anv: Rework the internal BO allocation API
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 struct anv_bo {
601 uint32_t gem_handle;
602
603 uint32_t refcount;
604
605 /* Index into the current validation list. This is used by the
606 * validation list building alrogithm to track which buffers are already
607 * in the validation list so that we can ensure uniqueness.
608 */
609 uint32_t index;
610
611 /* Last known offset. This value is provided by the kernel when we
612 * execbuf and is used as the presumed offset for the next bunch of
613 * relocations.
614 */
615 uint64_t offset;
616
617 uint64_t size;
618
619 /* Map for internally mapped BOs.
620 *
621 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
622 */
623 void *map;
624
625 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
626 uint32_t flags;
627
628 /** True if this BO may be shared with other processes */
629 bool is_external:1;
630
631 /** True if this BO is a wrapper
632 *
633 * When set to true, none of the fields in this BO are meaningful except
634 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
635 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
636 * is set in the physical device.
637 */
638 bool is_wrapper:1;
639
640 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
641 bool has_fixed_address:1;
642
643 /** True if this BO wraps a host pointer */
644 bool from_host_ptr:1;
645 };
646
647 static inline void
648 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
649 {
650 bo->gem_handle = gem_handle;
651 bo->refcount = 1;
652 bo->index = 0;
653 bo->offset = -1;
654 bo->size = size;
655 bo->map = NULL;
656 bo->flags = 0;
657 bo->is_external = false;
658 bo->is_wrapper = false;
659 bo->has_fixed_address = false;
660 bo->from_host_ptr = false;
661 }
662
663 static inline struct anv_bo *
664 anv_bo_unwrap(struct anv_bo *bo)
665 {
666 while (bo->is_wrapper)
667 bo = bo->map;
668 return bo;
669 }
670
671 /* Represents a lock-free linked list of "free" things. This is used by
672 * both the block pool and the state pools. Unfortunately, in order to
673 * solve the ABA problem, we can't use a single uint32_t head.
674 */
675 union anv_free_list {
676 struct {
677 uint32_t offset;
678
679 /* A simple count that is incremented every time the head changes. */
680 uint32_t count;
681 };
682 /* Make sure it's aligned to 64 bits. This will make atomic operations
683 * faster on 32 bit platforms.
684 */
685 uint64_t u64 __attribute__ ((aligned (8)));
686 };
687
688 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
689
690 struct anv_block_state {
691 union {
692 struct {
693 uint32_t next;
694 uint32_t end;
695 };
696 /* Make sure it's aligned to 64 bits. This will make atomic operations
697 * faster on 32 bit platforms.
698 */
699 uint64_t u64 __attribute__ ((aligned (8)));
700 };
701 };
702
703 #define anv_block_pool_foreach_bo(bo, pool) \
704 for (struct anv_bo *bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
705
706 #define ANV_MAX_BLOCK_POOL_BOS 20
707
708 struct anv_block_pool {
709 struct anv_device *device;
710
711 uint64_t bo_flags;
712
713 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
714 * around the actual BO so that we grow the pool after the wrapper BO has
715 * been put in a relocation list. This is only used in the non-softpin
716 * case.
717 */
718 struct anv_bo wrapper_bo;
719
720 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
721 struct anv_bo *bo;
722 uint32_t nbos;
723
724 uint64_t size;
725
726 /* The address where the start of the pool is pinned. The various bos that
727 * are created as the pool grows will have addresses in the range
728 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
729 */
730 uint64_t start_address;
731
732 /* The offset from the start of the bo to the "center" of the block
733 * pool. Pointers to allocated blocks are given by
734 * bo.map + center_bo_offset + offsets.
735 */
736 uint32_t center_bo_offset;
737
738 /* Current memory map of the block pool. This pointer may or may not
739 * point to the actual beginning of the block pool memory. If
740 * anv_block_pool_alloc_back has ever been called, then this pointer
741 * will point to the "center" position of the buffer and all offsets
742 * (negative or positive) given out by the block pool alloc functions
743 * will be valid relative to this pointer.
744 *
745 * In particular, map == bo.map + center_offset
746 *
747 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
748 * since it will handle the softpin case as well, where this points to NULL.
749 */
750 void *map;
751 int fd;
752
753 /**
754 * Array of mmaps and gem handles owned by the block pool, reclaimed when
755 * the block pool is destroyed.
756 */
757 struct u_vector mmap_cleanups;
758
759 struct anv_block_state state;
760
761 struct anv_block_state back_state;
762 };
763
764 /* Block pools are backed by a fixed-size 1GB memfd */
765 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
766
767 /* The center of the block pool is also the middle of the memfd. This may
768 * change in the future if we decide differently for some reason.
769 */
770 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
771
772 static inline uint32_t
773 anv_block_pool_size(struct anv_block_pool *pool)
774 {
775 return pool->state.end + pool->back_state.end;
776 }
777
778 struct anv_state {
779 int32_t offset;
780 uint32_t alloc_size;
781 void *map;
782 uint32_t idx;
783 };
784
785 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
786
787 struct anv_fixed_size_state_pool {
788 union anv_free_list free_list;
789 struct anv_block_state block;
790 };
791
792 #define ANV_MIN_STATE_SIZE_LOG2 6
793 #define ANV_MAX_STATE_SIZE_LOG2 21
794
795 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
796
797 struct anv_free_entry {
798 uint32_t next;
799 struct anv_state state;
800 };
801
802 struct anv_state_table {
803 struct anv_device *device;
804 int fd;
805 struct anv_free_entry *map;
806 uint32_t size;
807 struct anv_block_state state;
808 struct u_vector cleanups;
809 };
810
811 struct anv_state_pool {
812 struct anv_block_pool block_pool;
813
814 struct anv_state_table table;
815
816 /* The size of blocks which will be allocated from the block pool */
817 uint32_t block_size;
818
819 /** Free list for "back" allocations */
820 union anv_free_list back_alloc_free_list;
821
822 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
823 };
824
825 struct anv_state_stream_block;
826
827 struct anv_state_stream {
828 struct anv_state_pool *state_pool;
829
830 /* The size of blocks to allocate from the state pool */
831 uint32_t block_size;
832
833 /* Current block we're allocating from */
834 struct anv_state block;
835
836 /* Offset into the current block at which to allocate the next state */
837 uint32_t next;
838
839 /* List of all blocks allocated from this pool */
840 struct anv_state_stream_block *block_list;
841 };
842
843 /* The block_pool functions exported for testing only. The block pool should
844 * only be used via a state pool (see below).
845 */
846 VkResult anv_block_pool_init(struct anv_block_pool *pool,
847 struct anv_device *device,
848 uint64_t start_address,
849 uint32_t initial_size,
850 uint64_t bo_flags);
851 void anv_block_pool_finish(struct anv_block_pool *pool);
852 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
853 uint32_t block_size, uint32_t *padding);
854 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
855 uint32_t block_size);
856 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
857
858 VkResult anv_state_pool_init(struct anv_state_pool *pool,
859 struct anv_device *device,
860 uint64_t start_address,
861 uint32_t block_size,
862 uint64_t bo_flags);
863 void anv_state_pool_finish(struct anv_state_pool *pool);
864 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
865 uint32_t state_size, uint32_t alignment);
866 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
867 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
868 void anv_state_stream_init(struct anv_state_stream *stream,
869 struct anv_state_pool *state_pool,
870 uint32_t block_size);
871 void anv_state_stream_finish(struct anv_state_stream *stream);
872 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
873 uint32_t size, uint32_t alignment);
874
875 VkResult anv_state_table_init(struct anv_state_table *table,
876 struct anv_device *device,
877 uint32_t initial_entries);
878 void anv_state_table_finish(struct anv_state_table *table);
879 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
880 uint32_t count);
881 void anv_free_list_push(union anv_free_list *list,
882 struct anv_state_table *table,
883 uint32_t idx, uint32_t count);
884 struct anv_state* anv_free_list_pop(union anv_free_list *list,
885 struct anv_state_table *table);
886
887
888 static inline struct anv_state *
889 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
890 {
891 return &table->map[idx].state;
892 }
893 /**
894 * Implements a pool of re-usable BOs. The interface is identical to that
895 * of block_pool except that each block is its own BO.
896 */
897 struct anv_bo_pool {
898 struct anv_device *device;
899
900 uint64_t bo_flags;
901
902 void *free_list[16];
903 };
904
905 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
906 uint64_t bo_flags);
907 void anv_bo_pool_finish(struct anv_bo_pool *pool);
908 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
909 uint32_t size);
910 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
911
912 struct anv_scratch_bo {
913 bool exists;
914 struct anv_bo bo;
915 };
916
917 struct anv_scratch_pool {
918 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
919 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
920 };
921
922 void anv_scratch_pool_init(struct anv_device *device,
923 struct anv_scratch_pool *pool);
924 void anv_scratch_pool_finish(struct anv_device *device,
925 struct anv_scratch_pool *pool);
926 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
927 struct anv_scratch_pool *pool,
928 gl_shader_stage stage,
929 unsigned per_thread_scratch);
930
931 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
932 struct anv_bo_cache {
933 struct util_sparse_array bo_map;
934 pthread_mutex_t mutex;
935 };
936
937 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
938 void anv_bo_cache_finish(struct anv_bo_cache *cache);
939
940 struct anv_memory_type {
941 /* Standard bits passed on to the client */
942 VkMemoryPropertyFlags propertyFlags;
943 uint32_t heapIndex;
944
945 /* Driver-internal book-keeping */
946 VkBufferUsageFlags valid_buffer_usage;
947 };
948
949 struct anv_memory_heap {
950 /* Standard bits passed on to the client */
951 VkDeviceSize size;
952 VkMemoryHeapFlags flags;
953
954 /* Driver-internal book-keeping */
955 uint64_t vma_start;
956 uint64_t vma_size;
957 bool supports_48bit_addresses;
958 VkDeviceSize used;
959 };
960
961 struct anv_physical_device {
962 VK_LOADER_DATA _loader_data;
963
964 struct anv_instance * instance;
965 uint32_t chipset_id;
966 bool no_hw;
967 char path[20];
968 const char * name;
969 struct {
970 uint16_t domain;
971 uint8_t bus;
972 uint8_t device;
973 uint8_t function;
974 } pci_info;
975 struct gen_device_info info;
976 /** Amount of "GPU memory" we want to advertise
977 *
978 * Clearly, this value is bogus since Intel is a UMA architecture. On
979 * gen7 platforms, we are limited by GTT size unless we want to implement
980 * fine-grained tracking and GTT splitting. On Broadwell and above we are
981 * practically unlimited. However, we will never report more than 3/4 of
982 * the total system ram to try and avoid running out of RAM.
983 */
984 bool supports_48bit_addresses;
985 struct brw_compiler * compiler;
986 struct isl_device isl_dev;
987 struct gen_perf_config * perf;
988 int cmd_parser_version;
989 bool has_exec_async;
990 bool has_exec_capture;
991 bool has_exec_fence;
992 bool has_syncobj;
993 bool has_syncobj_wait;
994 bool has_context_priority;
995 bool use_softpin;
996 bool has_context_isolation;
997 bool has_mem_available;
998 bool always_use_bindless;
999
1000 /** True if we can access buffers using A64 messages */
1001 bool has_a64_buffer_access;
1002 /** True if we can use bindless access for images */
1003 bool has_bindless_images;
1004 /** True if we can use bindless access for samplers */
1005 bool has_bindless_samplers;
1006
1007 struct anv_device_extension_table supported_extensions;
1008 struct anv_physical_device_dispatch_table dispatch;
1009
1010 uint32_t eu_total;
1011 uint32_t subslice_total;
1012
1013 struct {
1014 uint32_t type_count;
1015 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1016 uint32_t heap_count;
1017 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1018 } memory;
1019
1020 uint8_t driver_build_sha1[20];
1021 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1022 uint8_t driver_uuid[VK_UUID_SIZE];
1023 uint8_t device_uuid[VK_UUID_SIZE];
1024
1025 struct disk_cache * disk_cache;
1026
1027 struct wsi_device wsi_device;
1028 int local_fd;
1029 int master_fd;
1030 };
1031
1032 struct anv_app_info {
1033 const char* app_name;
1034 uint32_t app_version;
1035 const char* engine_name;
1036 uint32_t engine_version;
1037 uint32_t api_version;
1038 };
1039
1040 struct anv_instance {
1041 VK_LOADER_DATA _loader_data;
1042
1043 VkAllocationCallbacks alloc;
1044
1045 struct anv_app_info app_info;
1046
1047 struct anv_instance_extension_table enabled_extensions;
1048 struct anv_instance_dispatch_table dispatch;
1049 struct anv_device_dispatch_table device_dispatch;
1050
1051 int physicalDeviceCount;
1052 struct anv_physical_device physicalDevice;
1053
1054 bool pipeline_cache_enabled;
1055
1056 struct vk_debug_report_instance debug_report_callbacks;
1057
1058 struct driOptionCache dri_options;
1059 struct driOptionCache available_dri_options;
1060 };
1061
1062 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1063 void anv_finish_wsi(struct anv_physical_device *physical_device);
1064
1065 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1066 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1067 const char *name);
1068
1069 struct anv_queue {
1070 VK_LOADER_DATA _loader_data;
1071
1072 struct anv_device * device;
1073
1074 VkDeviceQueueCreateFlags flags;
1075 };
1076
1077 struct anv_pipeline_cache {
1078 struct anv_device * device;
1079 pthread_mutex_t mutex;
1080
1081 struct hash_table * nir_cache;
1082
1083 struct hash_table * cache;
1084 };
1085
1086 struct nir_xfb_info;
1087 struct anv_pipeline_bind_map;
1088
1089 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1090 struct anv_device *device,
1091 bool cache_enabled);
1092 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1093
1094 struct anv_shader_bin *
1095 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1096 const void *key, uint32_t key_size);
1097 struct anv_shader_bin *
1098 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1099 const void *key_data, uint32_t key_size,
1100 const void *kernel_data, uint32_t kernel_size,
1101 const void *constant_data,
1102 uint32_t constant_data_size,
1103 const struct brw_stage_prog_data *prog_data,
1104 uint32_t prog_data_size,
1105 const struct brw_compile_stats *stats,
1106 uint32_t num_stats,
1107 const struct nir_xfb_info *xfb_info,
1108 const struct anv_pipeline_bind_map *bind_map);
1109
1110 struct anv_shader_bin *
1111 anv_device_search_for_kernel(struct anv_device *device,
1112 struct anv_pipeline_cache *cache,
1113 const void *key_data, uint32_t key_size,
1114 bool *user_cache_bit);
1115
1116 struct anv_shader_bin *
1117 anv_device_upload_kernel(struct anv_device *device,
1118 struct anv_pipeline_cache *cache,
1119 const void *key_data, uint32_t key_size,
1120 const void *kernel_data, uint32_t kernel_size,
1121 const void *constant_data,
1122 uint32_t constant_data_size,
1123 const struct brw_stage_prog_data *prog_data,
1124 uint32_t prog_data_size,
1125 const struct brw_compile_stats *stats,
1126 uint32_t num_stats,
1127 const struct nir_xfb_info *xfb_info,
1128 const struct anv_pipeline_bind_map *bind_map);
1129
1130 struct nir_shader;
1131 struct nir_shader_compiler_options;
1132
1133 struct nir_shader *
1134 anv_device_search_for_nir(struct anv_device *device,
1135 struct anv_pipeline_cache *cache,
1136 const struct nir_shader_compiler_options *nir_options,
1137 unsigned char sha1_key[20],
1138 void *mem_ctx);
1139
1140 void
1141 anv_device_upload_nir(struct anv_device *device,
1142 struct anv_pipeline_cache *cache,
1143 const struct nir_shader *nir,
1144 unsigned char sha1_key[20]);
1145
1146 struct anv_device {
1147 VK_LOADER_DATA _loader_data;
1148
1149 VkAllocationCallbacks alloc;
1150
1151 struct anv_instance * instance;
1152 uint32_t chipset_id;
1153 bool no_hw;
1154 struct gen_device_info info;
1155 struct isl_device isl_dev;
1156 int context_id;
1157 int fd;
1158 bool can_chain_batches;
1159 bool robust_buffer_access;
1160 struct anv_device_extension_table enabled_extensions;
1161 struct anv_device_dispatch_table dispatch;
1162
1163 pthread_mutex_t vma_mutex;
1164 struct util_vma_heap vma_lo;
1165 struct util_vma_heap vma_hi;
1166 uint64_t vma_lo_available;
1167 uint64_t vma_hi_available;
1168
1169 /** List of all anv_device_memory objects */
1170 struct list_head memory_objects;
1171
1172 struct anv_bo_pool batch_bo_pool;
1173
1174 struct anv_bo_cache bo_cache;
1175
1176 struct anv_state_pool dynamic_state_pool;
1177 struct anv_state_pool instruction_state_pool;
1178 struct anv_state_pool binding_table_pool;
1179 struct anv_state_pool surface_state_pool;
1180
1181 struct anv_bo workaround_bo;
1182 struct anv_bo trivial_batch_bo;
1183 struct anv_bo hiz_clear_bo;
1184
1185 struct anv_pipeline_cache default_pipeline_cache;
1186 struct blorp_context blorp;
1187
1188 struct anv_state border_colors;
1189
1190 struct anv_state slice_hash;
1191
1192 struct anv_queue queue;
1193
1194 struct anv_scratch_pool scratch_pool;
1195
1196 uint32_t default_mocs;
1197 uint32_t external_mocs;
1198
1199 pthread_mutex_t mutex;
1200 pthread_cond_t queue_submit;
1201 bool _lost;
1202
1203 struct gen_batch_decode_ctx decoder_ctx;
1204 /*
1205 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1206 * the cmd_buffer's list.
1207 */
1208 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1209
1210 int perf_fd; /* -1 if no opened */
1211 uint64_t perf_metric; /* 0 if unset */
1212
1213 struct gen_aux_map_context *aux_map_ctx;
1214 };
1215
1216 static inline struct anv_state_pool *
1217 anv_binding_table_pool(struct anv_device *device)
1218 {
1219 if (device->instance->physicalDevice.use_softpin)
1220 return &device->binding_table_pool;
1221 else
1222 return &device->surface_state_pool;
1223 }
1224
1225 static inline struct anv_state
1226 anv_binding_table_pool_alloc(struct anv_device *device) {
1227 if (device->instance->physicalDevice.use_softpin)
1228 return anv_state_pool_alloc(&device->binding_table_pool,
1229 device->binding_table_pool.block_size, 0);
1230 else
1231 return anv_state_pool_alloc_back(&device->surface_state_pool);
1232 }
1233
1234 static inline void
1235 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1236 anv_state_pool_free(anv_binding_table_pool(device), state);
1237 }
1238
1239 static inline uint32_t
1240 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1241 {
1242 if (bo->is_external)
1243 return device->external_mocs;
1244 else
1245 return device->default_mocs;
1246 }
1247
1248 void anv_device_init_blorp(struct anv_device *device);
1249 void anv_device_finish_blorp(struct anv_device *device);
1250
1251 VkResult _anv_device_set_lost(struct anv_device *device,
1252 const char *file, int line,
1253 const char *msg, ...)
1254 anv_printflike(4, 5);
1255 #define anv_device_set_lost(dev, ...) \
1256 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1257
1258 static inline bool
1259 anv_device_is_lost(struct anv_device *device)
1260 {
1261 return unlikely(device->_lost);
1262 }
1263
1264 VkResult anv_device_execbuf(struct anv_device *device,
1265 struct drm_i915_gem_execbuffer2 *execbuf,
1266 struct anv_bo **execbuf_bos);
1267 VkResult anv_device_query_status(struct anv_device *device);
1268
1269
1270 enum anv_bo_alloc_flags {
1271 /** Specifies that the BO must have a 32-bit address
1272 *
1273 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1274 */
1275 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1276
1277 /** Specifies that the BO may be shared externally */
1278 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1279
1280 /** Specifies that the BO should be mapped */
1281 ANV_BO_ALLOC_MAPPED = (1 << 2),
1282
1283 /** Specifies that the BO should be snooped so we get coherency */
1284 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1285
1286 /** Specifies that the BO should be captured in error states */
1287 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1288
1289 /** Specifies that the BO will have an address assigned by the caller */
1290 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1291
1292 /** Enables implicit synchronization on the BO
1293 *
1294 * This is the opposite of EXEC_OBJECT_ASYNC.
1295 */
1296 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1297
1298 /** Enables implicit synchronization on the BO
1299 *
1300 * This is equivalent to EXEC_OBJECT_WRITE.
1301 */
1302 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1303 };
1304
1305 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1306 enum anv_bo_alloc_flags alloc_flags,
1307 struct anv_bo **bo);
1308 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1309 void *host_ptr, uint32_t size,
1310 enum anv_bo_alloc_flags alloc_flags,
1311 struct anv_bo **bo_out);
1312 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1313 enum anv_bo_alloc_flags alloc_flags,
1314 struct anv_bo **bo);
1315 VkResult anv_device_export_bo(struct anv_device *device,
1316 struct anv_bo *bo, int *fd_out);
1317 void anv_device_release_bo(struct anv_device *device,
1318 struct anv_bo *bo);
1319
1320 static inline struct anv_bo *
1321 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1322 {
1323 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1324 }
1325
1326 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1327 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1328 int64_t timeout);
1329
1330 void* anv_gem_mmap(struct anv_device *device,
1331 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1332 void anv_gem_munmap(void *p, uint64_t size);
1333 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1334 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1335 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1336 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1337 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1338 int anv_gem_execbuffer(struct anv_device *device,
1339 struct drm_i915_gem_execbuffer2 *execbuf);
1340 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1341 uint32_t stride, uint32_t tiling);
1342 int anv_gem_create_context(struct anv_device *device);
1343 bool anv_gem_has_context_priority(int fd);
1344 int anv_gem_destroy_context(struct anv_device *device, int context);
1345 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1346 uint64_t value);
1347 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1348 uint64_t *value);
1349 int anv_gem_get_param(int fd, uint32_t param);
1350 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1351 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1352 int anv_gem_get_aperture(int fd, uint64_t *size);
1353 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1354 uint32_t *active, uint32_t *pending);
1355 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1356 int anv_gem_reg_read(struct anv_device *device,
1357 uint32_t offset, uint64_t *result);
1358 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1359 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1360 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1361 uint32_t read_domains, uint32_t write_domain);
1362 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1363 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1364 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1365 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1366 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1367 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1368 uint32_t handle);
1369 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1370 uint32_t handle, int fd);
1371 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1372 bool anv_gem_supports_syncobj_wait(int fd);
1373 int anv_gem_syncobj_wait(struct anv_device *device,
1374 uint32_t *handles, uint32_t num_handles,
1375 int64_t abs_timeout_ns, bool wait_all);
1376
1377 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1378 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1379
1380 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1381
1382 struct anv_reloc_list {
1383 uint32_t num_relocs;
1384 uint32_t array_length;
1385 struct drm_i915_gem_relocation_entry * relocs;
1386 struct anv_bo ** reloc_bos;
1387 struct set * deps;
1388 };
1389
1390 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1391 const VkAllocationCallbacks *alloc);
1392 void anv_reloc_list_finish(struct anv_reloc_list *list,
1393 const VkAllocationCallbacks *alloc);
1394
1395 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1396 const VkAllocationCallbacks *alloc,
1397 uint32_t offset, struct anv_bo *target_bo,
1398 uint32_t delta, uint64_t *address_u64_out);
1399
1400 struct anv_batch_bo {
1401 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1402 struct list_head link;
1403
1404 struct anv_bo bo;
1405
1406 /* Bytes actually consumed in this batch BO */
1407 uint32_t length;
1408
1409 struct anv_reloc_list relocs;
1410 };
1411
1412 struct anv_batch {
1413 const VkAllocationCallbacks * alloc;
1414
1415 void * start;
1416 void * end;
1417 void * next;
1418
1419 struct anv_reloc_list * relocs;
1420
1421 /* This callback is called (with the associated user data) in the event
1422 * that the batch runs out of space.
1423 */
1424 VkResult (*extend_cb)(struct anv_batch *, void *);
1425 void * user_data;
1426
1427 /**
1428 * Current error status of the command buffer. Used to track inconsistent
1429 * or incomplete command buffer states that are the consequence of run-time
1430 * errors such as out of memory scenarios. We want to track this in the
1431 * batch because the command buffer object is not visible to some parts
1432 * of the driver.
1433 */
1434 VkResult status;
1435 };
1436
1437 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1438 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1439 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1440 void *location, struct anv_bo *bo, uint32_t offset);
1441 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1442 struct anv_batch *batch);
1443
1444 static inline VkResult
1445 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1446 {
1447 assert(error != VK_SUCCESS);
1448 if (batch->status == VK_SUCCESS)
1449 batch->status = error;
1450 return batch->status;
1451 }
1452
1453 static inline bool
1454 anv_batch_has_error(struct anv_batch *batch)
1455 {
1456 return batch->status != VK_SUCCESS;
1457 }
1458
1459 struct anv_address {
1460 struct anv_bo *bo;
1461 uint32_t offset;
1462 };
1463
1464 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1465
1466 static inline bool
1467 anv_address_is_null(struct anv_address addr)
1468 {
1469 return addr.bo == NULL && addr.offset == 0;
1470 }
1471
1472 static inline uint64_t
1473 anv_address_physical(struct anv_address addr)
1474 {
1475 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1476 return gen_canonical_address(addr.bo->offset + addr.offset);
1477 else
1478 return gen_canonical_address(addr.offset);
1479 }
1480
1481 static inline struct anv_address
1482 anv_address_add(struct anv_address addr, uint64_t offset)
1483 {
1484 addr.offset += offset;
1485 return addr;
1486 }
1487
1488 static inline void
1489 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1490 {
1491 unsigned reloc_size = 0;
1492 if (device->info.gen >= 8) {
1493 reloc_size = sizeof(uint64_t);
1494 *(uint64_t *)p = gen_canonical_address(v);
1495 } else {
1496 reloc_size = sizeof(uint32_t);
1497 *(uint32_t *)p = v;
1498 }
1499
1500 if (flush && !device->info.has_llc)
1501 gen_flush_range(p, reloc_size);
1502 }
1503
1504 static inline uint64_t
1505 _anv_combine_address(struct anv_batch *batch, void *location,
1506 const struct anv_address address, uint32_t delta)
1507 {
1508 if (address.bo == NULL) {
1509 return address.offset + delta;
1510 } else {
1511 assert(batch->start <= location && location < batch->end);
1512
1513 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1514 }
1515 }
1516
1517 #define __gen_address_type struct anv_address
1518 #define __gen_user_data struct anv_batch
1519 #define __gen_combine_address _anv_combine_address
1520
1521 /* Wrapper macros needed to work around preprocessor argument issues. In
1522 * particular, arguments don't get pre-evaluated if they are concatenated.
1523 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1524 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1525 * We can work around this easily enough with these helpers.
1526 */
1527 #define __anv_cmd_length(cmd) cmd ## _length
1528 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1529 #define __anv_cmd_header(cmd) cmd ## _header
1530 #define __anv_cmd_pack(cmd) cmd ## _pack
1531 #define __anv_reg_num(reg) reg ## _num
1532
1533 #define anv_pack_struct(dst, struc, ...) do { \
1534 struct struc __template = { \
1535 __VA_ARGS__ \
1536 }; \
1537 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1538 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1539 } while (0)
1540
1541 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1542 void *__dst = anv_batch_emit_dwords(batch, n); \
1543 if (__dst) { \
1544 struct cmd __template = { \
1545 __anv_cmd_header(cmd), \
1546 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1547 __VA_ARGS__ \
1548 }; \
1549 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1550 } \
1551 __dst; \
1552 })
1553
1554 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1555 do { \
1556 uint32_t *dw; \
1557 \
1558 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1559 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1560 if (!dw) \
1561 break; \
1562 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1563 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1564 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1565 } while (0)
1566
1567 #define anv_batch_emit(batch, cmd, name) \
1568 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1569 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1570 __builtin_expect(_dst != NULL, 1); \
1571 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1572 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1573 _dst = NULL; \
1574 }))
1575
1576 /* MEMORY_OBJECT_CONTROL_STATE:
1577 * .GraphicsDataTypeGFDT = 0,
1578 * .LLCCacheabilityControlLLCCC = 0,
1579 * .L3CacheabilityControlL3CC = 1,
1580 */
1581 #define GEN7_MOCS 1
1582
1583 /* MEMORY_OBJECT_CONTROL_STATE:
1584 * .LLCeLLCCacheabilityControlLLCCC = 0,
1585 * .L3CacheabilityControlL3CC = 1,
1586 */
1587 #define GEN75_MOCS 1
1588
1589 /* MEMORY_OBJECT_CONTROL_STATE:
1590 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1591 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1592 * .AgeforQUADLRU = 0
1593 */
1594 #define GEN8_MOCS 0x78
1595
1596 /* MEMORY_OBJECT_CONTROL_STATE:
1597 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1598 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1599 * .AgeforQUADLRU = 0
1600 */
1601 #define GEN8_EXTERNAL_MOCS 0x18
1602
1603 /* Skylake: MOCS is now an index into an array of 62 different caching
1604 * configurations programmed by the kernel.
1605 */
1606
1607 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1608 #define GEN9_MOCS (2 << 1)
1609
1610 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1611 #define GEN9_EXTERNAL_MOCS (1 << 1)
1612
1613 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1614 #define GEN10_MOCS GEN9_MOCS
1615 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1616
1617 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1618 #define GEN11_MOCS GEN9_MOCS
1619 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1620
1621 /* TigerLake MOCS */
1622 #define GEN12_MOCS GEN9_MOCS
1623 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1624 #define GEN12_EXTERNAL_MOCS (3 << 1)
1625
1626 struct anv_device_memory {
1627 struct list_head link;
1628
1629 struct anv_bo * bo;
1630 struct anv_memory_type * type;
1631 VkDeviceSize map_size;
1632 void * map;
1633
1634 /* If set, we are holding reference to AHardwareBuffer
1635 * which we must release when memory is freed.
1636 */
1637 struct AHardwareBuffer * ahw;
1638
1639 /* If set, this memory comes from a host pointer. */
1640 void * host_ptr;
1641 };
1642
1643 /**
1644 * Header for Vertex URB Entry (VUE)
1645 */
1646 struct anv_vue_header {
1647 uint32_t Reserved;
1648 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1649 uint32_t ViewportIndex;
1650 float PointWidth;
1651 };
1652
1653 /** Struct representing a sampled image descriptor
1654 *
1655 * This descriptor layout is used for sampled images, bare sampler, and
1656 * combined image/sampler descriptors.
1657 */
1658 struct anv_sampled_image_descriptor {
1659 /** Bindless image handle
1660 *
1661 * This is expected to already be shifted such that the 20-bit
1662 * SURFACE_STATE table index is in the top 20 bits.
1663 */
1664 uint32_t image;
1665
1666 /** Bindless sampler handle
1667 *
1668 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1669 * to the dynamic state base address.
1670 */
1671 uint32_t sampler;
1672 };
1673
1674 struct anv_texture_swizzle_descriptor {
1675 /** Texture swizzle
1676 *
1677 * See also nir_intrinsic_channel_select_intel
1678 */
1679 uint8_t swizzle[4];
1680
1681 /** Unused padding to ensure the struct is a multiple of 64 bits */
1682 uint32_t _pad;
1683 };
1684
1685 /** Struct representing a storage image descriptor */
1686 struct anv_storage_image_descriptor {
1687 /** Bindless image handles
1688 *
1689 * These are expected to already be shifted such that the 20-bit
1690 * SURFACE_STATE table index is in the top 20 bits.
1691 */
1692 uint32_t read_write;
1693 uint32_t write_only;
1694 };
1695
1696 /** Struct representing a address/range descriptor
1697 *
1698 * The fields of this struct correspond directly to the data layout of
1699 * nir_address_format_64bit_bounded_global addresses. The last field is the
1700 * offset in the NIR address so it must be zero so that when you load the
1701 * descriptor you get a pointer to the start of the range.
1702 */
1703 struct anv_address_range_descriptor {
1704 uint64_t address;
1705 uint32_t range;
1706 uint32_t zero;
1707 };
1708
1709 enum anv_descriptor_data {
1710 /** The descriptor contains a BTI reference to a surface state */
1711 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1712 /** The descriptor contains a BTI reference to a sampler state */
1713 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1714 /** The descriptor contains an actual buffer view */
1715 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1716 /** The descriptor contains auxiliary image layout data */
1717 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1718 /** The descriptor contains auxiliary image layout data */
1719 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1720 /** anv_address_range_descriptor with a buffer address and range */
1721 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1722 /** Bindless surface handle */
1723 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1724 /** Storage image handles */
1725 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1726 /** Storage image handles */
1727 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1728 };
1729
1730 struct anv_descriptor_set_binding_layout {
1731 #ifndef NDEBUG
1732 /* The type of the descriptors in this binding */
1733 VkDescriptorType type;
1734 #endif
1735
1736 /* Flags provided when this binding was created */
1737 VkDescriptorBindingFlagsEXT flags;
1738
1739 /* Bitfield representing the type of data this descriptor contains */
1740 enum anv_descriptor_data data;
1741
1742 /* Maximum number of YCbCr texture/sampler planes */
1743 uint8_t max_plane_count;
1744
1745 /* Number of array elements in this binding (or size in bytes for inline
1746 * uniform data)
1747 */
1748 uint16_t array_size;
1749
1750 /* Index into the flattend descriptor set */
1751 uint16_t descriptor_index;
1752
1753 /* Index into the dynamic state array for a dynamic buffer */
1754 int16_t dynamic_offset_index;
1755
1756 /* Index into the descriptor set buffer views */
1757 int16_t buffer_view_index;
1758
1759 /* Offset into the descriptor buffer where this descriptor lives */
1760 uint32_t descriptor_offset;
1761
1762 /* Immutable samplers (or NULL if no immutable samplers) */
1763 struct anv_sampler **immutable_samplers;
1764 };
1765
1766 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1767
1768 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1769 VkDescriptorType type);
1770
1771 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1772 const struct anv_descriptor_set_binding_layout *binding,
1773 bool sampler);
1774
1775 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1776 const struct anv_descriptor_set_binding_layout *binding,
1777 bool sampler);
1778
1779 struct anv_descriptor_set_layout {
1780 /* Descriptor set layouts can be destroyed at almost any time */
1781 uint32_t ref_cnt;
1782
1783 /* Number of bindings in this descriptor set */
1784 uint16_t binding_count;
1785
1786 /* Total size of the descriptor set with room for all array entries */
1787 uint16_t size;
1788
1789 /* Shader stages affected by this descriptor set */
1790 uint16_t shader_stages;
1791
1792 /* Number of buffer views in this descriptor set */
1793 uint16_t buffer_view_count;
1794
1795 /* Number of dynamic offsets used by this descriptor set */
1796 uint16_t dynamic_offset_count;
1797
1798 /* Size of the descriptor buffer for this descriptor set */
1799 uint32_t descriptor_buffer_size;
1800
1801 /* Bindings in this descriptor set */
1802 struct anv_descriptor_set_binding_layout binding[0];
1803 };
1804
1805 static inline void
1806 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1807 {
1808 assert(layout && layout->ref_cnt >= 1);
1809 p_atomic_inc(&layout->ref_cnt);
1810 }
1811
1812 static inline void
1813 anv_descriptor_set_layout_unref(struct anv_device *device,
1814 struct anv_descriptor_set_layout *layout)
1815 {
1816 assert(layout && layout->ref_cnt >= 1);
1817 if (p_atomic_dec_zero(&layout->ref_cnt))
1818 vk_free(&device->alloc, layout);
1819 }
1820
1821 struct anv_descriptor {
1822 VkDescriptorType type;
1823
1824 union {
1825 struct {
1826 VkImageLayout layout;
1827 struct anv_image_view *image_view;
1828 struct anv_sampler *sampler;
1829 };
1830
1831 struct {
1832 struct anv_buffer *buffer;
1833 uint64_t offset;
1834 uint64_t range;
1835 };
1836
1837 struct anv_buffer_view *buffer_view;
1838 };
1839 };
1840
1841 struct anv_descriptor_set {
1842 struct anv_descriptor_pool *pool;
1843 struct anv_descriptor_set_layout *layout;
1844 uint32_t size;
1845
1846 /* State relative to anv_descriptor_pool::bo */
1847 struct anv_state desc_mem;
1848 /* Surface state for the descriptor buffer */
1849 struct anv_state desc_surface_state;
1850
1851 uint32_t buffer_view_count;
1852 struct anv_buffer_view *buffer_views;
1853
1854 /* Link to descriptor pool's desc_sets list . */
1855 struct list_head pool_link;
1856
1857 struct anv_descriptor descriptors[0];
1858 };
1859
1860 struct anv_buffer_view {
1861 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1862 uint64_t range; /**< VkBufferViewCreateInfo::range */
1863
1864 struct anv_address address;
1865
1866 struct anv_state surface_state;
1867 struct anv_state storage_surface_state;
1868 struct anv_state writeonly_storage_surface_state;
1869
1870 struct brw_image_param storage_image_param;
1871 };
1872
1873 struct anv_push_descriptor_set {
1874 struct anv_descriptor_set set;
1875
1876 /* Put this field right behind anv_descriptor_set so it fills up the
1877 * descriptors[0] field. */
1878 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1879
1880 /** True if the descriptor set buffer has been referenced by a draw or
1881 * dispatch command.
1882 */
1883 bool set_used_on_gpu;
1884
1885 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1886 };
1887
1888 struct anv_descriptor_pool {
1889 uint32_t size;
1890 uint32_t next;
1891 uint32_t free_list;
1892
1893 struct anv_bo bo;
1894 struct util_vma_heap bo_heap;
1895
1896 struct anv_state_stream surface_state_stream;
1897 void *surface_state_free_list;
1898
1899 struct list_head desc_sets;
1900
1901 char data[0];
1902 };
1903
1904 enum anv_descriptor_template_entry_type {
1905 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1906 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1907 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1908 };
1909
1910 struct anv_descriptor_template_entry {
1911 /* The type of descriptor in this entry */
1912 VkDescriptorType type;
1913
1914 /* Binding in the descriptor set */
1915 uint32_t binding;
1916
1917 /* Offset at which to write into the descriptor set binding */
1918 uint32_t array_element;
1919
1920 /* Number of elements to write into the descriptor set binding */
1921 uint32_t array_count;
1922
1923 /* Offset into the user provided data */
1924 size_t offset;
1925
1926 /* Stride between elements into the user provided data */
1927 size_t stride;
1928 };
1929
1930 struct anv_descriptor_update_template {
1931 VkPipelineBindPoint bind_point;
1932
1933 /* The descriptor set this template corresponds to. This value is only
1934 * valid if the template was created with the templateType
1935 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1936 */
1937 uint8_t set;
1938
1939 /* Number of entries in this template */
1940 uint32_t entry_count;
1941
1942 /* Entries of the template */
1943 struct anv_descriptor_template_entry entries[0];
1944 };
1945
1946 size_t
1947 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1948
1949 void
1950 anv_descriptor_set_write_image_view(struct anv_device *device,
1951 struct anv_descriptor_set *set,
1952 const VkDescriptorImageInfo * const info,
1953 VkDescriptorType type,
1954 uint32_t binding,
1955 uint32_t element);
1956
1957 void
1958 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1959 struct anv_descriptor_set *set,
1960 VkDescriptorType type,
1961 struct anv_buffer_view *buffer_view,
1962 uint32_t binding,
1963 uint32_t element);
1964
1965 void
1966 anv_descriptor_set_write_buffer(struct anv_device *device,
1967 struct anv_descriptor_set *set,
1968 struct anv_state_stream *alloc_stream,
1969 VkDescriptorType type,
1970 struct anv_buffer *buffer,
1971 uint32_t binding,
1972 uint32_t element,
1973 VkDeviceSize offset,
1974 VkDeviceSize range);
1975 void
1976 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1977 struct anv_descriptor_set *set,
1978 uint32_t binding,
1979 const void *data,
1980 size_t offset,
1981 size_t size);
1982
1983 void
1984 anv_descriptor_set_write_template(struct anv_device *device,
1985 struct anv_descriptor_set *set,
1986 struct anv_state_stream *alloc_stream,
1987 const struct anv_descriptor_update_template *template,
1988 const void *data);
1989
1990 VkResult
1991 anv_descriptor_set_create(struct anv_device *device,
1992 struct anv_descriptor_pool *pool,
1993 struct anv_descriptor_set_layout *layout,
1994 struct anv_descriptor_set **out_set);
1995
1996 void
1997 anv_descriptor_set_destroy(struct anv_device *device,
1998 struct anv_descriptor_pool *pool,
1999 struct anv_descriptor_set *set);
2000
2001 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2002 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2003 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2004 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2005
2006 struct anv_pipeline_binding {
2007 /* The descriptor set this surface corresponds to. The special value of
2008 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
2009 * to a color attachment and not a regular descriptor.
2010 */
2011 uint8_t set;
2012
2013 /* Binding in the descriptor set */
2014 uint32_t binding;
2015
2016 /* Index in the binding */
2017 uint32_t index;
2018
2019 /* Plane in the binding index */
2020 uint8_t plane;
2021
2022 /* Input attachment index (relative to the subpass) */
2023 uint8_t input_attachment_index;
2024
2025 /* For a storage image, whether it is write-only */
2026 bool write_only;
2027 };
2028
2029 struct anv_pipeline_layout {
2030 struct {
2031 struct anv_descriptor_set_layout *layout;
2032 uint32_t dynamic_offset_start;
2033 } set[MAX_SETS];
2034
2035 uint32_t num_sets;
2036
2037 unsigned char sha1[20];
2038 };
2039
2040 struct anv_buffer {
2041 struct anv_device * device;
2042 VkDeviceSize size;
2043
2044 VkBufferUsageFlags usage;
2045
2046 /* Set when bound */
2047 struct anv_address address;
2048 };
2049
2050 static inline uint64_t
2051 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2052 {
2053 assert(offset <= buffer->size);
2054 if (range == VK_WHOLE_SIZE) {
2055 return buffer->size - offset;
2056 } else {
2057 assert(range + offset >= range);
2058 assert(range + offset <= buffer->size);
2059 return range;
2060 }
2061 }
2062
2063 enum anv_cmd_dirty_bits {
2064 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2065 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2066 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2067 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2068 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2069 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2070 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2071 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2072 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2073 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2074 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2075 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2076 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2077 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2078 };
2079 typedef uint32_t anv_cmd_dirty_mask_t;
2080
2081 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2082 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2083 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2084 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2085 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2086 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2087 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2088 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2089 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2090 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2091 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2092
2093 static inline enum anv_cmd_dirty_bits
2094 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2095 {
2096 switch (vk_state) {
2097 case VK_DYNAMIC_STATE_VIEWPORT:
2098 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2099 case VK_DYNAMIC_STATE_SCISSOR:
2100 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2101 case VK_DYNAMIC_STATE_LINE_WIDTH:
2102 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2103 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2104 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2105 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2106 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2107 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2108 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2109 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2110 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2111 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2112 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2113 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2114 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2115 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2116 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2117 default:
2118 assert(!"Unsupported dynamic state");
2119 return 0;
2120 }
2121 }
2122
2123
2124 enum anv_pipe_bits {
2125 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2126 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2127 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2128 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2129 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2130 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2131 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2132 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2133 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2134 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2135 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2136 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2137
2138 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2139 * a flush has happened but not a CS stall. The next time we do any sort
2140 * of invalidation we need to insert a CS stall at that time. Otherwise,
2141 * we would have to CS stall on every flush which could be bad.
2142 */
2143 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2144
2145 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2146 * target operations related to transfer commands with VkBuffer as
2147 * destination are ongoing. Some operations like copies on the command
2148 * streamer might need to be aware of this to trigger the appropriate stall
2149 * before they can proceed with the copy.
2150 */
2151 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2152 };
2153
2154 #define ANV_PIPE_FLUSH_BITS ( \
2155 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2156 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2157 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2158 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2159
2160 #define ANV_PIPE_STALL_BITS ( \
2161 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2162 ANV_PIPE_DEPTH_STALL_BIT | \
2163 ANV_PIPE_CS_STALL_BIT)
2164
2165 #define ANV_PIPE_INVALIDATE_BITS ( \
2166 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2167 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2168 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2169 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2170 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2171 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2172
2173 static inline enum anv_pipe_bits
2174 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2175 {
2176 enum anv_pipe_bits pipe_bits = 0;
2177
2178 unsigned b;
2179 for_each_bit(b, flags) {
2180 switch ((VkAccessFlagBits)(1 << b)) {
2181 case VK_ACCESS_SHADER_WRITE_BIT:
2182 /* We're transitioning a buffer that was previously used as write
2183 * destination through the data port. To make its content available
2184 * to future operations, flush the data cache.
2185 */
2186 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2187 break;
2188 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2189 /* We're transitioning a buffer that was previously used as render
2190 * target. To make its content available to future operations, flush
2191 * the render target cache.
2192 */
2193 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2194 break;
2195 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2196 /* We're transitioning a buffer that was previously used as depth
2197 * buffer. To make its content available to future operations, flush
2198 * the depth cache.
2199 */
2200 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2201 break;
2202 case VK_ACCESS_TRANSFER_WRITE_BIT:
2203 /* We're transitioning a buffer that was previously used as a
2204 * transfer write destination. Generic write operations include color
2205 * & depth operations as well as buffer operations like :
2206 * - vkCmdClearColorImage()
2207 * - vkCmdClearDepthStencilImage()
2208 * - vkCmdBlitImage()
2209 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2210 *
2211 * Most of these operations are implemented using Blorp which writes
2212 * through the render target, so flush that cache to make it visible
2213 * to future operations. And for depth related operations we also
2214 * need to flush the depth cache.
2215 */
2216 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2217 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2218 break;
2219 case VK_ACCESS_MEMORY_WRITE_BIT:
2220 /* We're transitioning a buffer for generic write operations. Flush
2221 * all the caches.
2222 */
2223 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2224 break;
2225 default:
2226 break; /* Nothing to do */
2227 }
2228 }
2229
2230 return pipe_bits;
2231 }
2232
2233 static inline enum anv_pipe_bits
2234 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2235 {
2236 enum anv_pipe_bits pipe_bits = 0;
2237
2238 unsigned b;
2239 for_each_bit(b, flags) {
2240 switch ((VkAccessFlagBits)(1 << b)) {
2241 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2242 /* Indirect draw commands take a buffer as input that we're going to
2243 * read from the command streamer to load some of the HW registers
2244 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2245 * command streamer stall so that all the cache flushes have
2246 * completed before the command streamer loads from memory.
2247 */
2248 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2249 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2250 * through a vertex buffer, so invalidate that cache.
2251 */
2252 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2253 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2254 * UBO from the buffer, so we need to invalidate constant cache.
2255 */
2256 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2257 break;
2258 case VK_ACCESS_INDEX_READ_BIT:
2259 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2260 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2261 * commands, so we invalidate the VF cache to make sure there is no
2262 * stale data when we start rendering.
2263 */
2264 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2265 break;
2266 case VK_ACCESS_UNIFORM_READ_BIT:
2267 /* We transitioning a buffer to be used as uniform data. Because
2268 * uniform is accessed through the data port & sampler, we need to
2269 * invalidate the texture cache (sampler) & constant cache (data
2270 * port) to avoid stale data.
2271 */
2272 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2273 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2274 break;
2275 case VK_ACCESS_SHADER_READ_BIT:
2276 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2277 case VK_ACCESS_TRANSFER_READ_BIT:
2278 /* Transitioning a buffer to be read through the sampler, so
2279 * invalidate the texture cache, we don't want any stale data.
2280 */
2281 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2282 break;
2283 case VK_ACCESS_MEMORY_READ_BIT:
2284 /* Transitioning a buffer for generic read, invalidate all the
2285 * caches.
2286 */
2287 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2288 break;
2289 case VK_ACCESS_MEMORY_WRITE_BIT:
2290 /* Generic write, make sure all previously written things land in
2291 * memory.
2292 */
2293 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2294 break;
2295 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2296 /* Transitioning a buffer for conditional rendering. We'll load the
2297 * content of this buffer into HW registers using the command
2298 * streamer, so we need to stall the command streamer to make sure
2299 * any in-flight flush operations have completed.
2300 */
2301 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2302 break;
2303 default:
2304 break; /* Nothing to do */
2305 }
2306 }
2307
2308 return pipe_bits;
2309 }
2310
2311 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2312 VK_IMAGE_ASPECT_COLOR_BIT | \
2313 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2314 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2315 VK_IMAGE_ASPECT_PLANE_2_BIT)
2316 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2317 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2318 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2319 VK_IMAGE_ASPECT_PLANE_2_BIT)
2320
2321 struct anv_vertex_binding {
2322 struct anv_buffer * buffer;
2323 VkDeviceSize offset;
2324 };
2325
2326 struct anv_xfb_binding {
2327 struct anv_buffer * buffer;
2328 VkDeviceSize offset;
2329 VkDeviceSize size;
2330 };
2331
2332 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2333 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2334 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2335
2336 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2337 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2338 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2339
2340 struct anv_push_constants {
2341 /* Push constant data provided by the client through vkPushConstants */
2342 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2343
2344 /* Used for vkCmdDispatchBase */
2345 uint32_t base_work_group_id[3];
2346 };
2347
2348 struct anv_dynamic_state {
2349 struct {
2350 uint32_t count;
2351 VkViewport viewports[MAX_VIEWPORTS];
2352 } viewport;
2353
2354 struct {
2355 uint32_t count;
2356 VkRect2D scissors[MAX_SCISSORS];
2357 } scissor;
2358
2359 float line_width;
2360
2361 struct {
2362 float bias;
2363 float clamp;
2364 float slope;
2365 } depth_bias;
2366
2367 float blend_constants[4];
2368
2369 struct {
2370 float min;
2371 float max;
2372 } depth_bounds;
2373
2374 struct {
2375 uint32_t front;
2376 uint32_t back;
2377 } stencil_compare_mask;
2378
2379 struct {
2380 uint32_t front;
2381 uint32_t back;
2382 } stencil_write_mask;
2383
2384 struct {
2385 uint32_t front;
2386 uint32_t back;
2387 } stencil_reference;
2388
2389 struct {
2390 uint32_t factor;
2391 uint16_t pattern;
2392 } line_stipple;
2393 };
2394
2395 extern const struct anv_dynamic_state default_dynamic_state;
2396
2397 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2398 const struct anv_dynamic_state *src,
2399 uint32_t copy_mask);
2400
2401 struct anv_surface_state {
2402 struct anv_state state;
2403 /** Address of the surface referred to by this state
2404 *
2405 * This address is relative to the start of the BO.
2406 */
2407 struct anv_address address;
2408 /* Address of the aux surface, if any
2409 *
2410 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2411 *
2412 * With the exception of gen8, the bottom 12 bits of this address' offset
2413 * include extra aux information.
2414 */
2415 struct anv_address aux_address;
2416 /* Address of the clear color, if any
2417 *
2418 * This address is relative to the start of the BO.
2419 */
2420 struct anv_address clear_address;
2421 };
2422
2423 /**
2424 * Attachment state when recording a renderpass instance.
2425 *
2426 * The clear value is valid only if there exists a pending clear.
2427 */
2428 struct anv_attachment_state {
2429 enum isl_aux_usage aux_usage;
2430 enum isl_aux_usage input_aux_usage;
2431 struct anv_surface_state color;
2432 struct anv_surface_state input;
2433
2434 VkImageLayout current_layout;
2435 VkImageAspectFlags pending_clear_aspects;
2436 VkImageAspectFlags pending_load_aspects;
2437 bool fast_clear;
2438 VkClearValue clear_value;
2439 bool clear_color_is_zero_one;
2440 bool clear_color_is_zero;
2441
2442 /* When multiview is active, attachments with a renderpass clear
2443 * operation have their respective layers cleared on the first
2444 * subpass that uses them, and only in that subpass. We keep track
2445 * of this using a bitfield to indicate which layers of an attachment
2446 * have not been cleared yet when multiview is active.
2447 */
2448 uint32_t pending_clear_views;
2449 struct anv_image_view * image_view;
2450 };
2451
2452 /** State tracking for particular pipeline bind point
2453 *
2454 * This struct is the base struct for anv_cmd_graphics_state and
2455 * anv_cmd_compute_state. These are used to track state which is bound to a
2456 * particular type of pipeline. Generic state that applies per-stage such as
2457 * binding table offsets and push constants is tracked generically with a
2458 * per-stage array in anv_cmd_state.
2459 */
2460 struct anv_cmd_pipeline_state {
2461 struct anv_pipeline *pipeline;
2462 struct anv_pipeline_layout *layout;
2463
2464 struct anv_descriptor_set *descriptors[MAX_SETS];
2465 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2466
2467 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2468 };
2469
2470 /** State tracking for graphics pipeline
2471 *
2472 * This has anv_cmd_pipeline_state as a base struct to track things which get
2473 * bound to a graphics pipeline. Along with general pipeline bind point state
2474 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2475 * state which is graphics-specific.
2476 */
2477 struct anv_cmd_graphics_state {
2478 struct anv_cmd_pipeline_state base;
2479
2480 anv_cmd_dirty_mask_t dirty;
2481 uint32_t vb_dirty;
2482
2483 struct anv_dynamic_state dynamic;
2484
2485 struct {
2486 struct anv_buffer *index_buffer;
2487 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2488 uint32_t index_offset;
2489 } gen7;
2490 };
2491
2492 /** State tracking for compute pipeline
2493 *
2494 * This has anv_cmd_pipeline_state as a base struct to track things which get
2495 * bound to a compute pipeline. Along with general pipeline bind point state
2496 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2497 * state which is compute-specific.
2498 */
2499 struct anv_cmd_compute_state {
2500 struct anv_cmd_pipeline_state base;
2501
2502 bool pipeline_dirty;
2503
2504 struct anv_address num_workgroups;
2505 };
2506
2507 /** State required while building cmd buffer */
2508 struct anv_cmd_state {
2509 /* PIPELINE_SELECT.PipelineSelection */
2510 uint32_t current_pipeline;
2511 const struct gen_l3_config * current_l3_config;
2512 uint32_t last_aux_map_state;
2513
2514 struct anv_cmd_graphics_state gfx;
2515 struct anv_cmd_compute_state compute;
2516
2517 enum anv_pipe_bits pending_pipe_bits;
2518 VkShaderStageFlags descriptors_dirty;
2519 VkShaderStageFlags push_constants_dirty;
2520
2521 struct anv_framebuffer * framebuffer;
2522 struct anv_render_pass * pass;
2523 struct anv_subpass * subpass;
2524 VkRect2D render_area;
2525 uint32_t restart_index;
2526 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2527 bool xfb_enabled;
2528 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2529 VkShaderStageFlags push_constant_stages;
2530 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2531 struct anv_state binding_tables[MESA_SHADER_STAGES];
2532 struct anv_state samplers[MESA_SHADER_STAGES];
2533
2534 /**
2535 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2536 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2537 * and before invoking the secondary in ExecuteCommands.
2538 */
2539 bool pma_fix_enabled;
2540
2541 /**
2542 * Whether or not we know for certain that HiZ is enabled for the current
2543 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2544 * enabled or not, this will be false.
2545 */
2546 bool hiz_enabled;
2547
2548 bool conditional_render_enabled;
2549
2550 /**
2551 * Last rendering scale argument provided to
2552 * genX(cmd_buffer_emit_hashing_mode)().
2553 */
2554 unsigned current_hash_scale;
2555
2556 /**
2557 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2558 * valid only when recording a render pass instance.
2559 */
2560 struct anv_attachment_state * attachments;
2561
2562 /**
2563 * Surface states for color render targets. These are stored in a single
2564 * flat array. For depth-stencil attachments, the surface state is simply
2565 * left blank.
2566 */
2567 struct anv_state render_pass_states;
2568
2569 /**
2570 * A null surface state of the right size to match the framebuffer. This
2571 * is one of the states in render_pass_states.
2572 */
2573 struct anv_state null_surface_state;
2574 };
2575
2576 struct anv_cmd_pool {
2577 VkAllocationCallbacks alloc;
2578 struct list_head cmd_buffers;
2579 };
2580
2581 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2582
2583 enum anv_cmd_buffer_exec_mode {
2584 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2585 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2586 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2587 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2588 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2589 };
2590
2591 struct anv_cmd_buffer {
2592 VK_LOADER_DATA _loader_data;
2593
2594 struct anv_device * device;
2595
2596 struct anv_cmd_pool * pool;
2597 struct list_head pool_link;
2598
2599 struct anv_batch batch;
2600
2601 /* Fields required for the actual chain of anv_batch_bo's.
2602 *
2603 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2604 */
2605 struct list_head batch_bos;
2606 enum anv_cmd_buffer_exec_mode exec_mode;
2607
2608 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2609 * referenced by this command buffer
2610 *
2611 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2612 */
2613 struct u_vector seen_bbos;
2614
2615 /* A vector of int32_t's for every block of binding tables.
2616 *
2617 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2618 */
2619 struct u_vector bt_block_states;
2620 uint32_t bt_next;
2621
2622 struct anv_reloc_list surface_relocs;
2623 /** Last seen surface state block pool center bo offset */
2624 uint32_t last_ss_pool_center;
2625
2626 /* Serial for tracking buffer completion */
2627 uint32_t serial;
2628
2629 /* Stream objects for storing temporary data */
2630 struct anv_state_stream surface_state_stream;
2631 struct anv_state_stream dynamic_state_stream;
2632
2633 VkCommandBufferUsageFlags usage_flags;
2634 VkCommandBufferLevel level;
2635
2636 struct anv_cmd_state state;
2637
2638 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2639 uint64_t intel_perf_marker;
2640 };
2641
2642 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2643 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2644 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2645 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2646 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2647 struct anv_cmd_buffer *secondary);
2648 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2649 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2650 struct anv_cmd_buffer *cmd_buffer,
2651 const VkSemaphore *in_semaphores,
2652 uint32_t num_in_semaphores,
2653 const VkSemaphore *out_semaphores,
2654 uint32_t num_out_semaphores,
2655 VkFence fence);
2656
2657 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2658
2659 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2660 const void *data, uint32_t size, uint32_t alignment);
2661 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2662 uint32_t *a, uint32_t *b,
2663 uint32_t dwords, uint32_t alignment);
2664
2665 struct anv_address
2666 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2667 struct anv_state
2668 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2669 uint32_t entries, uint32_t *state_offset);
2670 struct anv_state
2671 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2672 struct anv_state
2673 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2674 uint32_t size, uint32_t alignment);
2675
2676 VkResult
2677 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2678
2679 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2680 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2681 bool depth_clamp_enable);
2682 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2683
2684 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2685 struct anv_render_pass *pass,
2686 struct anv_framebuffer *framebuffer,
2687 const VkClearValue *clear_values);
2688
2689 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2690
2691 struct anv_state
2692 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2693 gl_shader_stage stage);
2694 struct anv_state
2695 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2696
2697 const struct anv_image_view *
2698 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2699
2700 VkResult
2701 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2702 uint32_t num_entries,
2703 uint32_t *state_offset,
2704 struct anv_state *bt_state);
2705
2706 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2707
2708 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2709
2710 enum anv_fence_type {
2711 ANV_FENCE_TYPE_NONE = 0,
2712 ANV_FENCE_TYPE_BO,
2713 ANV_FENCE_TYPE_SYNCOBJ,
2714 ANV_FENCE_TYPE_WSI,
2715 };
2716
2717 enum anv_bo_fence_state {
2718 /** Indicates that this is a new (or newly reset fence) */
2719 ANV_BO_FENCE_STATE_RESET,
2720
2721 /** Indicates that this fence has been submitted to the GPU but is still
2722 * (as far as we know) in use by the GPU.
2723 */
2724 ANV_BO_FENCE_STATE_SUBMITTED,
2725
2726 ANV_BO_FENCE_STATE_SIGNALED,
2727 };
2728
2729 struct anv_fence_impl {
2730 enum anv_fence_type type;
2731
2732 union {
2733 /** Fence implementation for BO fences
2734 *
2735 * These fences use a BO and a set of CPU-tracked state flags. The BO
2736 * is added to the object list of the last execbuf call in a QueueSubmit
2737 * and is marked EXEC_WRITE. The state flags track when the BO has been
2738 * submitted to the kernel. We need to do this because Vulkan lets you
2739 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2740 * will say it's idle in this case.
2741 */
2742 struct {
2743 struct anv_bo bo;
2744 enum anv_bo_fence_state state;
2745 } bo;
2746
2747 /** DRM syncobj handle for syncobj-based fences */
2748 uint32_t syncobj;
2749
2750 /** WSI fence */
2751 struct wsi_fence *fence_wsi;
2752 };
2753 };
2754
2755 struct anv_fence {
2756 /* Permanent fence state. Every fence has some form of permanent state
2757 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2758 * cross-process fences) or it could just be a dummy for use internally.
2759 */
2760 struct anv_fence_impl permanent;
2761
2762 /* Temporary fence state. A fence *may* have temporary state. That state
2763 * is added to the fence by an import operation and is reset back to
2764 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2765 * state cannot be signaled because the fence must already be signaled
2766 * before the temporary state can be exported from the fence in the other
2767 * process and imported here.
2768 */
2769 struct anv_fence_impl temporary;
2770 };
2771
2772 struct anv_event {
2773 uint64_t semaphore;
2774 struct anv_state state;
2775 };
2776
2777 enum anv_semaphore_type {
2778 ANV_SEMAPHORE_TYPE_NONE = 0,
2779 ANV_SEMAPHORE_TYPE_DUMMY,
2780 ANV_SEMAPHORE_TYPE_BO,
2781 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2782 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2783 };
2784
2785 struct anv_semaphore_impl {
2786 enum anv_semaphore_type type;
2787
2788 union {
2789 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2790 * This BO will be added to the object list on any execbuf2 calls for
2791 * which this semaphore is used as a wait or signal fence. When used as
2792 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2793 */
2794 struct anv_bo *bo;
2795
2796 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2797 * If the semaphore is in the unsignaled state due to either just being
2798 * created or because it has been used for a wait, fd will be -1.
2799 */
2800 int fd;
2801
2802 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2803 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2804 * import so we don't need to bother with a userspace cache.
2805 */
2806 uint32_t syncobj;
2807 };
2808 };
2809
2810 struct anv_semaphore {
2811 /* Permanent semaphore state. Every semaphore has some form of permanent
2812 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2813 * (for cross-process semaphores0 or it could just be a dummy for use
2814 * internally.
2815 */
2816 struct anv_semaphore_impl permanent;
2817
2818 /* Temporary semaphore state. A semaphore *may* have temporary state.
2819 * That state is added to the semaphore by an import operation and is reset
2820 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2821 * semaphore with temporary state cannot be signaled because the semaphore
2822 * must already be signaled before the temporary state can be exported from
2823 * the semaphore in the other process and imported here.
2824 */
2825 struct anv_semaphore_impl temporary;
2826 };
2827
2828 void anv_semaphore_reset_temporary(struct anv_device *device,
2829 struct anv_semaphore *semaphore);
2830
2831 struct anv_shader_module {
2832 unsigned char sha1[20];
2833 uint32_t size;
2834 char data[0];
2835 };
2836
2837 static inline gl_shader_stage
2838 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2839 {
2840 assert(__builtin_popcount(vk_stage) == 1);
2841 return ffs(vk_stage) - 1;
2842 }
2843
2844 static inline VkShaderStageFlagBits
2845 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2846 {
2847 return (1 << mesa_stage);
2848 }
2849
2850 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2851
2852 #define anv_foreach_stage(stage, stage_bits) \
2853 for (gl_shader_stage stage, \
2854 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2855 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2856 __tmp &= ~(1 << (stage)))
2857
2858 struct anv_pipeline_bind_map {
2859 uint32_t surface_count;
2860 uint32_t sampler_count;
2861
2862 struct anv_pipeline_binding * surface_to_descriptor;
2863 struct anv_pipeline_binding * sampler_to_descriptor;
2864 };
2865
2866 struct anv_shader_bin_key {
2867 uint32_t size;
2868 uint8_t data[0];
2869 };
2870
2871 struct anv_shader_bin {
2872 uint32_t ref_cnt;
2873
2874 const struct anv_shader_bin_key *key;
2875
2876 struct anv_state kernel;
2877 uint32_t kernel_size;
2878
2879 struct anv_state constant_data;
2880 uint32_t constant_data_size;
2881
2882 const struct brw_stage_prog_data *prog_data;
2883 uint32_t prog_data_size;
2884
2885 struct brw_compile_stats stats[3];
2886 uint32_t num_stats;
2887
2888 struct nir_xfb_info *xfb_info;
2889
2890 struct anv_pipeline_bind_map bind_map;
2891 };
2892
2893 struct anv_shader_bin *
2894 anv_shader_bin_create(struct anv_device *device,
2895 const void *key, uint32_t key_size,
2896 const void *kernel, uint32_t kernel_size,
2897 const void *constant_data, uint32_t constant_data_size,
2898 const struct brw_stage_prog_data *prog_data,
2899 uint32_t prog_data_size, const void *prog_data_param,
2900 const struct brw_compile_stats *stats, uint32_t num_stats,
2901 const struct nir_xfb_info *xfb_info,
2902 const struct anv_pipeline_bind_map *bind_map);
2903
2904 void
2905 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2906
2907 static inline void
2908 anv_shader_bin_ref(struct anv_shader_bin *shader)
2909 {
2910 assert(shader && shader->ref_cnt >= 1);
2911 p_atomic_inc(&shader->ref_cnt);
2912 }
2913
2914 static inline void
2915 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2916 {
2917 assert(shader && shader->ref_cnt >= 1);
2918 if (p_atomic_dec_zero(&shader->ref_cnt))
2919 anv_shader_bin_destroy(device, shader);
2920 }
2921
2922 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2923 #define MAX_PIPELINE_EXECUTABLES 7
2924
2925 struct anv_pipeline_executable {
2926 gl_shader_stage stage;
2927
2928 struct brw_compile_stats stats;
2929
2930 char *nir;
2931 char *disasm;
2932 };
2933
2934 struct anv_pipeline {
2935 struct anv_device * device;
2936 struct anv_batch batch;
2937 uint32_t batch_data[512];
2938 struct anv_reloc_list batch_relocs;
2939 anv_cmd_dirty_mask_t dynamic_state_mask;
2940 struct anv_dynamic_state dynamic_state;
2941
2942 void * mem_ctx;
2943
2944 VkPipelineCreateFlags flags;
2945 struct anv_subpass * subpass;
2946
2947 bool needs_data_cache;
2948
2949 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2950
2951 uint32_t num_executables;
2952 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2953
2954 struct {
2955 const struct gen_l3_config * l3_config;
2956 uint32_t total_size;
2957 } urb;
2958
2959 VkShaderStageFlags active_stages;
2960 struct anv_state blend_state;
2961
2962 uint32_t vb_used;
2963 struct anv_pipeline_vertex_binding {
2964 uint32_t stride;
2965 bool instanced;
2966 uint32_t instance_divisor;
2967 } vb[MAX_VBS];
2968
2969 uint8_t xfb_used;
2970
2971 bool primitive_restart;
2972 uint32_t topology;
2973
2974 uint32_t cs_right_mask;
2975
2976 bool writes_depth;
2977 bool depth_test_enable;
2978 bool writes_stencil;
2979 bool stencil_test_enable;
2980 bool depth_clamp_enable;
2981 bool depth_clip_enable;
2982 bool sample_shading_enable;
2983 bool kill_pixel;
2984 bool depth_bounds_test_enable;
2985
2986 struct {
2987 uint32_t sf[7];
2988 uint32_t depth_stencil_state[3];
2989 } gen7;
2990
2991 struct {
2992 uint32_t sf[4];
2993 uint32_t raster[5];
2994 uint32_t wm_depth_stencil[3];
2995 } gen8;
2996
2997 struct {
2998 uint32_t wm_depth_stencil[4];
2999 } gen9;
3000
3001 uint32_t interface_descriptor_data[8];
3002 };
3003
3004 static inline bool
3005 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3006 gl_shader_stage stage)
3007 {
3008 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3009 }
3010
3011 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3012 static inline const struct brw_##prefix##_prog_data * \
3013 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3014 { \
3015 if (anv_pipeline_has_stage(pipeline, stage)) { \
3016 return (const struct brw_##prefix##_prog_data *) \
3017 pipeline->shaders[stage]->prog_data; \
3018 } else { \
3019 return NULL; \
3020 } \
3021 }
3022
3023 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3024 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3025 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3026 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3027 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3028 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3029
3030 static inline const struct brw_vue_prog_data *
3031 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3032 {
3033 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3034 return &get_gs_prog_data(pipeline)->base;
3035 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3036 return &get_tes_prog_data(pipeline)->base;
3037 else
3038 return &get_vs_prog_data(pipeline)->base;
3039 }
3040
3041 VkResult
3042 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3043 struct anv_pipeline_cache *cache,
3044 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3045 const VkAllocationCallbacks *alloc);
3046
3047 VkResult
3048 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3049 struct anv_pipeline_cache *cache,
3050 const VkComputePipelineCreateInfo *info,
3051 const struct anv_shader_module *module,
3052 const char *entrypoint,
3053 const VkSpecializationInfo *spec_info);
3054
3055 struct anv_format_plane {
3056 enum isl_format isl_format:16;
3057 struct isl_swizzle swizzle;
3058
3059 /* Whether this plane contains chroma channels */
3060 bool has_chroma;
3061
3062 /* For downscaling of YUV planes */
3063 uint8_t denominator_scales[2];
3064
3065 /* How to map sampled ycbcr planes to a single 4 component element. */
3066 struct isl_swizzle ycbcr_swizzle;
3067
3068 /* What aspect is associated to this plane */
3069 VkImageAspectFlags aspect;
3070 };
3071
3072
3073 struct anv_format {
3074 struct anv_format_plane planes[3];
3075 VkFormat vk_format;
3076 uint8_t n_planes;
3077 bool can_ycbcr;
3078 };
3079
3080 static inline uint32_t
3081 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3082 VkImageAspectFlags aspect_mask)
3083 {
3084 switch (aspect_mask) {
3085 case VK_IMAGE_ASPECT_COLOR_BIT:
3086 case VK_IMAGE_ASPECT_DEPTH_BIT:
3087 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3088 return 0;
3089 case VK_IMAGE_ASPECT_STENCIL_BIT:
3090 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3091 return 0;
3092 /* Fall-through */
3093 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3094 return 1;
3095 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3096 return 2;
3097 default:
3098 /* Purposefully assert with depth/stencil aspects. */
3099 unreachable("invalid image aspect");
3100 }
3101 }
3102
3103 static inline VkImageAspectFlags
3104 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3105 uint32_t plane)
3106 {
3107 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3108 if (util_bitcount(image_aspects) > 1)
3109 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3110 return VK_IMAGE_ASPECT_COLOR_BIT;
3111 }
3112 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3113 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3114 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3115 return VK_IMAGE_ASPECT_STENCIL_BIT;
3116 }
3117
3118 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3119 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3120
3121 const struct anv_format *
3122 anv_get_format(VkFormat format);
3123
3124 static inline uint32_t
3125 anv_get_format_planes(VkFormat vk_format)
3126 {
3127 const struct anv_format *format = anv_get_format(vk_format);
3128
3129 return format != NULL ? format->n_planes : 0;
3130 }
3131
3132 struct anv_format_plane
3133 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3134 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3135
3136 static inline enum isl_format
3137 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3138 VkImageAspectFlags aspect, VkImageTiling tiling)
3139 {
3140 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3141 }
3142
3143 static inline struct isl_swizzle
3144 anv_swizzle_for_render(struct isl_swizzle swizzle)
3145 {
3146 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3147 * RGB as RGBA for texturing
3148 */
3149 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3150 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3151
3152 /* But it doesn't matter what we render to that channel */
3153 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3154
3155 return swizzle;
3156 }
3157
3158 void
3159 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3160
3161 /**
3162 * Subsurface of an anv_image.
3163 */
3164 struct anv_surface {
3165 /** Valid only if isl_surf::size_B > 0. */
3166 struct isl_surf isl;
3167
3168 /**
3169 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3170 */
3171 uint32_t offset;
3172 };
3173
3174 struct anv_image {
3175 VkImageType type; /**< VkImageCreateInfo::imageType */
3176 /* The original VkFormat provided by the client. This may not match any
3177 * of the actual surface formats.
3178 */
3179 VkFormat vk_format;
3180 const struct anv_format *format;
3181
3182 VkImageAspectFlags aspects;
3183 VkExtent3D extent;
3184 uint32_t levels;
3185 uint32_t array_size;
3186 uint32_t samples; /**< VkImageCreateInfo::samples */
3187 uint32_t n_planes;
3188 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3189 VkImageUsageFlags stencil_usage;
3190 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3191 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3192
3193 /** True if this is needs to be bound to an appropriately tiled BO.
3194 *
3195 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3196 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3197 * we require a dedicated allocation so that we can know to allocate a
3198 * tiled buffer.
3199 */
3200 bool needs_set_tiling;
3201
3202 /**
3203 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3204 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3205 */
3206 uint64_t drm_format_mod;
3207
3208 VkDeviceSize size;
3209 uint32_t alignment;
3210
3211 /* Whether the image is made of several underlying buffer objects rather a
3212 * single one with different offsets.
3213 */
3214 bool disjoint;
3215
3216 /* All the formats that can be used when creating views of this image
3217 * are CCS_E compatible.
3218 */
3219 bool ccs_e_compatible;
3220
3221 /* Image was created with external format. */
3222 bool external_format;
3223
3224 /**
3225 * Image subsurfaces
3226 *
3227 * For each foo, anv_image::planes[x].surface is valid if and only if
3228 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3229 * to figure the number associated with a given aspect.
3230 *
3231 * The hardware requires that the depth buffer and stencil buffer be
3232 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3233 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3234 * allocate the depth and stencil buffers as separate surfaces in the same
3235 * bo.
3236 *
3237 * Memory layout :
3238 *
3239 * -----------------------
3240 * | surface0 | /|\
3241 * ----------------------- |
3242 * | shadow surface0 | |
3243 * ----------------------- | Plane 0
3244 * | aux surface0 | |
3245 * ----------------------- |
3246 * | fast clear colors0 | \|/
3247 * -----------------------
3248 * | surface1 | /|\
3249 * ----------------------- |
3250 * | shadow surface1 | |
3251 * ----------------------- | Plane 1
3252 * | aux surface1 | |
3253 * ----------------------- |
3254 * | fast clear colors1 | \|/
3255 * -----------------------
3256 * | ... |
3257 * | |
3258 * -----------------------
3259 */
3260 struct {
3261 /**
3262 * Offset of the entire plane (whenever the image is disjoint this is
3263 * set to 0).
3264 */
3265 uint32_t offset;
3266
3267 VkDeviceSize size;
3268 uint32_t alignment;
3269
3270 struct anv_surface surface;
3271
3272 /**
3273 * A surface which shadows the main surface and may have different
3274 * tiling. This is used for sampling using a tiling that isn't supported
3275 * for other operations.
3276 */
3277 struct anv_surface shadow_surface;
3278
3279 /**
3280 * For color images, this is the aux usage for this image when not used
3281 * as a color attachment.
3282 *
3283 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3284 * image has a HiZ buffer.
3285 */
3286 enum isl_aux_usage aux_usage;
3287
3288 struct anv_surface aux_surface;
3289
3290 /**
3291 * Offset of the fast clear state (used to compute the
3292 * fast_clear_state_offset of the following planes).
3293 */
3294 uint32_t fast_clear_state_offset;
3295
3296 /**
3297 * BO associated with this plane, set when bound.
3298 */
3299 struct anv_address address;
3300
3301 /**
3302 * Address of the main surface used to fill the aux map table. This is
3303 * used at destruction of the image since the Vulkan spec does not
3304 * guarantee that the address.bo field we still be valid at destruction.
3305 */
3306 uint64_t aux_map_surface_address;
3307
3308 /**
3309 * When destroying the image, also free the bo.
3310 * */
3311 bool bo_is_owned;
3312 } planes[3];
3313 };
3314
3315 /* The ordering of this enum is important */
3316 enum anv_fast_clear_type {
3317 /** Image does not have/support any fast-clear blocks */
3318 ANV_FAST_CLEAR_NONE = 0,
3319 /** Image has/supports fast-clear but only to the default value */
3320 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3321 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3322 ANV_FAST_CLEAR_ANY = 2,
3323 };
3324
3325 /* Returns the number of auxiliary buffer levels attached to an image. */
3326 static inline uint8_t
3327 anv_image_aux_levels(const struct anv_image * const image,
3328 VkImageAspectFlagBits aspect)
3329 {
3330 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3331
3332 /* The Gen12 CCS aux surface is represented with only one level. */
3333 const uint8_t aux_logical_levels =
3334 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3335 image->planes[plane].surface.isl.levels :
3336 image->planes[plane].aux_surface.isl.levels;
3337
3338 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3339 aux_logical_levels : 0;
3340 }
3341
3342 /* Returns the number of auxiliary buffer layers attached to an image. */
3343 static inline uint32_t
3344 anv_image_aux_layers(const struct anv_image * const image,
3345 VkImageAspectFlagBits aspect,
3346 const uint8_t miplevel)
3347 {
3348 assert(image);
3349
3350 /* The miplevel must exist in the main buffer. */
3351 assert(miplevel < image->levels);
3352
3353 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3354 /* There are no layers with auxiliary data because the miplevel has no
3355 * auxiliary data.
3356 */
3357 return 0;
3358 } else {
3359 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3360
3361 /* The Gen12 CCS aux surface is represented with only one layer. */
3362 const struct isl_extent4d *aux_logical_level0_px =
3363 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3364 &image->planes[plane].surface.isl.logical_level0_px :
3365 &image->planes[plane].aux_surface.isl.logical_level0_px;
3366
3367 return MAX2(aux_logical_level0_px->array_len,
3368 aux_logical_level0_px->depth >> miplevel);
3369 }
3370 }
3371
3372 static inline struct anv_address
3373 anv_image_get_clear_color_addr(const struct anv_device *device,
3374 const struct anv_image *image,
3375 VkImageAspectFlagBits aspect)
3376 {
3377 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3378
3379 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3380 return anv_address_add(image->planes[plane].address,
3381 image->planes[plane].fast_clear_state_offset);
3382 }
3383
3384 static inline struct anv_address
3385 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3386 const struct anv_image *image,
3387 VkImageAspectFlagBits aspect)
3388 {
3389 struct anv_address addr =
3390 anv_image_get_clear_color_addr(device, image, aspect);
3391
3392 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3393 device->isl_dev.ss.clear_color_state_size :
3394 device->isl_dev.ss.clear_value_size;
3395 return anv_address_add(addr, clear_color_state_size);
3396 }
3397
3398 static inline struct anv_address
3399 anv_image_get_compression_state_addr(const struct anv_device *device,
3400 const struct anv_image *image,
3401 VkImageAspectFlagBits aspect,
3402 uint32_t level, uint32_t array_layer)
3403 {
3404 assert(level < anv_image_aux_levels(image, aspect));
3405 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3406 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3407 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3408
3409 struct anv_address addr =
3410 anv_image_get_fast_clear_type_addr(device, image, aspect);
3411 addr.offset += 4; /* Go past the fast clear type */
3412
3413 if (image->type == VK_IMAGE_TYPE_3D) {
3414 for (uint32_t l = 0; l < level; l++)
3415 addr.offset += anv_minify(image->extent.depth, l) * 4;
3416 } else {
3417 addr.offset += level * image->array_size * 4;
3418 }
3419 addr.offset += array_layer * 4;
3420
3421 assert(addr.offset <
3422 image->planes[plane].address.offset + image->planes[plane].size);
3423 return addr;
3424 }
3425
3426 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3427 static inline bool
3428 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3429 const struct anv_image *image)
3430 {
3431 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3432 return false;
3433
3434 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3435 * struct. There's documentation which suggests that this feature actually
3436 * reduces performance on BDW, but it has only been observed to help so
3437 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3438 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3439 */
3440 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3441 return false;
3442
3443 return image->samples == 1;
3444 }
3445
3446 static inline bool
3447 anv_image_plane_uses_aux_map(const struct anv_device *device,
3448 const struct anv_image *image,
3449 uint32_t plane)
3450 {
3451 return device->info.has_aux_map &&
3452 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3453 }
3454
3455 void
3456 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3457 const struct anv_image *image,
3458 VkImageAspectFlagBits aspect,
3459 enum isl_aux_usage aux_usage,
3460 uint32_t level,
3461 uint32_t base_layer,
3462 uint32_t layer_count);
3463
3464 void
3465 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3466 const struct anv_image *image,
3467 VkImageAspectFlagBits aspect,
3468 enum isl_aux_usage aux_usage,
3469 enum isl_format format, struct isl_swizzle swizzle,
3470 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3471 VkRect2D area, union isl_color_value clear_color);
3472 void
3473 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3474 const struct anv_image *image,
3475 VkImageAspectFlags aspects,
3476 enum isl_aux_usage depth_aux_usage,
3477 uint32_t level,
3478 uint32_t base_layer, uint32_t layer_count,
3479 VkRect2D area,
3480 float depth_value, uint8_t stencil_value);
3481 void
3482 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3483 const struct anv_image *src_image,
3484 enum isl_aux_usage src_aux_usage,
3485 uint32_t src_level, uint32_t src_base_layer,
3486 const struct anv_image *dst_image,
3487 enum isl_aux_usage dst_aux_usage,
3488 uint32_t dst_level, uint32_t dst_base_layer,
3489 VkImageAspectFlagBits aspect,
3490 uint32_t src_x, uint32_t src_y,
3491 uint32_t dst_x, uint32_t dst_y,
3492 uint32_t width, uint32_t height,
3493 uint32_t layer_count,
3494 enum blorp_filter filter);
3495 void
3496 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3497 const struct anv_image *image,
3498 VkImageAspectFlagBits aspect, uint32_t level,
3499 uint32_t base_layer, uint32_t layer_count,
3500 enum isl_aux_op hiz_op);
3501 void
3502 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3503 const struct anv_image *image,
3504 VkImageAspectFlags aspects,
3505 uint32_t level,
3506 uint32_t base_layer, uint32_t layer_count,
3507 VkRect2D area, uint8_t stencil_value);
3508 void
3509 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3510 const struct anv_image *image,
3511 enum isl_format format,
3512 VkImageAspectFlagBits aspect,
3513 uint32_t base_layer, uint32_t layer_count,
3514 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3515 bool predicate);
3516 void
3517 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3518 const struct anv_image *image,
3519 enum isl_format format,
3520 VkImageAspectFlagBits aspect, uint32_t level,
3521 uint32_t base_layer, uint32_t layer_count,
3522 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3523 bool predicate);
3524
3525 void
3526 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3527 const struct anv_image *image,
3528 VkImageAspectFlagBits aspect,
3529 uint32_t base_level, uint32_t level_count,
3530 uint32_t base_layer, uint32_t layer_count);
3531
3532 enum isl_aux_usage
3533 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3534 const struct anv_image *image,
3535 const VkImageAspectFlagBits aspect,
3536 const VkImageLayout layout);
3537
3538 enum anv_fast_clear_type
3539 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3540 const struct anv_image * const image,
3541 const VkImageAspectFlagBits aspect,
3542 const VkImageLayout layout);
3543
3544 /* This is defined as a macro so that it works for both
3545 * VkImageSubresourceRange and VkImageSubresourceLayers
3546 */
3547 #define anv_get_layerCount(_image, _range) \
3548 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3549 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3550
3551 static inline uint32_t
3552 anv_get_levelCount(const struct anv_image *image,
3553 const VkImageSubresourceRange *range)
3554 {
3555 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3556 image->levels - range->baseMipLevel : range->levelCount;
3557 }
3558
3559 static inline VkImageAspectFlags
3560 anv_image_expand_aspects(const struct anv_image *image,
3561 VkImageAspectFlags aspects)
3562 {
3563 /* If the underlying image has color plane aspects and
3564 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3565 * the underlying image. */
3566 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3567 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3568 return image->aspects;
3569
3570 return aspects;
3571 }
3572
3573 static inline bool
3574 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3575 VkImageAspectFlags aspects2)
3576 {
3577 if (aspects1 == aspects2)
3578 return true;
3579
3580 /* Only 1 color aspects are compatibles. */
3581 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3582 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3583 util_bitcount(aspects1) == util_bitcount(aspects2))
3584 return true;
3585
3586 return false;
3587 }
3588
3589 struct anv_image_view {
3590 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3591
3592 VkImageAspectFlags aspect_mask;
3593 VkFormat vk_format;
3594 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3595
3596 unsigned n_planes;
3597 struct {
3598 uint32_t image_plane;
3599
3600 struct isl_view isl;
3601
3602 /**
3603 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3604 * image layout of SHADER_READ_ONLY_OPTIMAL or
3605 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3606 */
3607 struct anv_surface_state optimal_sampler_surface_state;
3608
3609 /**
3610 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3611 * image layout of GENERAL.
3612 */
3613 struct anv_surface_state general_sampler_surface_state;
3614
3615 /**
3616 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3617 * states for write-only and readable, using the real format for
3618 * write-only and the lowered format for readable.
3619 */
3620 struct anv_surface_state storage_surface_state;
3621 struct anv_surface_state writeonly_storage_surface_state;
3622
3623 struct brw_image_param storage_image_param;
3624 } planes[3];
3625 };
3626
3627 enum anv_image_view_state_flags {
3628 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3629 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3630 };
3631
3632 void anv_image_fill_surface_state(struct anv_device *device,
3633 const struct anv_image *image,
3634 VkImageAspectFlagBits aspect,
3635 const struct isl_view *view,
3636 isl_surf_usage_flags_t view_usage,
3637 enum isl_aux_usage aux_usage,
3638 const union isl_color_value *clear_color,
3639 enum anv_image_view_state_flags flags,
3640 struct anv_surface_state *state_inout,
3641 struct brw_image_param *image_param_out);
3642
3643 struct anv_image_create_info {
3644 const VkImageCreateInfo *vk_info;
3645
3646 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3647 isl_tiling_flags_t isl_tiling_flags;
3648
3649 /** These flags will be added to any derived from VkImageCreateInfo. */
3650 isl_surf_usage_flags_t isl_extra_usage_flags;
3651
3652 uint32_t stride;
3653 bool external_format;
3654 };
3655
3656 VkResult anv_image_create(VkDevice _device,
3657 const struct anv_image_create_info *info,
3658 const VkAllocationCallbacks* alloc,
3659 VkImage *pImage);
3660
3661 const struct anv_surface *
3662 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3663 VkImageAspectFlags aspect_mask);
3664
3665 enum isl_format
3666 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3667
3668 static inline struct VkExtent3D
3669 anv_sanitize_image_extent(const VkImageType imageType,
3670 const struct VkExtent3D imageExtent)
3671 {
3672 switch (imageType) {
3673 case VK_IMAGE_TYPE_1D:
3674 return (VkExtent3D) { imageExtent.width, 1, 1 };
3675 case VK_IMAGE_TYPE_2D:
3676 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3677 case VK_IMAGE_TYPE_3D:
3678 return imageExtent;
3679 default:
3680 unreachable("invalid image type");
3681 }
3682 }
3683
3684 static inline struct VkOffset3D
3685 anv_sanitize_image_offset(const VkImageType imageType,
3686 const struct VkOffset3D imageOffset)
3687 {
3688 switch (imageType) {
3689 case VK_IMAGE_TYPE_1D:
3690 return (VkOffset3D) { imageOffset.x, 0, 0 };
3691 case VK_IMAGE_TYPE_2D:
3692 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3693 case VK_IMAGE_TYPE_3D:
3694 return imageOffset;
3695 default:
3696 unreachable("invalid image type");
3697 }
3698 }
3699
3700 VkFormatFeatureFlags
3701 anv_get_image_format_features(const struct gen_device_info *devinfo,
3702 VkFormat vk_format,
3703 const struct anv_format *anv_format,
3704 VkImageTiling vk_tiling);
3705
3706 void anv_fill_buffer_surface_state(struct anv_device *device,
3707 struct anv_state state,
3708 enum isl_format format,
3709 struct anv_address address,
3710 uint32_t range, uint32_t stride);
3711
3712 static inline void
3713 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3714 const struct anv_attachment_state *att_state,
3715 const struct anv_image_view *iview)
3716 {
3717 const struct isl_format_layout *view_fmtl =
3718 isl_format_get_layout(iview->planes[0].isl.format);
3719
3720 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3721 if (view_fmtl->channels.c.bits) \
3722 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3723
3724 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3725 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3726 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3727 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3728
3729 #undef COPY_CLEAR_COLOR_CHANNEL
3730 }
3731
3732
3733 struct anv_ycbcr_conversion {
3734 const struct anv_format * format;
3735 VkSamplerYcbcrModelConversion ycbcr_model;
3736 VkSamplerYcbcrRange ycbcr_range;
3737 VkComponentSwizzle mapping[4];
3738 VkChromaLocation chroma_offsets[2];
3739 VkFilter chroma_filter;
3740 bool chroma_reconstruction;
3741 };
3742
3743 struct anv_sampler {
3744 uint32_t state[3][4];
3745 uint32_t n_planes;
3746 struct anv_ycbcr_conversion *conversion;
3747
3748 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3749 * and with a 32-byte stride for use as bindless samplers.
3750 */
3751 struct anv_state bindless_state;
3752 };
3753
3754 struct anv_framebuffer {
3755 uint32_t width;
3756 uint32_t height;
3757 uint32_t layers;
3758
3759 uint32_t attachment_count;
3760 struct anv_image_view * attachments[0];
3761 };
3762
3763 struct anv_subpass_attachment {
3764 VkImageUsageFlagBits usage;
3765 uint32_t attachment;
3766 VkImageLayout layout;
3767 };
3768
3769 struct anv_subpass {
3770 uint32_t attachment_count;
3771
3772 /**
3773 * A pointer to all attachment references used in this subpass.
3774 * Only valid if ::attachment_count > 0.
3775 */
3776 struct anv_subpass_attachment * attachments;
3777 uint32_t input_count;
3778 struct anv_subpass_attachment * input_attachments;
3779 uint32_t color_count;
3780 struct anv_subpass_attachment * color_attachments;
3781 struct anv_subpass_attachment * resolve_attachments;
3782
3783 struct anv_subpass_attachment * depth_stencil_attachment;
3784 struct anv_subpass_attachment * ds_resolve_attachment;
3785 VkResolveModeFlagBitsKHR depth_resolve_mode;
3786 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3787
3788 uint32_t view_mask;
3789
3790 /** Subpass has a depth/stencil self-dependency */
3791 bool has_ds_self_dep;
3792
3793 /** Subpass has at least one color resolve attachment */
3794 bool has_color_resolve;
3795 };
3796
3797 static inline unsigned
3798 anv_subpass_view_count(const struct anv_subpass *subpass)
3799 {
3800 return MAX2(1, util_bitcount(subpass->view_mask));
3801 }
3802
3803 struct anv_render_pass_attachment {
3804 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3805 * its members individually.
3806 */
3807 VkFormat format;
3808 uint32_t samples;
3809 VkImageUsageFlags usage;
3810 VkAttachmentLoadOp load_op;
3811 VkAttachmentStoreOp store_op;
3812 VkAttachmentLoadOp stencil_load_op;
3813 VkImageLayout initial_layout;
3814 VkImageLayout final_layout;
3815 VkImageLayout first_subpass_layout;
3816
3817 /* The subpass id in which the attachment will be used last. */
3818 uint32_t last_subpass_idx;
3819 };
3820
3821 struct anv_render_pass {
3822 uint32_t attachment_count;
3823 uint32_t subpass_count;
3824 /* An array of subpass_count+1 flushes, one per subpass boundary */
3825 enum anv_pipe_bits * subpass_flushes;
3826 struct anv_render_pass_attachment * attachments;
3827 struct anv_subpass subpasses[0];
3828 };
3829
3830 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3831
3832 struct anv_query_pool {
3833 VkQueryType type;
3834 VkQueryPipelineStatisticFlags pipeline_statistics;
3835 /** Stride between slots, in bytes */
3836 uint32_t stride;
3837 /** Number of slots in this query pool */
3838 uint32_t slots;
3839 struct anv_bo bo;
3840 };
3841
3842 int anv_get_instance_entrypoint_index(const char *name);
3843 int anv_get_device_entrypoint_index(const char *name);
3844 int anv_get_physical_device_entrypoint_index(const char *name);
3845
3846 const char *anv_get_instance_entry_name(int index);
3847 const char *anv_get_physical_device_entry_name(int index);
3848 const char *anv_get_device_entry_name(int index);
3849
3850 bool
3851 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3852 const struct anv_instance_extension_table *instance);
3853 bool
3854 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3855 const struct anv_instance_extension_table *instance);
3856 bool
3857 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3858 const struct anv_instance_extension_table *instance,
3859 const struct anv_device_extension_table *device);
3860
3861 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3862 const char *name);
3863
3864 void anv_dump_image_to_ppm(struct anv_device *device,
3865 struct anv_image *image, unsigned miplevel,
3866 unsigned array_layer, VkImageAspectFlagBits aspect,
3867 const char *filename);
3868
3869 enum anv_dump_action {
3870 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3871 };
3872
3873 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3874 void anv_dump_finish(void);
3875
3876 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3877
3878 static inline uint32_t
3879 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3880 {
3881 /* This function must be called from within a subpass. */
3882 assert(cmd_state->pass && cmd_state->subpass);
3883
3884 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3885
3886 /* The id of this subpass shouldn't exceed the number of subpasses in this
3887 * render pass minus 1.
3888 */
3889 assert(subpass_id < cmd_state->pass->subpass_count);
3890 return subpass_id;
3891 }
3892
3893 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3894 void anv_device_perf_init(struct anv_device *device);
3895
3896 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3897 \
3898 static inline struct __anv_type * \
3899 __anv_type ## _from_handle(__VkType _handle) \
3900 { \
3901 return (struct __anv_type *) _handle; \
3902 } \
3903 \
3904 static inline __VkType \
3905 __anv_type ## _to_handle(struct __anv_type *_obj) \
3906 { \
3907 return (__VkType) _obj; \
3908 }
3909
3910 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3911 \
3912 static inline struct __anv_type * \
3913 __anv_type ## _from_handle(__VkType _handle) \
3914 { \
3915 return (struct __anv_type *)(uintptr_t) _handle; \
3916 } \
3917 \
3918 static inline __VkType \
3919 __anv_type ## _to_handle(struct __anv_type *_obj) \
3920 { \
3921 return (__VkType)(uintptr_t) _obj; \
3922 }
3923
3924 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3925 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3926
3927 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3928 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3929 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3930 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3931 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3932
3933 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3934 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3935 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3936 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3950 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3951 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3952 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3953 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3954 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3955 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3956
3957 /* Gen-specific function declarations */
3958 #ifdef genX
3959 # include "anv_genX.h"
3960 #else
3961 # define genX(x) gen7_##x
3962 # include "anv_genX.h"
3963 # undef genX
3964 # define genX(x) gen75_##x
3965 # include "anv_genX.h"
3966 # undef genX
3967 # define genX(x) gen8_##x
3968 # include "anv_genX.h"
3969 # undef genX
3970 # define genX(x) gen9_##x
3971 # include "anv_genX.h"
3972 # undef genX
3973 # define genX(x) gen10_##x
3974 # include "anv_genX.h"
3975 # undef genX
3976 # define genX(x) gen11_##x
3977 # include "anv_genX.h"
3978 # undef genX
3979 # define genX(x) gen12_##x
3980 # include "anv_genX.h"
3981 # undef genX
3982 #endif
3983
3984 #endif /* ANV_PRIVATE_H */