 /* Map for internally mapped BOs.
623 *
624 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
625 */
626 void *map;
627
628 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
629 uint32_t flags;
630
631 /** True if this BO may be shared with other processes */
632 bool is_external:1;
633
634 /** True if this BO is a wrapper
635 *
636 * When set to true, none of the fields in this BO are meaningful except
637 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
638 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
639 * is set in the physical device.
640 */
641 bool is_wrapper:1;
642
643 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
644 bool has_fixed_address:1;
645
646 /** True if this BO wraps a host pointer */
647 bool from_host_ptr:1;
648 };
649
650 static inline void
651 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
652 {
653 bo->gem_handle = gem_handle;
654 bo->refcount = 1;
655 bo->index = 0;
656 bo->offset = -1;
657 bo->size = size;
658 bo->map = NULL;
659 bo->flags = 0;
660 bo->is_external = false;
661 bo->is_wrapper = false;
662 bo->has_fixed_address = false;
663 bo->from_host_ptr = false;
664 }
665
666 static inline struct anv_bo *
667 anv_bo_unwrap(struct anv_bo *bo)
668 {
669 while (bo->is_wrapper)
670 bo = bo->map;
671 return bo;
672 }
673
674 /* Represents a lock-free linked list of "free" things. This is used by
675 * both the block pool and the state pools. Unfortunately, in order to
676 * solve the ABA problem, we can't use a single uint32_t head.
677 */
678 union anv_free_list {
679 struct {
680 uint32_t offset;
681
682 /* A simple count that is incremented every time the head changes. */
683 uint32_t count;
684 };
685 /* Make sure it's aligned to 64 bits. This will make atomic operations
686 * faster on 32 bit platforms.
687 */
688 uint64_t u64 __attribute__ ((aligned (8)));
689 };
690
691 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
692
693 struct anv_block_state {
694 union {
695 struct {
696 uint32_t next;
697 uint32_t end;
698 };
699 /* Make sure it's aligned to 64 bits. This will make atomic operations
700 * faster on 32 bit platforms.
701 */
702 uint64_t u64 __attribute__ ((aligned (8)));
703 };
704 };
705
706 #define anv_block_pool_foreach_bo(bo, pool) \
707 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
708 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
709 _pp_bo++)
710
711 #define ANV_MAX_BLOCK_POOL_BOS 20
712
713 struct anv_block_pool {
714 struct anv_device *device;
715 bool use_softpin;
716
717 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
718 * around the actual BO so that we grow the pool after the wrapper BO has
719 * been put in a relocation list. This is only used in the non-softpin
720 * case.
721 */
722 struct anv_bo wrapper_bo;
723
724 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
725 struct anv_bo *bo;
726 uint32_t nbos;
727
728 uint64_t size;
729
730 /* The address where the start of the pool is pinned. The various bos that
731 * are created as the pool grows will have addresses in the range
732 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
733 */
734 uint64_t start_address;
735
736 /* The offset from the start of the bo to the "center" of the block
737 * pool. Pointers to allocated blocks are given by
738 * bo.map + center_bo_offset + offsets.
739 */
740 uint32_t center_bo_offset;
741
742 /* Current memory map of the block pool. This pointer may or may not
743 * point to the actual beginning of the block pool memory. If
744 * anv_block_pool_alloc_back has ever been called, then this pointer
745 * will point to the "center" position of the buffer and all offsets
746 * (negative or positive) given out by the block pool alloc functions
747 * will be valid relative to this pointer.
748 *
749 * In particular, map == bo.map + center_offset
750 *
751 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
752 * since it will handle the softpin case as well, where this points to NULL.
753 */
754 void *map;
755 int fd;
756
757 /**
758 * Array of mmaps and gem handles owned by the block pool, reclaimed when
759 * the block pool is destroyed.
760 */
761 struct u_vector mmap_cleanups;
762
763 struct anv_block_state state;
764
765 struct anv_block_state back_state;
766 };
767
768 /* Block pools are backed by a fixed-size 1GB memfd */
769 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
770
771 /* The center of the block pool is also the middle of the memfd. This may
772 * change in the future if we decide differently for some reason.
773 */
774 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
775
776 static inline uint32_t
777 anv_block_pool_size(struct anv_block_pool *pool)
778 {
779 return pool->state.end + pool->back_state.end;
780 }
781
782 struct anv_state {
783 int32_t offset;
784 uint32_t alloc_size;
785 void *map;
786 uint32_t idx;
787 };
788
789 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
790
791 struct anv_fixed_size_state_pool {
792 union anv_free_list free_list;
793 struct anv_block_state block;
794 };
795
796 #define ANV_MIN_STATE_SIZE_LOG2 6
797 #define ANV_MAX_STATE_SIZE_LOG2 21
798
799 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
800
801 struct anv_free_entry {
802 uint32_t next;
803 struct anv_state state;
804 };
805
806 struct anv_state_table {
807 struct anv_device *device;
808 int fd;
809 struct anv_free_entry *map;
810 uint32_t size;
811 struct anv_block_state state;
812 struct u_vector cleanups;
813 };
814
815 struct anv_state_pool {
816 struct anv_block_pool block_pool;
817
818 struct anv_state_table table;
819
820 /* The size of blocks which will be allocated from the block pool */
821 uint32_t block_size;
822
823 /** Free list for "back" allocations */
824 union anv_free_list back_alloc_free_list;
825
826 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
827 };
828
829 struct anv_state_stream_block;
830
831 struct anv_state_stream {
832 struct anv_state_pool *state_pool;
833
834 /* The size of blocks to allocate from the state pool */
835 uint32_t block_size;
836
837 /* Current block we're allocating from */
838 struct anv_state block;
839
840 /* Offset into the current block at which to allocate the next state */
841 uint32_t next;
842
843 /* List of all blocks allocated from this pool */
844 struct anv_state_stream_block *block_list;
845 };
846
847 /* The block_pool functions exported for testing only. The block pool should
848 * only be used via a state pool (see below).
849 */
850 VkResult anv_block_pool_init(struct anv_block_pool *pool,
851 struct anv_device *device,
852 uint64_t start_address,
853 uint32_t initial_size);
854 void anv_block_pool_finish(struct anv_block_pool *pool);
855 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
856 uint32_t block_size, uint32_t *padding);
857 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
858 uint32_t block_size);
859 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
860
861 VkResult anv_state_pool_init(struct anv_state_pool *pool,
862 struct anv_device *device,
863 uint64_t start_address,
864 uint32_t block_size);
865 void anv_state_pool_finish(struct anv_state_pool *pool);
866 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
867 uint32_t state_size, uint32_t alignment);
868 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
869 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
870 void anv_state_stream_init(struct anv_state_stream *stream,
871 struct anv_state_pool *state_pool,
872 uint32_t block_size);
873 void anv_state_stream_finish(struct anv_state_stream *stream);
874 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
875 uint32_t size, uint32_t alignment);
876
877 VkResult anv_state_table_init(struct anv_state_table *table,
878 struct anv_device *device,
879 uint32_t initial_entries);
880 void anv_state_table_finish(struct anv_state_table *table);
881 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
882 uint32_t count);
883 void anv_free_list_push(union anv_free_list *list,
884 struct anv_state_table *table,
885 uint32_t idx, uint32_t count);
886 struct anv_state* anv_free_list_pop(union anv_free_list *list,
887 struct anv_state_table *table);
888
889
890 static inline struct anv_state *
891 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
892 {
893 return &table->map[idx].state;
894 }
895 /**
896 * Implements a pool of re-usable BOs. The interface is identical to that
897 * of block_pool except that each block is its own BO.
898 */
899 struct anv_bo_pool {
900 struct anv_device *device;
901
902 uint64_t bo_flags;
903
904 struct util_sparse_array_free_list free_list[16];
905 };
906
907 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
908 uint64_t bo_flags);
909 void anv_bo_pool_finish(struct anv_bo_pool *pool);
910 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
911 struct anv_bo **bo_out);
912 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
913
914 struct anv_scratch_bo {
915 bool exists;
916 struct anv_bo bo;
917 };
918
919 struct anv_scratch_pool {
920 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
921 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
922 };
923
924 void anv_scratch_pool_init(struct anv_device *device,
925 struct anv_scratch_pool *pool);
926 void anv_scratch_pool_finish(struct anv_device *device,
927 struct anv_scratch_pool *pool);
928 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
929 struct anv_scratch_pool *pool,
930 gl_shader_stage stage,
931 unsigned per_thread_scratch);
932
933 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
934 struct anv_bo_cache {
935 struct util_sparse_array bo_map;
936 pthread_mutex_t mutex;
937 };
938
939 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
940 void anv_bo_cache_finish(struct anv_bo_cache *cache);
941
942 struct anv_memory_type {
943 /* Standard bits passed on to the client */
944 VkMemoryPropertyFlags propertyFlags;
945 uint32_t heapIndex;
946
947 /* Driver-internal book-keeping */
948 VkBufferUsageFlags valid_buffer_usage;
949 };
950
951 struct anv_memory_heap {
952 /* Standard bits passed on to the client */
953 VkDeviceSize size;
954 VkMemoryHeapFlags flags;
955
956 /* Driver-internal book-keeping */
957 uint64_t vma_start;
958 uint64_t vma_size;
959 bool supports_48bit_addresses;
960 VkDeviceSize used;
961 };
962
963 struct anv_physical_device {
964 VK_LOADER_DATA _loader_data;
965
966 struct anv_instance * instance;
967 uint32_t chipset_id;
968 bool no_hw;
969 char path[20];
970 const char * name;
971 struct {
972 uint16_t domain;
973 uint8_t bus;
974 uint8_t device;
975 uint8_t function;
976 } pci_info;
977 struct gen_device_info info;
978 /** Amount of "GPU memory" we want to advertise
979 *
980 * Clearly, this value is bogus since Intel is a UMA architecture. On
981 * gen7 platforms, we are limited by GTT size unless we want to implement
982 * fine-grained tracking and GTT splitting. On Broadwell and above we are
983 * practically unlimited. However, we will never report more than 3/4 of
984 * the total system ram to try and avoid running out of RAM.
985 */
986 bool supports_48bit_addresses;
987 struct brw_compiler * compiler;
988 struct isl_device isl_dev;
989 struct gen_perf_config * perf;
990 int cmd_parser_version;
991 bool has_exec_async;
992 bool has_exec_capture;
993 bool has_exec_fence;
994 bool has_syncobj;
995 bool has_syncobj_wait;
996 bool has_context_priority;
997 bool use_softpin;
998 bool has_context_isolation;
999 bool has_mem_available;
1000 bool always_use_bindless;
1001
1002 /** True if we can access buffers using A64 messages */
1003 bool has_a64_buffer_access;
1004 /** True if we can use bindless access for images */
1005 bool has_bindless_images;
1006 /** True if we can use bindless access for samplers */
1007 bool has_bindless_samplers;
1008
1009 struct anv_device_extension_table supported_extensions;
1010 struct anv_physical_device_dispatch_table dispatch;
1011
1012 uint32_t eu_total;
1013 uint32_t subslice_total;
1014
1015 struct {
1016 uint32_t type_count;
1017 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1018 uint32_t heap_count;
1019 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1020 } memory;
1021
1022 uint8_t driver_build_sha1[20];
1023 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1024 uint8_t driver_uuid[VK_UUID_SIZE];
1025 uint8_t device_uuid[VK_UUID_SIZE];
1026
1027 struct disk_cache * disk_cache;
1028
1029 struct wsi_device wsi_device;
1030 int local_fd;
1031 int master_fd;
1032 };
1033
1034 struct anv_app_info {
1035 const char* app_name;
1036 uint32_t app_version;
1037 const char* engine_name;
1038 uint32_t engine_version;
1039 uint32_t api_version;
1040 };
1041
1042 struct anv_instance {
1043 VK_LOADER_DATA _loader_data;
1044
1045 VkAllocationCallbacks alloc;
1046
1047 struct anv_app_info app_info;
1048
1049 struct anv_instance_extension_table enabled_extensions;
1050 struct anv_instance_dispatch_table dispatch;
1051 struct anv_device_dispatch_table device_dispatch;
1052
1053 int physicalDeviceCount;
1054 struct anv_physical_device physicalDevice;
1055
1056 bool pipeline_cache_enabled;
1057
1058 struct vk_debug_report_instance debug_report_callbacks;
1059
1060 struct driOptionCache dri_options;
1061 struct driOptionCache available_dri_options;
1062 };
1063
1064 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1065 void anv_finish_wsi(struct anv_physical_device *physical_device);
1066
1067 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1068 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1069 const char *name);
1070
1071 struct anv_queue {
1072 VK_LOADER_DATA _loader_data;
1073
1074 struct anv_device * device;
1075
1076 VkDeviceQueueCreateFlags flags;
1077 };
1078
1079 struct anv_pipeline_cache {
1080 struct anv_device * device;
1081 pthread_mutex_t mutex;
1082
1083 struct hash_table * nir_cache;
1084
1085 struct hash_table * cache;
1086 };
1087
1088 struct nir_xfb_info;
1089 struct anv_pipeline_bind_map;
1090
1091 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1092 struct anv_device *device,
1093 bool cache_enabled);
1094 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1095
1096 struct anv_shader_bin *
1097 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1098 const void *key, uint32_t key_size);
1099 struct anv_shader_bin *
1100 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1101 const void *key_data, uint32_t key_size,
1102 const void *kernel_data, uint32_t kernel_size,
1103 const void *constant_data,
1104 uint32_t constant_data_size,
1105 const struct brw_stage_prog_data *prog_data,
1106 uint32_t prog_data_size,
1107 const struct brw_compile_stats *stats,
1108 uint32_t num_stats,
1109 const struct nir_xfb_info *xfb_info,
1110 const struct anv_pipeline_bind_map *bind_map);
1111
1112 struct anv_shader_bin *
1113 anv_device_search_for_kernel(struct anv_device *device,
1114 struct anv_pipeline_cache *cache,
1115 const void *key_data, uint32_t key_size,
1116 bool *user_cache_bit);
1117
1118 struct anv_shader_bin *
1119 anv_device_upload_kernel(struct anv_device *device,
1120 struct anv_pipeline_cache *cache,
1121 const void *key_data, uint32_t key_size,
1122 const void *kernel_data, uint32_t kernel_size,
1123 const void *constant_data,
1124 uint32_t constant_data_size,
1125 const struct brw_stage_prog_data *prog_data,
1126 uint32_t prog_data_size,
1127 const struct brw_compile_stats *stats,
1128 uint32_t num_stats,
1129 const struct nir_xfb_info *xfb_info,
1130 const struct anv_pipeline_bind_map *bind_map);
1131
1132 struct nir_shader;
1133 struct nir_shader_compiler_options;
1134
1135 struct nir_shader *
1136 anv_device_search_for_nir(struct anv_device *device,
1137 struct anv_pipeline_cache *cache,
1138 const struct nir_shader_compiler_options *nir_options,
1139 unsigned char sha1_key[20],
1140 void *mem_ctx);
1141
1142 void
1143 anv_device_upload_nir(struct anv_device *device,
1144 struct anv_pipeline_cache *cache,
1145 const struct nir_shader *nir,
1146 unsigned char sha1_key[20]);
1147
1148 struct anv_device {
1149 VK_LOADER_DATA _loader_data;
1150
1151 VkAllocationCallbacks alloc;
1152
1153 struct anv_instance * instance;
1154 uint32_t chipset_id;
1155 bool no_hw;
1156 struct gen_device_info info;
1157 struct isl_device isl_dev;
1158 int context_id;
1159 int fd;
1160 bool can_chain_batches;
1161 bool robust_buffer_access;
1162 struct anv_device_extension_table enabled_extensions;
1163 struct anv_device_dispatch_table dispatch;
1164
1165 pthread_mutex_t vma_mutex;
1166 struct util_vma_heap vma_lo;
1167 struct util_vma_heap vma_hi;
1168 uint64_t vma_lo_available;
1169 uint64_t vma_hi_available;
1170
1171 /** List of all anv_device_memory objects */
1172 struct list_head memory_objects;
1173
1174 struct anv_bo_pool batch_bo_pool;
1175
1176 struct anv_bo_cache bo_cache;
1177
1178 struct anv_state_pool dynamic_state_pool;
1179 struct anv_state_pool instruction_state_pool;
1180 struct anv_state_pool binding_table_pool;
1181 struct anv_state_pool surface_state_pool;
1182
1183 struct anv_bo workaround_bo;
1184 struct anv_bo trivial_batch_bo;
1185 struct anv_bo hiz_clear_bo;
1186
1187 struct anv_pipeline_cache default_pipeline_cache;
1188 struct blorp_context blorp;
1189
1190 struct anv_state border_colors;
1191
1192 struct anv_state slice_hash;
1193
1194 struct anv_queue queue;
1195
1196 struct anv_scratch_pool scratch_pool;
1197
1198 uint32_t default_mocs;
1199 uint32_t external_mocs;
1200
1201 pthread_mutex_t mutex;
1202 pthread_cond_t queue_submit;
1203 bool _lost;
1204
1205 struct gen_batch_decode_ctx decoder_ctx;
1206 /*
1207 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1208 * the cmd_buffer's list.
1209 */
1210 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1211
1212 int perf_fd; /* -1 if no opened */
1213 uint64_t perf_metric; /* 0 if unset */
1214
1215 struct gen_aux_map_context *aux_map_ctx;
1216 };
1217
1218 static inline struct anv_state_pool *
1219 anv_binding_table_pool(struct anv_device *device)
1220 {
1221 if (device->instance->physicalDevice.use_softpin)
1222 return &device->binding_table_pool;
1223 else
1224 return &device->surface_state_pool;
1225 }
1226
1227 static inline struct anv_state
1228 anv_binding_table_pool_alloc(struct anv_device *device) {
1229 if (device->instance->physicalDevice.use_softpin)
1230 return anv_state_pool_alloc(&device->binding_table_pool,
1231 device->binding_table_pool.block_size, 0);
1232 else
1233 return anv_state_pool_alloc_back(&device->surface_state_pool);
1234 }
1235
1236 static inline void
1237 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1238 anv_state_pool_free(anv_binding_table_pool(device), state);
1239 }
1240
1241 static inline uint32_t
1242 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1243 {
1244 if (bo->is_external)
1245 return device->external_mocs;
1246 else
1247 return device->default_mocs;
1248 }
1249
1250 void anv_device_init_blorp(struct anv_device *device);
1251 void anv_device_finish_blorp(struct anv_device *device);
1252
1253 VkResult _anv_device_set_lost(struct anv_device *device,
1254 const char *file, int line,
1255 const char *msg, ...)
1256 anv_printflike(4, 5);
1257 #define anv_device_set_lost(dev, ...) \
1258 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1259
1260 static inline bool
1261 anv_device_is_lost(struct anv_device *device)
1262 {
1263 return unlikely(device->_lost);
1264 }
1265
1266 VkResult anv_device_execbuf(struct anv_device *device,
1267 struct drm_i915_gem_execbuffer2 *execbuf,
1268 struct anv_bo **execbuf_bos);
1269 VkResult anv_device_query_status(struct anv_device *device);
1270
1271
1272 enum anv_bo_alloc_flags {
1273 /** Specifies that the BO must have a 32-bit address
1274 *
1275 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1276 */
1277 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1278
1279 /** Specifies that the BO may be shared externally */
1280 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1281
1282 /** Specifies that the BO should be mapped */
1283 ANV_BO_ALLOC_MAPPED = (1 << 2),
1284
1285 /** Specifies that the BO should be snooped so we get coherency */
1286 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1287
1288 /** Specifies that the BO should be captured in error states */
1289 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1290
1291 /** Specifies that the BO will have an address assigned by the caller */
1292 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1293
1294 /** Enables implicit synchronization on the BO
1295 *
1296 * This is the opposite of EXEC_OBJECT_ASYNC.
1297 */
1298 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1299
1300 /** Enables implicit synchronization on the BO
1301 *
1302 * This is equivalent to EXEC_OBJECT_WRITE.
1303 */
1304 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1305 };
1306
1307 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1308 enum anv_bo_alloc_flags alloc_flags,
1309 struct anv_bo **bo);
1310 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1311 void *host_ptr, uint32_t size,
1312 enum anv_bo_alloc_flags alloc_flags,
1313 struct anv_bo **bo_out);
1314 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1315 enum anv_bo_alloc_flags alloc_flags,
1316 struct anv_bo **bo);
1317 VkResult anv_device_export_bo(struct anv_device *device,
1318 struct anv_bo *bo, int *fd_out);
1319 void anv_device_release_bo(struct anv_device *device,
1320 struct anv_bo *bo);
1321
1322 static inline struct anv_bo *
1323 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1324 {
1325 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1326 }
1327
1328 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1329 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1330 int64_t timeout);
1331
1332 void* anv_gem_mmap(struct anv_device *device,
1333 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1334 void anv_gem_munmap(void *p, uint64_t size);
1335 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1336 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1337 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1338 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1339 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1340 int anv_gem_execbuffer(struct anv_device *device,
1341 struct drm_i915_gem_execbuffer2 *execbuf);
1342 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1343 uint32_t stride, uint32_t tiling);
1344 int anv_gem_create_context(struct anv_device *device);
1345 bool anv_gem_has_context_priority(int fd);
1346 int anv_gem_destroy_context(struct anv_device *device, int context);
1347 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1348 uint64_t value);
1349 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1350 uint64_t *value);
1351 int anv_gem_get_param(int fd, uint32_t param);
1352 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1353 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1354 int anv_gem_get_aperture(int fd, uint64_t *size);
1355 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1356 uint32_t *active, uint32_t *pending);
1357 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1358 int anv_gem_reg_read(struct anv_device *device,
1359 uint32_t offset, uint64_t *result);
1360 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1361 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1362 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1363 uint32_t read_domains, uint32_t write_domain);
1364 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1365 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1366 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1367 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1368 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1369 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1370 uint32_t handle);
1371 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1372 uint32_t handle, int fd);
1373 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1374 bool anv_gem_supports_syncobj_wait(int fd);
1375 int anv_gem_syncobj_wait(struct anv_device *device,
1376 uint32_t *handles, uint32_t num_handles,
1377 int64_t abs_timeout_ns, bool wait_all);
1378
1379 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1380 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1381
1382 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1383
1384 struct anv_reloc_list {
1385 uint32_t num_relocs;
1386 uint32_t array_length;
1387 struct drm_i915_gem_relocation_entry * relocs;
1388 struct anv_bo ** reloc_bos;
1389 struct set * deps;
1390 };
1391
1392 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1393 const VkAllocationCallbacks *alloc);
1394 void anv_reloc_list_finish(struct anv_reloc_list *list,
1395 const VkAllocationCallbacks *alloc);
1396
1397 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1398 const VkAllocationCallbacks *alloc,
1399 uint32_t offset, struct anv_bo *target_bo,
1400 uint32_t delta, uint64_t *address_u64_out);
1401
1402 struct anv_batch_bo {
1403 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1404 struct list_head link;
1405
1406 struct anv_bo * bo;
1407
1408 /* Bytes actually consumed in this batch BO */
1409 uint32_t length;
1410
1411 struct anv_reloc_list relocs;
1412 };
1413
1414 struct anv_batch {
1415 const VkAllocationCallbacks * alloc;
1416
1417 void * start;
1418 void * end;
1419 void * next;
1420
1421 struct anv_reloc_list * relocs;
1422
1423 /* This callback is called (with the associated user data) in the event
1424 * that the batch runs out of space.
1425 */
1426 VkResult (*extend_cb)(struct anv_batch *, void *);
1427 void * user_data;
1428
1429 /**
1430 * Current error status of the command buffer. Used to track inconsistent
1431 * or incomplete command buffer states that are the consequence of run-time
1432 * errors such as out of memory scenarios. We want to track this in the
1433 * batch because the command buffer object is not visible to some parts
1434 * of the driver.
1435 */
1436 VkResult status;
1437 };
1438
1439 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1440 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1441 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1442 void *location, struct anv_bo *bo, uint32_t offset);
1443 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1444 struct anv_batch *batch);
1445
1446 static inline VkResult
1447 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1448 {
1449 assert(error != VK_SUCCESS);
1450 if (batch->status == VK_SUCCESS)
1451 batch->status = error;
1452 return batch->status;
1453 }
1454
1455 static inline bool
1456 anv_batch_has_error(struct anv_batch *batch)
1457 {
1458 return batch->status != VK_SUCCESS;
1459 }
1460
1461 struct anv_address {
1462 struct anv_bo *bo;
1463 uint32_t offset;
1464 };
1465
1466 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1467
1468 static inline bool
1469 anv_address_is_null(struct anv_address addr)
1470 {
1471 return addr.bo == NULL && addr.offset == 0;
1472 }
1473
1474 static inline uint64_t
1475 anv_address_physical(struct anv_address addr)
1476 {
1477 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1478 return gen_canonical_address(addr.bo->offset + addr.offset);
1479 else
1480 return gen_canonical_address(addr.offset);
1481 }
1482
1483 static inline struct anv_address
1484 anv_address_add(struct anv_address addr, uint64_t offset)
1485 {
1486 addr.offset += offset;
1487 return addr;
1488 }
1489
1490 static inline void
1491 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1492 {
1493 unsigned reloc_size = 0;
1494 if (device->info.gen >= 8) {
1495 reloc_size = sizeof(uint64_t);
1496 *(uint64_t *)p = gen_canonical_address(v);
1497 } else {
1498 reloc_size = sizeof(uint32_t);
1499 *(uint32_t *)p = v;
1500 }
1501
1502 if (flush && !device->info.has_llc)
1503 gen_flush_range(p, reloc_size);
1504 }
1505
1506 static inline uint64_t
1507 _anv_combine_address(struct anv_batch *batch, void *location,
1508 const struct anv_address address, uint32_t delta)
1509 {
1510 if (address.bo == NULL) {
1511 return address.offset + delta;
1512 } else {
1513 assert(batch->start <= location && location < batch->end);
1514
1515 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1516 }
1517 }
1518
1519 #define __gen_address_type struct anv_address
1520 #define __gen_user_data struct anv_batch
1521 #define __gen_combine_address _anv_combine_address
1522
1523 /* Wrapper macros needed to work around preprocessor argument issues. In
1524 * particular, arguments don't get pre-evaluated if they are concatenated.
1525 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1526 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1527 * We can work around this easily enough with these helpers.
1528 */
1529 #define __anv_cmd_length(cmd) cmd ## _length
1530 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1531 #define __anv_cmd_header(cmd) cmd ## _header
1532 #define __anv_cmd_pack(cmd) cmd ## _pack
1533 #define __anv_reg_num(reg) reg ## _num
1534
1535 #define anv_pack_struct(dst, struc, ...) do { \
1536 struct struc __template = { \
1537 __VA_ARGS__ \
1538 }; \
1539 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1540 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1541 } while (0)
1542
1543 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1544 void *__dst = anv_batch_emit_dwords(batch, n); \
1545 if (__dst) { \
1546 struct cmd __template = { \
1547 __anv_cmd_header(cmd), \
1548 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1549 __VA_ARGS__ \
1550 }; \
1551 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1552 } \
1553 __dst; \
1554 })
1555
1556 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1557 do { \
1558 uint32_t *dw; \
1559 \
1560 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1561 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1562 if (!dw) \
1563 break; \
1564 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1565 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1566 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1567 } while (0)
1568
1569 #define anv_batch_emit(batch, cmd, name) \
1570 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1571 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1572 __builtin_expect(_dst != NULL, 1); \
1573 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1574 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1575 _dst = NULL; \
1576 }))
1577
1578 /* MEMORY_OBJECT_CONTROL_STATE:
1579 * .GraphicsDataTypeGFDT = 0,
1580 * .LLCCacheabilityControlLLCCC = 0,
1581 * .L3CacheabilityControlL3CC = 1,
1582 */
1583 #define GEN7_MOCS 1
1584
1585 /* MEMORY_OBJECT_CONTROL_STATE:
1586 * .LLCeLLCCacheabilityControlLLCCC = 0,
1587 * .L3CacheabilityControlL3CC = 1,
1588 */
1589 #define GEN75_MOCS 1
1590
1591 /* MEMORY_OBJECT_CONTROL_STATE:
1592 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1593 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1594 * .AgeforQUADLRU = 0
1595 */
1596 #define GEN8_MOCS 0x78
1597
1598 /* MEMORY_OBJECT_CONTROL_STATE:
1599 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1600 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1601 * .AgeforQUADLRU = 0
1602 */
1603 #define GEN8_EXTERNAL_MOCS 0x18
1604
1605 /* Skylake: MOCS is now an index into an array of 62 different caching
1606 * configurations programmed by the kernel.
1607 */
1608
1609 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1610 #define GEN9_MOCS (2 << 1)
1611
1612 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1613 #define GEN9_EXTERNAL_MOCS (1 << 1)
1614
1615 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1616 #define GEN10_MOCS GEN9_MOCS
1617 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1618
1619 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1620 #define GEN11_MOCS GEN9_MOCS
1621 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1622
1623 /* TigerLake MOCS */
1624 #define GEN12_MOCS GEN9_MOCS
1625 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1626 #define GEN12_EXTERNAL_MOCS (3 << 1)
1627
1628 struct anv_device_memory {
1629 struct list_head link;
1630
1631 struct anv_bo * bo;
1632 struct anv_memory_type * type;
1633 VkDeviceSize map_size;
1634 void * map;
1635
1636 /* If set, we are holding reference to AHardwareBuffer
1637 * which we must release when memory is freed.
1638 */
1639 struct AHardwareBuffer * ahw;
1640
1641 /* If set, this memory comes from a host pointer. */
1642 void * host_ptr;
1643 };
1644
1645 /**
1646 * Header for Vertex URB Entry (VUE)
1647 */
1648 struct anv_vue_header {
1649 uint32_t Reserved;
1650 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1651 uint32_t ViewportIndex;
1652 float PointWidth;
1653 };
1654
1655 /** Struct representing a sampled image descriptor
1656 *
1657 * This descriptor layout is used for sampled images, bare sampler, and
1658 * combined image/sampler descriptors.
1659 */
1660 struct anv_sampled_image_descriptor {
1661 /** Bindless image handle
1662 *
1663 * This is expected to already be shifted such that the 20-bit
1664 * SURFACE_STATE table index is in the top 20 bits.
1665 */
1666 uint32_t image;
1667
1668 /** Bindless sampler handle
1669 *
1670 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1671 * to the dynamic state base address.
1672 */
1673 uint32_t sampler;
1674 };
1675
1676 struct anv_texture_swizzle_descriptor {
1677 /** Texture swizzle
1678 *
1679 * See also nir_intrinsic_channel_select_intel
1680 */
1681 uint8_t swizzle[4];
1682
1683 /** Unused padding to ensure the struct is a multiple of 64 bits */
1684 uint32_t _pad;
1685 };
1686
1687 /** Struct representing a storage image descriptor */
1688 struct anv_storage_image_descriptor {
1689 /** Bindless image handles
1690 *
1691 * These are expected to already be shifted such that the 20-bit
1692 * SURFACE_STATE table index is in the top 20 bits.
1693 */
1694 uint32_t read_write;
1695 uint32_t write_only;
1696 };
1697
1698 /** Struct representing a address/range descriptor
1699 *
1700 * The fields of this struct correspond directly to the data layout of
1701 * nir_address_format_64bit_bounded_global addresses. The last field is the
1702 * offset in the NIR address so it must be zero so that when you load the
1703 * descriptor you get a pointer to the start of the range.
1704 */
1705 struct anv_address_range_descriptor {
1706 uint64_t address;
1707 uint32_t range;
1708 uint32_t zero;
1709 };
1710
1711 enum anv_descriptor_data {
1712 /** The descriptor contains a BTI reference to a surface state */
1713 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1714 /** The descriptor contains a BTI reference to a sampler state */
1715 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1716 /** The descriptor contains an actual buffer view */
1717 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1718 /** The descriptor contains auxiliary image layout data */
1719 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1720 /** The descriptor contains auxiliary image layout data */
1721 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1722 /** anv_address_range_descriptor with a buffer address and range */
1723 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1724 /** Bindless surface handle */
1725 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1726 /** Storage image handles */
1727 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1728 /** Storage image handles */
1729 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1730 };
1731
1732 struct anv_descriptor_set_binding_layout {
1733 #ifndef NDEBUG
1734 /* The type of the descriptors in this binding */
1735 VkDescriptorType type;
1736 #endif
1737
1738 /* Flags provided when this binding was created */
1739 VkDescriptorBindingFlagsEXT flags;
1740
1741 /* Bitfield representing the type of data this descriptor contains */
1742 enum anv_descriptor_data data;
1743
1744 /* Maximum number of YCbCr texture/sampler planes */
1745 uint8_t max_plane_count;
1746
1747 /* Number of array elements in this binding (or size in bytes for inline
1748 * uniform data)
1749 */
1750 uint16_t array_size;
1751
1752 /* Index into the flattend descriptor set */
1753 uint16_t descriptor_index;
1754
1755 /* Index into the dynamic state array for a dynamic buffer */
1756 int16_t dynamic_offset_index;
1757
1758 /* Index into the descriptor set buffer views */
1759 int16_t buffer_view_index;
1760
1761 /* Offset into the descriptor buffer where this descriptor lives */
1762 uint32_t descriptor_offset;
1763
1764 /* Immutable samplers (or NULL if no immutable samplers) */
1765 struct anv_sampler **immutable_samplers;
1766 };
1767
1768 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1769
1770 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1771 VkDescriptorType type);
1772
1773 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1774 const struct anv_descriptor_set_binding_layout *binding,
1775 bool sampler);
1776
1777 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1778 const struct anv_descriptor_set_binding_layout *binding,
1779 bool sampler);
1780
1781 struct anv_descriptor_set_layout {
1782 /* Descriptor set layouts can be destroyed at almost any time */
1783 uint32_t ref_cnt;
1784
1785 /* Number of bindings in this descriptor set */
1786 uint16_t binding_count;
1787
1788 /* Total size of the descriptor set with room for all array entries */
1789 uint16_t size;
1790
1791 /* Shader stages affected by this descriptor set */
1792 uint16_t shader_stages;
1793
1794 /* Number of buffer views in this descriptor set */
1795 uint16_t buffer_view_count;
1796
1797 /* Number of dynamic offsets used by this descriptor set */
1798 uint16_t dynamic_offset_count;
1799
1800 /* Size of the descriptor buffer for this descriptor set */
1801 uint32_t descriptor_buffer_size;
1802
1803 /* Bindings in this descriptor set */
1804 struct anv_descriptor_set_binding_layout binding[0];
1805 };
1806
1807 static inline void
1808 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1809 {
1810 assert(layout && layout->ref_cnt >= 1);
1811 p_atomic_inc(&layout->ref_cnt);
1812 }
1813
1814 static inline void
1815 anv_descriptor_set_layout_unref(struct anv_device *device,
1816 struct anv_descriptor_set_layout *layout)
1817 {
1818 assert(layout && layout->ref_cnt >= 1);
1819 if (p_atomic_dec_zero(&layout->ref_cnt))
1820 vk_free(&device->alloc, layout);
1821 }
1822
1823 struct anv_descriptor {
1824 VkDescriptorType type;
1825
1826 union {
1827 struct {
1828 VkImageLayout layout;
1829 struct anv_image_view *image_view;
1830 struct anv_sampler *sampler;
1831 };
1832
1833 struct {
1834 struct anv_buffer *buffer;
1835 uint64_t offset;
1836 uint64_t range;
1837 };
1838
1839 struct anv_buffer_view *buffer_view;
1840 };
1841 };
1842
1843 struct anv_descriptor_set {
1844 struct anv_descriptor_pool *pool;
1845 struct anv_descriptor_set_layout *layout;
1846 uint32_t size;
1847
1848 /* State relative to anv_descriptor_pool::bo */
1849 struct anv_state desc_mem;
1850 /* Surface state for the descriptor buffer */
1851 struct anv_state desc_surface_state;
1852
1853 uint32_t buffer_view_count;
1854 struct anv_buffer_view *buffer_views;
1855
1856 /* Link to descriptor pool's desc_sets list . */
1857 struct list_head pool_link;
1858
1859 struct anv_descriptor descriptors[0];
1860 };
1861
1862 struct anv_buffer_view {
1863 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1864 uint64_t range; /**< VkBufferViewCreateInfo::range */
1865
1866 struct anv_address address;
1867
1868 struct anv_state surface_state;
1869 struct anv_state storage_surface_state;
1870 struct anv_state writeonly_storage_surface_state;
1871
1872 struct brw_image_param storage_image_param;
1873 };
1874
1875 struct anv_push_descriptor_set {
1876 struct anv_descriptor_set set;
1877
1878 /* Put this field right behind anv_descriptor_set so it fills up the
1879 * descriptors[0] field. */
1880 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1881
1882 /** True if the descriptor set buffer has been referenced by a draw or
1883 * dispatch command.
1884 */
1885 bool set_used_on_gpu;
1886
1887 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1888 };
1889
1890 struct anv_descriptor_pool {
1891 uint32_t size;
1892 uint32_t next;
1893 uint32_t free_list;
1894
1895 struct anv_bo *bo;
1896 struct util_vma_heap bo_heap;
1897
1898 struct anv_state_stream surface_state_stream;
1899 void *surface_state_free_list;
1900
1901 struct list_head desc_sets;
1902
1903 char data[0];
1904 };
1905
1906 enum anv_descriptor_template_entry_type {
1907 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1908 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1909 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1910 };
1911
1912 struct anv_descriptor_template_entry {
1913 /* The type of descriptor in this entry */
1914 VkDescriptorType type;
1915
1916 /* Binding in the descriptor set */
1917 uint32_t binding;
1918
1919 /* Offset at which to write into the descriptor set binding */
1920 uint32_t array_element;
1921
1922 /* Number of elements to write into the descriptor set binding */
1923 uint32_t array_count;
1924
1925 /* Offset into the user provided data */
1926 size_t offset;
1927
1928 /* Stride between elements into the user provided data */
1929 size_t stride;
1930 };
1931
1932 struct anv_descriptor_update_template {
1933 VkPipelineBindPoint bind_point;
1934
1935 /* The descriptor set this template corresponds to. This value is only
1936 * valid if the template was created with the templateType
1937 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1938 */
1939 uint8_t set;
1940
1941 /* Number of entries in this template */
1942 uint32_t entry_count;
1943
1944 /* Entries of the template */
1945 struct anv_descriptor_template_entry entries[0];
1946 };
1947
1948 size_t
1949 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1950
1951 void
1952 anv_descriptor_set_write_image_view(struct anv_device *device,
1953 struct anv_descriptor_set *set,
1954 const VkDescriptorImageInfo * const info,
1955 VkDescriptorType type,
1956 uint32_t binding,
1957 uint32_t element);
1958
1959 void
1960 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1961 struct anv_descriptor_set *set,
1962 VkDescriptorType type,
1963 struct anv_buffer_view *buffer_view,
1964 uint32_t binding,
1965 uint32_t element);
1966
1967 void
1968 anv_descriptor_set_write_buffer(struct anv_device *device,
1969 struct anv_descriptor_set *set,
1970 struct anv_state_stream *alloc_stream,
1971 VkDescriptorType type,
1972 struct anv_buffer *buffer,
1973 uint32_t binding,
1974 uint32_t element,
1975 VkDeviceSize offset,
1976 VkDeviceSize range);
1977 void
1978 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1979 struct anv_descriptor_set *set,
1980 uint32_t binding,
1981 const void *data,
1982 size_t offset,
1983 size_t size);
1984
1985 void
1986 anv_descriptor_set_write_template(struct anv_device *device,
1987 struct anv_descriptor_set *set,
1988 struct anv_state_stream *alloc_stream,
1989 const struct anv_descriptor_update_template *template,
1990 const void *data);
1991
1992 VkResult
1993 anv_descriptor_set_create(struct anv_device *device,
1994 struct anv_descriptor_pool *pool,
1995 struct anv_descriptor_set_layout *layout,
1996 struct anv_descriptor_set **out_set);
1997
1998 void
1999 anv_descriptor_set_destroy(struct anv_device *device,
2000 struct anv_descriptor_pool *pool,
2001 struct anv_descriptor_set *set);
2002
2003 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2004 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2005 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2006 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2007
2008 struct anv_pipeline_binding {
2009 /* The descriptor set this surface corresponds to. The special value of
2010 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
2011 * to a color attachment and not a regular descriptor.
2012 */
2013 uint8_t set;
2014
2015 /* Binding in the descriptor set */
2016 uint32_t binding;
2017
2018 /* Index in the binding */
2019 uint32_t index;
2020
2021 /* Plane in the binding index */
2022 uint8_t plane;
2023
2024 /* Input attachment index (relative to the subpass) */
2025 uint8_t input_attachment_index;
2026
2027 /* For a storage image, whether it is write-only */
2028 bool write_only;
2029 };
2030
2031 struct anv_pipeline_layout {
2032 struct {
2033 struct anv_descriptor_set_layout *layout;
2034 uint32_t dynamic_offset_start;
2035 } set[MAX_SETS];
2036
2037 uint32_t num_sets;
2038
2039 unsigned char sha1[20];
2040 };
2041
2042 struct anv_buffer {
2043 struct anv_device * device;
2044 VkDeviceSize size;
2045
2046 VkBufferUsageFlags usage;
2047
2048 /* Set when bound */
2049 struct anv_address address;
2050 };
2051
2052 static inline uint64_t
2053 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2054 {
2055 assert(offset <= buffer->size);
2056 if (range == VK_WHOLE_SIZE) {
2057 return buffer->size - offset;
2058 } else {
2059 assert(range + offset >= range);
2060 assert(range + offset <= buffer->size);
2061 return range;
2062 }
2063 }
2064
2065 enum anv_cmd_dirty_bits {
2066 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2067 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2068 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2069 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2070 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2071 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2072 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2073 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2074 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2075 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2076 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2077 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2078 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2079 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2080 };
2081 typedef uint32_t anv_cmd_dirty_mask_t;
2082
2083 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2084 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2085 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2086 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2087 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2088 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2089 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2090 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2091 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2092 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2093 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2094
2095 static inline enum anv_cmd_dirty_bits
2096 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2097 {
2098 switch (vk_state) {
2099 case VK_DYNAMIC_STATE_VIEWPORT:
2100 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2101 case VK_DYNAMIC_STATE_SCISSOR:
2102 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2103 case VK_DYNAMIC_STATE_LINE_WIDTH:
2104 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2105 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2106 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2107 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2108 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2109 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2110 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2111 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2112 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2113 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2114 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2115 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2116 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2117 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2118 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2119 default:
2120 assert(!"Unsupported dynamic state");
2121 return 0;
2122 }
2123 }
2124
2125
2126 enum anv_pipe_bits {
2127 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2128 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2129 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2130 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2131 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2132 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2133 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2134 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2135 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2136 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2137 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2138 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2139
2140 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2141 * a flush has happened but not a CS stall. The next time we do any sort
2142 * of invalidation we need to insert a CS stall at that time. Otherwise,
2143 * we would have to CS stall on every flush which could be bad.
2144 */
2145 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2146
2147 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2148 * target operations related to transfer commands with VkBuffer as
2149 * destination are ongoing. Some operations like copies on the command
2150 * streamer might need to be aware of this to trigger the appropriate stall
2151 * before they can proceed with the copy.
2152 */
2153 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2154 };
2155
2156 #define ANV_PIPE_FLUSH_BITS ( \
2157 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2158 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2159 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2160 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2161
2162 #define ANV_PIPE_STALL_BITS ( \
2163 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2164 ANV_PIPE_DEPTH_STALL_BIT | \
2165 ANV_PIPE_CS_STALL_BIT)
2166
2167 #define ANV_PIPE_INVALIDATE_BITS ( \
2168 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2169 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2170 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2171 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2172 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2173 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2174
2175 static inline enum anv_pipe_bits
2176 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2177 {
2178 enum anv_pipe_bits pipe_bits = 0;
2179
2180 unsigned b;
2181 for_each_bit(b, flags) {
2182 switch ((VkAccessFlagBits)(1 << b)) {
2183 case VK_ACCESS_SHADER_WRITE_BIT:
2184 /* We're transitioning a buffer that was previously used as write
2185 * destination through the data port. To make its content available
2186 * to future operations, flush the data cache.
2187 */
2188 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2189 break;
2190 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2191 /* We're transitioning a buffer that was previously used as render
2192 * target. To make its content available to future operations, flush
2193 * the render target cache.
2194 */
2195 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2196 break;
2197 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2198 /* We're transitioning a buffer that was previously used as depth
2199 * buffer. To make its content available to future operations, flush
2200 * the depth cache.
2201 */
2202 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2203 break;
2204 case VK_ACCESS_TRANSFER_WRITE_BIT:
2205 /* We're transitioning a buffer that was previously used as a
2206 * transfer write destination. Generic write operations include color
2207 * & depth operations as well as buffer operations like :
2208 * - vkCmdClearColorImage()
2209 * - vkCmdClearDepthStencilImage()
2210 * - vkCmdBlitImage()
2211 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2212 *
2213 * Most of these operations are implemented using Blorp which writes
2214 * through the render target, so flush that cache to make it visible
2215 * to future operations. And for depth related operations we also
2216 * need to flush the depth cache.
2217 */
2218 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2219 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2220 break;
2221 case VK_ACCESS_MEMORY_WRITE_BIT:
2222 /* We're transitioning a buffer for generic write operations. Flush
2223 * all the caches.
2224 */
2225 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2226 break;
2227 default:
2228 break; /* Nothing to do */
2229 }
2230 }
2231
2232 return pipe_bits;
2233 }
2234
2235 static inline enum anv_pipe_bits
2236 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2237 {
2238 enum anv_pipe_bits pipe_bits = 0;
2239
2240 unsigned b;
2241 for_each_bit(b, flags) {
2242 switch ((VkAccessFlagBits)(1 << b)) {
2243 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2244 /* Indirect draw commands take a buffer as input that we're going to
2245 * read from the command streamer to load some of the HW registers
2246 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2247 * command streamer stall so that all the cache flushes have
2248 * completed before the command streamer loads from memory.
2249 */
2250 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2251 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2252 * through a vertex buffer, so invalidate that cache.
2253 */
2254 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2255 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2256 * UBO from the buffer, so we need to invalidate constant cache.
2257 */
2258 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2259 break;
2260 case VK_ACCESS_INDEX_READ_BIT:
2261 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2262 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2263 * commands, so we invalidate the VF cache to make sure there is no
2264 * stale data when we start rendering.
2265 */
2266 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2267 break;
2268 case VK_ACCESS_UNIFORM_READ_BIT:
2269 /* We transitioning a buffer to be used as uniform data. Because
2270 * uniform is accessed through the data port & sampler, we need to
2271 * invalidate the texture cache (sampler) & constant cache (data
2272 * port) to avoid stale data.
2273 */
2274 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2275 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2276 break;
2277 case VK_ACCESS_SHADER_READ_BIT:
2278 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2279 case VK_ACCESS_TRANSFER_READ_BIT:
2280 /* Transitioning a buffer to be read through the sampler, so
2281 * invalidate the texture cache, we don't want any stale data.
2282 */
2283 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2284 break;
2285 case VK_ACCESS_MEMORY_READ_BIT:
2286 /* Transitioning a buffer for generic read, invalidate all the
2287 * caches.
2288 */
2289 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2290 break;
2291 case VK_ACCESS_MEMORY_WRITE_BIT:
2292 /* Generic write, make sure all previously written things land in
2293 * memory.
2294 */
2295 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2296 break;
2297 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2298 /* Transitioning a buffer for conditional rendering. We'll load the
2299 * content of this buffer into HW registers using the command
2300 * streamer, so we need to stall the command streamer to make sure
2301 * any in-flight flush operations have completed.
2302 */
2303 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2304 break;
2305 default:
2306 break; /* Nothing to do */
2307 }
2308 }
2309
2310 return pipe_bits;
2311 }
2312
2313 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2314 VK_IMAGE_ASPECT_COLOR_BIT | \
2315 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2316 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2317 VK_IMAGE_ASPECT_PLANE_2_BIT)
2318 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2319 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2320 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2321 VK_IMAGE_ASPECT_PLANE_2_BIT)
2322
2323 struct anv_vertex_binding {
2324 struct anv_buffer * buffer;
2325 VkDeviceSize offset;
2326 };
2327
2328 struct anv_xfb_binding {
2329 struct anv_buffer * buffer;
2330 VkDeviceSize offset;
2331 VkDeviceSize size;
2332 };
2333
2334 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2335 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2336 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2337
2338 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2339 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2340 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2341
2342 struct anv_push_constants {
2343 /* Push constant data provided by the client through vkPushConstants */
2344 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2345
2346 /* Used for vkCmdDispatchBase */
2347 uint32_t base_work_group_id[3];
2348 };
2349
2350 struct anv_dynamic_state {
2351 struct {
2352 uint32_t count;
2353 VkViewport viewports[MAX_VIEWPORTS];
2354 } viewport;
2355
2356 struct {
2357 uint32_t count;
2358 VkRect2D scissors[MAX_SCISSORS];
2359 } scissor;
2360
2361 float line_width;
2362
2363 struct {
2364 float bias;
2365 float clamp;
2366 float slope;
2367 } depth_bias;
2368
2369 float blend_constants[4];
2370
2371 struct {
2372 float min;
2373 float max;
2374 } depth_bounds;
2375
2376 struct {
2377 uint32_t front;
2378 uint32_t back;
2379 } stencil_compare_mask;
2380
2381 struct {
2382 uint32_t front;
2383 uint32_t back;
2384 } stencil_write_mask;
2385
2386 struct {
2387 uint32_t front;
2388 uint32_t back;
2389 } stencil_reference;
2390
2391 struct {
2392 uint32_t factor;
2393 uint16_t pattern;
2394 } line_stipple;
2395 };
2396
2397 extern const struct anv_dynamic_state default_dynamic_state;
2398
2399 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2400 const struct anv_dynamic_state *src,
2401 uint32_t copy_mask);
2402
2403 struct anv_surface_state {
2404 struct anv_state state;
2405 /** Address of the surface referred to by this state
2406 *
2407 * This address is relative to the start of the BO.
2408 */
2409 struct anv_address address;
2410 /* Address of the aux surface, if any
2411 *
2412 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2413 *
2414 * With the exception of gen8, the bottom 12 bits of this address' offset
2415 * include extra aux information.
2416 */
2417 struct anv_address aux_address;
2418 /* Address of the clear color, if any
2419 *
2420 * This address is relative to the start of the BO.
2421 */
2422 struct anv_address clear_address;
2423 };
2424
2425 /**
2426 * Attachment state when recording a renderpass instance.
2427 *
2428 * The clear value is valid only if there exists a pending clear.
2429 */
2430 struct anv_attachment_state {
2431 enum isl_aux_usage aux_usage;
2432 enum isl_aux_usage input_aux_usage;
2433 struct anv_surface_state color;
2434 struct anv_surface_state input;
2435
2436 VkImageLayout current_layout;
2437 VkImageAspectFlags pending_clear_aspects;
2438 VkImageAspectFlags pending_load_aspects;
2439 bool fast_clear;
2440 VkClearValue clear_value;
2441 bool clear_color_is_zero_one;
2442 bool clear_color_is_zero;
2443
2444 /* When multiview is active, attachments with a renderpass clear
2445 * operation have their respective layers cleared on the first
2446 * subpass that uses them, and only in that subpass. We keep track
2447 * of this using a bitfield to indicate which layers of an attachment
2448 * have not been cleared yet when multiview is active.
2449 */
2450 uint32_t pending_clear_views;
2451 struct anv_image_view * image_view;
2452 };
2453
2454 /** State tracking for particular pipeline bind point
2455 *
2456 * This struct is the base struct for anv_cmd_graphics_state and
2457 * anv_cmd_compute_state. These are used to track state which is bound to a
2458 * particular type of pipeline. Generic state that applies per-stage such as
2459 * binding table offsets and push constants is tracked generically with a
2460 * per-stage array in anv_cmd_state.
2461 */
2462 struct anv_cmd_pipeline_state {
2463 struct anv_pipeline *pipeline;
2464 struct anv_pipeline_layout *layout;
2465
2466 struct anv_descriptor_set *descriptors[MAX_SETS];
2467 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2468
2469 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2470 };
2471
2472 /** State tracking for graphics pipeline
2473 *
2474 * This has anv_cmd_pipeline_state as a base struct to track things which get
2475 * bound to a graphics pipeline. Along with general pipeline bind point state
2476 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2477 * state which is graphics-specific.
2478 */
2479 struct anv_cmd_graphics_state {
2480 struct anv_cmd_pipeline_state base;
2481
2482 anv_cmd_dirty_mask_t dirty;
2483 uint32_t vb_dirty;
2484
2485 struct anv_dynamic_state dynamic;
2486
2487 struct {
2488 struct anv_buffer *index_buffer;
2489 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2490 uint32_t index_offset;
2491 } gen7;
2492 };
2493
2494 /** State tracking for compute pipeline
2495 *
2496 * This has anv_cmd_pipeline_state as a base struct to track things which get
2497 * bound to a compute pipeline. Along with general pipeline bind point state
2498 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2499 * state which is compute-specific.
2500 */
2501 struct anv_cmd_compute_state {
2502 struct anv_cmd_pipeline_state base;
2503
2504 bool pipeline_dirty;
2505
2506 struct anv_address num_workgroups;
2507 };
2508
2509 /** State required while building cmd buffer */
2510 struct anv_cmd_state {
2511 /* PIPELINE_SELECT.PipelineSelection */
2512 uint32_t current_pipeline;
2513 const struct gen_l3_config * current_l3_config;
2514 uint32_t last_aux_map_state;
2515
2516 struct anv_cmd_graphics_state gfx;
2517 struct anv_cmd_compute_state compute;
2518
2519 enum anv_pipe_bits pending_pipe_bits;
2520 VkShaderStageFlags descriptors_dirty;
2521 VkShaderStageFlags push_constants_dirty;
2522
2523 struct anv_framebuffer * framebuffer;
2524 struct anv_render_pass * pass;
2525 struct anv_subpass * subpass;
2526 VkRect2D render_area;
2527 uint32_t restart_index;
2528 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2529 bool xfb_enabled;
2530 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2531 VkShaderStageFlags push_constant_stages;
2532 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2533 struct anv_state binding_tables[MESA_SHADER_STAGES];
2534 struct anv_state samplers[MESA_SHADER_STAGES];
2535
2536 /**
2537 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2538 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2539 * and before invoking the secondary in ExecuteCommands.
2540 */
2541 bool pma_fix_enabled;
2542
2543 /**
2544 * Whether or not we know for certain that HiZ is enabled for the current
2545 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2546 * enabled or not, this will be false.
2547 */
2548 bool hiz_enabled;
2549
2550 bool conditional_render_enabled;
2551
2552 /**
2553 * Last rendering scale argument provided to
2554 * genX(cmd_buffer_emit_hashing_mode)().
2555 */
2556 unsigned current_hash_scale;
2557
2558 /**
2559 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2560 * valid only when recording a render pass instance.
2561 */
2562 struct anv_attachment_state * attachments;
2563
2564 /**
2565 * Surface states for color render targets. These are stored in a single
2566 * flat array. For depth-stencil attachments, the surface state is simply
2567 * left blank.
2568 */
2569 struct anv_state render_pass_states;
2570
2571 /**
2572 * A null surface state of the right size to match the framebuffer. This
2573 * is one of the states in render_pass_states.
2574 */
2575 struct anv_state null_surface_state;
2576 };
2577
2578 struct anv_cmd_pool {
2579 VkAllocationCallbacks alloc;
2580 struct list_head cmd_buffers;
2581 };
2582
2583 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2584
2585 enum anv_cmd_buffer_exec_mode {
2586 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2587 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2588 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2589 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2590 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2591 };
2592
2593 struct anv_cmd_buffer {
2594 VK_LOADER_DATA _loader_data;
2595
2596 struct anv_device * device;
2597
2598 struct anv_cmd_pool * pool;
2599 struct list_head pool_link;
2600
2601 struct anv_batch batch;
2602
2603 /* Fields required for the actual chain of anv_batch_bo's.
2604 *
2605 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2606 */
2607 struct list_head batch_bos;
2608 enum anv_cmd_buffer_exec_mode exec_mode;
2609
2610 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2611 * referenced by this command buffer
2612 *
2613 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2614 */
2615 struct u_vector seen_bbos;
2616
2617 /* A vector of int32_t's for every block of binding tables.
2618 *
2619 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2620 */
2621 struct u_vector bt_block_states;
2622 uint32_t bt_next;
2623
2624 struct anv_reloc_list surface_relocs;
2625 /** Last seen surface state block pool center bo offset */
2626 uint32_t last_ss_pool_center;
2627
2628 /* Serial for tracking buffer completion */
2629 uint32_t serial;
2630
2631 /* Stream objects for storing temporary data */
2632 struct anv_state_stream surface_state_stream;
2633 struct anv_state_stream dynamic_state_stream;
2634
2635 VkCommandBufferUsageFlags usage_flags;
2636 VkCommandBufferLevel level;
2637
2638 struct anv_cmd_state state;
2639
2640 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2641 uint64_t intel_perf_marker;
2642 };
2643
2644 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2645 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2646 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2647 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2648 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2649 struct anv_cmd_buffer *secondary);
2650 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2651 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2652 struct anv_cmd_buffer *cmd_buffer,
2653 const VkSemaphore *in_semaphores,
2654 uint32_t num_in_semaphores,
2655 const VkSemaphore *out_semaphores,
2656 uint32_t num_out_semaphores,
2657 VkFence fence);
2658
2659 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2660
2661 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2662 const void *data, uint32_t size, uint32_t alignment);
2663 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2664 uint32_t *a, uint32_t *b,
2665 uint32_t dwords, uint32_t alignment);
2666
2667 struct anv_address
2668 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2669 struct anv_state
2670 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2671 uint32_t entries, uint32_t *state_offset);
2672 struct anv_state
2673 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2674 struct anv_state
2675 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2676 uint32_t size, uint32_t alignment);
2677
2678 VkResult
2679 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2680
2681 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2682 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2683 bool depth_clamp_enable);
2684 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2685
2686 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2687 struct anv_render_pass *pass,
2688 struct anv_framebuffer *framebuffer,
2689 const VkClearValue *clear_values);
2690
2691 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2692
2693 struct anv_state
2694 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2695 gl_shader_stage stage);
2696 struct anv_state
2697 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2698
2699 const struct anv_image_view *
2700 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2701
2702 VkResult
2703 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2704 uint32_t num_entries,
2705 uint32_t *state_offset,
2706 struct anv_state *bt_state);
2707
2708 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2709
2710 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2711
2712 enum anv_fence_type {
2713 ANV_FENCE_TYPE_NONE = 0,
2714 ANV_FENCE_TYPE_BO,
2715 ANV_FENCE_TYPE_SYNCOBJ,
2716 ANV_FENCE_TYPE_WSI,
2717 };
2718
2719 enum anv_bo_fence_state {
2720 /** Indicates that this is a new (or newly reset fence) */
2721 ANV_BO_FENCE_STATE_RESET,
2722
2723 /** Indicates that this fence has been submitted to the GPU but is still
2724 * (as far as we know) in use by the GPU.
2725 */
2726 ANV_BO_FENCE_STATE_SUBMITTED,
2727
2728 ANV_BO_FENCE_STATE_SIGNALED,
2729 };
2730
2731 struct anv_fence_impl {
2732 enum anv_fence_type type;
2733
2734 union {
2735 /** Fence implementation for BO fences
2736 *
2737 * These fences use a BO and a set of CPU-tracked state flags. The BO
2738 * is added to the object list of the last execbuf call in a QueueSubmit
2739 * and is marked EXEC_WRITE. The state flags track when the BO has been
2740 * submitted to the kernel. We need to do this because Vulkan lets you
2741 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2742 * will say it's idle in this case.
2743 */
2744 struct {
2745 struct anv_bo *bo;
2746 enum anv_bo_fence_state state;
2747 } bo;
2748
2749 /** DRM syncobj handle for syncobj-based fences */
2750 uint32_t syncobj;
2751
2752 /** WSI fence */
2753 struct wsi_fence *fence_wsi;
2754 };
2755 };
2756
2757 struct anv_fence {
2758 /* Permanent fence state. Every fence has some form of permanent state
2759 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2760 * cross-process fences) or it could just be a dummy for use internally.
2761 */
2762 struct anv_fence_impl permanent;
2763
2764 /* Temporary fence state. A fence *may* have temporary state. That state
2765 * is added to the fence by an import operation and is reset back to
2766 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2767 * state cannot be signaled because the fence must already be signaled
2768 * before the temporary state can be exported from the fence in the other
2769 * process and imported here.
2770 */
2771 struct anv_fence_impl temporary;
2772 };
2773
2774 struct anv_event {
2775 uint64_t semaphore;
2776 struct anv_state state;
2777 };
2778
2779 enum anv_semaphore_type {
2780 ANV_SEMAPHORE_TYPE_NONE = 0,
2781 ANV_SEMAPHORE_TYPE_DUMMY,
2782 ANV_SEMAPHORE_TYPE_BO,
2783 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2784 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2785 };
2786
2787 struct anv_semaphore_impl {
2788 enum anv_semaphore_type type;
2789
2790 union {
2791 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2792 * This BO will be added to the object list on any execbuf2 calls for
2793 * which this semaphore is used as a wait or signal fence. When used as
2794 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2795 */
2796 struct anv_bo *bo;
2797
2798 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2799 * If the semaphore is in the unsignaled state due to either just being
2800 * created or because it has been used for a wait, fd will be -1.
2801 */
2802 int fd;
2803
2804 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2805 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2806 * import so we don't need to bother with a userspace cache.
2807 */
2808 uint32_t syncobj;
2809 };
2810 };
2811
2812 struct anv_semaphore {
2813 /* Permanent semaphore state. Every semaphore has some form of permanent
2814 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2815 * (for cross-process semaphores0 or it could just be a dummy for use
2816 * internally.
2817 */
2818 struct anv_semaphore_impl permanent;
2819
2820 /* Temporary semaphore state. A semaphore *may* have temporary state.
2821 * That state is added to the semaphore by an import operation and is reset
2822 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2823 * semaphore with temporary state cannot be signaled because the semaphore
2824 * must already be signaled before the temporary state can be exported from
2825 * the semaphore in the other process and imported here.
2826 */
2827 struct anv_semaphore_impl temporary;
2828 };
2829
2830 void anv_semaphore_reset_temporary(struct anv_device *device,
2831 struct anv_semaphore *semaphore);
2832
2833 struct anv_shader_module {
2834 unsigned char sha1[20];
2835 uint32_t size;
2836 char data[0];
2837 };
2838
2839 static inline gl_shader_stage
2840 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2841 {
2842 assert(__builtin_popcount(vk_stage) == 1);
2843 return ffs(vk_stage) - 1;
2844 }
2845
2846 static inline VkShaderStageFlagBits
2847 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2848 {
2849 return (1 << mesa_stage);
2850 }
2851
2852 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2853
2854 #define anv_foreach_stage(stage, stage_bits) \
2855 for (gl_shader_stage stage, \
2856 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2857 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2858 __tmp &= ~(1 << (stage)))
2859
2860 struct anv_pipeline_bind_map {
2861 uint32_t surface_count;
2862 uint32_t sampler_count;
2863
2864 struct anv_pipeline_binding * surface_to_descriptor;
2865 struct anv_pipeline_binding * sampler_to_descriptor;
2866 };
2867
2868 struct anv_shader_bin_key {
2869 uint32_t size;
2870 uint8_t data[0];
2871 };
2872
2873 struct anv_shader_bin {
2874 uint32_t ref_cnt;
2875
2876 const struct anv_shader_bin_key *key;
2877
2878 struct anv_state kernel;
2879 uint32_t kernel_size;
2880
2881 struct anv_state constant_data;
2882 uint32_t constant_data_size;
2883
2884 const struct brw_stage_prog_data *prog_data;
2885 uint32_t prog_data_size;
2886
2887 struct brw_compile_stats stats[3];
2888 uint32_t num_stats;
2889
2890 struct nir_xfb_info *xfb_info;
2891
2892 struct anv_pipeline_bind_map bind_map;
2893 };
2894
2895 struct anv_shader_bin *
2896 anv_shader_bin_create(struct anv_device *device,
2897 const void *key, uint32_t key_size,
2898 const void *kernel, uint32_t kernel_size,
2899 const void *constant_data, uint32_t constant_data_size,
2900 const struct brw_stage_prog_data *prog_data,
2901 uint32_t prog_data_size, const void *prog_data_param,
2902 const struct brw_compile_stats *stats, uint32_t num_stats,
2903 const struct nir_xfb_info *xfb_info,
2904 const struct anv_pipeline_bind_map *bind_map);
2905
2906 void
2907 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2908
2909 static inline void
2910 anv_shader_bin_ref(struct anv_shader_bin *shader)
2911 {
2912 assert(shader && shader->ref_cnt >= 1);
2913 p_atomic_inc(&shader->ref_cnt);
2914 }
2915
2916 static inline void
2917 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2918 {
2919 assert(shader && shader->ref_cnt >= 1);
2920 if (p_atomic_dec_zero(&shader->ref_cnt))
2921 anv_shader_bin_destroy(device, shader);
2922 }
2923
2924 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2925 #define MAX_PIPELINE_EXECUTABLES 7
2926
2927 struct anv_pipeline_executable {
2928 gl_shader_stage stage;
2929
2930 struct brw_compile_stats stats;
2931
2932 char *nir;
2933 char *disasm;
2934 };
2935
2936 struct anv_pipeline {
2937 struct anv_device * device;
2938 struct anv_batch batch;
2939 uint32_t batch_data[512];
2940 struct anv_reloc_list batch_relocs;
2941 anv_cmd_dirty_mask_t dynamic_state_mask;
2942 struct anv_dynamic_state dynamic_state;
2943
2944 void * mem_ctx;
2945
2946 VkPipelineCreateFlags flags;
2947 struct anv_subpass * subpass;
2948
2949 bool needs_data_cache;
2950
2951 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2952
2953 uint32_t num_executables;
2954 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2955
2956 struct {
2957 const struct gen_l3_config * l3_config;
2958 uint32_t total_size;
2959 } urb;
2960
2961 VkShaderStageFlags active_stages;
2962 struct anv_state blend_state;
2963
2964 uint32_t vb_used;
2965 struct anv_pipeline_vertex_binding {
2966 uint32_t stride;
2967 bool instanced;
2968 uint32_t instance_divisor;
2969 } vb[MAX_VBS];
2970
2971 uint8_t xfb_used;
2972
2973 bool primitive_restart;
2974 uint32_t topology;
2975
2976 uint32_t cs_right_mask;
2977
2978 bool writes_depth;
2979 bool depth_test_enable;
2980 bool writes_stencil;
2981 bool stencil_test_enable;
2982 bool depth_clamp_enable;
2983 bool depth_clip_enable;
2984 bool sample_shading_enable;
2985 bool kill_pixel;
2986 bool depth_bounds_test_enable;
2987
2988 struct {
2989 uint32_t sf[7];
2990 uint32_t depth_stencil_state[3];
2991 } gen7;
2992
2993 struct {
2994 uint32_t sf[4];
2995 uint32_t raster[5];
2996 uint32_t wm_depth_stencil[3];
2997 } gen8;
2998
2999 struct {
3000 uint32_t wm_depth_stencil[4];
3001 } gen9;
3002
3003 uint32_t interface_descriptor_data[8];
3004 };
3005
3006 static inline bool
3007 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3008 gl_shader_stage stage)
3009 {
3010 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3011 }
3012
3013 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3014 static inline const struct brw_##prefix##_prog_data * \
3015 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3016 { \
3017 if (anv_pipeline_has_stage(pipeline, stage)) { \
3018 return (const struct brw_##prefix##_prog_data *) \
3019 pipeline->shaders[stage]->prog_data; \
3020 } else { \
3021 return NULL; \
3022 } \
3023 }
3024
3025 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3026 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3027 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3028 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3029 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3030 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3031
3032 static inline const struct brw_vue_prog_data *
3033 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3034 {
3035 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3036 return &get_gs_prog_data(pipeline)->base;
3037 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3038 return &get_tes_prog_data(pipeline)->base;
3039 else
3040 return &get_vs_prog_data(pipeline)->base;
3041 }
3042
3043 VkResult
3044 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3045 struct anv_pipeline_cache *cache,
3046 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3047 const VkAllocationCallbacks *alloc);
3048
3049 VkResult
3050 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3051 struct anv_pipeline_cache *cache,
3052 const VkComputePipelineCreateInfo *info,
3053 const struct anv_shader_module *module,
3054 const char *entrypoint,
3055 const VkSpecializationInfo *spec_info);
3056
3057 struct anv_format_plane {
3058 enum isl_format isl_format:16;
3059 struct isl_swizzle swizzle;
3060
3061 /* Whether this plane contains chroma channels */
3062 bool has_chroma;
3063
3064 /* For downscaling of YUV planes */
3065 uint8_t denominator_scales[2];
3066
3067 /* How to map sampled ycbcr planes to a single 4 component element. */
3068 struct isl_swizzle ycbcr_swizzle;
3069
3070 /* What aspect is associated to this plane */
3071 VkImageAspectFlags aspect;
3072 };
3073
3074
3075 struct anv_format {
3076 struct anv_format_plane planes[3];
3077 VkFormat vk_format;
3078 uint8_t n_planes;
3079 bool can_ycbcr;
3080 };
3081
3082 static inline uint32_t
3083 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3084 VkImageAspectFlags aspect_mask)
3085 {
3086 switch (aspect_mask) {
3087 case VK_IMAGE_ASPECT_COLOR_BIT:
3088 case VK_IMAGE_ASPECT_DEPTH_BIT:
3089 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3090 return 0;
3091 case VK_IMAGE_ASPECT_STENCIL_BIT:
3092 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3093 return 0;
3094 /* Fall-through */
3095 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3096 return 1;
3097 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3098 return 2;
3099 default:
3100 /* Purposefully assert with depth/stencil aspects. */
3101 unreachable("invalid image aspect");
3102 }
3103 }
3104
3105 static inline VkImageAspectFlags
3106 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3107 uint32_t plane)
3108 {
3109 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3110 if (util_bitcount(image_aspects) > 1)
3111 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3112 return VK_IMAGE_ASPECT_COLOR_BIT;
3113 }
3114 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3115 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3116 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3117 return VK_IMAGE_ASPECT_STENCIL_BIT;
3118 }
3119
3120 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3121 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3122
3123 const struct anv_format *
3124 anv_get_format(VkFormat format);
3125
3126 static inline uint32_t
3127 anv_get_format_planes(VkFormat vk_format)
3128 {
3129 const struct anv_format *format = anv_get_format(vk_format);
3130
3131 return format != NULL ? format->n_planes : 0;
3132 }
3133
3134 struct anv_format_plane
3135 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3136 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3137
3138 static inline enum isl_format
3139 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3140 VkImageAspectFlags aspect, VkImageTiling tiling)
3141 {
3142 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3143 }
3144
3145 static inline struct isl_swizzle
3146 anv_swizzle_for_render(struct isl_swizzle swizzle)
3147 {
3148 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3149 * RGB as RGBA for texturing
3150 */
3151 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3152 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3153
3154 /* But it doesn't matter what we render to that channel */
3155 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3156
3157 return swizzle;
3158 }
3159
3160 void
3161 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3162
3163 /**
3164 * Subsurface of an anv_image.
3165 */
3166 struct anv_surface {
3167 /** Valid only if isl_surf::size_B > 0. */
3168 struct isl_surf isl;
3169
3170 /**
3171 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3172 */
3173 uint32_t offset;
3174 };
3175
3176 struct anv_image {
3177 VkImageType type; /**< VkImageCreateInfo::imageType */
3178 /* The original VkFormat provided by the client. This may not match any
3179 * of the actual surface formats.
3180 */
3181 VkFormat vk_format;
3182 const struct anv_format *format;
3183
3184 VkImageAspectFlags aspects;
3185 VkExtent3D extent;
3186 uint32_t levels;
3187 uint32_t array_size;
3188 uint32_t samples; /**< VkImageCreateInfo::samples */
3189 uint32_t n_planes;
3190 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3191 VkImageUsageFlags stencil_usage;
3192 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3193 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3194
3195 /** True if this is needs to be bound to an appropriately tiled BO.
3196 *
3197 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3198 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3199 * we require a dedicated allocation so that we can know to allocate a
3200 * tiled buffer.
3201 */
3202 bool needs_set_tiling;
3203
3204 /**
3205 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3206 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3207 */
3208 uint64_t drm_format_mod;
3209
3210 VkDeviceSize size;
3211 uint32_t alignment;
3212
3213 /* Whether the image is made of several underlying buffer objects rather a
3214 * single one with different offsets.
3215 */
3216 bool disjoint;
3217
3218 /* All the formats that can be used when creating views of this image
3219 * are CCS_E compatible.
3220 */
3221 bool ccs_e_compatible;
3222
3223 /* Image was created with external format. */
3224 bool external_format;
3225
3226 /**
3227 * Image subsurfaces
3228 *
3229 * For each foo, anv_image::planes[x].surface is valid if and only if
3230 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3231 * to figure the number associated with a given aspect.
3232 *
3233 * The hardware requires that the depth buffer and stencil buffer be
3234 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3235 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3236 * allocate the depth and stencil buffers as separate surfaces in the same
3237 * bo.
3238 *
3239 * Memory layout :
3240 *
3241 * -----------------------
3242 * | surface0 | /|\
3243 * ----------------------- |
3244 * | shadow surface0 | |
3245 * ----------------------- | Plane 0
3246 * | aux surface0 | |
3247 * ----------------------- |
3248 * | fast clear colors0 | \|/
3249 * -----------------------
3250 * | surface1 | /|\
3251 * ----------------------- |
3252 * | shadow surface1 | |
3253 * ----------------------- | Plane 1
3254 * | aux surface1 | |
3255 * ----------------------- |
3256 * | fast clear colors1 | \|/
3257 * -----------------------
3258 * | ... |
3259 * | |
3260 * -----------------------
3261 */
3262 struct {
3263 /**
3264 * Offset of the entire plane (whenever the image is disjoint this is
3265 * set to 0).
3266 */
3267 uint32_t offset;
3268
3269 VkDeviceSize size;
3270 uint32_t alignment;
3271
3272 struct anv_surface surface;
3273
3274 /**
3275 * A surface which shadows the main surface and may have different
3276 * tiling. This is used for sampling using a tiling that isn't supported
3277 * for other operations.
3278 */
3279 struct anv_surface shadow_surface;
3280
3281 /**
3282 * For color images, this is the aux usage for this image when not used
3283 * as a color attachment.
3284 *
3285 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3286 * image has a HiZ buffer.
3287 */
3288 enum isl_aux_usage aux_usage;
3289
3290 struct anv_surface aux_surface;
3291
3292 /**
3293 * Offset of the fast clear state (used to compute the
3294 * fast_clear_state_offset of the following planes).
3295 */
3296 uint32_t fast_clear_state_offset;
3297
3298 /**
3299 * BO associated with this plane, set when bound.
3300 */
3301 struct anv_address address;
3302
3303 /**
3304 * Address of the main surface used to fill the aux map table. This is
3305 * used at destruction of the image since the Vulkan spec does not
3306 * guarantee that the address.bo field we still be valid at destruction.
3307 */
3308 uint64_t aux_map_surface_address;
3309
3310 /**
3311 * When destroying the image, also free the bo.
3312 * */
3313 bool bo_is_owned;
3314 } planes[3];
3315 };
3316
3317 /* The ordering of this enum is important */
3318 enum anv_fast_clear_type {
3319 /** Image does not have/support any fast-clear blocks */
3320 ANV_FAST_CLEAR_NONE = 0,
3321 /** Image has/supports fast-clear but only to the default value */
3322 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3323 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3324 ANV_FAST_CLEAR_ANY = 2,
3325 };
3326
3327 /* Returns the number of auxiliary buffer levels attached to an image. */
3328 static inline uint8_t
3329 anv_image_aux_levels(const struct anv_image * const image,
3330 VkImageAspectFlagBits aspect)
3331 {
3332 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3333
3334 /* The Gen12 CCS aux surface is represented with only one level. */
3335 const uint8_t aux_logical_levels =
3336 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3337 image->planes[plane].surface.isl.levels :
3338 image->planes[plane].aux_surface.isl.levels;
3339
3340 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3341 aux_logical_levels : 0;
3342 }
3343
3344 /* Returns the number of auxiliary buffer layers attached to an image. */
3345 static inline uint32_t
3346 anv_image_aux_layers(const struct anv_image * const image,
3347 VkImageAspectFlagBits aspect,
3348 const uint8_t miplevel)
3349 {
3350 assert(image);
3351
3352 /* The miplevel must exist in the main buffer. */
3353 assert(miplevel < image->levels);
3354
3355 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3356 /* There are no layers with auxiliary data because the miplevel has no
3357 * auxiliary data.
3358 */
3359 return 0;
3360 } else {
3361 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3362
3363 /* The Gen12 CCS aux surface is represented with only one layer. */
3364 const struct isl_extent4d *aux_logical_level0_px =
3365 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3366 &image->planes[plane].surface.isl.logical_level0_px :
3367 &image->planes[plane].aux_surface.isl.logical_level0_px;
3368
3369 return MAX2(aux_logical_level0_px->array_len,
3370 aux_logical_level0_px->depth >> miplevel);
3371 }
3372 }
3373
3374 static inline struct anv_address
3375 anv_image_get_clear_color_addr(const struct anv_device *device,
3376 const struct anv_image *image,
3377 VkImageAspectFlagBits aspect)
3378 {
3379 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3380
3381 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3382 return anv_address_add(image->planes[plane].address,
3383 image->planes[plane].fast_clear_state_offset);
3384 }
3385
3386 static inline struct anv_address
3387 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3388 const struct anv_image *image,
3389 VkImageAspectFlagBits aspect)
3390 {
3391 struct anv_address addr =
3392 anv_image_get_clear_color_addr(device, image, aspect);
3393
3394 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3395 device->isl_dev.ss.clear_color_state_size :
3396 device->isl_dev.ss.clear_value_size;
3397 return anv_address_add(addr, clear_color_state_size);
3398 }
3399
3400 static inline struct anv_address
3401 anv_image_get_compression_state_addr(const struct anv_device *device,
3402 const struct anv_image *image,
3403 VkImageAspectFlagBits aspect,
3404 uint32_t level, uint32_t array_layer)
3405 {
3406 assert(level < anv_image_aux_levels(image, aspect));
3407 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3408 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3409 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3410
3411 struct anv_address addr =
3412 anv_image_get_fast_clear_type_addr(device, image, aspect);
3413 addr.offset += 4; /* Go past the fast clear type */
3414
3415 if (image->type == VK_IMAGE_TYPE_3D) {
3416 for (uint32_t l = 0; l < level; l++)
3417 addr.offset += anv_minify(image->extent.depth, l) * 4;
3418 } else {
3419 addr.offset += level * image->array_size * 4;
3420 }
3421 addr.offset += array_layer * 4;
3422
3423 assert(addr.offset <
3424 image->planes[plane].address.offset + image->planes[plane].size);
3425 return addr;
3426 }
3427
3428 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3429 static inline bool
3430 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3431 const struct anv_image *image)
3432 {
3433 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3434 return false;
3435
3436 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3437 * struct. There's documentation which suggests that this feature actually
3438 * reduces performance on BDW, but it has only been observed to help so
3439 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3440 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3441 */
3442 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3443 return false;
3444
3445 return image->samples == 1;
3446 }
3447
3448 static inline bool
3449 anv_image_plane_uses_aux_map(const struct anv_device *device,
3450 const struct anv_image *image,
3451 uint32_t plane)
3452 {
3453 return device->info.has_aux_map &&
3454 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3455 }
3456
3457 void
3458 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3459 const struct anv_image *image,
3460 VkImageAspectFlagBits aspect,
3461 enum isl_aux_usage aux_usage,
3462 uint32_t level,
3463 uint32_t base_layer,
3464 uint32_t layer_count);
3465
3466 void
3467 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3468 const struct anv_image *image,
3469 VkImageAspectFlagBits aspect,
3470 enum isl_aux_usage aux_usage,
3471 enum isl_format format, struct isl_swizzle swizzle,
3472 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3473 VkRect2D area, union isl_color_value clear_color);
3474 void
3475 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3476 const struct anv_image *image,
3477 VkImageAspectFlags aspects,
3478 enum isl_aux_usage depth_aux_usage,
3479 uint32_t level,
3480 uint32_t base_layer, uint32_t layer_count,
3481 VkRect2D area,
3482 float depth_value, uint8_t stencil_value);
3483 void
3484 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3485 const struct anv_image *src_image,
3486 enum isl_aux_usage src_aux_usage,
3487 uint32_t src_level, uint32_t src_base_layer,
3488 const struct anv_image *dst_image,
3489 enum isl_aux_usage dst_aux_usage,
3490 uint32_t dst_level, uint32_t dst_base_layer,
3491 VkImageAspectFlagBits aspect,
3492 uint32_t src_x, uint32_t src_y,
3493 uint32_t dst_x, uint32_t dst_y,
3494 uint32_t width, uint32_t height,
3495 uint32_t layer_count,
3496 enum blorp_filter filter);
3497 void
3498 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3499 const struct anv_image *image,
3500 VkImageAspectFlagBits aspect, uint32_t level,
3501 uint32_t base_layer, uint32_t layer_count,
3502 enum isl_aux_op hiz_op);
3503 void
3504 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3505 const struct anv_image *image,
3506 VkImageAspectFlags aspects,
3507 uint32_t level,
3508 uint32_t base_layer, uint32_t layer_count,
3509 VkRect2D area, uint8_t stencil_value);
3510 void
3511 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3512 const struct anv_image *image,
3513 enum isl_format format,
3514 VkImageAspectFlagBits aspect,
3515 uint32_t base_layer, uint32_t layer_count,
3516 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3517 bool predicate);
3518 void
3519 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3520 const struct anv_image *image,
3521 enum isl_format format,
3522 VkImageAspectFlagBits aspect, uint32_t level,
3523 uint32_t base_layer, uint32_t layer_count,
3524 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3525 bool predicate);
3526
3527 void
3528 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3529 const struct anv_image *image,
3530 VkImageAspectFlagBits aspect,
3531 uint32_t base_level, uint32_t level_count,
3532 uint32_t base_layer, uint32_t layer_count);
3533
3534 enum isl_aux_usage
3535 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3536 const struct anv_image *image,
3537 const VkImageAspectFlagBits aspect,
3538 const VkImageLayout layout);
3539
3540 enum anv_fast_clear_type
3541 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3542 const struct anv_image * const image,
3543 const VkImageAspectFlagBits aspect,
3544 const VkImageLayout layout);
3545
3546 /* This is defined as a macro so that it works for both
3547 * VkImageSubresourceRange and VkImageSubresourceLayers
3548 */
3549 #define anv_get_layerCount(_image, _range) \
3550 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3551 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3552
3553 static inline uint32_t
3554 anv_get_levelCount(const struct anv_image *image,
3555 const VkImageSubresourceRange *range)
3556 {
3557 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3558 image->levels - range->baseMipLevel : range->levelCount;
3559 }
3560
3561 static inline VkImageAspectFlags
3562 anv_image_expand_aspects(const struct anv_image *image,
3563 VkImageAspectFlags aspects)
3564 {
3565 /* If the underlying image has color plane aspects and
3566 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3567 * the underlying image. */
3568 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3569 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3570 return image->aspects;
3571
3572 return aspects;
3573 }
3574
3575 static inline bool
3576 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3577 VkImageAspectFlags aspects2)
3578 {
3579 if (aspects1 == aspects2)
3580 return true;
3581
3582 /* Only 1 color aspects are compatibles. */
3583 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3584 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3585 util_bitcount(aspects1) == util_bitcount(aspects2))
3586 return true;
3587
3588 return false;
3589 }
3590
3591 struct anv_image_view {
3592 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3593
3594 VkImageAspectFlags aspect_mask;
3595 VkFormat vk_format;
3596 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3597
3598 unsigned n_planes;
3599 struct {
3600 uint32_t image_plane;
3601
3602 struct isl_view isl;
3603
3604 /**
3605 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3606 * image layout of SHADER_READ_ONLY_OPTIMAL or
3607 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3608 */
3609 struct anv_surface_state optimal_sampler_surface_state;
3610
3611 /**
3612 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3613 * image layout of GENERAL.
3614 */
3615 struct anv_surface_state general_sampler_surface_state;
3616
3617 /**
3618 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3619 * states for write-only and readable, using the real format for
3620 * write-only and the lowered format for readable.
3621 */
3622 struct anv_surface_state storage_surface_state;
3623 struct anv_surface_state writeonly_storage_surface_state;
3624
3625 struct brw_image_param storage_image_param;
3626 } planes[3];
3627 };
3628
3629 enum anv_image_view_state_flags {
3630 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3631 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3632 };
3633
3634 void anv_image_fill_surface_state(struct anv_device *device,
3635 const struct anv_image *image,
3636 VkImageAspectFlagBits aspect,
3637 const struct isl_view *view,
3638 isl_surf_usage_flags_t view_usage,
3639 enum isl_aux_usage aux_usage,
3640 const union isl_color_value *clear_color,
3641 enum anv_image_view_state_flags flags,
3642 struct anv_surface_state *state_inout,
3643 struct brw_image_param *image_param_out);
3644
3645 struct anv_image_create_info {
3646 const VkImageCreateInfo *vk_info;
3647
3648 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3649 isl_tiling_flags_t isl_tiling_flags;
3650
3651 /** These flags will be added to any derived from VkImageCreateInfo. */
3652 isl_surf_usage_flags_t isl_extra_usage_flags;
3653
3654 uint32_t stride;
3655 bool external_format;
3656 };
3657
3658 VkResult anv_image_create(VkDevice _device,
3659 const struct anv_image_create_info *info,
3660 const VkAllocationCallbacks* alloc,
3661 VkImage *pImage);
3662
3663 const struct anv_surface *
3664 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3665 VkImageAspectFlags aspect_mask);
3666
3667 enum isl_format
3668 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3669
3670 static inline struct VkExtent3D
3671 anv_sanitize_image_extent(const VkImageType imageType,
3672 const struct VkExtent3D imageExtent)
3673 {
3674 switch (imageType) {
3675 case VK_IMAGE_TYPE_1D:
3676 return (VkExtent3D) { imageExtent.width, 1, 1 };
3677 case VK_IMAGE_TYPE_2D:
3678 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3679 case VK_IMAGE_TYPE_3D:
3680 return imageExtent;
3681 default:
3682 unreachable("invalid image type");
3683 }
3684 }
3685
3686 static inline struct VkOffset3D
3687 anv_sanitize_image_offset(const VkImageType imageType,
3688 const struct VkOffset3D imageOffset)
3689 {
3690 switch (imageType) {
3691 case VK_IMAGE_TYPE_1D:
3692 return (VkOffset3D) { imageOffset.x, 0, 0 };
3693 case VK_IMAGE_TYPE_2D:
3694 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3695 case VK_IMAGE_TYPE_3D:
3696 return imageOffset;
3697 default:
3698 unreachable("invalid image type");
3699 }
3700 }
3701
3702 VkFormatFeatureFlags
3703 anv_get_image_format_features(const struct gen_device_info *devinfo,
3704 VkFormat vk_format,
3705 const struct anv_format *anv_format,
3706 VkImageTiling vk_tiling);
3707
3708 void anv_fill_buffer_surface_state(struct anv_device *device,
3709 struct anv_state state,
3710 enum isl_format format,
3711 struct anv_address address,
3712 uint32_t range, uint32_t stride);
3713
3714 static inline void
3715 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3716 const struct anv_attachment_state *att_state,
3717 const struct anv_image_view *iview)
3718 {
3719 const struct isl_format_layout *view_fmtl =
3720 isl_format_get_layout(iview->planes[0].isl.format);
3721
3722 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3723 if (view_fmtl->channels.c.bits) \
3724 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3725
3726 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3727 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3728 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3729 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3730
3731 #undef COPY_CLEAR_COLOR_CHANNEL
3732 }
3733
3734
3735 struct anv_ycbcr_conversion {
3736 const struct anv_format * format;
3737 VkSamplerYcbcrModelConversion ycbcr_model;
3738 VkSamplerYcbcrRange ycbcr_range;
3739 VkComponentSwizzle mapping[4];
3740 VkChromaLocation chroma_offsets[2];
3741 VkFilter chroma_filter;
3742 bool chroma_reconstruction;
3743 };
3744
3745 struct anv_sampler {
3746 uint32_t state[3][4];
3747 uint32_t n_planes;
3748 struct anv_ycbcr_conversion *conversion;
3749
3750 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3751 * and with a 32-byte stride for use as bindless samplers.
3752 */
3753 struct anv_state bindless_state;
3754 };
3755
3756 struct anv_framebuffer {
3757 uint32_t width;
3758 uint32_t height;
3759 uint32_t layers;
3760
3761 uint32_t attachment_count;
3762 struct anv_image_view * attachments[0];
3763 };
3764
3765 struct anv_subpass_attachment {
3766 VkImageUsageFlagBits usage;
3767 uint32_t attachment;
3768 VkImageLayout layout;
3769 };
3770
3771 struct anv_subpass {
3772 uint32_t attachment_count;
3773
3774 /**
3775 * A pointer to all attachment references used in this subpass.
3776 * Only valid if ::attachment_count > 0.
3777 */
3778 struct anv_subpass_attachment * attachments;
3779 uint32_t input_count;
3780 struct anv_subpass_attachment * input_attachments;
3781 uint32_t color_count;
3782 struct anv_subpass_attachment * color_attachments;
3783 struct anv_subpass_attachment * resolve_attachments;
3784
3785 struct anv_subpass_attachment * depth_stencil_attachment;
3786 struct anv_subpass_attachment * ds_resolve_attachment;
3787 VkResolveModeFlagBitsKHR depth_resolve_mode;
3788 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3789
3790 uint32_t view_mask;
3791
3792 /** Subpass has a depth/stencil self-dependency */
3793 bool has_ds_self_dep;
3794
3795 /** Subpass has at least one color resolve attachment */
3796 bool has_color_resolve;
3797 };
3798
3799 static inline unsigned
3800 anv_subpass_view_count(const struct anv_subpass *subpass)
3801 {
3802 return MAX2(1, util_bitcount(subpass->view_mask));
3803 }
3804
3805 struct anv_render_pass_attachment {
3806 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3807 * its members individually.
3808 */
3809 VkFormat format;
3810 uint32_t samples;
3811 VkImageUsageFlags usage;
3812 VkAttachmentLoadOp load_op;
3813 VkAttachmentStoreOp store_op;
3814 VkAttachmentLoadOp stencil_load_op;
3815 VkImageLayout initial_layout;
3816 VkImageLayout final_layout;
3817 VkImageLayout first_subpass_layout;
3818
3819 /* The subpass id in which the attachment will be used last. */
3820 uint32_t last_subpass_idx;
3821 };
3822
3823 struct anv_render_pass {
3824 uint32_t attachment_count;
3825 uint32_t subpass_count;
3826 /* An array of subpass_count+1 flushes, one per subpass boundary */
3827 enum anv_pipe_bits * subpass_flushes;
3828 struct anv_render_pass_attachment * attachments;
3829 struct anv_subpass subpasses[0];
3830 };
3831
3832 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3833
3834 struct anv_query_pool {
3835 VkQueryType type;
3836 VkQueryPipelineStatisticFlags pipeline_statistics;
3837 /** Stride between slots, in bytes */
3838 uint32_t stride;
3839 /** Number of slots in this query pool */
3840 uint32_t slots;
3841 struct anv_bo * bo;
3842 };
3843
3844 int anv_get_instance_entrypoint_index(const char *name);
3845 int anv_get_device_entrypoint_index(const char *name);
3846 int anv_get_physical_device_entrypoint_index(const char *name);
3847
3848 const char *anv_get_instance_entry_name(int index);
3849 const char *anv_get_physical_device_entry_name(int index);
3850 const char *anv_get_device_entry_name(int index);
3851
3852 bool
3853 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3854 const struct anv_instance_extension_table *instance);
3855 bool
3856 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3857 const struct anv_instance_extension_table *instance);
3858 bool
3859 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3860 const struct anv_instance_extension_table *instance,
3861 const struct anv_device_extension_table *device);
3862
3863 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3864 const char *name);
3865
3866 void anv_dump_image_to_ppm(struct anv_device *device,
3867 struct anv_image *image, unsigned miplevel,
3868 unsigned array_layer, VkImageAspectFlagBits aspect,
3869 const char *filename);
3870
3871 enum anv_dump_action {
3872 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3873 };
3874
3875 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3876 void anv_dump_finish(void);
3877
3878 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3879
3880 static inline uint32_t
3881 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3882 {
3883 /* This function must be called from within a subpass. */
3884 assert(cmd_state->pass && cmd_state->subpass);
3885
3886 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3887
3888 /* The id of this subpass shouldn't exceed the number of subpasses in this
3889 * render pass minus 1.
3890 */
3891 assert(subpass_id < cmd_state->pass->subpass_count);
3892 return subpass_id;
3893 }
3894
3895 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3896 void anv_device_perf_init(struct anv_device *device);
3897
3898 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3899 \
3900 static inline struct __anv_type * \
3901 __anv_type ## _from_handle(__VkType _handle) \
3902 { \
3903 return (struct __anv_type *) _handle; \
3904 } \
3905 \
3906 static inline __VkType \
3907 __anv_type ## _to_handle(struct __anv_type *_obj) \
3908 { \
3909 return (__VkType) _obj; \
3910 }
3911
3912 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3913 \
3914 static inline struct __anv_type * \
3915 __anv_type ## _from_handle(__VkType _handle) \
3916 { \
3917 return (struct __anv_type *)(uintptr_t) _handle; \
3918 } \
3919 \
3920 static inline __VkType \
3921 __anv_type ## _to_handle(struct __anv_type *_obj) \
3922 { \
3923 return (__VkType)(uintptr_t) _obj; \
3924 }
3925
3926 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3927 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3928
3929 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3930 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3931 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3932 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3933 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3934
3935 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3936 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3950 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3951 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3952 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3953 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3954 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3955 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3956 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3957 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3958
3959 /* Gen-specific function declarations */
3960 #ifdef genX
3961 # include "anv_genX.h"
3962 #else
3963 # define genX(x) gen7_##x
3964 # include "anv_genX.h"
3965 # undef genX
3966 # define genX(x) gen75_##x
3967 # include "anv_genX.h"
3968 # undef genX
3969 # define genX(x) gen8_##x
3970 # include "anv_genX.h"
3971 # undef genX
3972 # define genX(x) gen9_##x
3973 # include "anv_genX.h"
3974 # undef genX
3975 # define genX(x) gen10_##x
3976 # include "anv_genX.h"
3977 # undef genX
3978 # define genX(x) gen11_##x
3979 # include "anv_genX.h"
3980 # undef genX
3981 # define genX(x) gen12_##x
3982 # include "anv_genX.h"
3983 # undef genX
3984 #endif
3985
3986 #endif /* ANV_PRIVATE_H */