512acb513f87dc0e0a711185637f73427fff51af
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 struct anv_bo {
601 uint32_t gem_handle;
602
603 uint32_t refcount;
604
605 /* Index into the current validation list. This is used by the
606 * validation list building alrogithm to track which buffers are already
607 * in the validation list so that we can ensure uniqueness.
608 */
609 uint32_t index;
610
611 /* Last known offset. This value is provided by the kernel when we
612 * execbuf and is used as the presumed offset for the next bunch of
613 * relocations.
614 */
615 uint64_t offset;
616
617 uint64_t size;
618 void *map;
619
620 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
621 uint32_t flags;
622
623 /** True if this BO may be shared with other processes */
624 bool is_external:1;
625 };
626
627 static inline void
628 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
629 {
630 bo->gem_handle = gem_handle;
631 bo->refcount = 1;
632 bo->index = 0;
633 bo->offset = -1;
634 bo->size = size;
635 bo->map = NULL;
636 bo->flags = 0;
637 bo->is_external = false;
638 }
639
640 /* Represents a lock-free linked list of "free" things. This is used by
641 * both the block pool and the state pools. Unfortunately, in order to
642 * solve the ABA problem, we can't use a single uint32_t head.
643 */
644 union anv_free_list {
645 struct {
646 uint32_t offset;
647
648 /* A simple count that is incremented every time the head changes. */
649 uint32_t count;
650 };
651 /* Make sure it's aligned to 64 bits. This will make atomic operations
652 * faster on 32 bit platforms.
653 */
654 uint64_t u64 __attribute__ ((aligned (8)));
655 };
656
657 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
658
659 struct anv_block_state {
660 union {
661 struct {
662 uint32_t next;
663 uint32_t end;
664 };
665 /* Make sure it's aligned to 64 bits. This will make atomic operations
666 * faster on 32 bit platforms.
667 */
668 uint64_t u64 __attribute__ ((aligned (8)));
669 };
670 };
671
672 #define anv_block_pool_foreach_bo(bo, pool) \
673 for (struct anv_bo *bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
674
675 #define ANV_MAX_BLOCK_POOL_BOS 20
676
677 struct anv_block_pool {
678 struct anv_device *device;
679
680 uint64_t bo_flags;
681
682 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
683 struct anv_bo *bo;
684 uint32_t nbos;
685
686 uint64_t size;
687
688 /* The address where the start of the pool is pinned. The various bos that
689 * are created as the pool grows will have addresses in the range
690 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
691 */
692 uint64_t start_address;
693
694 /* The offset from the start of the bo to the "center" of the block
695 * pool. Pointers to allocated blocks are given by
696 * bo.map + center_bo_offset + offsets.
697 */
698 uint32_t center_bo_offset;
699
700 /* Current memory map of the block pool. This pointer may or may not
701 * point to the actual beginning of the block pool memory. If
702 * anv_block_pool_alloc_back has ever been called, then this pointer
703 * will point to the "center" position of the buffer and all offsets
704 * (negative or positive) given out by the block pool alloc functions
705 * will be valid relative to this pointer.
706 *
707 * In particular, map == bo.map + center_offset
708 *
709 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
710 * since it will handle the softpin case as well, where this points to NULL.
711 */
712 void *map;
713 int fd;
714
715 /**
716 * Array of mmaps and gem handles owned by the block pool, reclaimed when
717 * the block pool is destroyed.
718 */
719 struct u_vector mmap_cleanups;
720
721 struct anv_block_state state;
722
723 struct anv_block_state back_state;
724 };
725
726 /* Block pools are backed by a fixed-size 1GB memfd */
727 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
728
729 /* The center of the block pool is also the middle of the memfd. This may
730 * change in the future if we decide differently for some reason.
731 */
732 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
733
734 static inline uint32_t
735 anv_block_pool_size(struct anv_block_pool *pool)
736 {
737 return pool->state.end + pool->back_state.end;
738 }
739
740 struct anv_state {
741 int32_t offset;
742 uint32_t alloc_size;
743 void *map;
744 uint32_t idx;
745 };
746
747 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
748
749 struct anv_fixed_size_state_pool {
750 union anv_free_list free_list;
751 struct anv_block_state block;
752 };
753
754 #define ANV_MIN_STATE_SIZE_LOG2 6
755 #define ANV_MAX_STATE_SIZE_LOG2 21
756
757 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
758
759 struct anv_free_entry {
760 uint32_t next;
761 struct anv_state state;
762 };
763
764 struct anv_state_table {
765 struct anv_device *device;
766 int fd;
767 struct anv_free_entry *map;
768 uint32_t size;
769 struct anv_block_state state;
770 struct u_vector cleanups;
771 };
772
773 struct anv_state_pool {
774 struct anv_block_pool block_pool;
775
776 struct anv_state_table table;
777
778 /* The size of blocks which will be allocated from the block pool */
779 uint32_t block_size;
780
781 /** Free list for "back" allocations */
782 union anv_free_list back_alloc_free_list;
783
784 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
785 };
786
787 struct anv_state_stream_block;
788
789 struct anv_state_stream {
790 struct anv_state_pool *state_pool;
791
792 /* The size of blocks to allocate from the state pool */
793 uint32_t block_size;
794
795 /* Current block we're allocating from */
796 struct anv_state block;
797
798 /* Offset into the current block at which to allocate the next state */
799 uint32_t next;
800
801 /* List of all blocks allocated from this pool */
802 struct anv_state_stream_block *block_list;
803 };
804
805 /* The block_pool functions exported for testing only. The block pool should
806 * only be used via a state pool (see below).
807 */
808 VkResult anv_block_pool_init(struct anv_block_pool *pool,
809 struct anv_device *device,
810 uint64_t start_address,
811 uint32_t initial_size,
812 uint64_t bo_flags);
813 void anv_block_pool_finish(struct anv_block_pool *pool);
814 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
815 uint32_t block_size, uint32_t *padding);
816 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
817 uint32_t block_size);
818 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
819
820 VkResult anv_state_pool_init(struct anv_state_pool *pool,
821 struct anv_device *device,
822 uint64_t start_address,
823 uint32_t block_size,
824 uint64_t bo_flags);
825 void anv_state_pool_finish(struct anv_state_pool *pool);
826 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
827 uint32_t state_size, uint32_t alignment);
828 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
829 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
830 void anv_state_stream_init(struct anv_state_stream *stream,
831 struct anv_state_pool *state_pool,
832 uint32_t block_size);
833 void anv_state_stream_finish(struct anv_state_stream *stream);
834 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
835 uint32_t size, uint32_t alignment);
836
837 VkResult anv_state_table_init(struct anv_state_table *table,
838 struct anv_device *device,
839 uint32_t initial_entries);
840 void anv_state_table_finish(struct anv_state_table *table);
841 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
842 uint32_t count);
843 void anv_free_list_push(union anv_free_list *list,
844 struct anv_state_table *table,
845 uint32_t idx, uint32_t count);
846 struct anv_state* anv_free_list_pop(union anv_free_list *list,
847 struct anv_state_table *table);
848
849
850 static inline struct anv_state *
851 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
852 {
853 return &table->map[idx].state;
854 }
855 /**
856 * Implements a pool of re-usable BOs. The interface is identical to that
857 * of block_pool except that each block is its own BO.
858 */
859 struct anv_bo_pool {
860 struct anv_device *device;
861
862 uint64_t bo_flags;
863
864 void *free_list[16];
865 };
866
867 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
868 uint64_t bo_flags);
869 void anv_bo_pool_finish(struct anv_bo_pool *pool);
870 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
871 uint32_t size);
872 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
873
874 struct anv_scratch_bo {
875 bool exists;
876 struct anv_bo bo;
877 };
878
879 struct anv_scratch_pool {
880 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
881 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
882 };
883
884 void anv_scratch_pool_init(struct anv_device *device,
885 struct anv_scratch_pool *pool);
886 void anv_scratch_pool_finish(struct anv_device *device,
887 struct anv_scratch_pool *pool);
888 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
889 struct anv_scratch_pool *pool,
890 gl_shader_stage stage,
891 unsigned per_thread_scratch);
892
893 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
894 struct anv_bo_cache {
895 struct util_sparse_array bo_map;
896 pthread_mutex_t mutex;
897 };
898
899 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
900 void anv_bo_cache_finish(struct anv_bo_cache *cache);
901 VkResult anv_bo_cache_alloc(struct anv_device *device,
902 struct anv_bo_cache *cache,
903 uint64_t size, uint64_t bo_flags,
904 bool is_external,
905 struct anv_bo **bo);
906 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
907 struct anv_bo_cache *cache,
908 void *host_ptr, uint32_t size,
909 uint64_t bo_flags, struct anv_bo **bo_out);
910 VkResult anv_bo_cache_import(struct anv_device *device,
911 struct anv_bo_cache *cache,
912 int fd, uint64_t bo_flags,
913 struct anv_bo **bo);
914 VkResult anv_bo_cache_export(struct anv_device *device,
915 struct anv_bo_cache *cache,
916 struct anv_bo *bo_in, int *fd_out);
917 void anv_bo_cache_release(struct anv_device *device,
918 struct anv_bo_cache *cache,
919 struct anv_bo *bo);
920
921 struct anv_memory_type {
922 /* Standard bits passed on to the client */
923 VkMemoryPropertyFlags propertyFlags;
924 uint32_t heapIndex;
925
926 /* Driver-internal book-keeping */
927 VkBufferUsageFlags valid_buffer_usage;
928 };
929
930 struct anv_memory_heap {
931 /* Standard bits passed on to the client */
932 VkDeviceSize size;
933 VkMemoryHeapFlags flags;
934
935 /* Driver-internal book-keeping */
936 uint64_t vma_start;
937 uint64_t vma_size;
938 bool supports_48bit_addresses;
939 VkDeviceSize used;
940 };
941
942 struct anv_physical_device {
943 VK_LOADER_DATA _loader_data;
944
945 struct anv_instance * instance;
946 uint32_t chipset_id;
947 bool no_hw;
948 char path[20];
949 const char * name;
950 struct {
951 uint16_t domain;
952 uint8_t bus;
953 uint8_t device;
954 uint8_t function;
955 } pci_info;
956 struct gen_device_info info;
957 /** Amount of "GPU memory" we want to advertise
958 *
959 * Clearly, this value is bogus since Intel is a UMA architecture. On
960 * gen7 platforms, we are limited by GTT size unless we want to implement
961 * fine-grained tracking and GTT splitting. On Broadwell and above we are
962 * practically unlimited. However, we will never report more than 3/4 of
963 * the total system ram to try and avoid running out of RAM.
964 */
965 bool supports_48bit_addresses;
966 struct brw_compiler * compiler;
967 struct isl_device isl_dev;
968 struct gen_perf_config * perf;
969 int cmd_parser_version;
970 bool has_exec_async;
971 bool has_exec_capture;
972 bool has_exec_fence;
973 bool has_syncobj;
974 bool has_syncobj_wait;
975 bool has_context_priority;
976 bool use_softpin;
977 bool has_context_isolation;
978 bool has_mem_available;
979 bool always_use_bindless;
980
981 /** True if we can access buffers using A64 messages */
982 bool has_a64_buffer_access;
983 /** True if we can use bindless access for images */
984 bool has_bindless_images;
985 /** True if we can use bindless access for samplers */
986 bool has_bindless_samplers;
987
988 struct anv_device_extension_table supported_extensions;
989 struct anv_physical_device_dispatch_table dispatch;
990
991 uint32_t eu_total;
992 uint32_t subslice_total;
993
994 struct {
995 uint32_t type_count;
996 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
997 uint32_t heap_count;
998 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
999 } memory;
1000
1001 uint8_t driver_build_sha1[20];
1002 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1003 uint8_t driver_uuid[VK_UUID_SIZE];
1004 uint8_t device_uuid[VK_UUID_SIZE];
1005
1006 struct disk_cache * disk_cache;
1007
1008 struct wsi_device wsi_device;
1009 int local_fd;
1010 int master_fd;
1011 };
1012
1013 struct anv_app_info {
1014 const char* app_name;
1015 uint32_t app_version;
1016 const char* engine_name;
1017 uint32_t engine_version;
1018 uint32_t api_version;
1019 };
1020
1021 struct anv_instance {
1022 VK_LOADER_DATA _loader_data;
1023
1024 VkAllocationCallbacks alloc;
1025
1026 struct anv_app_info app_info;
1027
1028 struct anv_instance_extension_table enabled_extensions;
1029 struct anv_instance_dispatch_table dispatch;
1030 struct anv_device_dispatch_table device_dispatch;
1031
1032 int physicalDeviceCount;
1033 struct anv_physical_device physicalDevice;
1034
1035 bool pipeline_cache_enabled;
1036
1037 struct vk_debug_report_instance debug_report_callbacks;
1038
1039 struct driOptionCache dri_options;
1040 struct driOptionCache available_dri_options;
1041 };
1042
1043 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1044 void anv_finish_wsi(struct anv_physical_device *physical_device);
1045
1046 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1047 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1048 const char *name);
1049
1050 struct anv_queue {
1051 VK_LOADER_DATA _loader_data;
1052
1053 struct anv_device * device;
1054
1055 VkDeviceQueueCreateFlags flags;
1056 };
1057
1058 struct anv_pipeline_cache {
1059 struct anv_device * device;
1060 pthread_mutex_t mutex;
1061
1062 struct hash_table * nir_cache;
1063
1064 struct hash_table * cache;
1065 };
1066
1067 struct nir_xfb_info;
1068 struct anv_pipeline_bind_map;
1069
1070 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1071 struct anv_device *device,
1072 bool cache_enabled);
1073 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1074
1075 struct anv_shader_bin *
1076 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1077 const void *key, uint32_t key_size);
1078 struct anv_shader_bin *
1079 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1080 const void *key_data, uint32_t key_size,
1081 const void *kernel_data, uint32_t kernel_size,
1082 const void *constant_data,
1083 uint32_t constant_data_size,
1084 const struct brw_stage_prog_data *prog_data,
1085 uint32_t prog_data_size,
1086 const struct brw_compile_stats *stats,
1087 uint32_t num_stats,
1088 const struct nir_xfb_info *xfb_info,
1089 const struct anv_pipeline_bind_map *bind_map);
1090
1091 struct anv_shader_bin *
1092 anv_device_search_for_kernel(struct anv_device *device,
1093 struct anv_pipeline_cache *cache,
1094 const void *key_data, uint32_t key_size,
1095 bool *user_cache_bit);
1096
1097 struct anv_shader_bin *
1098 anv_device_upload_kernel(struct anv_device *device,
1099 struct anv_pipeline_cache *cache,
1100 const void *key_data, uint32_t key_size,
1101 const void *kernel_data, uint32_t kernel_size,
1102 const void *constant_data,
1103 uint32_t constant_data_size,
1104 const struct brw_stage_prog_data *prog_data,
1105 uint32_t prog_data_size,
1106 const struct brw_compile_stats *stats,
1107 uint32_t num_stats,
1108 const struct nir_xfb_info *xfb_info,
1109 const struct anv_pipeline_bind_map *bind_map);
1110
1111 struct nir_shader;
1112 struct nir_shader_compiler_options;
1113
1114 struct nir_shader *
1115 anv_device_search_for_nir(struct anv_device *device,
1116 struct anv_pipeline_cache *cache,
1117 const struct nir_shader_compiler_options *nir_options,
1118 unsigned char sha1_key[20],
1119 void *mem_ctx);
1120
1121 void
1122 anv_device_upload_nir(struct anv_device *device,
1123 struct anv_pipeline_cache *cache,
1124 const struct nir_shader *nir,
1125 unsigned char sha1_key[20]);
1126
1127 struct anv_device {
1128 VK_LOADER_DATA _loader_data;
1129
1130 VkAllocationCallbacks alloc;
1131
1132 struct anv_instance * instance;
1133 uint32_t chipset_id;
1134 bool no_hw;
1135 struct gen_device_info info;
1136 struct isl_device isl_dev;
1137 int context_id;
1138 int fd;
1139 bool can_chain_batches;
1140 bool robust_buffer_access;
1141 struct anv_device_extension_table enabled_extensions;
1142 struct anv_device_dispatch_table dispatch;
1143
1144 pthread_mutex_t vma_mutex;
1145 struct util_vma_heap vma_lo;
1146 struct util_vma_heap vma_hi;
1147 uint64_t vma_lo_available;
1148 uint64_t vma_hi_available;
1149
1150 /** List of all anv_device_memory objects */
1151 struct list_head memory_objects;
1152
1153 struct anv_bo_pool batch_bo_pool;
1154
1155 struct anv_bo_cache bo_cache;
1156
1157 struct anv_state_pool dynamic_state_pool;
1158 struct anv_state_pool instruction_state_pool;
1159 struct anv_state_pool binding_table_pool;
1160 struct anv_state_pool surface_state_pool;
1161
1162 struct anv_bo workaround_bo;
1163 struct anv_bo trivial_batch_bo;
1164 struct anv_bo hiz_clear_bo;
1165
1166 struct anv_pipeline_cache default_pipeline_cache;
1167 struct blorp_context blorp;
1168
1169 struct anv_state border_colors;
1170
1171 struct anv_state slice_hash;
1172
1173 struct anv_queue queue;
1174
1175 struct anv_scratch_pool scratch_pool;
1176
1177 uint32_t default_mocs;
1178 uint32_t external_mocs;
1179
1180 pthread_mutex_t mutex;
1181 pthread_cond_t queue_submit;
1182 bool _lost;
1183
1184 struct gen_batch_decode_ctx decoder_ctx;
1185 /*
1186 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1187 * the cmd_buffer's list.
1188 */
1189 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1190
1191 int perf_fd; /* -1 if no opened */
1192 uint64_t perf_metric; /* 0 if unset */
1193
1194 struct gen_aux_map_context *aux_map_ctx;
1195 };
1196
1197 static inline struct anv_state_pool *
1198 anv_binding_table_pool(struct anv_device *device)
1199 {
1200 if (device->instance->physicalDevice.use_softpin)
1201 return &device->binding_table_pool;
1202 else
1203 return &device->surface_state_pool;
1204 }
1205
1206 static inline struct anv_state
1207 anv_binding_table_pool_alloc(struct anv_device *device) {
1208 if (device->instance->physicalDevice.use_softpin)
1209 return anv_state_pool_alloc(&device->binding_table_pool,
1210 device->binding_table_pool.block_size, 0);
1211 else
1212 return anv_state_pool_alloc_back(&device->surface_state_pool);
1213 }
1214
1215 static inline void
1216 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1217 anv_state_pool_free(anv_binding_table_pool(device), state);
1218 }
1219
1220 static inline uint32_t
1221 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1222 {
1223 if (bo->is_external)
1224 return device->external_mocs;
1225 else
1226 return device->default_mocs;
1227 }
1228
1229 void anv_device_init_blorp(struct anv_device *device);
1230 void anv_device_finish_blorp(struct anv_device *device);
1231
1232 VkResult _anv_device_set_lost(struct anv_device *device,
1233 const char *file, int line,
1234 const char *msg, ...)
1235 anv_printflike(4, 5);
1236 #define anv_device_set_lost(dev, ...) \
1237 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1238
1239 static inline bool
1240 anv_device_is_lost(struct anv_device *device)
1241 {
1242 return unlikely(device->_lost);
1243 }
1244
1245 VkResult anv_device_execbuf(struct anv_device *device,
1246 struct drm_i915_gem_execbuffer2 *execbuf,
1247 struct anv_bo **execbuf_bos);
1248 VkResult anv_device_query_status(struct anv_device *device);
1249 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1250 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1251 int64_t timeout);
1252
1253 void* anv_gem_mmap(struct anv_device *device,
1254 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1255 void anv_gem_munmap(void *p, uint64_t size);
1256 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1257 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1258 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1259 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1260 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1261 int anv_gem_execbuffer(struct anv_device *device,
1262 struct drm_i915_gem_execbuffer2 *execbuf);
1263 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1264 uint32_t stride, uint32_t tiling);
1265 int anv_gem_create_context(struct anv_device *device);
1266 bool anv_gem_has_context_priority(int fd);
1267 int anv_gem_destroy_context(struct anv_device *device, int context);
1268 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1269 uint64_t value);
1270 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1271 uint64_t *value);
1272 int anv_gem_get_param(int fd, uint32_t param);
1273 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1274 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1275 int anv_gem_get_aperture(int fd, uint64_t *size);
1276 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1277 uint32_t *active, uint32_t *pending);
1278 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1279 int anv_gem_reg_read(struct anv_device *device,
1280 uint32_t offset, uint64_t *result);
1281 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1282 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1283 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1284 uint32_t read_domains, uint32_t write_domain);
1285 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1286 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1287 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1288 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1289 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1290 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1291 uint32_t handle);
1292 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1293 uint32_t handle, int fd);
1294 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1295 bool anv_gem_supports_syncobj_wait(int fd);
1296 int anv_gem_syncobj_wait(struct anv_device *device,
1297 uint32_t *handles, uint32_t num_handles,
1298 int64_t abs_timeout_ns, bool wait_all);
1299
1300 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1301 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1302
1303 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1304
1305 struct anv_reloc_list {
1306 uint32_t num_relocs;
1307 uint32_t array_length;
1308 struct drm_i915_gem_relocation_entry * relocs;
1309 struct anv_bo ** reloc_bos;
1310 struct set * deps;
1311 };
1312
1313 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1314 const VkAllocationCallbacks *alloc);
1315 void anv_reloc_list_finish(struct anv_reloc_list *list,
1316 const VkAllocationCallbacks *alloc);
1317
1318 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1319 const VkAllocationCallbacks *alloc,
1320 uint32_t offset, struct anv_bo *target_bo,
1321 uint32_t delta, uint64_t *address_u64_out);
1322
1323 struct anv_batch_bo {
1324 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1325 struct list_head link;
1326
1327 struct anv_bo bo;
1328
1329 /* Bytes actually consumed in this batch BO */
1330 uint32_t length;
1331
1332 struct anv_reloc_list relocs;
1333 };
1334
1335 struct anv_batch {
1336 const VkAllocationCallbacks * alloc;
1337
1338 void * start;
1339 void * end;
1340 void * next;
1341
1342 struct anv_reloc_list * relocs;
1343
1344 /* This callback is called (with the associated user data) in the event
1345 * that the batch runs out of space.
1346 */
1347 VkResult (*extend_cb)(struct anv_batch *, void *);
1348 void * user_data;
1349
1350 /**
1351 * Current error status of the command buffer. Used to track inconsistent
1352 * or incomplete command buffer states that are the consequence of run-time
1353 * errors such as out of memory scenarios. We want to track this in the
1354 * batch because the command buffer object is not visible to some parts
1355 * of the driver.
1356 */
1357 VkResult status;
1358 };
1359
1360 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1361 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1362 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1363 void *location, struct anv_bo *bo, uint32_t offset);
1364 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1365 struct anv_batch *batch);
1366
1367 static inline VkResult
1368 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1369 {
1370 assert(error != VK_SUCCESS);
1371 if (batch->status == VK_SUCCESS)
1372 batch->status = error;
1373 return batch->status;
1374 }
1375
1376 static inline bool
1377 anv_batch_has_error(struct anv_batch *batch)
1378 {
1379 return batch->status != VK_SUCCESS;
1380 }
1381
1382 struct anv_address {
1383 struct anv_bo *bo;
1384 uint32_t offset;
1385 };
1386
1387 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1388
1389 static inline bool
1390 anv_address_is_null(struct anv_address addr)
1391 {
1392 return addr.bo == NULL && addr.offset == 0;
1393 }
1394
1395 static inline uint64_t
1396 anv_address_physical(struct anv_address addr)
1397 {
1398 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1399 return gen_canonical_address(addr.bo->offset + addr.offset);
1400 else
1401 return gen_canonical_address(addr.offset);
1402 }
1403
1404 static inline struct anv_address
1405 anv_address_add(struct anv_address addr, uint64_t offset)
1406 {
1407 addr.offset += offset;
1408 return addr;
1409 }
1410
1411 static inline void
1412 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1413 {
1414 unsigned reloc_size = 0;
1415 if (device->info.gen >= 8) {
1416 reloc_size = sizeof(uint64_t);
1417 *(uint64_t *)p = gen_canonical_address(v);
1418 } else {
1419 reloc_size = sizeof(uint32_t);
1420 *(uint32_t *)p = v;
1421 }
1422
1423 if (flush && !device->info.has_llc)
1424 gen_flush_range(p, reloc_size);
1425 }
1426
1427 static inline uint64_t
1428 _anv_combine_address(struct anv_batch *batch, void *location,
1429 const struct anv_address address, uint32_t delta)
1430 {
1431 if (address.bo == NULL) {
1432 return address.offset + delta;
1433 } else {
1434 assert(batch->start <= location && location < batch->end);
1435
1436 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1437 }
1438 }
1439
1440 #define __gen_address_type struct anv_address
1441 #define __gen_user_data struct anv_batch
1442 #define __gen_combine_address _anv_combine_address
1443
1444 /* Wrapper macros needed to work around preprocessor argument issues. In
1445 * particular, arguments don't get pre-evaluated if they are concatenated.
1446 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1447 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1448 * We can work around this easily enough with these helpers.
1449 */
1450 #define __anv_cmd_length(cmd) cmd ## _length
1451 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1452 #define __anv_cmd_header(cmd) cmd ## _header
1453 #define __anv_cmd_pack(cmd) cmd ## _pack
1454 #define __anv_reg_num(reg) reg ## _num
1455
1456 #define anv_pack_struct(dst, struc, ...) do { \
1457 struct struc __template = { \
1458 __VA_ARGS__ \
1459 }; \
1460 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1461 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1462 } while (0)
1463
1464 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1465 void *__dst = anv_batch_emit_dwords(batch, n); \
1466 if (__dst) { \
1467 struct cmd __template = { \
1468 __anv_cmd_header(cmd), \
1469 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1470 __VA_ARGS__ \
1471 }; \
1472 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1473 } \
1474 __dst; \
1475 })
1476
1477 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1478 do { \
1479 uint32_t *dw; \
1480 \
1481 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1482 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1483 if (!dw) \
1484 break; \
1485 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1486 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1487 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1488 } while (0)
1489
1490 #define anv_batch_emit(batch, cmd, name) \
1491 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1492 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1493 __builtin_expect(_dst != NULL, 1); \
1494 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1495 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1496 _dst = NULL; \
1497 }))
1498
1499 /* MEMORY_OBJECT_CONTROL_STATE:
1500 * .GraphicsDataTypeGFDT = 0,
1501 * .LLCCacheabilityControlLLCCC = 0,
1502 * .L3CacheabilityControlL3CC = 1,
1503 */
1504 #define GEN7_MOCS 1
1505
1506 /* MEMORY_OBJECT_CONTROL_STATE:
1507 * .LLCeLLCCacheabilityControlLLCCC = 0,
1508 * .L3CacheabilityControlL3CC = 1,
1509 */
1510 #define GEN75_MOCS 1
1511
1512 /* MEMORY_OBJECT_CONTROL_STATE:
1513 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1514 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1515 * .AgeforQUADLRU = 0
1516 */
1517 #define GEN8_MOCS 0x78
1518
1519 /* MEMORY_OBJECT_CONTROL_STATE:
1520 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1521 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1522 * .AgeforQUADLRU = 0
1523 */
1524 #define GEN8_EXTERNAL_MOCS 0x18
1525
1526 /* Skylake: MOCS is now an index into an array of 62 different caching
1527 * configurations programmed by the kernel.
1528 */
1529
1530 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1531 #define GEN9_MOCS (2 << 1)
1532
1533 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1534 #define GEN9_EXTERNAL_MOCS (1 << 1)
1535
1536 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1537 #define GEN10_MOCS GEN9_MOCS
1538 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1539
1540 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1541 #define GEN11_MOCS GEN9_MOCS
1542 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1543
1544 /* TigerLake MOCS */
1545 #define GEN12_MOCS GEN9_MOCS
1546 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1547 #define GEN12_EXTERNAL_MOCS (3 << 1)
1548
1549 struct anv_device_memory {
1550 struct list_head link;
1551
1552 struct anv_bo * bo;
1553 struct anv_memory_type * type;
1554 VkDeviceSize map_size;
1555 void * map;
1556
1557 /* If set, we are holding reference to AHardwareBuffer
1558 * which we must release when memory is freed.
1559 */
1560 struct AHardwareBuffer * ahw;
1561
1562 /* If set, this memory comes from a host pointer. */
1563 void * host_ptr;
1564 };
1565
1566 /**
1567 * Header for Vertex URB Entry (VUE)
1568 */
1569 struct anv_vue_header {
1570 uint32_t Reserved;
1571 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1572 uint32_t ViewportIndex;
1573 float PointWidth;
1574 };
1575
1576 /** Struct representing a sampled image descriptor
1577 *
1578 * This descriptor layout is used for sampled images, bare sampler, and
1579 * combined image/sampler descriptors.
1580 */
1581 struct anv_sampled_image_descriptor {
1582 /** Bindless image handle
1583 *
1584 * This is expected to already be shifted such that the 20-bit
1585 * SURFACE_STATE table index is in the top 20 bits.
1586 */
1587 uint32_t image;
1588
1589 /** Bindless sampler handle
1590 *
1591 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1592 * to the dynamic state base address.
1593 */
1594 uint32_t sampler;
1595 };
1596
1597 struct anv_texture_swizzle_descriptor {
1598 /** Texture swizzle
1599 *
1600 * See also nir_intrinsic_channel_select_intel
1601 */
1602 uint8_t swizzle[4];
1603
1604 /** Unused padding to ensure the struct is a multiple of 64 bits */
1605 uint32_t _pad;
1606 };
1607
1608 /** Struct representing a storage image descriptor */
1609 struct anv_storage_image_descriptor {
1610 /** Bindless image handles
1611 *
1612 * These are expected to already be shifted such that the 20-bit
1613 * SURFACE_STATE table index is in the top 20 bits.
1614 */
1615 uint32_t read_write;
1616 uint32_t write_only;
1617 };
1618
1619 /** Struct representing a address/range descriptor
1620 *
1621 * The fields of this struct correspond directly to the data layout of
1622 * nir_address_format_64bit_bounded_global addresses. The last field is the
1623 * offset in the NIR address so it must be zero so that when you load the
1624 * descriptor you get a pointer to the start of the range.
1625 */
1626 struct anv_address_range_descriptor {
1627 uint64_t address;
1628 uint32_t range;
1629 uint32_t zero;
1630 };
1631
1632 enum anv_descriptor_data {
1633 /** The descriptor contains a BTI reference to a surface state */
1634 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1635 /** The descriptor contains a BTI reference to a sampler state */
1636 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1637 /** The descriptor contains an actual buffer view */
1638 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1639 /** The descriptor contains auxiliary image layout data */
1640 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1641 /** The descriptor contains auxiliary image layout data */
1642 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1643 /** anv_address_range_descriptor with a buffer address and range */
1644 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1645 /** Bindless surface handle */
1646 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1647 /** Storage image handles */
1648 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1649 /** Storage image handles */
1650 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1651 };
1652
1653 struct anv_descriptor_set_binding_layout {
1654 #ifndef NDEBUG
1655 /* The type of the descriptors in this binding */
1656 VkDescriptorType type;
1657 #endif
1658
1659 /* Flags provided when this binding was created */
1660 VkDescriptorBindingFlagsEXT flags;
1661
1662 /* Bitfield representing the type of data this descriptor contains */
1663 enum anv_descriptor_data data;
1664
1665 /* Maximum number of YCbCr texture/sampler planes */
1666 uint8_t max_plane_count;
1667
1668 /* Number of array elements in this binding (or size in bytes for inline
1669 * uniform data)
1670 */
1671 uint16_t array_size;
1672
1673 /* Index into the flattend descriptor set */
1674 uint16_t descriptor_index;
1675
1676 /* Index into the dynamic state array for a dynamic buffer */
1677 int16_t dynamic_offset_index;
1678
1679 /* Index into the descriptor set buffer views */
1680 int16_t buffer_view_index;
1681
1682 /* Offset into the descriptor buffer where this descriptor lives */
1683 uint32_t descriptor_offset;
1684
1685 /* Immutable samplers (or NULL if no immutable samplers) */
1686 struct anv_sampler **immutable_samplers;
1687 };
1688
1689 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1690
1691 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1692 VkDescriptorType type);
1693
1694 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1695 const struct anv_descriptor_set_binding_layout *binding,
1696 bool sampler);
1697
1698 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1699 const struct anv_descriptor_set_binding_layout *binding,
1700 bool sampler);
1701
1702 struct anv_descriptor_set_layout {
1703 /* Descriptor set layouts can be destroyed at almost any time */
1704 uint32_t ref_cnt;
1705
1706 /* Number of bindings in this descriptor set */
1707 uint16_t binding_count;
1708
1709 /* Total size of the descriptor set with room for all array entries */
1710 uint16_t size;
1711
1712 /* Shader stages affected by this descriptor set */
1713 uint16_t shader_stages;
1714
1715 /* Number of buffer views in this descriptor set */
1716 uint16_t buffer_view_count;
1717
1718 /* Number of dynamic offsets used by this descriptor set */
1719 uint16_t dynamic_offset_count;
1720
1721 /* Size of the descriptor buffer for this descriptor set */
1722 uint32_t descriptor_buffer_size;
1723
1724 /* Bindings in this descriptor set */
1725 struct anv_descriptor_set_binding_layout binding[0];
1726 };
1727
1728 static inline void
1729 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1730 {
1731 assert(layout && layout->ref_cnt >= 1);
1732 p_atomic_inc(&layout->ref_cnt);
1733 }
1734
1735 static inline void
1736 anv_descriptor_set_layout_unref(struct anv_device *device,
1737 struct anv_descriptor_set_layout *layout)
1738 {
1739 assert(layout && layout->ref_cnt >= 1);
1740 if (p_atomic_dec_zero(&layout->ref_cnt))
1741 vk_free(&device->alloc, layout);
1742 }
1743
1744 struct anv_descriptor {
1745 VkDescriptorType type;
1746
1747 union {
1748 struct {
1749 VkImageLayout layout;
1750 struct anv_image_view *image_view;
1751 struct anv_sampler *sampler;
1752 };
1753
1754 struct {
1755 struct anv_buffer *buffer;
1756 uint64_t offset;
1757 uint64_t range;
1758 };
1759
1760 struct anv_buffer_view *buffer_view;
1761 };
1762 };
1763
1764 struct anv_descriptor_set {
1765 struct anv_descriptor_pool *pool;
1766 struct anv_descriptor_set_layout *layout;
1767 uint32_t size;
1768
1769 /* State relative to anv_descriptor_pool::bo */
1770 struct anv_state desc_mem;
1771 /* Surface state for the descriptor buffer */
1772 struct anv_state desc_surface_state;
1773
1774 uint32_t buffer_view_count;
1775 struct anv_buffer_view *buffer_views;
1776
1777 /* Link to descriptor pool's desc_sets list . */
1778 struct list_head pool_link;
1779
1780 struct anv_descriptor descriptors[0];
1781 };
1782
1783 struct anv_buffer_view {
1784 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1785 uint64_t range; /**< VkBufferViewCreateInfo::range */
1786
1787 struct anv_address address;
1788
1789 struct anv_state surface_state;
1790 struct anv_state storage_surface_state;
1791 struct anv_state writeonly_storage_surface_state;
1792
1793 struct brw_image_param storage_image_param;
1794 };
1795
1796 struct anv_push_descriptor_set {
1797 struct anv_descriptor_set set;
1798
1799 /* Put this field right behind anv_descriptor_set so it fills up the
1800 * descriptors[0] field. */
1801 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1802
1803 /** True if the descriptor set buffer has been referenced by a draw or
1804 * dispatch command.
1805 */
1806 bool set_used_on_gpu;
1807
1808 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1809 };
1810
1811 struct anv_descriptor_pool {
1812 uint32_t size;
1813 uint32_t next;
1814 uint32_t free_list;
1815
1816 struct anv_bo bo;
1817 struct util_vma_heap bo_heap;
1818
1819 struct anv_state_stream surface_state_stream;
1820 void *surface_state_free_list;
1821
1822 struct list_head desc_sets;
1823
1824 char data[0];
1825 };
1826
1827 enum anv_descriptor_template_entry_type {
1828 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1829 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1830 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1831 };
1832
1833 struct anv_descriptor_template_entry {
1834 /* The type of descriptor in this entry */
1835 VkDescriptorType type;
1836
1837 /* Binding in the descriptor set */
1838 uint32_t binding;
1839
1840 /* Offset at which to write into the descriptor set binding */
1841 uint32_t array_element;
1842
1843 /* Number of elements to write into the descriptor set binding */
1844 uint32_t array_count;
1845
1846 /* Offset into the user provided data */
1847 size_t offset;
1848
1849 /* Stride between elements into the user provided data */
1850 size_t stride;
1851 };
1852
1853 struct anv_descriptor_update_template {
1854 VkPipelineBindPoint bind_point;
1855
1856 /* The descriptor set this template corresponds to. This value is only
1857 * valid if the template was created with the templateType
1858 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1859 */
1860 uint8_t set;
1861
1862 /* Number of entries in this template */
1863 uint32_t entry_count;
1864
1865 /* Entries of the template */
1866 struct anv_descriptor_template_entry entries[0];
1867 };
1868
1869 size_t
1870 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1871
1872 void
1873 anv_descriptor_set_write_image_view(struct anv_device *device,
1874 struct anv_descriptor_set *set,
1875 const VkDescriptorImageInfo * const info,
1876 VkDescriptorType type,
1877 uint32_t binding,
1878 uint32_t element);
1879
1880 void
1881 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1882 struct anv_descriptor_set *set,
1883 VkDescriptorType type,
1884 struct anv_buffer_view *buffer_view,
1885 uint32_t binding,
1886 uint32_t element);
1887
1888 void
1889 anv_descriptor_set_write_buffer(struct anv_device *device,
1890 struct anv_descriptor_set *set,
1891 struct anv_state_stream *alloc_stream,
1892 VkDescriptorType type,
1893 struct anv_buffer *buffer,
1894 uint32_t binding,
1895 uint32_t element,
1896 VkDeviceSize offset,
1897 VkDeviceSize range);
1898 void
1899 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1900 struct anv_descriptor_set *set,
1901 uint32_t binding,
1902 const void *data,
1903 size_t offset,
1904 size_t size);
1905
1906 void
1907 anv_descriptor_set_write_template(struct anv_device *device,
1908 struct anv_descriptor_set *set,
1909 struct anv_state_stream *alloc_stream,
1910 const struct anv_descriptor_update_template *template,
1911 const void *data);
1912
1913 VkResult
1914 anv_descriptor_set_create(struct anv_device *device,
1915 struct anv_descriptor_pool *pool,
1916 struct anv_descriptor_set_layout *layout,
1917 struct anv_descriptor_set **out_set);
1918
1919 void
1920 anv_descriptor_set_destroy(struct anv_device *device,
1921 struct anv_descriptor_pool *pool,
1922 struct anv_descriptor_set *set);
1923
1924 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1925 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1926 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1927 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1928
1929 struct anv_pipeline_binding {
1930 /* The descriptor set this surface corresponds to. The special value of
1931 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1932 * to a color attachment and not a regular descriptor.
1933 */
1934 uint8_t set;
1935
1936 /* Binding in the descriptor set */
1937 uint32_t binding;
1938
1939 /* Index in the binding */
1940 uint32_t index;
1941
1942 /* Plane in the binding index */
1943 uint8_t plane;
1944
1945 /* Input attachment index (relative to the subpass) */
1946 uint8_t input_attachment_index;
1947
1948 /* For a storage image, whether it is write-only */
1949 bool write_only;
1950 };
1951
1952 struct anv_pipeline_layout {
1953 struct {
1954 struct anv_descriptor_set_layout *layout;
1955 uint32_t dynamic_offset_start;
1956 } set[MAX_SETS];
1957
1958 uint32_t num_sets;
1959
1960 unsigned char sha1[20];
1961 };
1962
1963 struct anv_buffer {
1964 struct anv_device * device;
1965 VkDeviceSize size;
1966
1967 VkBufferUsageFlags usage;
1968
1969 /* Set when bound */
1970 struct anv_address address;
1971 };
1972
1973 static inline uint64_t
1974 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1975 {
1976 assert(offset <= buffer->size);
1977 if (range == VK_WHOLE_SIZE) {
1978 return buffer->size - offset;
1979 } else {
1980 assert(range + offset >= range);
1981 assert(range + offset <= buffer->size);
1982 return range;
1983 }
1984 }
1985
1986 enum anv_cmd_dirty_bits {
1987 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1988 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1989 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1990 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1991 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1992 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1993 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1994 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1995 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1996 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1997 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1998 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1999 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2000 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2001 };
2002 typedef uint32_t anv_cmd_dirty_mask_t;
2003
2004 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2005 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2006 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2007 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2008 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2009 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2010 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2011 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2012 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2013 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2014 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2015
2016 static inline enum anv_cmd_dirty_bits
2017 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2018 {
2019 switch (vk_state) {
2020 case VK_DYNAMIC_STATE_VIEWPORT:
2021 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2022 case VK_DYNAMIC_STATE_SCISSOR:
2023 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2024 case VK_DYNAMIC_STATE_LINE_WIDTH:
2025 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2026 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2027 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2028 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2029 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2030 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2031 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2032 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2033 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2034 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2035 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2036 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2037 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2038 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2039 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2040 default:
2041 assert(!"Unsupported dynamic state");
2042 return 0;
2043 }
2044 }
2045
2046
2047 enum anv_pipe_bits {
2048 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2049 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2050 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2051 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2052 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2053 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2054 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2055 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2056 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2057 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2058 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2059 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2060
2061 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2062 * a flush has happened but not a CS stall. The next time we do any sort
2063 * of invalidation we need to insert a CS stall at that time. Otherwise,
2064 * we would have to CS stall on every flush which could be bad.
2065 */
2066 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2067
2068 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2069 * target operations related to transfer commands with VkBuffer as
2070 * destination are ongoing. Some operations like copies on the command
2071 * streamer might need to be aware of this to trigger the appropriate stall
2072 * before they can proceed with the copy.
2073 */
2074 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2075 };
2076
2077 #define ANV_PIPE_FLUSH_BITS ( \
2078 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2079 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2080 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2081 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2082
2083 #define ANV_PIPE_STALL_BITS ( \
2084 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2085 ANV_PIPE_DEPTH_STALL_BIT | \
2086 ANV_PIPE_CS_STALL_BIT)
2087
2088 #define ANV_PIPE_INVALIDATE_BITS ( \
2089 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2090 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2091 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2092 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2093 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2094 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2095
2096 static inline enum anv_pipe_bits
2097 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2098 {
2099 enum anv_pipe_bits pipe_bits = 0;
2100
2101 unsigned b;
2102 for_each_bit(b, flags) {
2103 switch ((VkAccessFlagBits)(1 << b)) {
2104 case VK_ACCESS_SHADER_WRITE_BIT:
2105 /* We're transitioning a buffer that was previously used as write
2106 * destination through the data port. To make its content available
2107 * to future operations, flush the data cache.
2108 */
2109 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2110 break;
2111 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2112 /* We're transitioning a buffer that was previously used as render
2113 * target. To make its content available to future operations, flush
2114 * the render target cache.
2115 */
2116 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2117 break;
2118 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2119 /* We're transitioning a buffer that was previously used as depth
2120 * buffer. To make its content available to future operations, flush
2121 * the depth cache.
2122 */
2123 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2124 break;
2125 case VK_ACCESS_TRANSFER_WRITE_BIT:
2126 /* We're transitioning a buffer that was previously used as a
2127 * transfer write destination. Generic write operations include color
2128 * & depth operations as well as buffer operations like :
2129 * - vkCmdClearColorImage()
2130 * - vkCmdClearDepthStencilImage()
2131 * - vkCmdBlitImage()
2132 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2133 *
2134 * Most of these operations are implemented using Blorp which writes
2135 * through the render target, so flush that cache to make it visible
2136 * to future operations. And for depth related operations we also
2137 * need to flush the depth cache.
2138 */
2139 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2140 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2141 break;
2142 case VK_ACCESS_MEMORY_WRITE_BIT:
2143 /* We're transitioning a buffer for generic write operations. Flush
2144 * all the caches.
2145 */
2146 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2147 break;
2148 default:
2149 break; /* Nothing to do */
2150 }
2151 }
2152
2153 return pipe_bits;
2154 }
2155
2156 static inline enum anv_pipe_bits
2157 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2158 {
2159 enum anv_pipe_bits pipe_bits = 0;
2160
2161 unsigned b;
2162 for_each_bit(b, flags) {
2163 switch ((VkAccessFlagBits)(1 << b)) {
2164 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2165 /* Indirect draw commands take a buffer as input that we're going to
2166 * read from the command streamer to load some of the HW registers
2167 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2168 * command streamer stall so that all the cache flushes have
2169 * completed before the command streamer loads from memory.
2170 */
2171 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2172 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2173 * through a vertex buffer, so invalidate that cache.
2174 */
2175 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2176 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2177 * UBO from the buffer, so we need to invalidate constant cache.
2178 */
2179 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2180 break;
2181 case VK_ACCESS_INDEX_READ_BIT:
2182 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2183 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2184 * commands, so we invalidate the VF cache to make sure there is no
2185 * stale data when we start rendering.
2186 */
2187 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2188 break;
2189 case VK_ACCESS_UNIFORM_READ_BIT:
2190 /* We transitioning a buffer to be used as uniform data. Because
2191 * uniform is accessed through the data port & sampler, we need to
2192 * invalidate the texture cache (sampler) & constant cache (data
2193 * port) to avoid stale data.
2194 */
2195 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2196 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2197 break;
2198 case VK_ACCESS_SHADER_READ_BIT:
2199 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2200 case VK_ACCESS_TRANSFER_READ_BIT:
2201 /* Transitioning a buffer to be read through the sampler, so
2202 * invalidate the texture cache, we don't want any stale data.
2203 */
2204 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2205 break;
2206 case VK_ACCESS_MEMORY_READ_BIT:
2207 /* Transitioning a buffer for generic read, invalidate all the
2208 * caches.
2209 */
2210 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2211 break;
2212 case VK_ACCESS_MEMORY_WRITE_BIT:
2213 /* Generic write, make sure all previously written things land in
2214 * memory.
2215 */
2216 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2217 break;
2218 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2219 /* Transitioning a buffer for conditional rendering. We'll load the
2220 * content of this buffer into HW registers using the command
2221 * streamer, so we need to stall the command streamer to make sure
2222 * any in-flight flush operations have completed.
2223 */
2224 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2225 break;
2226 default:
2227 break; /* Nothing to do */
2228 }
2229 }
2230
2231 return pipe_bits;
2232 }
2233
2234 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2235 VK_IMAGE_ASPECT_COLOR_BIT | \
2236 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2237 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2238 VK_IMAGE_ASPECT_PLANE_2_BIT)
2239 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2240 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2241 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2242 VK_IMAGE_ASPECT_PLANE_2_BIT)
2243
2244 struct anv_vertex_binding {
2245 struct anv_buffer * buffer;
2246 VkDeviceSize offset;
2247 };
2248
2249 struct anv_xfb_binding {
2250 struct anv_buffer * buffer;
2251 VkDeviceSize offset;
2252 VkDeviceSize size;
2253 };
2254
2255 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2256 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2257 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2258
2259 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2260 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2261 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2262
2263 struct anv_push_constants {
2264 /* Push constant data provided by the client through vkPushConstants */
2265 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2266
2267 /* Used for vkCmdDispatchBase */
2268 uint32_t base_work_group_id[3];
2269 };
2270
2271 struct anv_dynamic_state {
2272 struct {
2273 uint32_t count;
2274 VkViewport viewports[MAX_VIEWPORTS];
2275 } viewport;
2276
2277 struct {
2278 uint32_t count;
2279 VkRect2D scissors[MAX_SCISSORS];
2280 } scissor;
2281
2282 float line_width;
2283
2284 struct {
2285 float bias;
2286 float clamp;
2287 float slope;
2288 } depth_bias;
2289
2290 float blend_constants[4];
2291
2292 struct {
2293 float min;
2294 float max;
2295 } depth_bounds;
2296
2297 struct {
2298 uint32_t front;
2299 uint32_t back;
2300 } stencil_compare_mask;
2301
2302 struct {
2303 uint32_t front;
2304 uint32_t back;
2305 } stencil_write_mask;
2306
2307 struct {
2308 uint32_t front;
2309 uint32_t back;
2310 } stencil_reference;
2311
2312 struct {
2313 uint32_t factor;
2314 uint16_t pattern;
2315 } line_stipple;
2316 };
2317
2318 extern const struct anv_dynamic_state default_dynamic_state;
2319
2320 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2321 const struct anv_dynamic_state *src,
2322 uint32_t copy_mask);
2323
2324 struct anv_surface_state {
2325 struct anv_state state;
2326 /** Address of the surface referred to by this state
2327 *
2328 * This address is relative to the start of the BO.
2329 */
2330 struct anv_address address;
2331 /* Address of the aux surface, if any
2332 *
2333 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2334 *
2335 * With the exception of gen8, the bottom 12 bits of this address' offset
2336 * include extra aux information.
2337 */
2338 struct anv_address aux_address;
2339 /* Address of the clear color, if any
2340 *
2341 * This address is relative to the start of the BO.
2342 */
2343 struct anv_address clear_address;
2344 };
2345
2346 /**
2347 * Attachment state when recording a renderpass instance.
2348 *
2349 * The clear value is valid only if there exists a pending clear.
2350 */
2351 struct anv_attachment_state {
2352 enum isl_aux_usage aux_usage;
2353 enum isl_aux_usage input_aux_usage;
2354 struct anv_surface_state color;
2355 struct anv_surface_state input;
2356
2357 VkImageLayout current_layout;
2358 VkImageAspectFlags pending_clear_aspects;
2359 VkImageAspectFlags pending_load_aspects;
2360 bool fast_clear;
2361 VkClearValue clear_value;
2362 bool clear_color_is_zero_one;
2363 bool clear_color_is_zero;
2364
2365 /* When multiview is active, attachments with a renderpass clear
2366 * operation have their respective layers cleared on the first
2367 * subpass that uses them, and only in that subpass. We keep track
2368 * of this using a bitfield to indicate which layers of an attachment
2369 * have not been cleared yet when multiview is active.
2370 */
2371 uint32_t pending_clear_views;
2372 struct anv_image_view * image_view;
2373 };
2374
2375 /** State tracking for particular pipeline bind point
2376 *
2377 * This struct is the base struct for anv_cmd_graphics_state and
2378 * anv_cmd_compute_state. These are used to track state which is bound to a
2379 * particular type of pipeline. Generic state that applies per-stage such as
2380 * binding table offsets and push constants is tracked generically with a
2381 * per-stage array in anv_cmd_state.
2382 */
2383 struct anv_cmd_pipeline_state {
2384 struct anv_pipeline *pipeline;
2385 struct anv_pipeline_layout *layout;
2386
2387 struct anv_descriptor_set *descriptors[MAX_SETS];
2388 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2389
2390 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2391 };
2392
2393 /** State tracking for graphics pipeline
2394 *
2395 * This has anv_cmd_pipeline_state as a base struct to track things which get
2396 * bound to a graphics pipeline. Along with general pipeline bind point state
2397 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2398 * state which is graphics-specific.
2399 */
2400 struct anv_cmd_graphics_state {
2401 struct anv_cmd_pipeline_state base;
2402
2403 anv_cmd_dirty_mask_t dirty;
2404 uint32_t vb_dirty;
2405
2406 struct anv_dynamic_state dynamic;
2407
2408 struct {
2409 struct anv_buffer *index_buffer;
2410 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2411 uint32_t index_offset;
2412 } gen7;
2413 };
2414
2415 /** State tracking for compute pipeline
2416 *
2417 * This has anv_cmd_pipeline_state as a base struct to track things which get
2418 * bound to a compute pipeline. Along with general pipeline bind point state
2419 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2420 * state which is compute-specific.
2421 */
2422 struct anv_cmd_compute_state {
2423 struct anv_cmd_pipeline_state base;
2424
2425 bool pipeline_dirty;
2426
2427 struct anv_address num_workgroups;
2428 };
2429
2430 /** State required while building cmd buffer */
2431 struct anv_cmd_state {
2432 /* PIPELINE_SELECT.PipelineSelection */
2433 uint32_t current_pipeline;
2434 const struct gen_l3_config * current_l3_config;
2435 uint32_t last_aux_map_state;
2436
2437 struct anv_cmd_graphics_state gfx;
2438 struct anv_cmd_compute_state compute;
2439
2440 enum anv_pipe_bits pending_pipe_bits;
2441 VkShaderStageFlags descriptors_dirty;
2442 VkShaderStageFlags push_constants_dirty;
2443
2444 struct anv_framebuffer * framebuffer;
2445 struct anv_render_pass * pass;
2446 struct anv_subpass * subpass;
2447 VkRect2D render_area;
2448 uint32_t restart_index;
2449 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2450 bool xfb_enabled;
2451 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2452 VkShaderStageFlags push_constant_stages;
2453 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2454 struct anv_state binding_tables[MESA_SHADER_STAGES];
2455 struct anv_state samplers[MESA_SHADER_STAGES];
2456
2457 /**
2458 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2459 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2460 * and before invoking the secondary in ExecuteCommands.
2461 */
2462 bool pma_fix_enabled;
2463
2464 /**
2465 * Whether or not we know for certain that HiZ is enabled for the current
2466 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2467 * enabled or not, this will be false.
2468 */
2469 bool hiz_enabled;
2470
2471 bool conditional_render_enabled;
2472
2473 /**
2474 * Last rendering scale argument provided to
2475 * genX(cmd_buffer_emit_hashing_mode)().
2476 */
2477 unsigned current_hash_scale;
2478
2479 /**
2480 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2481 * valid only when recording a render pass instance.
2482 */
2483 struct anv_attachment_state * attachments;
2484
2485 /**
2486 * Surface states for color render targets. These are stored in a single
2487 * flat array. For depth-stencil attachments, the surface state is simply
2488 * left blank.
2489 */
2490 struct anv_state render_pass_states;
2491
2492 /**
2493 * A null surface state of the right size to match the framebuffer. This
2494 * is one of the states in render_pass_states.
2495 */
2496 struct anv_state null_surface_state;
2497 };
2498
2499 struct anv_cmd_pool {
2500 VkAllocationCallbacks alloc;
2501 struct list_head cmd_buffers;
2502 };
2503
2504 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2505
2506 enum anv_cmd_buffer_exec_mode {
2507 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2508 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2509 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2510 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2511 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2512 };
2513
2514 struct anv_cmd_buffer {
2515 VK_LOADER_DATA _loader_data;
2516
2517 struct anv_device * device;
2518
2519 struct anv_cmd_pool * pool;
2520 struct list_head pool_link;
2521
2522 struct anv_batch batch;
2523
2524 /* Fields required for the actual chain of anv_batch_bo's.
2525 *
2526 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2527 */
2528 struct list_head batch_bos;
2529 enum anv_cmd_buffer_exec_mode exec_mode;
2530
2531 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2532 * referenced by this command buffer
2533 *
2534 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2535 */
2536 struct u_vector seen_bbos;
2537
2538 /* A vector of int32_t's for every block of binding tables.
2539 *
2540 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2541 */
2542 struct u_vector bt_block_states;
2543 uint32_t bt_next;
2544
2545 struct anv_reloc_list surface_relocs;
2546 /** Last seen surface state block pool center bo offset */
2547 uint32_t last_ss_pool_center;
2548
2549 /* Serial for tracking buffer completion */
2550 uint32_t serial;
2551
2552 /* Stream objects for storing temporary data */
2553 struct anv_state_stream surface_state_stream;
2554 struct anv_state_stream dynamic_state_stream;
2555
2556 VkCommandBufferUsageFlags usage_flags;
2557 VkCommandBufferLevel level;
2558
2559 struct anv_cmd_state state;
2560
2561 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2562 uint64_t intel_perf_marker;
2563 };
2564
2565 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2566 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2567 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2568 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2569 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2570 struct anv_cmd_buffer *secondary);
2571 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2572 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2573 struct anv_cmd_buffer *cmd_buffer,
2574 const VkSemaphore *in_semaphores,
2575 uint32_t num_in_semaphores,
2576 const VkSemaphore *out_semaphores,
2577 uint32_t num_out_semaphores,
2578 VkFence fence);
2579
2580 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2581
2582 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2583 const void *data, uint32_t size, uint32_t alignment);
2584 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2585 uint32_t *a, uint32_t *b,
2586 uint32_t dwords, uint32_t alignment);
2587
2588 struct anv_address
2589 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2590 struct anv_state
2591 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2592 uint32_t entries, uint32_t *state_offset);
2593 struct anv_state
2594 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2595 struct anv_state
2596 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2597 uint32_t size, uint32_t alignment);
2598
2599 VkResult
2600 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2601
2602 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2603 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2604 bool depth_clamp_enable);
2605 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2606
2607 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2608 struct anv_render_pass *pass,
2609 struct anv_framebuffer *framebuffer,
2610 const VkClearValue *clear_values);
2611
2612 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2613
2614 struct anv_state
2615 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2616 gl_shader_stage stage);
2617 struct anv_state
2618 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2619
2620 const struct anv_image_view *
2621 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2622
2623 VkResult
2624 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2625 uint32_t num_entries,
2626 uint32_t *state_offset,
2627 struct anv_state *bt_state);
2628
2629 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2630
2631 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2632
2633 enum anv_fence_type {
2634 ANV_FENCE_TYPE_NONE = 0,
2635 ANV_FENCE_TYPE_BO,
2636 ANV_FENCE_TYPE_SYNCOBJ,
2637 ANV_FENCE_TYPE_WSI,
2638 };
2639
2640 enum anv_bo_fence_state {
2641 /** Indicates that this is a new (or newly reset fence) */
2642 ANV_BO_FENCE_STATE_RESET,
2643
2644 /** Indicates that this fence has been submitted to the GPU but is still
2645 * (as far as we know) in use by the GPU.
2646 */
2647 ANV_BO_FENCE_STATE_SUBMITTED,
2648
2649 ANV_BO_FENCE_STATE_SIGNALED,
2650 };
2651
2652 struct anv_fence_impl {
2653 enum anv_fence_type type;
2654
2655 union {
2656 /** Fence implementation for BO fences
2657 *
2658 * These fences use a BO and a set of CPU-tracked state flags. The BO
2659 * is added to the object list of the last execbuf call in a QueueSubmit
2660 * and is marked EXEC_WRITE. The state flags track when the BO has been
2661 * submitted to the kernel. We need to do this because Vulkan lets you
2662 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2663 * will say it's idle in this case.
2664 */
2665 struct {
2666 struct anv_bo bo;
2667 enum anv_bo_fence_state state;
2668 } bo;
2669
2670 /** DRM syncobj handle for syncobj-based fences */
2671 uint32_t syncobj;
2672
2673 /** WSI fence */
2674 struct wsi_fence *fence_wsi;
2675 };
2676 };
2677
2678 struct anv_fence {
2679 /* Permanent fence state. Every fence has some form of permanent state
2680 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2681 * cross-process fences) or it could just be a dummy for use internally.
2682 */
2683 struct anv_fence_impl permanent;
2684
2685 /* Temporary fence state. A fence *may* have temporary state. That state
2686 * is added to the fence by an import operation and is reset back to
2687 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2688 * state cannot be signaled because the fence must already be signaled
2689 * before the temporary state can be exported from the fence in the other
2690 * process and imported here.
2691 */
2692 struct anv_fence_impl temporary;
2693 };
2694
2695 struct anv_event {
2696 uint64_t semaphore;
2697 struct anv_state state;
2698 };
2699
2700 enum anv_semaphore_type {
2701 ANV_SEMAPHORE_TYPE_NONE = 0,
2702 ANV_SEMAPHORE_TYPE_DUMMY,
2703 ANV_SEMAPHORE_TYPE_BO,
2704 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2705 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2706 };
2707
2708 struct anv_semaphore_impl {
2709 enum anv_semaphore_type type;
2710
2711 union {
2712 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2713 * This BO will be added to the object list on any execbuf2 calls for
2714 * which this semaphore is used as a wait or signal fence. When used as
2715 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2716 */
2717 struct anv_bo *bo;
2718
2719 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2720 * If the semaphore is in the unsignaled state due to either just being
2721 * created or because it has been used for a wait, fd will be -1.
2722 */
2723 int fd;
2724
2725 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2726 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2727 * import so we don't need to bother with a userspace cache.
2728 */
2729 uint32_t syncobj;
2730 };
2731 };
2732
2733 struct anv_semaphore {
2734 /* Permanent semaphore state. Every semaphore has some form of permanent
2735 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2736 * (for cross-process semaphores0 or it could just be a dummy for use
2737 * internally.
2738 */
2739 struct anv_semaphore_impl permanent;
2740
2741 /* Temporary semaphore state. A semaphore *may* have temporary state.
2742 * That state is added to the semaphore by an import operation and is reset
2743 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2744 * semaphore with temporary state cannot be signaled because the semaphore
2745 * must already be signaled before the temporary state can be exported from
2746 * the semaphore in the other process and imported here.
2747 */
2748 struct anv_semaphore_impl temporary;
2749 };
2750
2751 void anv_semaphore_reset_temporary(struct anv_device *device,
2752 struct anv_semaphore *semaphore);
2753
2754 struct anv_shader_module {
2755 unsigned char sha1[20];
2756 uint32_t size;
2757 char data[0];
2758 };
2759
2760 static inline gl_shader_stage
2761 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2762 {
2763 assert(__builtin_popcount(vk_stage) == 1);
2764 return ffs(vk_stage) - 1;
2765 }
2766
2767 static inline VkShaderStageFlagBits
2768 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2769 {
2770 return (1 << mesa_stage);
2771 }
2772
2773 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2774
2775 #define anv_foreach_stage(stage, stage_bits) \
2776 for (gl_shader_stage stage, \
2777 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2778 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2779 __tmp &= ~(1 << (stage)))
2780
2781 struct anv_pipeline_bind_map {
2782 uint32_t surface_count;
2783 uint32_t sampler_count;
2784
2785 struct anv_pipeline_binding * surface_to_descriptor;
2786 struct anv_pipeline_binding * sampler_to_descriptor;
2787 };
2788
2789 struct anv_shader_bin_key {
2790 uint32_t size;
2791 uint8_t data[0];
2792 };
2793
2794 struct anv_shader_bin {
2795 uint32_t ref_cnt;
2796
2797 const struct anv_shader_bin_key *key;
2798
2799 struct anv_state kernel;
2800 uint32_t kernel_size;
2801
2802 struct anv_state constant_data;
2803 uint32_t constant_data_size;
2804
2805 const struct brw_stage_prog_data *prog_data;
2806 uint32_t prog_data_size;
2807
2808 struct brw_compile_stats stats[3];
2809 uint32_t num_stats;
2810
2811 struct nir_xfb_info *xfb_info;
2812
2813 struct anv_pipeline_bind_map bind_map;
2814 };
2815
2816 struct anv_shader_bin *
2817 anv_shader_bin_create(struct anv_device *device,
2818 const void *key, uint32_t key_size,
2819 const void *kernel, uint32_t kernel_size,
2820 const void *constant_data, uint32_t constant_data_size,
2821 const struct brw_stage_prog_data *prog_data,
2822 uint32_t prog_data_size, const void *prog_data_param,
2823 const struct brw_compile_stats *stats, uint32_t num_stats,
2824 const struct nir_xfb_info *xfb_info,
2825 const struct anv_pipeline_bind_map *bind_map);
2826
2827 void
2828 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2829
2830 static inline void
2831 anv_shader_bin_ref(struct anv_shader_bin *shader)
2832 {
2833 assert(shader && shader->ref_cnt >= 1);
2834 p_atomic_inc(&shader->ref_cnt);
2835 }
2836
2837 static inline void
2838 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2839 {
2840 assert(shader && shader->ref_cnt >= 1);
2841 if (p_atomic_dec_zero(&shader->ref_cnt))
2842 anv_shader_bin_destroy(device, shader);
2843 }
2844
2845 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2846 #define MAX_PIPELINE_EXECUTABLES 7
2847
2848 struct anv_pipeline_executable {
2849 gl_shader_stage stage;
2850
2851 struct brw_compile_stats stats;
2852
2853 char *nir;
2854 char *disasm;
2855 };
2856
2857 struct anv_pipeline {
2858 struct anv_device * device;
2859 struct anv_batch batch;
2860 uint32_t batch_data[512];
2861 struct anv_reloc_list batch_relocs;
2862 anv_cmd_dirty_mask_t dynamic_state_mask;
2863 struct anv_dynamic_state dynamic_state;
2864
2865 void * mem_ctx;
2866
2867 VkPipelineCreateFlags flags;
2868 struct anv_subpass * subpass;
2869
2870 bool needs_data_cache;
2871
2872 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2873
2874 uint32_t num_executables;
2875 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2876
2877 struct {
2878 const struct gen_l3_config * l3_config;
2879 uint32_t total_size;
2880 } urb;
2881
2882 VkShaderStageFlags active_stages;
2883 struct anv_state blend_state;
2884
2885 uint32_t vb_used;
2886 struct anv_pipeline_vertex_binding {
2887 uint32_t stride;
2888 bool instanced;
2889 uint32_t instance_divisor;
2890 } vb[MAX_VBS];
2891
2892 uint8_t xfb_used;
2893
2894 bool primitive_restart;
2895 uint32_t topology;
2896
2897 uint32_t cs_right_mask;
2898
2899 bool writes_depth;
2900 bool depth_test_enable;
2901 bool writes_stencil;
2902 bool stencil_test_enable;
2903 bool depth_clamp_enable;
2904 bool depth_clip_enable;
2905 bool sample_shading_enable;
2906 bool kill_pixel;
2907 bool depth_bounds_test_enable;
2908
2909 struct {
2910 uint32_t sf[7];
2911 uint32_t depth_stencil_state[3];
2912 } gen7;
2913
2914 struct {
2915 uint32_t sf[4];
2916 uint32_t raster[5];
2917 uint32_t wm_depth_stencil[3];
2918 } gen8;
2919
2920 struct {
2921 uint32_t wm_depth_stencil[4];
2922 } gen9;
2923
2924 uint32_t interface_descriptor_data[8];
2925 };
2926
2927 static inline bool
2928 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2929 gl_shader_stage stage)
2930 {
2931 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2932 }
2933
2934 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2935 static inline const struct brw_##prefix##_prog_data * \
2936 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2937 { \
2938 if (anv_pipeline_has_stage(pipeline, stage)) { \
2939 return (const struct brw_##prefix##_prog_data *) \
2940 pipeline->shaders[stage]->prog_data; \
2941 } else { \
2942 return NULL; \
2943 } \
2944 }
2945
2946 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2947 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2948 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2949 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2950 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2951 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2952
2953 static inline const struct brw_vue_prog_data *
2954 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2955 {
2956 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2957 return &get_gs_prog_data(pipeline)->base;
2958 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2959 return &get_tes_prog_data(pipeline)->base;
2960 else
2961 return &get_vs_prog_data(pipeline)->base;
2962 }
2963
2964 VkResult
2965 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2966 struct anv_pipeline_cache *cache,
2967 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2968 const VkAllocationCallbacks *alloc);
2969
2970 VkResult
2971 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2972 struct anv_pipeline_cache *cache,
2973 const VkComputePipelineCreateInfo *info,
2974 const struct anv_shader_module *module,
2975 const char *entrypoint,
2976 const VkSpecializationInfo *spec_info);
2977
2978 struct anv_format_plane {
2979 enum isl_format isl_format:16;
2980 struct isl_swizzle swizzle;
2981
2982 /* Whether this plane contains chroma channels */
2983 bool has_chroma;
2984
2985 /* For downscaling of YUV planes */
2986 uint8_t denominator_scales[2];
2987
2988 /* How to map sampled ycbcr planes to a single 4 component element. */
2989 struct isl_swizzle ycbcr_swizzle;
2990
2991 /* What aspect is associated to this plane */
2992 VkImageAspectFlags aspect;
2993 };
2994
2995
2996 struct anv_format {
2997 struct anv_format_plane planes[3];
2998 VkFormat vk_format;
2999 uint8_t n_planes;
3000 bool can_ycbcr;
3001 };
3002
3003 static inline uint32_t
3004 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3005 VkImageAspectFlags aspect_mask)
3006 {
3007 switch (aspect_mask) {
3008 case VK_IMAGE_ASPECT_COLOR_BIT:
3009 case VK_IMAGE_ASPECT_DEPTH_BIT:
3010 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3011 return 0;
3012 case VK_IMAGE_ASPECT_STENCIL_BIT:
3013 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3014 return 0;
3015 /* Fall-through */
3016 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3017 return 1;
3018 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3019 return 2;
3020 default:
3021 /* Purposefully assert with depth/stencil aspects. */
3022 unreachable("invalid image aspect");
3023 }
3024 }
3025
3026 static inline VkImageAspectFlags
3027 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3028 uint32_t plane)
3029 {
3030 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3031 if (util_bitcount(image_aspects) > 1)
3032 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3033 return VK_IMAGE_ASPECT_COLOR_BIT;
3034 }
3035 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3036 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3037 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3038 return VK_IMAGE_ASPECT_STENCIL_BIT;
3039 }
3040
3041 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3042 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3043
3044 const struct anv_format *
3045 anv_get_format(VkFormat format);
3046
3047 static inline uint32_t
3048 anv_get_format_planes(VkFormat vk_format)
3049 {
3050 const struct anv_format *format = anv_get_format(vk_format);
3051
3052 return format != NULL ? format->n_planes : 0;
3053 }
3054
3055 struct anv_format_plane
3056 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3057 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3058
3059 static inline enum isl_format
3060 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3061 VkImageAspectFlags aspect, VkImageTiling tiling)
3062 {
3063 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3064 }
3065
3066 static inline struct isl_swizzle
3067 anv_swizzle_for_render(struct isl_swizzle swizzle)
3068 {
3069 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3070 * RGB as RGBA for texturing
3071 */
3072 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3073 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3074
3075 /* But it doesn't matter what we render to that channel */
3076 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3077
3078 return swizzle;
3079 }
3080
3081 void
3082 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3083
3084 /**
3085 * Subsurface of an anv_image.
3086 */
3087 struct anv_surface {
3088 /** Valid only if isl_surf::size_B > 0. */
3089 struct isl_surf isl;
3090
3091 /**
3092 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3093 */
3094 uint32_t offset;
3095 };
3096
3097 struct anv_image {
3098 VkImageType type; /**< VkImageCreateInfo::imageType */
3099 /* The original VkFormat provided by the client. This may not match any
3100 * of the actual surface formats.
3101 */
3102 VkFormat vk_format;
3103 const struct anv_format *format;
3104
3105 VkImageAspectFlags aspects;
3106 VkExtent3D extent;
3107 uint32_t levels;
3108 uint32_t array_size;
3109 uint32_t samples; /**< VkImageCreateInfo::samples */
3110 uint32_t n_planes;
3111 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3112 VkImageUsageFlags stencil_usage;
3113 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3114 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3115
3116 /** True if this is needs to be bound to an appropriately tiled BO.
3117 *
3118 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3119 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3120 * we require a dedicated allocation so that we can know to allocate a
3121 * tiled buffer.
3122 */
3123 bool needs_set_tiling;
3124
3125 /**
3126 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3127 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3128 */
3129 uint64_t drm_format_mod;
3130
3131 VkDeviceSize size;
3132 uint32_t alignment;
3133
3134 /* Whether the image is made of several underlying buffer objects rather a
3135 * single one with different offsets.
3136 */
3137 bool disjoint;
3138
3139 /* All the formats that can be used when creating views of this image
3140 * are CCS_E compatible.
3141 */
3142 bool ccs_e_compatible;
3143
3144 /* Image was created with external format. */
3145 bool external_format;
3146
3147 /**
3148 * Image subsurfaces
3149 *
3150 * For each foo, anv_image::planes[x].surface is valid if and only if
3151 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3152 * to figure the number associated with a given aspect.
3153 *
3154 * The hardware requires that the depth buffer and stencil buffer be
3155 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3156 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3157 * allocate the depth and stencil buffers as separate surfaces in the same
3158 * bo.
3159 *
3160 * Memory layout :
3161 *
3162 * -----------------------
3163 * | surface0 | /|\
3164 * ----------------------- |
3165 * | shadow surface0 | |
3166 * ----------------------- | Plane 0
3167 * | aux surface0 | |
3168 * ----------------------- |
3169 * | fast clear colors0 | \|/
3170 * -----------------------
3171 * | surface1 | /|\
3172 * ----------------------- |
3173 * | shadow surface1 | |
3174 * ----------------------- | Plane 1
3175 * | aux surface1 | |
3176 * ----------------------- |
3177 * | fast clear colors1 | \|/
3178 * -----------------------
3179 * | ... |
3180 * | |
3181 * -----------------------
3182 */
3183 struct {
3184 /**
3185 * Offset of the entire plane (whenever the image is disjoint this is
3186 * set to 0).
3187 */
3188 uint32_t offset;
3189
3190 VkDeviceSize size;
3191 uint32_t alignment;
3192
3193 struct anv_surface surface;
3194
3195 /**
3196 * A surface which shadows the main surface and may have different
3197 * tiling. This is used for sampling using a tiling that isn't supported
3198 * for other operations.
3199 */
3200 struct anv_surface shadow_surface;
3201
3202 /**
3203 * For color images, this is the aux usage for this image when not used
3204 * as a color attachment.
3205 *
3206 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3207 * image has a HiZ buffer.
3208 */
3209 enum isl_aux_usage aux_usage;
3210
3211 struct anv_surface aux_surface;
3212
3213 /**
3214 * Offset of the fast clear state (used to compute the
3215 * fast_clear_state_offset of the following planes).
3216 */
3217 uint32_t fast_clear_state_offset;
3218
3219 /**
3220 * BO associated with this plane, set when bound.
3221 */
3222 struct anv_address address;
3223
3224 /**
3225 * Address of the main surface used to fill the aux map table. This is
3226 * used at destruction of the image since the Vulkan spec does not
3227 * guarantee that the address.bo field we still be valid at destruction.
3228 */
3229 uint64_t aux_map_surface_address;
3230
3231 /**
3232 * When destroying the image, also free the bo.
3233 * */
3234 bool bo_is_owned;
3235 } planes[3];
3236 };
3237
3238 /* The ordering of this enum is important */
3239 enum anv_fast_clear_type {
3240 /** Image does not have/support any fast-clear blocks */
3241 ANV_FAST_CLEAR_NONE = 0,
3242 /** Image has/supports fast-clear but only to the default value */
3243 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3244 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3245 ANV_FAST_CLEAR_ANY = 2,
3246 };
3247
3248 /* Returns the number of auxiliary buffer levels attached to an image. */
3249 static inline uint8_t
3250 anv_image_aux_levels(const struct anv_image * const image,
3251 VkImageAspectFlagBits aspect)
3252 {
3253 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3254
3255 /* The Gen12 CCS aux surface is represented with only one level. */
3256 const uint8_t aux_logical_levels =
3257 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3258 image->planes[plane].surface.isl.levels :
3259 image->planes[plane].aux_surface.isl.levels;
3260
3261 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3262 aux_logical_levels : 0;
3263 }
3264
3265 /* Returns the number of auxiliary buffer layers attached to an image. */
3266 static inline uint32_t
3267 anv_image_aux_layers(const struct anv_image * const image,
3268 VkImageAspectFlagBits aspect,
3269 const uint8_t miplevel)
3270 {
3271 assert(image);
3272
3273 /* The miplevel must exist in the main buffer. */
3274 assert(miplevel < image->levels);
3275
3276 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3277 /* There are no layers with auxiliary data because the miplevel has no
3278 * auxiliary data.
3279 */
3280 return 0;
3281 } else {
3282 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3283
3284 /* The Gen12 CCS aux surface is represented with only one layer. */
3285 const struct isl_extent4d *aux_logical_level0_px =
3286 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3287 &image->planes[plane].surface.isl.logical_level0_px :
3288 &image->planes[plane].aux_surface.isl.logical_level0_px;
3289
3290 return MAX2(aux_logical_level0_px->array_len,
3291 aux_logical_level0_px->depth >> miplevel);
3292 }
3293 }
3294
3295 static inline struct anv_address
3296 anv_image_get_clear_color_addr(const struct anv_device *device,
3297 const struct anv_image *image,
3298 VkImageAspectFlagBits aspect)
3299 {
3300 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3301
3302 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3303 return anv_address_add(image->planes[plane].address,
3304 image->planes[plane].fast_clear_state_offset);
3305 }
3306
3307 static inline struct anv_address
3308 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3309 const struct anv_image *image,
3310 VkImageAspectFlagBits aspect)
3311 {
3312 struct anv_address addr =
3313 anv_image_get_clear_color_addr(device, image, aspect);
3314
3315 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3316 device->isl_dev.ss.clear_color_state_size :
3317 device->isl_dev.ss.clear_value_size;
3318 return anv_address_add(addr, clear_color_state_size);
3319 }
3320
3321 static inline struct anv_address
3322 anv_image_get_compression_state_addr(const struct anv_device *device,
3323 const struct anv_image *image,
3324 VkImageAspectFlagBits aspect,
3325 uint32_t level, uint32_t array_layer)
3326 {
3327 assert(level < anv_image_aux_levels(image, aspect));
3328 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3329 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3330 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3331
3332 struct anv_address addr =
3333 anv_image_get_fast_clear_type_addr(device, image, aspect);
3334 addr.offset += 4; /* Go past the fast clear type */
3335
3336 if (image->type == VK_IMAGE_TYPE_3D) {
3337 for (uint32_t l = 0; l < level; l++)
3338 addr.offset += anv_minify(image->extent.depth, l) * 4;
3339 } else {
3340 addr.offset += level * image->array_size * 4;
3341 }
3342 addr.offset += array_layer * 4;
3343
3344 assert(addr.offset <
3345 image->planes[plane].address.offset + image->planes[plane].size);
3346 return addr;
3347 }
3348
3349 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3350 static inline bool
3351 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3352 const struct anv_image *image)
3353 {
3354 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3355 return false;
3356
3357 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3358 * struct. There's documentation which suggests that this feature actually
3359 * reduces performance on BDW, but it has only been observed to help so
3360 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3361 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3362 */
3363 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3364 return false;
3365
3366 return image->samples == 1;
3367 }
3368
3369 static inline bool
3370 anv_image_plane_uses_aux_map(const struct anv_device *device,
3371 const struct anv_image *image,
3372 uint32_t plane)
3373 {
3374 return device->info.has_aux_map &&
3375 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3376 }
3377
3378 void
3379 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3380 const struct anv_image *image,
3381 VkImageAspectFlagBits aspect,
3382 enum isl_aux_usage aux_usage,
3383 uint32_t level,
3384 uint32_t base_layer,
3385 uint32_t layer_count);
3386
3387 void
3388 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3389 const struct anv_image *image,
3390 VkImageAspectFlagBits aspect,
3391 enum isl_aux_usage aux_usage,
3392 enum isl_format format, struct isl_swizzle swizzle,
3393 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3394 VkRect2D area, union isl_color_value clear_color);
3395 void
3396 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3397 const struct anv_image *image,
3398 VkImageAspectFlags aspects,
3399 enum isl_aux_usage depth_aux_usage,
3400 uint32_t level,
3401 uint32_t base_layer, uint32_t layer_count,
3402 VkRect2D area,
3403 float depth_value, uint8_t stencil_value);
3404 void
3405 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3406 const struct anv_image *src_image,
3407 enum isl_aux_usage src_aux_usage,
3408 uint32_t src_level, uint32_t src_base_layer,
3409 const struct anv_image *dst_image,
3410 enum isl_aux_usage dst_aux_usage,
3411 uint32_t dst_level, uint32_t dst_base_layer,
3412 VkImageAspectFlagBits aspect,
3413 uint32_t src_x, uint32_t src_y,
3414 uint32_t dst_x, uint32_t dst_y,
3415 uint32_t width, uint32_t height,
3416 uint32_t layer_count,
3417 enum blorp_filter filter);
3418 void
3419 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3420 const struct anv_image *image,
3421 VkImageAspectFlagBits aspect, uint32_t level,
3422 uint32_t base_layer, uint32_t layer_count,
3423 enum isl_aux_op hiz_op);
3424 void
3425 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3426 const struct anv_image *image,
3427 VkImageAspectFlags aspects,
3428 uint32_t level,
3429 uint32_t base_layer, uint32_t layer_count,
3430 VkRect2D area, uint8_t stencil_value);
3431 void
3432 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3433 const struct anv_image *image,
3434 enum isl_format format,
3435 VkImageAspectFlagBits aspect,
3436 uint32_t base_layer, uint32_t layer_count,
3437 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3438 bool predicate);
3439 void
3440 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3441 const struct anv_image *image,
3442 enum isl_format format,
3443 VkImageAspectFlagBits aspect, uint32_t level,
3444 uint32_t base_layer, uint32_t layer_count,
3445 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3446 bool predicate);
3447
3448 void
3449 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3450 const struct anv_image *image,
3451 VkImageAspectFlagBits aspect,
3452 uint32_t base_level, uint32_t level_count,
3453 uint32_t base_layer, uint32_t layer_count);
3454
3455 enum isl_aux_usage
3456 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3457 const struct anv_image *image,
3458 const VkImageAspectFlagBits aspect,
3459 const VkImageLayout layout);
3460
3461 enum anv_fast_clear_type
3462 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3463 const struct anv_image * const image,
3464 const VkImageAspectFlagBits aspect,
3465 const VkImageLayout layout);
3466
3467 /* This is defined as a macro so that it works for both
3468 * VkImageSubresourceRange and VkImageSubresourceLayers
3469 */
3470 #define anv_get_layerCount(_image, _range) \
3471 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3472 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3473
3474 static inline uint32_t
3475 anv_get_levelCount(const struct anv_image *image,
3476 const VkImageSubresourceRange *range)
3477 {
3478 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3479 image->levels - range->baseMipLevel : range->levelCount;
3480 }
3481
3482 static inline VkImageAspectFlags
3483 anv_image_expand_aspects(const struct anv_image *image,
3484 VkImageAspectFlags aspects)
3485 {
3486 /* If the underlying image has color plane aspects and
3487 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3488 * the underlying image. */
3489 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3490 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3491 return image->aspects;
3492
3493 return aspects;
3494 }
3495
3496 static inline bool
3497 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3498 VkImageAspectFlags aspects2)
3499 {
3500 if (aspects1 == aspects2)
3501 return true;
3502
3503 /* Only 1 color aspects are compatibles. */
3504 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3505 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3506 util_bitcount(aspects1) == util_bitcount(aspects2))
3507 return true;
3508
3509 return false;
3510 }
3511
3512 struct anv_image_view {
3513 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3514
3515 VkImageAspectFlags aspect_mask;
3516 VkFormat vk_format;
3517 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3518
3519 unsigned n_planes;
3520 struct {
3521 uint32_t image_plane;
3522
3523 struct isl_view isl;
3524
3525 /**
3526 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3527 * image layout of SHADER_READ_ONLY_OPTIMAL or
3528 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3529 */
3530 struct anv_surface_state optimal_sampler_surface_state;
3531
3532 /**
3533 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3534 * image layout of GENERAL.
3535 */
3536 struct anv_surface_state general_sampler_surface_state;
3537
3538 /**
3539 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3540 * states for write-only and readable, using the real format for
3541 * write-only and the lowered format for readable.
3542 */
3543 struct anv_surface_state storage_surface_state;
3544 struct anv_surface_state writeonly_storage_surface_state;
3545
3546 struct brw_image_param storage_image_param;
3547 } planes[3];
3548 };
3549
3550 enum anv_image_view_state_flags {
3551 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3552 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3553 };
3554
3555 void anv_image_fill_surface_state(struct anv_device *device,
3556 const struct anv_image *image,
3557 VkImageAspectFlagBits aspect,
3558 const struct isl_view *view,
3559 isl_surf_usage_flags_t view_usage,
3560 enum isl_aux_usage aux_usage,
3561 const union isl_color_value *clear_color,
3562 enum anv_image_view_state_flags flags,
3563 struct anv_surface_state *state_inout,
3564 struct brw_image_param *image_param_out);
3565
3566 struct anv_image_create_info {
3567 const VkImageCreateInfo *vk_info;
3568
3569 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3570 isl_tiling_flags_t isl_tiling_flags;
3571
3572 /** These flags will be added to any derived from VkImageCreateInfo. */
3573 isl_surf_usage_flags_t isl_extra_usage_flags;
3574
3575 uint32_t stride;
3576 bool external_format;
3577 };
3578
3579 VkResult anv_image_create(VkDevice _device,
3580 const struct anv_image_create_info *info,
3581 const VkAllocationCallbacks* alloc,
3582 VkImage *pImage);
3583
3584 const struct anv_surface *
3585 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3586 VkImageAspectFlags aspect_mask);
3587
3588 enum isl_format
3589 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3590
3591 static inline struct VkExtent3D
3592 anv_sanitize_image_extent(const VkImageType imageType,
3593 const struct VkExtent3D imageExtent)
3594 {
3595 switch (imageType) {
3596 case VK_IMAGE_TYPE_1D:
3597 return (VkExtent3D) { imageExtent.width, 1, 1 };
3598 case VK_IMAGE_TYPE_2D:
3599 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3600 case VK_IMAGE_TYPE_3D:
3601 return imageExtent;
3602 default:
3603 unreachable("invalid image type");
3604 }
3605 }
3606
3607 static inline struct VkOffset3D
3608 anv_sanitize_image_offset(const VkImageType imageType,
3609 const struct VkOffset3D imageOffset)
3610 {
3611 switch (imageType) {
3612 case VK_IMAGE_TYPE_1D:
3613 return (VkOffset3D) { imageOffset.x, 0, 0 };
3614 case VK_IMAGE_TYPE_2D:
3615 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3616 case VK_IMAGE_TYPE_3D:
3617 return imageOffset;
3618 default:
3619 unreachable("invalid image type");
3620 }
3621 }
3622
3623 VkFormatFeatureFlags
3624 anv_get_image_format_features(const struct gen_device_info *devinfo,
3625 VkFormat vk_format,
3626 const struct anv_format *anv_format,
3627 VkImageTiling vk_tiling);
3628
3629 void anv_fill_buffer_surface_state(struct anv_device *device,
3630 struct anv_state state,
3631 enum isl_format format,
3632 struct anv_address address,
3633 uint32_t range, uint32_t stride);
3634
3635 static inline void
3636 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3637 const struct anv_attachment_state *att_state,
3638 const struct anv_image_view *iview)
3639 {
3640 const struct isl_format_layout *view_fmtl =
3641 isl_format_get_layout(iview->planes[0].isl.format);
3642
3643 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3644 if (view_fmtl->channels.c.bits) \
3645 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3646
3647 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3648 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3649 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3650 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3651
3652 #undef COPY_CLEAR_COLOR_CHANNEL
3653 }
3654
3655
3656 struct anv_ycbcr_conversion {
3657 const struct anv_format * format;
3658 VkSamplerYcbcrModelConversion ycbcr_model;
3659 VkSamplerYcbcrRange ycbcr_range;
3660 VkComponentSwizzle mapping[4];
3661 VkChromaLocation chroma_offsets[2];
3662 VkFilter chroma_filter;
3663 bool chroma_reconstruction;
3664 };
3665
3666 struct anv_sampler {
3667 uint32_t state[3][4];
3668 uint32_t n_planes;
3669 struct anv_ycbcr_conversion *conversion;
3670
3671 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3672 * and with a 32-byte stride for use as bindless samplers.
3673 */
3674 struct anv_state bindless_state;
3675 };
3676
3677 struct anv_framebuffer {
3678 uint32_t width;
3679 uint32_t height;
3680 uint32_t layers;
3681
3682 uint32_t attachment_count;
3683 struct anv_image_view * attachments[0];
3684 };
3685
3686 struct anv_subpass_attachment {
3687 VkImageUsageFlagBits usage;
3688 uint32_t attachment;
3689 VkImageLayout layout;
3690 };
3691
3692 struct anv_subpass {
3693 uint32_t attachment_count;
3694
3695 /**
3696 * A pointer to all attachment references used in this subpass.
3697 * Only valid if ::attachment_count > 0.
3698 */
3699 struct anv_subpass_attachment * attachments;
3700 uint32_t input_count;
3701 struct anv_subpass_attachment * input_attachments;
3702 uint32_t color_count;
3703 struct anv_subpass_attachment * color_attachments;
3704 struct anv_subpass_attachment * resolve_attachments;
3705
3706 struct anv_subpass_attachment * depth_stencil_attachment;
3707 struct anv_subpass_attachment * ds_resolve_attachment;
3708 VkResolveModeFlagBitsKHR depth_resolve_mode;
3709 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3710
3711 uint32_t view_mask;
3712
3713 /** Subpass has a depth/stencil self-dependency */
3714 bool has_ds_self_dep;
3715
3716 /** Subpass has at least one color resolve attachment */
3717 bool has_color_resolve;
3718 };
3719
3720 static inline unsigned
3721 anv_subpass_view_count(const struct anv_subpass *subpass)
3722 {
3723 return MAX2(1, util_bitcount(subpass->view_mask));
3724 }
3725
3726 struct anv_render_pass_attachment {
3727 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3728 * its members individually.
3729 */
3730 VkFormat format;
3731 uint32_t samples;
3732 VkImageUsageFlags usage;
3733 VkAttachmentLoadOp load_op;
3734 VkAttachmentStoreOp store_op;
3735 VkAttachmentLoadOp stencil_load_op;
3736 VkImageLayout initial_layout;
3737 VkImageLayout final_layout;
3738 VkImageLayout first_subpass_layout;
3739
3740 /* The subpass id in which the attachment will be used last. */
3741 uint32_t last_subpass_idx;
3742 };
3743
3744 struct anv_render_pass {
3745 uint32_t attachment_count;
3746 uint32_t subpass_count;
3747 /* An array of subpass_count+1 flushes, one per subpass boundary */
3748 enum anv_pipe_bits * subpass_flushes;
3749 struct anv_render_pass_attachment * attachments;
3750 struct anv_subpass subpasses[0];
3751 };
3752
3753 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3754
3755 struct anv_query_pool {
3756 VkQueryType type;
3757 VkQueryPipelineStatisticFlags pipeline_statistics;
3758 /** Stride between slots, in bytes */
3759 uint32_t stride;
3760 /** Number of slots in this query pool */
3761 uint32_t slots;
3762 struct anv_bo bo;
3763 };
3764
3765 int anv_get_instance_entrypoint_index(const char *name);
3766 int anv_get_device_entrypoint_index(const char *name);
3767 int anv_get_physical_device_entrypoint_index(const char *name);
3768
3769 const char *anv_get_instance_entry_name(int index);
3770 const char *anv_get_physical_device_entry_name(int index);
3771 const char *anv_get_device_entry_name(int index);
3772
3773 bool
3774 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3775 const struct anv_instance_extension_table *instance);
3776 bool
3777 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3778 const struct anv_instance_extension_table *instance);
3779 bool
3780 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3781 const struct anv_instance_extension_table *instance,
3782 const struct anv_device_extension_table *device);
3783
3784 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3785 const char *name);
3786
3787 void anv_dump_image_to_ppm(struct anv_device *device,
3788 struct anv_image *image, unsigned miplevel,
3789 unsigned array_layer, VkImageAspectFlagBits aspect,
3790 const char *filename);
3791
3792 enum anv_dump_action {
3793 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3794 };
3795
3796 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3797 void anv_dump_finish(void);
3798
3799 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3800
3801 static inline uint32_t
3802 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3803 {
3804 /* This function must be called from within a subpass. */
3805 assert(cmd_state->pass && cmd_state->subpass);
3806
3807 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3808
3809 /* The id of this subpass shouldn't exceed the number of subpasses in this
3810 * render pass minus 1.
3811 */
3812 assert(subpass_id < cmd_state->pass->subpass_count);
3813 return subpass_id;
3814 }
3815
3816 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3817 void anv_device_perf_init(struct anv_device *device);
3818
3819 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3820 \
3821 static inline struct __anv_type * \
3822 __anv_type ## _from_handle(__VkType _handle) \
3823 { \
3824 return (struct __anv_type *) _handle; \
3825 } \
3826 \
3827 static inline __VkType \
3828 __anv_type ## _to_handle(struct __anv_type *_obj) \
3829 { \
3830 return (__VkType) _obj; \
3831 }
3832
3833 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3834 \
3835 static inline struct __anv_type * \
3836 __anv_type ## _from_handle(__VkType _handle) \
3837 { \
3838 return (struct __anv_type *)(uintptr_t) _handle; \
3839 } \
3840 \
3841 static inline __VkType \
3842 __anv_type ## _to_handle(struct __anv_type *_obj) \
3843 { \
3844 return (__VkType)(uintptr_t) _obj; \
3845 }
3846
3847 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3848 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3849
3850 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3851 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3852 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3853 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3854 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3855
3856 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3857 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3858 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3859 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3860 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3861 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3862 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3863 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3864 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3865 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3866 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3867 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3868 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3869 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3870 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3871 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3872 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3873 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3874 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3875 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3876 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3877 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3878 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3879
3880 /* Gen-specific function declarations */
3881 #ifdef genX
3882 # include "anv_genX.h"
3883 #else
3884 # define genX(x) gen7_##x
3885 # include "anv_genX.h"
3886 # undef genX
3887 # define genX(x) gen75_##x
3888 # include "anv_genX.h"
3889 # undef genX
3890 # define genX(x) gen8_##x
3891 # include "anv_genX.h"
3892 # undef genX
3893 # define genX(x) gen9_##x
3894 # include "anv_genX.h"
3895 # undef genX
3896 # define genX(x) gen10_##x
3897 # include "anv_genX.h"
3898 # undef genX
3899 # define genX(x) gen11_##x
3900 # include "anv_genX.h"
3901 # undef genX
3902 # define genX(x) gen12_##x
3903 # include "anv_genX.h"
3904 # undef genX
3905 #endif
3906
3907 #endif /* ANV_PRIVATE_H */