anv: move queue init/finish to anv_queue.c
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 #define NSEC_PER_SEC 1000000000ull
95
96 /* anv Virtual Memory Layout
97 * =========================
98 *
99 * When the anv driver is determining the virtual graphics addresses of memory
100 * objects itself using the softpin mechanism, the following memory ranges
101 * will be used.
102 *
103 * Three special considerations to notice:
104 *
105 * (1) the dynamic state pool is located within the same 4 GiB as the low
106 * heap. This is to work around a VF cache issue described in a comment in
107 * anv_physical_device_init_heaps.
108 *
109 * (2) the binding table pool is located at lower addresses than the surface
110 * state pool, within a 4 GiB range. This allows surface state base addresses
111 * to cover both binding tables (16 bit offsets) and surface states (32 bit
112 * offsets).
113 *
114 * (3) the last 4 GiB of the address space is withheld from the high
115 * heap. Various hardware units will read past the end of an object for
116 * various reasons. This healthy margin prevents reads from wrapping around
117 * 48-bit addresses.
118 */
119 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
120 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
121 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
122 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
123 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
124 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
125 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
126 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
127 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
128 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
129 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
130
131 #define LOW_HEAP_SIZE \
132 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
133 #define DYNAMIC_STATE_POOL_SIZE \
134 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
135 #define BINDING_TABLE_POOL_SIZE \
136 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
137 #define SURFACE_STATE_POOL_SIZE \
138 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
139 #define INSTRUCTION_STATE_POOL_SIZE \
140 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
141
142 /* Allowing different clear colors requires us to perform a depth resolve at
143 * the end of certain render passes. This is because while slow clears store
144 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
145 * See the PRMs for examples describing when additional resolves would be
146 * necessary. To enable fast clears without requiring extra resolves, we set
147 * the clear value to a globally-defined one. We could allow different values
148 * if the user doesn't expect coherent data during or after a render passes
149 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
150 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
151 * 1.0f seems to be the only value used. The only application that doesn't set
152 * this value does so through the usage of an seemingly uninitialized clear
153 * value.
154 */
155 #define ANV_HZ_FC_VAL 1.0f
156
157 #define MAX_VBS 28
158 #define MAX_XFB_BUFFERS 4
159 #define MAX_XFB_STREAMS 4
160 #define MAX_SETS 8
161 #define MAX_RTS 8
162 #define MAX_VIEWPORTS 16
163 #define MAX_SCISSORS 16
164 #define MAX_PUSH_CONSTANTS_SIZE 128
165 #define MAX_DYNAMIC_BUFFERS 16
166 #define MAX_IMAGES 64
167 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
168 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
169 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
170
171 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
172 *
173 * "The surface state model is used when a Binding Table Index (specified
174 * in the message descriptor) of less than 240 is specified. In this model,
175 * the Binding Table Index is used to index into the binding table, and the
176 * binding table entry contains a pointer to the SURFACE_STATE."
177 *
178 * Binding table values above 240 are used for various things in the hardware
179 * such as stateless, stateless with incoherent cache, SLM, and bindless.
180 */
181 #define MAX_BINDING_TABLE_SIZE 240
182
183 /* The kernel relocation API has a limitation of a 32-bit delta value
184 * applied to the address before it is written which, in spite of it being
185 * unsigned, is treated as signed . Because of the way that this maps to
186 * the Vulkan API, we cannot handle an offset into a buffer that does not
187 * fit into a signed 32 bits. The only mechanism we have for dealing with
188 * this at the moment is to limit all VkDeviceMemory objects to a maximum
189 * of 2GB each. The Vulkan spec allows us to do this:
190 *
191 * "Some platforms may have a limit on the maximum size of a single
192 * allocation. For example, certain systems may fail to create
193 * allocations with a size greater than or equal to 4GB. Such a limit is
194 * implementation-dependent, and if such a failure occurs then the error
195 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
196 *
197 * We don't use vk_error here because it's not an error so much as an
198 * indication to the application that the allocation is too large.
199 */
200 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
201
202 #define ANV_SVGS_VB_INDEX MAX_VBS
203 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
204
205 /* We reserve this MI ALU register for the purpose of handling predication.
206 * Other code which uses the MI ALU should leave it alone.
207 */
208 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
209
210 /* For gen12 we set the streamout buffers using 4 separate commands
211 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
212 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
213 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
214 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
215 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
216 * 3DSTATE_SO_BUFFER_INDEX_0.
217 */
218 #define SO_BUFFER_INDEX_0_CMD 0x60
219 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
220
221 static inline uint32_t
222 align_down_npot_u32(uint32_t v, uint32_t a)
223 {
224 return v - (v % a);
225 }
226
227 static inline uint32_t
228 align_u32(uint32_t v, uint32_t a)
229 {
230 assert(a != 0 && a == (a & -a));
231 return (v + a - 1) & ~(a - 1);
232 }
233
234 static inline uint64_t
235 align_u64(uint64_t v, uint64_t a)
236 {
237 assert(a != 0 && a == (a & -a));
238 return (v + a - 1) & ~(a - 1);
239 }
240
241 static inline int32_t
242 align_i32(int32_t v, int32_t a)
243 {
244 assert(a != 0 && a == (a & -a));
245 return (v + a - 1) & ~(a - 1);
246 }
247
248 /** Alignment must be a power of 2. */
249 static inline bool
250 anv_is_aligned(uintmax_t n, uintmax_t a)
251 {
252 assert(a == (a & -a));
253 return (n & (a - 1)) == 0;
254 }
255
256 static inline uint32_t
257 anv_minify(uint32_t n, uint32_t levels)
258 {
259 if (unlikely(n == 0))
260 return 0;
261 else
262 return MAX2(n >> levels, 1);
263 }
264
265 static inline float
266 anv_clamp_f(float f, float min, float max)
267 {
268 assert(min < max);
269
270 if (f > max)
271 return max;
272 else if (f < min)
273 return min;
274 else
275 return f;
276 }
277
278 static inline bool
279 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
280 {
281 if (*inout_mask & clear_mask) {
282 *inout_mask &= ~clear_mask;
283 return true;
284 } else {
285 return false;
286 }
287 }
288
289 static inline union isl_color_value
290 vk_to_isl_color(VkClearColorValue color)
291 {
292 return (union isl_color_value) {
293 .u32 = {
294 color.uint32[0],
295 color.uint32[1],
296 color.uint32[2],
297 color.uint32[3],
298 },
299 };
300 }
301
302 #define for_each_bit(b, dword) \
303 for (uint32_t __dword = (dword); \
304 (b) = __builtin_ffs(__dword) - 1, __dword; \
305 __dword &= ~(1 << (b)))
306
307 #define typed_memcpy(dest, src, count) ({ \
308 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
309 memcpy((dest), (src), (count) * sizeof(*(src))); \
310 })
311
312 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
313 * to be added here in order to utilize mapping in debug/error/perf macros.
314 */
315 #define REPORT_OBJECT_TYPE(o) \
316 __builtin_choose_expr ( \
317 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
318 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
319 __builtin_choose_expr ( \
320 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
321 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
322 __builtin_choose_expr ( \
323 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
324 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
325 __builtin_choose_expr ( \
326 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
327 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
328 __builtin_choose_expr ( \
329 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
330 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
394 __builtin_choose_expr ( \
395 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
396 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
397 __builtin_choose_expr ( \
398 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
399 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
400 __builtin_choose_expr ( \
401 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
402 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
403 __builtin_choose_expr ( \
404 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
405 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
406 __builtin_choose_expr ( \
407 __builtin_types_compatible_p (__typeof (o), void*), \
408 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
409 /* The void expression results in a compile-time error \
410 when assigning the result to something. */ \
411 (void)0)))))))))))))))))))))))))))))))
412
413 /* Whenever we generate an error, pass it through this function. Useful for
414 * debugging, where we can break on it. Only call at error site, not when
415 * propagating errors. Might be useful to plug in a stack trace here.
416 */
417
418 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
419 VkDebugReportObjectTypeEXT type, VkResult error,
420 const char *file, int line, const char *format,
421 va_list args);
422
423 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
424 VkDebugReportObjectTypeEXT type, VkResult error,
425 const char *file, int line, const char *format, ...)
426 anv_printflike(7, 8);
427
428 #ifdef DEBUG
429 #define vk_error(error) __vk_errorf(NULL, NULL,\
430 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
431 error, __FILE__, __LINE__, NULL)
432 #define vk_errorv(instance, obj, error, format, args)\
433 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
434 __FILE__, __LINE__, format, args)
435 #define vk_errorf(instance, obj, error, format, ...)\
436 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
437 __FILE__, __LINE__, format, ## __VA_ARGS__)
438 #else
439 #define vk_error(error) error
440 #define vk_errorf(instance, obj, error, format, ...) error
441 #endif
442
443 /**
444 * Warn on ignored extension structs.
445 *
446 * The Vulkan spec requires us to ignore unsupported or unknown structs in
447 * a pNext chain. In debug mode, emitting warnings for ignored structs may
448 * help us discover structs that we should not have ignored.
449 *
450 *
451 * From the Vulkan 1.0.38 spec:
452 *
453 * Any component of the implementation (the loader, any enabled layers,
454 * and drivers) must skip over, without processing (other than reading the
455 * sType and pNext members) any chained structures with sType values not
456 * defined by extensions supported by that component.
457 */
458 #define anv_debug_ignored_stype(sType) \
459 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
460
461 void __anv_perf_warn(struct anv_instance *instance, const void *object,
462 VkDebugReportObjectTypeEXT type, const char *file,
463 int line, const char *format, ...)
464 anv_printflike(6, 7);
465 void anv_loge(const char *format, ...) anv_printflike(1, 2);
466 void anv_loge_v(const char *format, va_list va);
467
468 /**
469 * Print a FINISHME message, including its source location.
470 */
471 #define anv_finishme(format, ...) \
472 do { \
473 static bool reported = false; \
474 if (!reported) { \
475 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
476 ##__VA_ARGS__); \
477 reported = true; \
478 } \
479 } while (0)
480
481 /**
482 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
483 */
484 #define anv_perf_warn(instance, obj, format, ...) \
485 do { \
486 static bool reported = false; \
487 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
488 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
489 format, ##__VA_ARGS__); \
490 reported = true; \
491 } \
492 } while (0)
493
494 /* A non-fatal assert. Useful for debugging. */
495 #ifdef DEBUG
496 #define anv_assert(x) ({ \
497 if (unlikely(!(x))) \
498 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
499 })
500 #else
501 #define anv_assert(x)
502 #endif
503
504 /* A multi-pointer allocator
505 *
506 * When copying data structures from the user (such as a render pass), it's
507 * common to need to allocate data for a bunch of different things. Instead
508 * of doing several allocations and having to handle all of the error checking
509 * that entails, it can be easier to do a single allocation. This struct
510 * helps facilitate that. The intended usage looks like this:
511 *
512 * ANV_MULTIALLOC(ma)
513 * anv_multialloc_add(&ma, &main_ptr, 1);
514 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
515 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
516 *
517 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
518 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
519 */
520 struct anv_multialloc {
521 size_t size;
522 size_t align;
523
524 uint32_t ptr_count;
525 void **ptrs[8];
526 };
527
528 #define ANV_MULTIALLOC_INIT \
529 ((struct anv_multialloc) { 0, })
530
531 #define ANV_MULTIALLOC(_name) \
532 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
533
534 __attribute__((always_inline))
535 static inline void
536 _anv_multialloc_add(struct anv_multialloc *ma,
537 void **ptr, size_t size, size_t align)
538 {
539 size_t offset = align_u64(ma->size, align);
540 ma->size = offset + size;
541 ma->align = MAX2(ma->align, align);
542
543 /* Store the offset in the pointer. */
544 *ptr = (void *)(uintptr_t)offset;
545
546 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
547 ma->ptrs[ma->ptr_count++] = ptr;
548 }
549
550 #define anv_multialloc_add_size(_ma, _ptr, _size) \
551 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
552
553 #define anv_multialloc_add(_ma, _ptr, _count) \
554 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
555
556 __attribute__((always_inline))
557 static inline void *
558 anv_multialloc_alloc(struct anv_multialloc *ma,
559 const VkAllocationCallbacks *alloc,
560 VkSystemAllocationScope scope)
561 {
562 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
563 if (!ptr)
564 return NULL;
565
566 /* Fill out each of the pointers with their final value.
567 *
568 * for (uint32_t i = 0; i < ma->ptr_count; i++)
569 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
570 *
571 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
572 * constant, GCC is incapable of figuring this out and unrolling the loop
573 * so we have to give it a little help.
574 */
575 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
576 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
577 if ((_i) < ma->ptr_count) \
578 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
579 _ANV_MULTIALLOC_UPDATE_POINTER(0);
580 _ANV_MULTIALLOC_UPDATE_POINTER(1);
581 _ANV_MULTIALLOC_UPDATE_POINTER(2);
582 _ANV_MULTIALLOC_UPDATE_POINTER(3);
583 _ANV_MULTIALLOC_UPDATE_POINTER(4);
584 _ANV_MULTIALLOC_UPDATE_POINTER(5);
585 _ANV_MULTIALLOC_UPDATE_POINTER(6);
586 _ANV_MULTIALLOC_UPDATE_POINTER(7);
587 #undef _ANV_MULTIALLOC_UPDATE_POINTER
588
589 return ptr;
590 }
591
592 __attribute__((always_inline))
593 static inline void *
594 anv_multialloc_alloc2(struct anv_multialloc *ma,
595 const VkAllocationCallbacks *parent_alloc,
596 const VkAllocationCallbacks *alloc,
597 VkSystemAllocationScope scope)
598 {
599 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
600 }
601
602 struct anv_bo {
603 uint32_t gem_handle;
604
605 uint32_t refcount;
606
607 /* Index into the current validation list. This is used by the
608 * validation list building alrogithm to track which buffers are already
609 * in the validation list so that we can ensure uniqueness.
610 */
611 uint32_t index;
612
613 /* Index for use with util_sparse_array_free_list */
614 uint32_t free_index;
615
616 /* Last known offset. This value is provided by the kernel when we
617 * execbuf and is used as the presumed offset for the next bunch of
618 * relocations.
619 */
620 uint64_t offset;
621
622 uint64_t size;
623
624 /* Map for internally mapped BOs.
625 *
626 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
627 */
628 void *map;
629
630 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
631 uint32_t flags;
632
633 /** True if this BO may be shared with other processes */
634 bool is_external:1;
635
636 /** True if this BO is a wrapper
637 *
638 * When set to true, none of the fields in this BO are meaningful except
639 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
640 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
641 * is set in the physical device.
642 */
643 bool is_wrapper:1;
644
645 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
646 bool has_fixed_address:1;
647
648 /** True if this BO wraps a host pointer */
649 bool from_host_ptr:1;
650 };
651
652 static inline struct anv_bo *
653 anv_bo_unwrap(struct anv_bo *bo)
654 {
655 while (bo->is_wrapper)
656 bo = bo->map;
657 return bo;
658 }
659
660 /* Represents a lock-free linked list of "free" things. This is used by
661 * both the block pool and the state pools. Unfortunately, in order to
662 * solve the ABA problem, we can't use a single uint32_t head.
663 */
664 union anv_free_list {
665 struct {
666 uint32_t offset;
667
668 /* A simple count that is incremented every time the head changes. */
669 uint32_t count;
670 };
671 /* Make sure it's aligned to 64 bits. This will make atomic operations
672 * faster on 32 bit platforms.
673 */
674 uint64_t u64 __attribute__ ((aligned (8)));
675 };
676
677 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
678
679 struct anv_block_state {
680 union {
681 struct {
682 uint32_t next;
683 uint32_t end;
684 };
685 /* Make sure it's aligned to 64 bits. This will make atomic operations
686 * faster on 32 bit platforms.
687 */
688 uint64_t u64 __attribute__ ((aligned (8)));
689 };
690 };
691
692 #define anv_block_pool_foreach_bo(bo, pool) \
693 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
694 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
695 _pp_bo++)
696
697 #define ANV_MAX_BLOCK_POOL_BOS 20
698
699 struct anv_block_pool {
700 struct anv_device *device;
701 bool use_softpin;
702
703 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
704 * around the actual BO so that we grow the pool after the wrapper BO has
705 * been put in a relocation list. This is only used in the non-softpin
706 * case.
707 */
708 struct anv_bo wrapper_bo;
709
710 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
711 struct anv_bo *bo;
712 uint32_t nbos;
713
714 uint64_t size;
715
716 /* The address where the start of the pool is pinned. The various bos that
717 * are created as the pool grows will have addresses in the range
718 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
719 */
720 uint64_t start_address;
721
722 /* The offset from the start of the bo to the "center" of the block
723 * pool. Pointers to allocated blocks are given by
724 * bo.map + center_bo_offset + offsets.
725 */
726 uint32_t center_bo_offset;
727
728 /* Current memory map of the block pool. This pointer may or may not
729 * point to the actual beginning of the block pool memory. If
730 * anv_block_pool_alloc_back has ever been called, then this pointer
731 * will point to the "center" position of the buffer and all offsets
732 * (negative or positive) given out by the block pool alloc functions
733 * will be valid relative to this pointer.
734 *
735 * In particular, map == bo.map + center_offset
736 *
737 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
738 * since it will handle the softpin case as well, where this points to NULL.
739 */
740 void *map;
741 int fd;
742
743 /**
744 * Array of mmaps and gem handles owned by the block pool, reclaimed when
745 * the block pool is destroyed.
746 */
747 struct u_vector mmap_cleanups;
748
749 struct anv_block_state state;
750
751 struct anv_block_state back_state;
752 };
753
754 /* Block pools are backed by a fixed-size 1GB memfd */
755 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
756
757 /* The center of the block pool is also the middle of the memfd. This may
758 * change in the future if we decide differently for some reason.
759 */
760 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
761
762 static inline uint32_t
763 anv_block_pool_size(struct anv_block_pool *pool)
764 {
765 return pool->state.end + pool->back_state.end;
766 }
767
768 struct anv_state {
769 int32_t offset;
770 uint32_t alloc_size;
771 void *map;
772 uint32_t idx;
773 };
774
775 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
776
777 struct anv_fixed_size_state_pool {
778 union anv_free_list free_list;
779 struct anv_block_state block;
780 };
781
782 #define ANV_MIN_STATE_SIZE_LOG2 6
783 #define ANV_MAX_STATE_SIZE_LOG2 21
784
785 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
786
787 struct anv_free_entry {
788 uint32_t next;
789 struct anv_state state;
790 };
791
792 struct anv_state_table {
793 struct anv_device *device;
794 int fd;
795 struct anv_free_entry *map;
796 uint32_t size;
797 struct anv_block_state state;
798 struct u_vector cleanups;
799 };
800
801 struct anv_state_pool {
802 struct anv_block_pool block_pool;
803
804 struct anv_state_table table;
805
806 /* The size of blocks which will be allocated from the block pool */
807 uint32_t block_size;
808
809 /** Free list for "back" allocations */
810 union anv_free_list back_alloc_free_list;
811
812 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
813 };
814
815 struct anv_state_stream_block;
816
817 struct anv_state_stream {
818 struct anv_state_pool *state_pool;
819
820 /* The size of blocks to allocate from the state pool */
821 uint32_t block_size;
822
823 /* Current block we're allocating from */
824 struct anv_state block;
825
826 /* Offset into the current block at which to allocate the next state */
827 uint32_t next;
828
829 /* List of all blocks allocated from this pool */
830 struct anv_state_stream_block *block_list;
831 };
832
833 /* The block_pool functions exported for testing only. The block pool should
834 * only be used via a state pool (see below).
835 */
836 VkResult anv_block_pool_init(struct anv_block_pool *pool,
837 struct anv_device *device,
838 uint64_t start_address,
839 uint32_t initial_size);
840 void anv_block_pool_finish(struct anv_block_pool *pool);
841 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
842 uint32_t block_size, uint32_t *padding);
843 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
844 uint32_t block_size);
845 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
846
847 VkResult anv_state_pool_init(struct anv_state_pool *pool,
848 struct anv_device *device,
849 uint64_t start_address,
850 uint32_t block_size);
851 void anv_state_pool_finish(struct anv_state_pool *pool);
852 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
853 uint32_t state_size, uint32_t alignment);
854 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
855 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
856 void anv_state_stream_init(struct anv_state_stream *stream,
857 struct anv_state_pool *state_pool,
858 uint32_t block_size);
859 void anv_state_stream_finish(struct anv_state_stream *stream);
860 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
861 uint32_t size, uint32_t alignment);
862
863 VkResult anv_state_table_init(struct anv_state_table *table,
864 struct anv_device *device,
865 uint32_t initial_entries);
866 void anv_state_table_finish(struct anv_state_table *table);
867 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
868 uint32_t count);
869 void anv_free_list_push(union anv_free_list *list,
870 struct anv_state_table *table,
871 uint32_t idx, uint32_t count);
872 struct anv_state* anv_free_list_pop(union anv_free_list *list,
873 struct anv_state_table *table);
874
875
876 static inline struct anv_state *
877 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
878 {
879 return &table->map[idx].state;
880 }
881 /**
882 * Implements a pool of re-usable BOs. The interface is identical to that
883 * of block_pool except that each block is its own BO.
884 */
885 struct anv_bo_pool {
886 struct anv_device *device;
887
888 uint64_t bo_flags;
889
890 struct util_sparse_array_free_list free_list[16];
891 };
892
893 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
894 uint64_t bo_flags);
895 void anv_bo_pool_finish(struct anv_bo_pool *pool);
896 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
897 struct anv_bo **bo_out);
898 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
899
900 struct anv_scratch_pool {
901 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
902 struct anv_bo *bos[16][MESA_SHADER_STAGES];
903 };
904
905 void anv_scratch_pool_init(struct anv_device *device,
906 struct anv_scratch_pool *pool);
907 void anv_scratch_pool_finish(struct anv_device *device,
908 struct anv_scratch_pool *pool);
909 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
910 struct anv_scratch_pool *pool,
911 gl_shader_stage stage,
912 unsigned per_thread_scratch);
913
914 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
915 struct anv_bo_cache {
916 struct util_sparse_array bo_map;
917 pthread_mutex_t mutex;
918 };
919
920 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
921 void anv_bo_cache_finish(struct anv_bo_cache *cache);
922
923 struct anv_memory_type {
924 /* Standard bits passed on to the client */
925 VkMemoryPropertyFlags propertyFlags;
926 uint32_t heapIndex;
927
928 /* Driver-internal book-keeping */
929 VkBufferUsageFlags valid_buffer_usage;
930 };
931
932 struct anv_memory_heap {
933 /* Standard bits passed on to the client */
934 VkDeviceSize size;
935 VkMemoryHeapFlags flags;
936
937 /* Driver-internal book-keeping */
938 uint64_t vma_start;
939 uint64_t vma_size;
940 bool supports_48bit_addresses;
941 VkDeviceSize used;
942 };
943
944 struct anv_physical_device {
945 VK_LOADER_DATA _loader_data;
946
947 struct anv_instance * instance;
948 uint32_t chipset_id;
949 bool no_hw;
950 char path[20];
951 const char * name;
952 struct {
953 uint16_t domain;
954 uint8_t bus;
955 uint8_t device;
956 uint8_t function;
957 } pci_info;
958 struct gen_device_info info;
959 /** Amount of "GPU memory" we want to advertise
960 *
961 * Clearly, this value is bogus since Intel is a UMA architecture. On
962 * gen7 platforms, we are limited by GTT size unless we want to implement
963 * fine-grained tracking and GTT splitting. On Broadwell and above we are
964 * practically unlimited. However, we will never report more than 3/4 of
965 * the total system ram to try and avoid running out of RAM.
966 */
967 bool supports_48bit_addresses;
968 struct brw_compiler * compiler;
969 struct isl_device isl_dev;
970 struct gen_perf_config * perf;
971 int cmd_parser_version;
972 bool has_exec_async;
973 bool has_exec_capture;
974 bool has_exec_fence;
975 bool has_syncobj;
976 bool has_syncobj_wait;
977 bool has_context_priority;
978 bool use_softpin;
979 bool has_context_isolation;
980 bool has_mem_available;
981 bool always_use_bindless;
982
983 /** True if we can access buffers using A64 messages */
984 bool has_a64_buffer_access;
985 /** True if we can use bindless access for images */
986 bool has_bindless_images;
987 /** True if we can use bindless access for samplers */
988 bool has_bindless_samplers;
989
990 struct anv_device_extension_table supported_extensions;
991 struct anv_physical_device_dispatch_table dispatch;
992
993 uint32_t eu_total;
994 uint32_t subslice_total;
995
996 struct {
997 uint32_t type_count;
998 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
999 uint32_t heap_count;
1000 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1001 } memory;
1002
1003 uint8_t driver_build_sha1[20];
1004 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1005 uint8_t driver_uuid[VK_UUID_SIZE];
1006 uint8_t device_uuid[VK_UUID_SIZE];
1007
1008 struct disk_cache * disk_cache;
1009
1010 struct wsi_device wsi_device;
1011 int local_fd;
1012 int master_fd;
1013 };
1014
1015 struct anv_app_info {
1016 const char* app_name;
1017 uint32_t app_version;
1018 const char* engine_name;
1019 uint32_t engine_version;
1020 uint32_t api_version;
1021 };
1022
1023 struct anv_instance {
1024 VK_LOADER_DATA _loader_data;
1025
1026 VkAllocationCallbacks alloc;
1027
1028 struct anv_app_info app_info;
1029
1030 struct anv_instance_extension_table enabled_extensions;
1031 struct anv_instance_dispatch_table dispatch;
1032 struct anv_device_dispatch_table device_dispatch;
1033
1034 int physicalDeviceCount;
1035 struct anv_physical_device physicalDevice;
1036
1037 bool pipeline_cache_enabled;
1038
1039 struct vk_debug_report_instance debug_report_callbacks;
1040
1041 struct driOptionCache dri_options;
1042 struct driOptionCache available_dri_options;
1043 };
1044
1045 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1046 void anv_finish_wsi(struct anv_physical_device *physical_device);
1047
1048 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1049 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1050 const char *name);
1051
1052 struct anv_queue {
1053 VK_LOADER_DATA _loader_data;
1054
1055 struct anv_device * device;
1056
1057 VkDeviceQueueCreateFlags flags;
1058 };
1059
1060 struct anv_pipeline_cache {
1061 struct anv_device * device;
1062 pthread_mutex_t mutex;
1063
1064 struct hash_table * nir_cache;
1065
1066 struct hash_table * cache;
1067 };
1068
1069 struct nir_xfb_info;
1070 struct anv_pipeline_bind_map;
1071
1072 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1073 struct anv_device *device,
1074 bool cache_enabled);
1075 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1076
1077 struct anv_shader_bin *
1078 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1079 const void *key, uint32_t key_size);
1080 struct anv_shader_bin *
1081 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1082 const void *key_data, uint32_t key_size,
1083 const void *kernel_data, uint32_t kernel_size,
1084 const void *constant_data,
1085 uint32_t constant_data_size,
1086 const struct brw_stage_prog_data *prog_data,
1087 uint32_t prog_data_size,
1088 const struct brw_compile_stats *stats,
1089 uint32_t num_stats,
1090 const struct nir_xfb_info *xfb_info,
1091 const struct anv_pipeline_bind_map *bind_map);
1092
1093 struct anv_shader_bin *
1094 anv_device_search_for_kernel(struct anv_device *device,
1095 struct anv_pipeline_cache *cache,
1096 const void *key_data, uint32_t key_size,
1097 bool *user_cache_bit);
1098
1099 struct anv_shader_bin *
1100 anv_device_upload_kernel(struct anv_device *device,
1101 struct anv_pipeline_cache *cache,
1102 const void *key_data, uint32_t key_size,
1103 const void *kernel_data, uint32_t kernel_size,
1104 const void *constant_data,
1105 uint32_t constant_data_size,
1106 const struct brw_stage_prog_data *prog_data,
1107 uint32_t prog_data_size,
1108 const struct brw_compile_stats *stats,
1109 uint32_t num_stats,
1110 const struct nir_xfb_info *xfb_info,
1111 const struct anv_pipeline_bind_map *bind_map);
1112
1113 struct nir_shader;
1114 struct nir_shader_compiler_options;
1115
1116 struct nir_shader *
1117 anv_device_search_for_nir(struct anv_device *device,
1118 struct anv_pipeline_cache *cache,
1119 const struct nir_shader_compiler_options *nir_options,
1120 unsigned char sha1_key[20],
1121 void *mem_ctx);
1122
1123 void
1124 anv_device_upload_nir(struct anv_device *device,
1125 struct anv_pipeline_cache *cache,
1126 const struct nir_shader *nir,
1127 unsigned char sha1_key[20]);
1128
1129 struct anv_device {
1130 VK_LOADER_DATA _loader_data;
1131
1132 VkAllocationCallbacks alloc;
1133
1134 struct anv_instance * instance;
1135 uint32_t chipset_id;
1136 bool no_hw;
1137 struct gen_device_info info;
1138 struct isl_device isl_dev;
1139 int context_id;
1140 int fd;
1141 bool can_chain_batches;
1142 bool robust_buffer_access;
1143 struct anv_device_extension_table enabled_extensions;
1144 struct anv_device_dispatch_table dispatch;
1145
1146 pthread_mutex_t vma_mutex;
1147 struct util_vma_heap vma_lo;
1148 struct util_vma_heap vma_hi;
1149 uint64_t vma_lo_available;
1150 uint64_t vma_hi_available;
1151
1152 /** List of all anv_device_memory objects */
1153 struct list_head memory_objects;
1154
1155 struct anv_bo_pool batch_bo_pool;
1156
1157 struct anv_bo_cache bo_cache;
1158
1159 struct anv_state_pool dynamic_state_pool;
1160 struct anv_state_pool instruction_state_pool;
1161 struct anv_state_pool binding_table_pool;
1162 struct anv_state_pool surface_state_pool;
1163
1164 struct anv_bo * workaround_bo;
1165 struct anv_bo * trivial_batch_bo;
1166 struct anv_bo * hiz_clear_bo;
1167
1168 struct anv_pipeline_cache default_pipeline_cache;
1169 struct blorp_context blorp;
1170
1171 struct anv_state border_colors;
1172
1173 struct anv_state slice_hash;
1174
1175 struct anv_queue queue;
1176
1177 struct anv_scratch_pool scratch_pool;
1178
1179 uint32_t default_mocs;
1180 uint32_t external_mocs;
1181
1182 pthread_mutex_t mutex;
1183 pthread_cond_t queue_submit;
1184 bool _lost;
1185
1186 struct gen_batch_decode_ctx decoder_ctx;
1187 /*
1188 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1189 * the cmd_buffer's list.
1190 */
1191 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1192
1193 int perf_fd; /* -1 if no opened */
1194 uint64_t perf_metric; /* 0 if unset */
1195
1196 struct gen_aux_map_context *aux_map_ctx;
1197 };
1198
1199 static inline struct anv_state_pool *
1200 anv_binding_table_pool(struct anv_device *device)
1201 {
1202 if (device->instance->physicalDevice.use_softpin)
1203 return &device->binding_table_pool;
1204 else
1205 return &device->surface_state_pool;
1206 }
1207
1208 static inline struct anv_state
1209 anv_binding_table_pool_alloc(struct anv_device *device) {
1210 if (device->instance->physicalDevice.use_softpin)
1211 return anv_state_pool_alloc(&device->binding_table_pool,
1212 device->binding_table_pool.block_size, 0);
1213 else
1214 return anv_state_pool_alloc_back(&device->surface_state_pool);
1215 }
1216
1217 static inline void
1218 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1219 anv_state_pool_free(anv_binding_table_pool(device), state);
1220 }
1221
1222 static inline uint32_t
1223 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1224 {
1225 if (bo->is_external)
1226 return device->external_mocs;
1227 else
1228 return device->default_mocs;
1229 }
1230
1231 void anv_device_init_blorp(struct anv_device *device);
1232 void anv_device_finish_blorp(struct anv_device *device);
1233
1234 VkResult _anv_device_set_lost(struct anv_device *device,
1235 const char *file, int line,
1236 const char *msg, ...)
1237 anv_printflike(4, 5);
1238 #define anv_device_set_lost(dev, ...) \
1239 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1240
1241 static inline bool
1242 anv_device_is_lost(struct anv_device *device)
1243 {
1244 return unlikely(device->_lost);
1245 }
1246
1247 VkResult anv_device_execbuf(struct anv_device *device,
1248 struct drm_i915_gem_execbuffer2 *execbuf,
1249 struct anv_bo **execbuf_bos);
1250 VkResult anv_device_query_status(struct anv_device *device);
1251
1252
1253 enum anv_bo_alloc_flags {
1254 /** Specifies that the BO must have a 32-bit address
1255 *
1256 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1257 */
1258 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1259
1260 /** Specifies that the BO may be shared externally */
1261 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1262
1263 /** Specifies that the BO should be mapped */
1264 ANV_BO_ALLOC_MAPPED = (1 << 2),
1265
1266 /** Specifies that the BO should be snooped so we get coherency */
1267 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1268
1269 /** Specifies that the BO should be captured in error states */
1270 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1271
1272 /** Specifies that the BO will have an address assigned by the caller */
1273 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1274
1275 /** Enables implicit synchronization on the BO
1276 *
1277 * This is the opposite of EXEC_OBJECT_ASYNC.
1278 */
1279 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1280
1281 /** Enables implicit synchronization on the BO
1282 *
1283 * This is equivalent to EXEC_OBJECT_WRITE.
1284 */
1285 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1286 };
1287
1288 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1289 enum anv_bo_alloc_flags alloc_flags,
1290 struct anv_bo **bo);
1291 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1292 void *host_ptr, uint32_t size,
1293 enum anv_bo_alloc_flags alloc_flags,
1294 struct anv_bo **bo_out);
1295 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1296 enum anv_bo_alloc_flags alloc_flags,
1297 struct anv_bo **bo);
1298 VkResult anv_device_export_bo(struct anv_device *device,
1299 struct anv_bo *bo, int *fd_out);
1300 void anv_device_release_bo(struct anv_device *device,
1301 struct anv_bo *bo);
1302
1303 static inline struct anv_bo *
1304 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1305 {
1306 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1307 }
1308
1309 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1310 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1311 int64_t timeout);
1312
1313 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1314 void anv_queue_finish(struct anv_queue *queue);
1315
1316
1317 uint64_t anv_gettime_ns(void);
1318 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1319
1320 void* anv_gem_mmap(struct anv_device *device,
1321 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1322 void anv_gem_munmap(void *p, uint64_t size);
1323 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1324 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1325 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1326 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1327 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1328 int anv_gem_execbuffer(struct anv_device *device,
1329 struct drm_i915_gem_execbuffer2 *execbuf);
1330 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1331 uint32_t stride, uint32_t tiling);
1332 int anv_gem_create_context(struct anv_device *device);
1333 bool anv_gem_has_context_priority(int fd);
1334 int anv_gem_destroy_context(struct anv_device *device, int context);
1335 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1336 uint64_t value);
1337 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1338 uint64_t *value);
1339 int anv_gem_get_param(int fd, uint32_t param);
1340 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1341 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1342 int anv_gem_get_aperture(int fd, uint64_t *size);
1343 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1344 uint32_t *active, uint32_t *pending);
1345 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1346 int anv_gem_reg_read(struct anv_device *device,
1347 uint32_t offset, uint64_t *result);
1348 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1349 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1350 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1351 uint32_t read_domains, uint32_t write_domain);
1352 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1353 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1354 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1355 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1356 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1357 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1358 uint32_t handle);
1359 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1360 uint32_t handle, int fd);
1361 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1362 bool anv_gem_supports_syncobj_wait(int fd);
1363 int anv_gem_syncobj_wait(struct anv_device *device,
1364 uint32_t *handles, uint32_t num_handles,
1365 int64_t abs_timeout_ns, bool wait_all);
1366
1367 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1368 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1369
1370 struct anv_reloc_list {
1371 uint32_t num_relocs;
1372 uint32_t array_length;
1373 struct drm_i915_gem_relocation_entry * relocs;
1374 struct anv_bo ** reloc_bos;
1375 uint32_t dep_words;
1376 BITSET_WORD * deps;
1377 };
1378
1379 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1380 const VkAllocationCallbacks *alloc);
1381 void anv_reloc_list_finish(struct anv_reloc_list *list,
1382 const VkAllocationCallbacks *alloc);
1383
1384 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1385 const VkAllocationCallbacks *alloc,
1386 uint32_t offset, struct anv_bo *target_bo,
1387 uint32_t delta, uint64_t *address_u64_out);
1388
1389 struct anv_batch_bo {
1390 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1391 struct list_head link;
1392
1393 struct anv_bo * bo;
1394
1395 /* Bytes actually consumed in this batch BO */
1396 uint32_t length;
1397
1398 struct anv_reloc_list relocs;
1399 };
1400
1401 struct anv_batch {
1402 const VkAllocationCallbacks * alloc;
1403
1404 void * start;
1405 void * end;
1406 void * next;
1407
1408 struct anv_reloc_list * relocs;
1409
1410 /* This callback is called (with the associated user data) in the event
1411 * that the batch runs out of space.
1412 */
1413 VkResult (*extend_cb)(struct anv_batch *, void *);
1414 void * user_data;
1415
1416 /**
1417 * Current error status of the command buffer. Used to track inconsistent
1418 * or incomplete command buffer states that are the consequence of run-time
1419 * errors such as out of memory scenarios. We want to track this in the
1420 * batch because the command buffer object is not visible to some parts
1421 * of the driver.
1422 */
1423 VkResult status;
1424 };
1425
1426 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1427 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1428 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1429 void *location, struct anv_bo *bo, uint32_t offset);
1430 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1431 struct anv_batch *batch);
1432
1433 static inline VkResult
1434 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1435 {
1436 assert(error != VK_SUCCESS);
1437 if (batch->status == VK_SUCCESS)
1438 batch->status = error;
1439 return batch->status;
1440 }
1441
1442 static inline bool
1443 anv_batch_has_error(struct anv_batch *batch)
1444 {
1445 return batch->status != VK_SUCCESS;
1446 }
1447
1448 struct anv_address {
1449 struct anv_bo *bo;
1450 uint32_t offset;
1451 };
1452
1453 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1454
1455 static inline bool
1456 anv_address_is_null(struct anv_address addr)
1457 {
1458 return addr.bo == NULL && addr.offset == 0;
1459 }
1460
1461 static inline uint64_t
1462 anv_address_physical(struct anv_address addr)
1463 {
1464 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1465 return gen_canonical_address(addr.bo->offset + addr.offset);
1466 else
1467 return gen_canonical_address(addr.offset);
1468 }
1469
1470 static inline struct anv_address
1471 anv_address_add(struct anv_address addr, uint64_t offset)
1472 {
1473 addr.offset += offset;
1474 return addr;
1475 }
1476
1477 static inline void
1478 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1479 {
1480 unsigned reloc_size = 0;
1481 if (device->info.gen >= 8) {
1482 reloc_size = sizeof(uint64_t);
1483 *(uint64_t *)p = gen_canonical_address(v);
1484 } else {
1485 reloc_size = sizeof(uint32_t);
1486 *(uint32_t *)p = v;
1487 }
1488
1489 if (flush && !device->info.has_llc)
1490 gen_flush_range(p, reloc_size);
1491 }
1492
1493 static inline uint64_t
1494 _anv_combine_address(struct anv_batch *batch, void *location,
1495 const struct anv_address address, uint32_t delta)
1496 {
1497 if (address.bo == NULL) {
1498 return address.offset + delta;
1499 } else {
1500 assert(batch->start <= location && location < batch->end);
1501
1502 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1503 }
1504 }
1505
1506 #define __gen_address_type struct anv_address
1507 #define __gen_user_data struct anv_batch
1508 #define __gen_combine_address _anv_combine_address
1509
1510 /* Wrapper macros needed to work around preprocessor argument issues. In
1511 * particular, arguments don't get pre-evaluated if they are concatenated.
1512 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1513 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1514 * We can work around this easily enough with these helpers.
1515 */
1516 #define __anv_cmd_length(cmd) cmd ## _length
1517 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1518 #define __anv_cmd_header(cmd) cmd ## _header
1519 #define __anv_cmd_pack(cmd) cmd ## _pack
1520 #define __anv_reg_num(reg) reg ## _num
1521
1522 #define anv_pack_struct(dst, struc, ...) do { \
1523 struct struc __template = { \
1524 __VA_ARGS__ \
1525 }; \
1526 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1527 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1528 } while (0)
1529
1530 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1531 void *__dst = anv_batch_emit_dwords(batch, n); \
1532 if (__dst) { \
1533 struct cmd __template = { \
1534 __anv_cmd_header(cmd), \
1535 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1536 __VA_ARGS__ \
1537 }; \
1538 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1539 } \
1540 __dst; \
1541 })
1542
1543 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1544 do { \
1545 uint32_t *dw; \
1546 \
1547 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1548 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1549 if (!dw) \
1550 break; \
1551 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1552 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1553 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1554 } while (0)
1555
1556 #define anv_batch_emit(batch, cmd, name) \
1557 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1558 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1559 __builtin_expect(_dst != NULL, 1); \
1560 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1561 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1562 _dst = NULL; \
1563 }))
1564
1565 /* MEMORY_OBJECT_CONTROL_STATE:
1566 * .GraphicsDataTypeGFDT = 0,
1567 * .LLCCacheabilityControlLLCCC = 0,
1568 * .L3CacheabilityControlL3CC = 1,
1569 */
1570 #define GEN7_MOCS 1
1571
1572 /* MEMORY_OBJECT_CONTROL_STATE:
1573 * .LLCeLLCCacheabilityControlLLCCC = 0,
1574 * .L3CacheabilityControlL3CC = 1,
1575 */
1576 #define GEN75_MOCS 1
1577
1578 /* MEMORY_OBJECT_CONTROL_STATE:
1579 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1580 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1581 * .AgeforQUADLRU = 0
1582 */
1583 #define GEN8_MOCS 0x78
1584
1585 /* MEMORY_OBJECT_CONTROL_STATE:
1586 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1587 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1588 * .AgeforQUADLRU = 0
1589 */
1590 #define GEN8_EXTERNAL_MOCS 0x18
1591
1592 /* Skylake: MOCS is now an index into an array of 62 different caching
1593 * configurations programmed by the kernel.
1594 */
1595
1596 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1597 #define GEN9_MOCS (2 << 1)
1598
1599 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1600 #define GEN9_EXTERNAL_MOCS (1 << 1)
1601
1602 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1603 #define GEN10_MOCS GEN9_MOCS
1604 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1605
1606 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1607 #define GEN11_MOCS GEN9_MOCS
1608 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1609
1610 /* TigerLake MOCS */
1611 #define GEN12_MOCS GEN9_MOCS
1612 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1613 #define GEN12_EXTERNAL_MOCS (3 << 1)
1614
1615 struct anv_device_memory {
1616 struct list_head link;
1617
1618 struct anv_bo * bo;
1619 struct anv_memory_type * type;
1620 VkDeviceSize map_size;
1621 void * map;
1622
1623 /* If set, we are holding reference to AHardwareBuffer
1624 * which we must release when memory is freed.
1625 */
1626 struct AHardwareBuffer * ahw;
1627
1628 /* If set, this memory comes from a host pointer. */
1629 void * host_ptr;
1630 };
1631
1632 /**
1633 * Header for Vertex URB Entry (VUE)
1634 */
1635 struct anv_vue_header {
1636 uint32_t Reserved;
1637 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1638 uint32_t ViewportIndex;
1639 float PointWidth;
1640 };
1641
1642 /** Struct representing a sampled image descriptor
1643 *
1644 * This descriptor layout is used for sampled images, bare sampler, and
1645 * combined image/sampler descriptors.
1646 */
1647 struct anv_sampled_image_descriptor {
1648 /** Bindless image handle
1649 *
1650 * This is expected to already be shifted such that the 20-bit
1651 * SURFACE_STATE table index is in the top 20 bits.
1652 */
1653 uint32_t image;
1654
1655 /** Bindless sampler handle
1656 *
1657 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1658 * to the dynamic state base address.
1659 */
1660 uint32_t sampler;
1661 };
1662
1663 struct anv_texture_swizzle_descriptor {
1664 /** Texture swizzle
1665 *
1666 * See also nir_intrinsic_channel_select_intel
1667 */
1668 uint8_t swizzle[4];
1669
1670 /** Unused padding to ensure the struct is a multiple of 64 bits */
1671 uint32_t _pad;
1672 };
1673
1674 /** Struct representing a storage image descriptor */
1675 struct anv_storage_image_descriptor {
1676 /** Bindless image handles
1677 *
1678 * These are expected to already be shifted such that the 20-bit
1679 * SURFACE_STATE table index is in the top 20 bits.
1680 */
1681 uint32_t read_write;
1682 uint32_t write_only;
1683 };
1684
1685 /** Struct representing a address/range descriptor
1686 *
1687 * The fields of this struct correspond directly to the data layout of
1688 * nir_address_format_64bit_bounded_global addresses. The last field is the
1689 * offset in the NIR address so it must be zero so that when you load the
1690 * descriptor you get a pointer to the start of the range.
1691 */
1692 struct anv_address_range_descriptor {
1693 uint64_t address;
1694 uint32_t range;
1695 uint32_t zero;
1696 };
1697
1698 enum anv_descriptor_data {
1699 /** The descriptor contains a BTI reference to a surface state */
1700 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1701 /** The descriptor contains a BTI reference to a sampler state */
1702 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1703 /** The descriptor contains an actual buffer view */
1704 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1705 /** The descriptor contains auxiliary image layout data */
1706 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1707 /** The descriptor contains auxiliary image layout data */
1708 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1709 /** anv_address_range_descriptor with a buffer address and range */
1710 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1711 /** Bindless surface handle */
1712 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1713 /** Storage image handles */
1714 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1715 /** Storage image handles */
1716 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1717 };
1718
1719 struct anv_descriptor_set_binding_layout {
1720 #ifndef NDEBUG
1721 /* The type of the descriptors in this binding */
1722 VkDescriptorType type;
1723 #endif
1724
1725 /* Flags provided when this binding was created */
1726 VkDescriptorBindingFlagsEXT flags;
1727
1728 /* Bitfield representing the type of data this descriptor contains */
1729 enum anv_descriptor_data data;
1730
1731 /* Maximum number of YCbCr texture/sampler planes */
1732 uint8_t max_plane_count;
1733
1734 /* Number of array elements in this binding (or size in bytes for inline
1735 * uniform data)
1736 */
1737 uint16_t array_size;
1738
1739 /* Index into the flattend descriptor set */
1740 uint16_t descriptor_index;
1741
1742 /* Index into the dynamic state array for a dynamic buffer */
1743 int16_t dynamic_offset_index;
1744
1745 /* Index into the descriptor set buffer views */
1746 int16_t buffer_view_index;
1747
1748 /* Offset into the descriptor buffer where this descriptor lives */
1749 uint32_t descriptor_offset;
1750
1751 /* Immutable samplers (or NULL if no immutable samplers) */
1752 struct anv_sampler **immutable_samplers;
1753 };
1754
1755 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1756
1757 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1758 VkDescriptorType type);
1759
1760 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1761 const struct anv_descriptor_set_binding_layout *binding,
1762 bool sampler);
1763
1764 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1765 const struct anv_descriptor_set_binding_layout *binding,
1766 bool sampler);
1767
1768 struct anv_descriptor_set_layout {
1769 /* Descriptor set layouts can be destroyed at almost any time */
1770 uint32_t ref_cnt;
1771
1772 /* Number of bindings in this descriptor set */
1773 uint16_t binding_count;
1774
1775 /* Total size of the descriptor set with room for all array entries */
1776 uint16_t size;
1777
1778 /* Shader stages affected by this descriptor set */
1779 uint16_t shader_stages;
1780
1781 /* Number of buffer views in this descriptor set */
1782 uint16_t buffer_view_count;
1783
1784 /* Number of dynamic offsets used by this descriptor set */
1785 uint16_t dynamic_offset_count;
1786
1787 /* Size of the descriptor buffer for this descriptor set */
1788 uint32_t descriptor_buffer_size;
1789
1790 /* Bindings in this descriptor set */
1791 struct anv_descriptor_set_binding_layout binding[0];
1792 };
1793
1794 static inline void
1795 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1796 {
1797 assert(layout && layout->ref_cnt >= 1);
1798 p_atomic_inc(&layout->ref_cnt);
1799 }
1800
1801 static inline void
1802 anv_descriptor_set_layout_unref(struct anv_device *device,
1803 struct anv_descriptor_set_layout *layout)
1804 {
1805 assert(layout && layout->ref_cnt >= 1);
1806 if (p_atomic_dec_zero(&layout->ref_cnt))
1807 vk_free(&device->alloc, layout);
1808 }
1809
1810 struct anv_descriptor {
1811 VkDescriptorType type;
1812
1813 union {
1814 struct {
1815 VkImageLayout layout;
1816 struct anv_image_view *image_view;
1817 struct anv_sampler *sampler;
1818 };
1819
1820 struct {
1821 struct anv_buffer *buffer;
1822 uint64_t offset;
1823 uint64_t range;
1824 };
1825
1826 struct anv_buffer_view *buffer_view;
1827 };
1828 };
1829
1830 struct anv_descriptor_set {
1831 struct anv_descriptor_pool *pool;
1832 struct anv_descriptor_set_layout *layout;
1833 uint32_t size;
1834
1835 /* State relative to anv_descriptor_pool::bo */
1836 struct anv_state desc_mem;
1837 /* Surface state for the descriptor buffer */
1838 struct anv_state desc_surface_state;
1839
1840 uint32_t buffer_view_count;
1841 struct anv_buffer_view *buffer_views;
1842
1843 /* Link to descriptor pool's desc_sets list . */
1844 struct list_head pool_link;
1845
1846 struct anv_descriptor descriptors[0];
1847 };
1848
1849 struct anv_buffer_view {
1850 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1851 uint64_t range; /**< VkBufferViewCreateInfo::range */
1852
1853 struct anv_address address;
1854
1855 struct anv_state surface_state;
1856 struct anv_state storage_surface_state;
1857 struct anv_state writeonly_storage_surface_state;
1858
1859 struct brw_image_param storage_image_param;
1860 };
1861
1862 struct anv_push_descriptor_set {
1863 struct anv_descriptor_set set;
1864
1865 /* Put this field right behind anv_descriptor_set so it fills up the
1866 * descriptors[0] field. */
1867 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1868
1869 /** True if the descriptor set buffer has been referenced by a draw or
1870 * dispatch command.
1871 */
1872 bool set_used_on_gpu;
1873
1874 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1875 };
1876
1877 struct anv_descriptor_pool {
1878 uint32_t size;
1879 uint32_t next;
1880 uint32_t free_list;
1881
1882 struct anv_bo *bo;
1883 struct util_vma_heap bo_heap;
1884
1885 struct anv_state_stream surface_state_stream;
1886 void *surface_state_free_list;
1887
1888 struct list_head desc_sets;
1889
1890 char data[0];
1891 };
1892
1893 enum anv_descriptor_template_entry_type {
1894 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1895 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1896 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1897 };
1898
1899 struct anv_descriptor_template_entry {
1900 /* The type of descriptor in this entry */
1901 VkDescriptorType type;
1902
1903 /* Binding in the descriptor set */
1904 uint32_t binding;
1905
1906 /* Offset at which to write into the descriptor set binding */
1907 uint32_t array_element;
1908
1909 /* Number of elements to write into the descriptor set binding */
1910 uint32_t array_count;
1911
1912 /* Offset into the user provided data */
1913 size_t offset;
1914
1915 /* Stride between elements into the user provided data */
1916 size_t stride;
1917 };
1918
1919 struct anv_descriptor_update_template {
1920 VkPipelineBindPoint bind_point;
1921
1922 /* The descriptor set this template corresponds to. This value is only
1923 * valid if the template was created with the templateType
1924 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1925 */
1926 uint8_t set;
1927
1928 /* Number of entries in this template */
1929 uint32_t entry_count;
1930
1931 /* Entries of the template */
1932 struct anv_descriptor_template_entry entries[0];
1933 };
1934
1935 size_t
1936 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1937
1938 void
1939 anv_descriptor_set_write_image_view(struct anv_device *device,
1940 struct anv_descriptor_set *set,
1941 const VkDescriptorImageInfo * const info,
1942 VkDescriptorType type,
1943 uint32_t binding,
1944 uint32_t element);
1945
1946 void
1947 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1948 struct anv_descriptor_set *set,
1949 VkDescriptorType type,
1950 struct anv_buffer_view *buffer_view,
1951 uint32_t binding,
1952 uint32_t element);
1953
1954 void
1955 anv_descriptor_set_write_buffer(struct anv_device *device,
1956 struct anv_descriptor_set *set,
1957 struct anv_state_stream *alloc_stream,
1958 VkDescriptorType type,
1959 struct anv_buffer *buffer,
1960 uint32_t binding,
1961 uint32_t element,
1962 VkDeviceSize offset,
1963 VkDeviceSize range);
1964 void
1965 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1966 struct anv_descriptor_set *set,
1967 uint32_t binding,
1968 const void *data,
1969 size_t offset,
1970 size_t size);
1971
1972 void
1973 anv_descriptor_set_write_template(struct anv_device *device,
1974 struct anv_descriptor_set *set,
1975 struct anv_state_stream *alloc_stream,
1976 const struct anv_descriptor_update_template *template,
1977 const void *data);
1978
1979 VkResult
1980 anv_descriptor_set_create(struct anv_device *device,
1981 struct anv_descriptor_pool *pool,
1982 struct anv_descriptor_set_layout *layout,
1983 struct anv_descriptor_set **out_set);
1984
1985 void
1986 anv_descriptor_set_destroy(struct anv_device *device,
1987 struct anv_descriptor_pool *pool,
1988 struct anv_descriptor_set *set);
1989
1990 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1991 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1992 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1993 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1994
1995 struct anv_pipeline_binding {
1996 /* The descriptor set this surface corresponds to. The special value of
1997 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1998 * to a color attachment and not a regular descriptor.
1999 */
2000 uint8_t set;
2001
2002 /* Binding in the descriptor set */
2003 uint32_t binding;
2004
2005 /* Index in the binding */
2006 uint32_t index;
2007
2008 /* Plane in the binding index */
2009 uint8_t plane;
2010
2011 /* Input attachment index (relative to the subpass) */
2012 uint8_t input_attachment_index;
2013
2014 /* For a storage image, whether it is write-only */
2015 bool write_only;
2016 };
2017
2018 struct anv_pipeline_layout {
2019 struct {
2020 struct anv_descriptor_set_layout *layout;
2021 uint32_t dynamic_offset_start;
2022 } set[MAX_SETS];
2023
2024 uint32_t num_sets;
2025
2026 unsigned char sha1[20];
2027 };
2028
2029 struct anv_buffer {
2030 struct anv_device * device;
2031 VkDeviceSize size;
2032
2033 VkBufferUsageFlags usage;
2034
2035 /* Set when bound */
2036 struct anv_address address;
2037 };
2038
2039 static inline uint64_t
2040 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2041 {
2042 assert(offset <= buffer->size);
2043 if (range == VK_WHOLE_SIZE) {
2044 return buffer->size - offset;
2045 } else {
2046 assert(range + offset >= range);
2047 assert(range + offset <= buffer->size);
2048 return range;
2049 }
2050 }
2051
2052 enum anv_cmd_dirty_bits {
2053 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2054 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2055 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2056 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2057 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2058 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2059 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2060 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2061 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2062 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2063 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2064 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2065 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2066 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2067 };
2068 typedef uint32_t anv_cmd_dirty_mask_t;
2069
2070 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2071 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2072 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2073 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2074 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2075 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2076 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2077 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2078 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2079 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2080 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2081
2082 static inline enum anv_cmd_dirty_bits
2083 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2084 {
2085 switch (vk_state) {
2086 case VK_DYNAMIC_STATE_VIEWPORT:
2087 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2088 case VK_DYNAMIC_STATE_SCISSOR:
2089 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2090 case VK_DYNAMIC_STATE_LINE_WIDTH:
2091 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2092 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2093 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2094 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2095 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2096 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2097 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2098 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2099 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2100 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2101 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2102 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2103 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2104 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2105 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2106 default:
2107 assert(!"Unsupported dynamic state");
2108 return 0;
2109 }
2110 }
2111
2112
2113 enum anv_pipe_bits {
2114 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2115 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2116 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2117 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2118 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2119 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2120 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2121 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2122 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2123 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2124 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2125 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2126
2127 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2128 * a flush has happened but not a CS stall. The next time we do any sort
2129 * of invalidation we need to insert a CS stall at that time. Otherwise,
2130 * we would have to CS stall on every flush which could be bad.
2131 */
2132 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2133
2134 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2135 * target operations related to transfer commands with VkBuffer as
2136 * destination are ongoing. Some operations like copies on the command
2137 * streamer might need to be aware of this to trigger the appropriate stall
2138 * before they can proceed with the copy.
2139 */
2140 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2141 };
2142
2143 #define ANV_PIPE_FLUSH_BITS ( \
2144 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2145 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2146 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2147 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2148
2149 #define ANV_PIPE_STALL_BITS ( \
2150 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2151 ANV_PIPE_DEPTH_STALL_BIT | \
2152 ANV_PIPE_CS_STALL_BIT)
2153
2154 #define ANV_PIPE_INVALIDATE_BITS ( \
2155 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2156 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2157 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2158 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2159 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2160 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2161
2162 static inline enum anv_pipe_bits
2163 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2164 {
2165 enum anv_pipe_bits pipe_bits = 0;
2166
2167 unsigned b;
2168 for_each_bit(b, flags) {
2169 switch ((VkAccessFlagBits)(1 << b)) {
2170 case VK_ACCESS_SHADER_WRITE_BIT:
2171 /* We're transitioning a buffer that was previously used as write
2172 * destination through the data port. To make its content available
2173 * to future operations, flush the data cache.
2174 */
2175 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2176 break;
2177 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2178 /* We're transitioning a buffer that was previously used as render
2179 * target. To make its content available to future operations, flush
2180 * the render target cache.
2181 */
2182 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2183 break;
2184 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2185 /* We're transitioning a buffer that was previously used as depth
2186 * buffer. To make its content available to future operations, flush
2187 * the depth cache.
2188 */
2189 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2190 break;
2191 case VK_ACCESS_TRANSFER_WRITE_BIT:
2192 /* We're transitioning a buffer that was previously used as a
2193 * transfer write destination. Generic write operations include color
2194 * & depth operations as well as buffer operations like :
2195 * - vkCmdClearColorImage()
2196 * - vkCmdClearDepthStencilImage()
2197 * - vkCmdBlitImage()
2198 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2199 *
2200 * Most of these operations are implemented using Blorp which writes
2201 * through the render target, so flush that cache to make it visible
2202 * to future operations. And for depth related operations we also
2203 * need to flush the depth cache.
2204 */
2205 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2206 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2207 break;
2208 case VK_ACCESS_MEMORY_WRITE_BIT:
2209 /* We're transitioning a buffer for generic write operations. Flush
2210 * all the caches.
2211 */
2212 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2213 break;
2214 default:
2215 break; /* Nothing to do */
2216 }
2217 }
2218
2219 return pipe_bits;
2220 }
2221
2222 static inline enum anv_pipe_bits
2223 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2224 {
2225 enum anv_pipe_bits pipe_bits = 0;
2226
2227 unsigned b;
2228 for_each_bit(b, flags) {
2229 switch ((VkAccessFlagBits)(1 << b)) {
2230 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2231 /* Indirect draw commands take a buffer as input that we're going to
2232 * read from the command streamer to load some of the HW registers
2233 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2234 * command streamer stall so that all the cache flushes have
2235 * completed before the command streamer loads from memory.
2236 */
2237 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2238 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2239 * through a vertex buffer, so invalidate that cache.
2240 */
2241 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2242 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2243 * UBO from the buffer, so we need to invalidate constant cache.
2244 */
2245 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2246 break;
2247 case VK_ACCESS_INDEX_READ_BIT:
2248 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2249 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2250 * commands, so we invalidate the VF cache to make sure there is no
2251 * stale data when we start rendering.
2252 */
2253 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2254 break;
2255 case VK_ACCESS_UNIFORM_READ_BIT:
2256 /* We transitioning a buffer to be used as uniform data. Because
2257 * uniform is accessed through the data port & sampler, we need to
2258 * invalidate the texture cache (sampler) & constant cache (data
2259 * port) to avoid stale data.
2260 */
2261 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2262 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2263 break;
2264 case VK_ACCESS_SHADER_READ_BIT:
2265 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2266 case VK_ACCESS_TRANSFER_READ_BIT:
2267 /* Transitioning a buffer to be read through the sampler, so
2268 * invalidate the texture cache, we don't want any stale data.
2269 */
2270 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2271 break;
2272 case VK_ACCESS_MEMORY_READ_BIT:
2273 /* Transitioning a buffer for generic read, invalidate all the
2274 * caches.
2275 */
2276 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2277 break;
2278 case VK_ACCESS_MEMORY_WRITE_BIT:
2279 /* Generic write, make sure all previously written things land in
2280 * memory.
2281 */
2282 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2283 break;
2284 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2285 /* Transitioning a buffer for conditional rendering. We'll load the
2286 * content of this buffer into HW registers using the command
2287 * streamer, so we need to stall the command streamer to make sure
2288 * any in-flight flush operations have completed.
2289 */
2290 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2291 break;
2292 default:
2293 break; /* Nothing to do */
2294 }
2295 }
2296
2297 return pipe_bits;
2298 }
2299
2300 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2301 VK_IMAGE_ASPECT_COLOR_BIT | \
2302 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2303 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2304 VK_IMAGE_ASPECT_PLANE_2_BIT)
2305 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2306 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2307 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2308 VK_IMAGE_ASPECT_PLANE_2_BIT)
2309
2310 struct anv_vertex_binding {
2311 struct anv_buffer * buffer;
2312 VkDeviceSize offset;
2313 };
2314
2315 struct anv_xfb_binding {
2316 struct anv_buffer * buffer;
2317 VkDeviceSize offset;
2318 VkDeviceSize size;
2319 };
2320
2321 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2322 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2323 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2324
2325 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2326 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2327 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2328
2329 struct anv_push_constants {
2330 /* Push constant data provided by the client through vkPushConstants */
2331 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2332
2333 /* Used for vkCmdDispatchBase */
2334 uint32_t base_work_group_id[3];
2335 };
2336
2337 struct anv_dynamic_state {
2338 struct {
2339 uint32_t count;
2340 VkViewport viewports[MAX_VIEWPORTS];
2341 } viewport;
2342
2343 struct {
2344 uint32_t count;
2345 VkRect2D scissors[MAX_SCISSORS];
2346 } scissor;
2347
2348 float line_width;
2349
2350 struct {
2351 float bias;
2352 float clamp;
2353 float slope;
2354 } depth_bias;
2355
2356 float blend_constants[4];
2357
2358 struct {
2359 float min;
2360 float max;
2361 } depth_bounds;
2362
2363 struct {
2364 uint32_t front;
2365 uint32_t back;
2366 } stencil_compare_mask;
2367
2368 struct {
2369 uint32_t front;
2370 uint32_t back;
2371 } stencil_write_mask;
2372
2373 struct {
2374 uint32_t front;
2375 uint32_t back;
2376 } stencil_reference;
2377
2378 struct {
2379 uint32_t factor;
2380 uint16_t pattern;
2381 } line_stipple;
2382 };
2383
2384 extern const struct anv_dynamic_state default_dynamic_state;
2385
2386 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2387 const struct anv_dynamic_state *src,
2388 uint32_t copy_mask);
2389
2390 struct anv_surface_state {
2391 struct anv_state state;
2392 /** Address of the surface referred to by this state
2393 *
2394 * This address is relative to the start of the BO.
2395 */
2396 struct anv_address address;
2397 /* Address of the aux surface, if any
2398 *
2399 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2400 *
2401 * With the exception of gen8, the bottom 12 bits of this address' offset
2402 * include extra aux information.
2403 */
2404 struct anv_address aux_address;
2405 /* Address of the clear color, if any
2406 *
2407 * This address is relative to the start of the BO.
2408 */
2409 struct anv_address clear_address;
2410 };
2411
2412 /**
2413 * Attachment state when recording a renderpass instance.
2414 *
2415 * The clear value is valid only if there exists a pending clear.
2416 */
2417 struct anv_attachment_state {
2418 enum isl_aux_usage aux_usage;
2419 enum isl_aux_usage input_aux_usage;
2420 struct anv_surface_state color;
2421 struct anv_surface_state input;
2422
2423 VkImageLayout current_layout;
2424 VkImageLayout current_stencil_layout;
2425 VkImageAspectFlags pending_clear_aspects;
2426 VkImageAspectFlags pending_load_aspects;
2427 bool fast_clear;
2428 VkClearValue clear_value;
2429 bool clear_color_is_zero_one;
2430 bool clear_color_is_zero;
2431
2432 /* When multiview is active, attachments with a renderpass clear
2433 * operation have their respective layers cleared on the first
2434 * subpass that uses them, and only in that subpass. We keep track
2435 * of this using a bitfield to indicate which layers of an attachment
2436 * have not been cleared yet when multiview is active.
2437 */
2438 uint32_t pending_clear_views;
2439 struct anv_image_view * image_view;
2440 };
2441
2442 /** State tracking for particular pipeline bind point
2443 *
2444 * This struct is the base struct for anv_cmd_graphics_state and
2445 * anv_cmd_compute_state. These are used to track state which is bound to a
2446 * particular type of pipeline. Generic state that applies per-stage such as
2447 * binding table offsets and push constants is tracked generically with a
2448 * per-stage array in anv_cmd_state.
2449 */
2450 struct anv_cmd_pipeline_state {
2451 struct anv_pipeline *pipeline;
2452 struct anv_pipeline_layout *layout;
2453
2454 struct anv_descriptor_set *descriptors[MAX_SETS];
2455 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2456
2457 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2458 };
2459
2460 /** State tracking for graphics pipeline
2461 *
2462 * This has anv_cmd_pipeline_state as a base struct to track things which get
2463 * bound to a graphics pipeline. Along with general pipeline bind point state
2464 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2465 * state which is graphics-specific.
2466 */
2467 struct anv_cmd_graphics_state {
2468 struct anv_cmd_pipeline_state base;
2469
2470 anv_cmd_dirty_mask_t dirty;
2471 uint32_t vb_dirty;
2472
2473 struct anv_dynamic_state dynamic;
2474
2475 struct {
2476 struct anv_buffer *index_buffer;
2477 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2478 uint32_t index_offset;
2479 } gen7;
2480 };
2481
2482 /** State tracking for compute pipeline
2483 *
2484 * This has anv_cmd_pipeline_state as a base struct to track things which get
2485 * bound to a compute pipeline. Along with general pipeline bind point state
2486 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2487 * state which is compute-specific.
2488 */
2489 struct anv_cmd_compute_state {
2490 struct anv_cmd_pipeline_state base;
2491
2492 bool pipeline_dirty;
2493
2494 struct anv_address num_workgroups;
2495 };
2496
2497 /** State required while building cmd buffer */
2498 struct anv_cmd_state {
2499 /* PIPELINE_SELECT.PipelineSelection */
2500 uint32_t current_pipeline;
2501 const struct gen_l3_config * current_l3_config;
2502 uint32_t last_aux_map_state;
2503
2504 struct anv_cmd_graphics_state gfx;
2505 struct anv_cmd_compute_state compute;
2506
2507 enum anv_pipe_bits pending_pipe_bits;
2508 VkShaderStageFlags descriptors_dirty;
2509 VkShaderStageFlags push_constants_dirty;
2510
2511 struct anv_framebuffer * framebuffer;
2512 struct anv_render_pass * pass;
2513 struct anv_subpass * subpass;
2514 VkRect2D render_area;
2515 uint32_t restart_index;
2516 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2517 bool xfb_enabled;
2518 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2519 VkShaderStageFlags push_constant_stages;
2520 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2521 struct anv_state binding_tables[MESA_SHADER_STAGES];
2522 struct anv_state samplers[MESA_SHADER_STAGES];
2523
2524 /**
2525 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2526 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2527 * and before invoking the secondary in ExecuteCommands.
2528 */
2529 bool pma_fix_enabled;
2530
2531 /**
2532 * Whether or not we know for certain that HiZ is enabled for the current
2533 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2534 * enabled or not, this will be false.
2535 */
2536 bool hiz_enabled;
2537
2538 bool conditional_render_enabled;
2539
2540 /**
2541 * Last rendering scale argument provided to
2542 * genX(cmd_buffer_emit_hashing_mode)().
2543 */
2544 unsigned current_hash_scale;
2545
2546 /**
2547 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2548 * valid only when recording a render pass instance.
2549 */
2550 struct anv_attachment_state * attachments;
2551
2552 /**
2553 * Surface states for color render targets. These are stored in a single
2554 * flat array. For depth-stencil attachments, the surface state is simply
2555 * left blank.
2556 */
2557 struct anv_state render_pass_states;
2558
2559 /**
2560 * A null surface state of the right size to match the framebuffer. This
2561 * is one of the states in render_pass_states.
2562 */
2563 struct anv_state null_surface_state;
2564 };
2565
2566 struct anv_cmd_pool {
2567 VkAllocationCallbacks alloc;
2568 struct list_head cmd_buffers;
2569 };
2570
2571 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2572
2573 enum anv_cmd_buffer_exec_mode {
2574 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2575 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2576 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2577 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2578 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2579 };
2580
2581 struct anv_cmd_buffer {
2582 VK_LOADER_DATA _loader_data;
2583
2584 struct anv_device * device;
2585
2586 struct anv_cmd_pool * pool;
2587 struct list_head pool_link;
2588
2589 struct anv_batch batch;
2590
2591 /* Fields required for the actual chain of anv_batch_bo's.
2592 *
2593 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2594 */
2595 struct list_head batch_bos;
2596 enum anv_cmd_buffer_exec_mode exec_mode;
2597
2598 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2599 * referenced by this command buffer
2600 *
2601 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2602 */
2603 struct u_vector seen_bbos;
2604
2605 /* A vector of int32_t's for every block of binding tables.
2606 *
2607 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2608 */
2609 struct u_vector bt_block_states;
2610 uint32_t bt_next;
2611
2612 struct anv_reloc_list surface_relocs;
2613 /** Last seen surface state block pool center bo offset */
2614 uint32_t last_ss_pool_center;
2615
2616 /* Serial for tracking buffer completion */
2617 uint32_t serial;
2618
2619 /* Stream objects for storing temporary data */
2620 struct anv_state_stream surface_state_stream;
2621 struct anv_state_stream dynamic_state_stream;
2622
2623 VkCommandBufferUsageFlags usage_flags;
2624 VkCommandBufferLevel level;
2625
2626 struct anv_cmd_state state;
2627
2628 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2629 uint64_t intel_perf_marker;
2630 };
2631
2632 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2633 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2634 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2635 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2636 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2637 struct anv_cmd_buffer *secondary);
2638 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2639 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2640 struct anv_cmd_buffer *cmd_buffer,
2641 const VkSemaphore *in_semaphores,
2642 uint32_t num_in_semaphores,
2643 const VkSemaphore *out_semaphores,
2644 uint32_t num_out_semaphores,
2645 VkFence fence);
2646
2647 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2648
2649 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2650 const void *data, uint32_t size, uint32_t alignment);
2651 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2652 uint32_t *a, uint32_t *b,
2653 uint32_t dwords, uint32_t alignment);
2654
2655 struct anv_address
2656 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2657 struct anv_state
2658 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2659 uint32_t entries, uint32_t *state_offset);
2660 struct anv_state
2661 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2662 struct anv_state
2663 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2664 uint32_t size, uint32_t alignment);
2665
2666 VkResult
2667 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2668
2669 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2670 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2671 bool depth_clamp_enable);
2672 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2673
2674 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2675 struct anv_render_pass *pass,
2676 struct anv_framebuffer *framebuffer,
2677 const VkClearValue *clear_values);
2678
2679 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2680
2681 struct anv_state
2682 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2683 gl_shader_stage stage);
2684 struct anv_state
2685 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2686
2687 const struct anv_image_view *
2688 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2689
2690 VkResult
2691 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2692 uint32_t num_entries,
2693 uint32_t *state_offset,
2694 struct anv_state *bt_state);
2695
2696 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2697
2698 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2699
2700 enum anv_fence_type {
2701 ANV_FENCE_TYPE_NONE = 0,
2702 ANV_FENCE_TYPE_BO,
2703 ANV_FENCE_TYPE_SYNCOBJ,
2704 ANV_FENCE_TYPE_WSI,
2705 };
2706
2707 enum anv_bo_fence_state {
2708 /** Indicates that this is a new (or newly reset fence) */
2709 ANV_BO_FENCE_STATE_RESET,
2710
2711 /** Indicates that this fence has been submitted to the GPU but is still
2712 * (as far as we know) in use by the GPU.
2713 */
2714 ANV_BO_FENCE_STATE_SUBMITTED,
2715
2716 ANV_BO_FENCE_STATE_SIGNALED,
2717 };
2718
2719 struct anv_fence_impl {
2720 enum anv_fence_type type;
2721
2722 union {
2723 /** Fence implementation for BO fences
2724 *
2725 * These fences use a BO and a set of CPU-tracked state flags. The BO
2726 * is added to the object list of the last execbuf call in a QueueSubmit
2727 * and is marked EXEC_WRITE. The state flags track when the BO has been
2728 * submitted to the kernel. We need to do this because Vulkan lets you
2729 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2730 * will say it's idle in this case.
2731 */
2732 struct {
2733 struct anv_bo *bo;
2734 enum anv_bo_fence_state state;
2735 } bo;
2736
2737 /** DRM syncobj handle for syncobj-based fences */
2738 uint32_t syncobj;
2739
2740 /** WSI fence */
2741 struct wsi_fence *fence_wsi;
2742 };
2743 };
2744
2745 struct anv_fence {
2746 /* Permanent fence state. Every fence has some form of permanent state
2747 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2748 * cross-process fences) or it could just be a dummy for use internally.
2749 */
2750 struct anv_fence_impl permanent;
2751
2752 /* Temporary fence state. A fence *may* have temporary state. That state
2753 * is added to the fence by an import operation and is reset back to
2754 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2755 * state cannot be signaled because the fence must already be signaled
2756 * before the temporary state can be exported from the fence in the other
2757 * process and imported here.
2758 */
2759 struct anv_fence_impl temporary;
2760 };
2761
2762 struct anv_event {
2763 uint64_t semaphore;
2764 struct anv_state state;
2765 };
2766
2767 enum anv_semaphore_type {
2768 ANV_SEMAPHORE_TYPE_NONE = 0,
2769 ANV_SEMAPHORE_TYPE_DUMMY,
2770 ANV_SEMAPHORE_TYPE_BO,
2771 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2772 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2773 };
2774
2775 struct anv_semaphore_impl {
2776 enum anv_semaphore_type type;
2777
2778 union {
2779 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2780 * This BO will be added to the object list on any execbuf2 calls for
2781 * which this semaphore is used as a wait or signal fence. When used as
2782 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2783 */
2784 struct anv_bo *bo;
2785
2786 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2787 * If the semaphore is in the unsignaled state due to either just being
2788 * created or because it has been used for a wait, fd will be -1.
2789 */
2790 int fd;
2791
2792 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2793 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2794 * import so we don't need to bother with a userspace cache.
2795 */
2796 uint32_t syncobj;
2797 };
2798 };
2799
2800 struct anv_semaphore {
2801 /* Permanent semaphore state. Every semaphore has some form of permanent
2802 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2803 * (for cross-process semaphores0 or it could just be a dummy for use
2804 * internally.
2805 */
2806 struct anv_semaphore_impl permanent;
2807
2808 /* Temporary semaphore state. A semaphore *may* have temporary state.
2809 * That state is added to the semaphore by an import operation and is reset
2810 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2811 * semaphore with temporary state cannot be signaled because the semaphore
2812 * must already be signaled before the temporary state can be exported from
2813 * the semaphore in the other process and imported here.
2814 */
2815 struct anv_semaphore_impl temporary;
2816 };
2817
2818 void anv_semaphore_reset_temporary(struct anv_device *device,
2819 struct anv_semaphore *semaphore);
2820
2821 struct anv_shader_module {
2822 unsigned char sha1[20];
2823 uint32_t size;
2824 char data[0];
2825 };
2826
2827 static inline gl_shader_stage
2828 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2829 {
2830 assert(__builtin_popcount(vk_stage) == 1);
2831 return ffs(vk_stage) - 1;
2832 }
2833
2834 static inline VkShaderStageFlagBits
2835 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2836 {
2837 return (1 << mesa_stage);
2838 }
2839
2840 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2841
2842 #define anv_foreach_stage(stage, stage_bits) \
2843 for (gl_shader_stage stage, \
2844 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2845 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2846 __tmp &= ~(1 << (stage)))
2847
2848 struct anv_pipeline_bind_map {
2849 uint32_t surface_count;
2850 uint32_t sampler_count;
2851
2852 struct anv_pipeline_binding * surface_to_descriptor;
2853 struct anv_pipeline_binding * sampler_to_descriptor;
2854 };
2855
2856 struct anv_shader_bin_key {
2857 uint32_t size;
2858 uint8_t data[0];
2859 };
2860
2861 struct anv_shader_bin {
2862 uint32_t ref_cnt;
2863
2864 const struct anv_shader_bin_key *key;
2865
2866 struct anv_state kernel;
2867 uint32_t kernel_size;
2868
2869 struct anv_state constant_data;
2870 uint32_t constant_data_size;
2871
2872 const struct brw_stage_prog_data *prog_data;
2873 uint32_t prog_data_size;
2874
2875 struct brw_compile_stats stats[3];
2876 uint32_t num_stats;
2877
2878 struct nir_xfb_info *xfb_info;
2879
2880 struct anv_pipeline_bind_map bind_map;
2881 };
2882
2883 struct anv_shader_bin *
2884 anv_shader_bin_create(struct anv_device *device,
2885 const void *key, uint32_t key_size,
2886 const void *kernel, uint32_t kernel_size,
2887 const void *constant_data, uint32_t constant_data_size,
2888 const struct brw_stage_prog_data *prog_data,
2889 uint32_t prog_data_size, const void *prog_data_param,
2890 const struct brw_compile_stats *stats, uint32_t num_stats,
2891 const struct nir_xfb_info *xfb_info,
2892 const struct anv_pipeline_bind_map *bind_map);
2893
2894 void
2895 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2896
2897 static inline void
2898 anv_shader_bin_ref(struct anv_shader_bin *shader)
2899 {
2900 assert(shader && shader->ref_cnt >= 1);
2901 p_atomic_inc(&shader->ref_cnt);
2902 }
2903
2904 static inline void
2905 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2906 {
2907 assert(shader && shader->ref_cnt >= 1);
2908 if (p_atomic_dec_zero(&shader->ref_cnt))
2909 anv_shader_bin_destroy(device, shader);
2910 }
2911
2912 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2913 #define MAX_PIPELINE_EXECUTABLES 7
2914
2915 struct anv_pipeline_executable {
2916 gl_shader_stage stage;
2917
2918 struct brw_compile_stats stats;
2919
2920 char *nir;
2921 char *disasm;
2922 };
2923
2924 struct anv_pipeline {
2925 struct anv_device * device;
2926 struct anv_batch batch;
2927 uint32_t batch_data[512];
2928 struct anv_reloc_list batch_relocs;
2929 anv_cmd_dirty_mask_t dynamic_state_mask;
2930 struct anv_dynamic_state dynamic_state;
2931
2932 void * mem_ctx;
2933
2934 VkPipelineCreateFlags flags;
2935 struct anv_subpass * subpass;
2936
2937 bool needs_data_cache;
2938
2939 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2940
2941 uint32_t num_executables;
2942 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2943
2944 struct {
2945 const struct gen_l3_config * l3_config;
2946 uint32_t total_size;
2947 } urb;
2948
2949 VkShaderStageFlags active_stages;
2950 struct anv_state blend_state;
2951
2952 uint32_t vb_used;
2953 struct anv_pipeline_vertex_binding {
2954 uint32_t stride;
2955 bool instanced;
2956 uint32_t instance_divisor;
2957 } vb[MAX_VBS];
2958
2959 uint8_t xfb_used;
2960
2961 bool primitive_restart;
2962 uint32_t topology;
2963
2964 uint32_t cs_right_mask;
2965
2966 bool writes_depth;
2967 bool depth_test_enable;
2968 bool writes_stencil;
2969 bool stencil_test_enable;
2970 bool depth_clamp_enable;
2971 bool depth_clip_enable;
2972 bool sample_shading_enable;
2973 bool kill_pixel;
2974 bool depth_bounds_test_enable;
2975
2976 struct {
2977 uint32_t sf[7];
2978 uint32_t depth_stencil_state[3];
2979 } gen7;
2980
2981 struct {
2982 uint32_t sf[4];
2983 uint32_t raster[5];
2984 uint32_t wm_depth_stencil[3];
2985 } gen8;
2986
2987 struct {
2988 uint32_t wm_depth_stencil[4];
2989 } gen9;
2990
2991 uint32_t interface_descriptor_data[8];
2992 };
2993
2994 static inline bool
2995 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2996 gl_shader_stage stage)
2997 {
2998 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2999 }
3000
3001 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3002 static inline const struct brw_##prefix##_prog_data * \
3003 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3004 { \
3005 if (anv_pipeline_has_stage(pipeline, stage)) { \
3006 return (const struct brw_##prefix##_prog_data *) \
3007 pipeline->shaders[stage]->prog_data; \
3008 } else { \
3009 return NULL; \
3010 } \
3011 }
3012
3013 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3014 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3015 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3016 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3017 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3018 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3019
3020 static inline const struct brw_vue_prog_data *
3021 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3022 {
3023 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3024 return &get_gs_prog_data(pipeline)->base;
3025 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3026 return &get_tes_prog_data(pipeline)->base;
3027 else
3028 return &get_vs_prog_data(pipeline)->base;
3029 }
3030
3031 VkResult
3032 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3033 struct anv_pipeline_cache *cache,
3034 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3035 const VkAllocationCallbacks *alloc);
3036
3037 VkResult
3038 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3039 struct anv_pipeline_cache *cache,
3040 const VkComputePipelineCreateInfo *info,
3041 const struct anv_shader_module *module,
3042 const char *entrypoint,
3043 const VkSpecializationInfo *spec_info);
3044
3045 struct anv_format_plane {
3046 enum isl_format isl_format:16;
3047 struct isl_swizzle swizzle;
3048
3049 /* Whether this plane contains chroma channels */
3050 bool has_chroma;
3051
3052 /* For downscaling of YUV planes */
3053 uint8_t denominator_scales[2];
3054
3055 /* How to map sampled ycbcr planes to a single 4 component element. */
3056 struct isl_swizzle ycbcr_swizzle;
3057
3058 /* What aspect is associated to this plane */
3059 VkImageAspectFlags aspect;
3060 };
3061
3062
3063 struct anv_format {
3064 struct anv_format_plane planes[3];
3065 VkFormat vk_format;
3066 uint8_t n_planes;
3067 bool can_ycbcr;
3068 };
3069
3070 static inline uint32_t
3071 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3072 VkImageAspectFlags aspect_mask)
3073 {
3074 switch (aspect_mask) {
3075 case VK_IMAGE_ASPECT_COLOR_BIT:
3076 case VK_IMAGE_ASPECT_DEPTH_BIT:
3077 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3078 return 0;
3079 case VK_IMAGE_ASPECT_STENCIL_BIT:
3080 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3081 return 0;
3082 /* Fall-through */
3083 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3084 return 1;
3085 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3086 return 2;
3087 default:
3088 /* Purposefully assert with depth/stencil aspects. */
3089 unreachable("invalid image aspect");
3090 }
3091 }
3092
3093 static inline VkImageAspectFlags
3094 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3095 uint32_t plane)
3096 {
3097 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3098 if (util_bitcount(image_aspects) > 1)
3099 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3100 return VK_IMAGE_ASPECT_COLOR_BIT;
3101 }
3102 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3103 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3104 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3105 return VK_IMAGE_ASPECT_STENCIL_BIT;
3106 }
3107
3108 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3109 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3110
3111 const struct anv_format *
3112 anv_get_format(VkFormat format);
3113
3114 static inline uint32_t
3115 anv_get_format_planes(VkFormat vk_format)
3116 {
3117 const struct anv_format *format = anv_get_format(vk_format);
3118
3119 return format != NULL ? format->n_planes : 0;
3120 }
3121
3122 struct anv_format_plane
3123 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3124 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3125
3126 static inline enum isl_format
3127 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3128 VkImageAspectFlags aspect, VkImageTiling tiling)
3129 {
3130 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3131 }
3132
3133 static inline struct isl_swizzle
3134 anv_swizzle_for_render(struct isl_swizzle swizzle)
3135 {
3136 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3137 * RGB as RGBA for texturing
3138 */
3139 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3140 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3141
3142 /* But it doesn't matter what we render to that channel */
3143 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3144
3145 return swizzle;
3146 }
3147
3148 void
3149 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3150
3151 /**
3152 * Subsurface of an anv_image.
3153 */
3154 struct anv_surface {
3155 /** Valid only if isl_surf::size_B > 0. */
3156 struct isl_surf isl;
3157
3158 /**
3159 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3160 */
3161 uint32_t offset;
3162 };
3163
3164 struct anv_image {
3165 VkImageType type; /**< VkImageCreateInfo::imageType */
3166 /* The original VkFormat provided by the client. This may not match any
3167 * of the actual surface formats.
3168 */
3169 VkFormat vk_format;
3170 const struct anv_format *format;
3171
3172 VkImageAspectFlags aspects;
3173 VkExtent3D extent;
3174 uint32_t levels;
3175 uint32_t array_size;
3176 uint32_t samples; /**< VkImageCreateInfo::samples */
3177 uint32_t n_planes;
3178 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3179 VkImageUsageFlags stencil_usage;
3180 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3181 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3182
3183 /** True if this is needs to be bound to an appropriately tiled BO.
3184 *
3185 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3186 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3187 * we require a dedicated allocation so that we can know to allocate a
3188 * tiled buffer.
3189 */
3190 bool needs_set_tiling;
3191
3192 /**
3193 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3194 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3195 */
3196 uint64_t drm_format_mod;
3197
3198 VkDeviceSize size;
3199 uint32_t alignment;
3200
3201 /* Whether the image is made of several underlying buffer objects rather a
3202 * single one with different offsets.
3203 */
3204 bool disjoint;
3205
3206 /* All the formats that can be used when creating views of this image
3207 * are CCS_E compatible.
3208 */
3209 bool ccs_e_compatible;
3210
3211 /* Image was created with external format. */
3212 bool external_format;
3213
3214 /**
3215 * Image subsurfaces
3216 *
3217 * For each foo, anv_image::planes[x].surface is valid if and only if
3218 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3219 * to figure the number associated with a given aspect.
3220 *
3221 * The hardware requires that the depth buffer and stencil buffer be
3222 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3223 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3224 * allocate the depth and stencil buffers as separate surfaces in the same
3225 * bo.
3226 *
3227 * Memory layout :
3228 *
3229 * -----------------------
3230 * | surface0 | /|\
3231 * ----------------------- |
3232 * | shadow surface0 | |
3233 * ----------------------- | Plane 0
3234 * | aux surface0 | |
3235 * ----------------------- |
3236 * | fast clear colors0 | \|/
3237 * -----------------------
3238 * | surface1 | /|\
3239 * ----------------------- |
3240 * | shadow surface1 | |
3241 * ----------------------- | Plane 1
3242 * | aux surface1 | |
3243 * ----------------------- |
3244 * | fast clear colors1 | \|/
3245 * -----------------------
3246 * | ... |
3247 * | |
3248 * -----------------------
3249 */
3250 struct {
3251 /**
3252 * Offset of the entire plane (whenever the image is disjoint this is
3253 * set to 0).
3254 */
3255 uint32_t offset;
3256
3257 VkDeviceSize size;
3258 uint32_t alignment;
3259
3260 struct anv_surface surface;
3261
3262 /**
3263 * A surface which shadows the main surface and may have different
3264 * tiling. This is used for sampling using a tiling that isn't supported
3265 * for other operations.
3266 */
3267 struct anv_surface shadow_surface;
3268
3269 /**
3270 * For color images, this is the aux usage for this image when not used
3271 * as a color attachment.
3272 *
3273 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3274 * image has a HiZ buffer.
3275 */
3276 enum isl_aux_usage aux_usage;
3277
3278 struct anv_surface aux_surface;
3279
3280 /**
3281 * Offset of the fast clear state (used to compute the
3282 * fast_clear_state_offset of the following planes).
3283 */
3284 uint32_t fast_clear_state_offset;
3285
3286 /**
3287 * BO associated with this plane, set when bound.
3288 */
3289 struct anv_address address;
3290
3291 /**
3292 * Address of the main surface used to fill the aux map table. This is
3293 * used at destruction of the image since the Vulkan spec does not
3294 * guarantee that the address.bo field we still be valid at destruction.
3295 */
3296 uint64_t aux_map_surface_address;
3297
3298 /**
3299 * When destroying the image, also free the bo.
3300 * */
3301 bool bo_is_owned;
3302 } planes[3];
3303 };
3304
3305 /* The ordering of this enum is important */
3306 enum anv_fast_clear_type {
3307 /** Image does not have/support any fast-clear blocks */
3308 ANV_FAST_CLEAR_NONE = 0,
3309 /** Image has/supports fast-clear but only to the default value */
3310 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3311 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3312 ANV_FAST_CLEAR_ANY = 2,
3313 };
3314
3315 /* Returns the number of auxiliary buffer levels attached to an image. */
3316 static inline uint8_t
3317 anv_image_aux_levels(const struct anv_image * const image,
3318 VkImageAspectFlagBits aspect)
3319 {
3320 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3321
3322 /* The Gen12 CCS aux surface is represented with only one level. */
3323 const uint8_t aux_logical_levels =
3324 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3325 image->planes[plane].surface.isl.levels :
3326 image->planes[plane].aux_surface.isl.levels;
3327
3328 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3329 aux_logical_levels : 0;
3330 }
3331
3332 /* Returns the number of auxiliary buffer layers attached to an image. */
3333 static inline uint32_t
3334 anv_image_aux_layers(const struct anv_image * const image,
3335 VkImageAspectFlagBits aspect,
3336 const uint8_t miplevel)
3337 {
3338 assert(image);
3339
3340 /* The miplevel must exist in the main buffer. */
3341 assert(miplevel < image->levels);
3342
3343 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3344 /* There are no layers with auxiliary data because the miplevel has no
3345 * auxiliary data.
3346 */
3347 return 0;
3348 } else {
3349 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3350
3351 /* The Gen12 CCS aux surface is represented with only one layer. */
3352 const struct isl_extent4d *aux_logical_level0_px =
3353 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3354 &image->planes[plane].surface.isl.logical_level0_px :
3355 &image->planes[plane].aux_surface.isl.logical_level0_px;
3356
3357 return MAX2(aux_logical_level0_px->array_len,
3358 aux_logical_level0_px->depth >> miplevel);
3359 }
3360 }
3361
3362 static inline struct anv_address
3363 anv_image_get_clear_color_addr(const struct anv_device *device,
3364 const struct anv_image *image,
3365 VkImageAspectFlagBits aspect)
3366 {
3367 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3368
3369 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3370 return anv_address_add(image->planes[plane].address,
3371 image->planes[plane].fast_clear_state_offset);
3372 }
3373
3374 static inline struct anv_address
3375 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3376 const struct anv_image *image,
3377 VkImageAspectFlagBits aspect)
3378 {
3379 struct anv_address addr =
3380 anv_image_get_clear_color_addr(device, image, aspect);
3381
3382 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3383 device->isl_dev.ss.clear_color_state_size :
3384 device->isl_dev.ss.clear_value_size;
3385 return anv_address_add(addr, clear_color_state_size);
3386 }
3387
3388 static inline struct anv_address
3389 anv_image_get_compression_state_addr(const struct anv_device *device,
3390 const struct anv_image *image,
3391 VkImageAspectFlagBits aspect,
3392 uint32_t level, uint32_t array_layer)
3393 {
3394 assert(level < anv_image_aux_levels(image, aspect));
3395 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3396 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3397 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3398
3399 struct anv_address addr =
3400 anv_image_get_fast_clear_type_addr(device, image, aspect);
3401 addr.offset += 4; /* Go past the fast clear type */
3402
3403 if (image->type == VK_IMAGE_TYPE_3D) {
3404 for (uint32_t l = 0; l < level; l++)
3405 addr.offset += anv_minify(image->extent.depth, l) * 4;
3406 } else {
3407 addr.offset += level * image->array_size * 4;
3408 }
3409 addr.offset += array_layer * 4;
3410
3411 assert(addr.offset <
3412 image->planes[plane].address.offset + image->planes[plane].size);
3413 return addr;
3414 }
3415
3416 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3417 static inline bool
3418 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3419 const struct anv_image *image)
3420 {
3421 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3422 return false;
3423
3424 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3425 * struct. There's documentation which suggests that this feature actually
3426 * reduces performance on BDW, but it has only been observed to help so
3427 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3428 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3429 */
3430 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3431 return false;
3432
3433 return image->samples == 1;
3434 }
3435
3436 static inline bool
3437 anv_image_plane_uses_aux_map(const struct anv_device *device,
3438 const struct anv_image *image,
3439 uint32_t plane)
3440 {
3441 return device->info.has_aux_map &&
3442 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3443 }
3444
3445 void
3446 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3447 const struct anv_image *image,
3448 VkImageAspectFlagBits aspect,
3449 enum isl_aux_usage aux_usage,
3450 uint32_t level,
3451 uint32_t base_layer,
3452 uint32_t layer_count);
3453
3454 void
3455 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3456 const struct anv_image *image,
3457 VkImageAspectFlagBits aspect,
3458 enum isl_aux_usage aux_usage,
3459 enum isl_format format, struct isl_swizzle swizzle,
3460 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3461 VkRect2D area, union isl_color_value clear_color);
3462 void
3463 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3464 const struct anv_image *image,
3465 VkImageAspectFlags aspects,
3466 enum isl_aux_usage depth_aux_usage,
3467 uint32_t level,
3468 uint32_t base_layer, uint32_t layer_count,
3469 VkRect2D area,
3470 float depth_value, uint8_t stencil_value);
3471 void
3472 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3473 const struct anv_image *src_image,
3474 enum isl_aux_usage src_aux_usage,
3475 uint32_t src_level, uint32_t src_base_layer,
3476 const struct anv_image *dst_image,
3477 enum isl_aux_usage dst_aux_usage,
3478 uint32_t dst_level, uint32_t dst_base_layer,
3479 VkImageAspectFlagBits aspect,
3480 uint32_t src_x, uint32_t src_y,
3481 uint32_t dst_x, uint32_t dst_y,
3482 uint32_t width, uint32_t height,
3483 uint32_t layer_count,
3484 enum blorp_filter filter);
3485 void
3486 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3487 const struct anv_image *image,
3488 VkImageAspectFlagBits aspect, uint32_t level,
3489 uint32_t base_layer, uint32_t layer_count,
3490 enum isl_aux_op hiz_op);
3491 void
3492 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3493 const struct anv_image *image,
3494 VkImageAspectFlags aspects,
3495 uint32_t level,
3496 uint32_t base_layer, uint32_t layer_count,
3497 VkRect2D area, uint8_t stencil_value);
3498 void
3499 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3500 const struct anv_image *image,
3501 enum isl_format format,
3502 VkImageAspectFlagBits aspect,
3503 uint32_t base_layer, uint32_t layer_count,
3504 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3505 bool predicate);
3506 void
3507 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3508 const struct anv_image *image,
3509 enum isl_format format,
3510 VkImageAspectFlagBits aspect, uint32_t level,
3511 uint32_t base_layer, uint32_t layer_count,
3512 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3513 bool predicate);
3514
3515 void
3516 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3517 const struct anv_image *image,
3518 VkImageAspectFlagBits aspect,
3519 uint32_t base_level, uint32_t level_count,
3520 uint32_t base_layer, uint32_t layer_count);
3521
3522 enum isl_aux_usage
3523 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3524 const struct anv_image *image,
3525 const VkImageAspectFlagBits aspect,
3526 const VkImageLayout layout);
3527
3528 enum anv_fast_clear_type
3529 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3530 const struct anv_image * const image,
3531 const VkImageAspectFlagBits aspect,
3532 const VkImageLayout layout);
3533
3534 /* This is defined as a macro so that it works for both
3535 * VkImageSubresourceRange and VkImageSubresourceLayers
3536 */
3537 #define anv_get_layerCount(_image, _range) \
3538 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3539 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3540
3541 static inline uint32_t
3542 anv_get_levelCount(const struct anv_image *image,
3543 const VkImageSubresourceRange *range)
3544 {
3545 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3546 image->levels - range->baseMipLevel : range->levelCount;
3547 }
3548
3549 static inline VkImageAspectFlags
3550 anv_image_expand_aspects(const struct anv_image *image,
3551 VkImageAspectFlags aspects)
3552 {
3553 /* If the underlying image has color plane aspects and
3554 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3555 * the underlying image. */
3556 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3557 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3558 return image->aspects;
3559
3560 return aspects;
3561 }
3562
3563 static inline bool
3564 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3565 VkImageAspectFlags aspects2)
3566 {
3567 if (aspects1 == aspects2)
3568 return true;
3569
3570 /* Only 1 color aspects are compatibles. */
3571 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3572 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3573 util_bitcount(aspects1) == util_bitcount(aspects2))
3574 return true;
3575
3576 return false;
3577 }
3578
3579 struct anv_image_view {
3580 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3581
3582 VkImageAspectFlags aspect_mask;
3583 VkFormat vk_format;
3584 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3585
3586 unsigned n_planes;
3587 struct {
3588 uint32_t image_plane;
3589
3590 struct isl_view isl;
3591
3592 /**
3593 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3594 * image layout of SHADER_READ_ONLY_OPTIMAL or
3595 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3596 */
3597 struct anv_surface_state optimal_sampler_surface_state;
3598
3599 /**
3600 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3601 * image layout of GENERAL.
3602 */
3603 struct anv_surface_state general_sampler_surface_state;
3604
3605 /**
3606 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3607 * states for write-only and readable, using the real format for
3608 * write-only and the lowered format for readable.
3609 */
3610 struct anv_surface_state storage_surface_state;
3611 struct anv_surface_state writeonly_storage_surface_state;
3612
3613 struct brw_image_param storage_image_param;
3614 } planes[3];
3615 };
3616
3617 enum anv_image_view_state_flags {
3618 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3619 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3620 };
3621
3622 void anv_image_fill_surface_state(struct anv_device *device,
3623 const struct anv_image *image,
3624 VkImageAspectFlagBits aspect,
3625 const struct isl_view *view,
3626 isl_surf_usage_flags_t view_usage,
3627 enum isl_aux_usage aux_usage,
3628 const union isl_color_value *clear_color,
3629 enum anv_image_view_state_flags flags,
3630 struct anv_surface_state *state_inout,
3631 struct brw_image_param *image_param_out);
3632
3633 struct anv_image_create_info {
3634 const VkImageCreateInfo *vk_info;
3635
3636 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3637 isl_tiling_flags_t isl_tiling_flags;
3638
3639 /** These flags will be added to any derived from VkImageCreateInfo. */
3640 isl_surf_usage_flags_t isl_extra_usage_flags;
3641
3642 uint32_t stride;
3643 bool external_format;
3644 };
3645
3646 VkResult anv_image_create(VkDevice _device,
3647 const struct anv_image_create_info *info,
3648 const VkAllocationCallbacks* alloc,
3649 VkImage *pImage);
3650
3651 const struct anv_surface *
3652 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3653 VkImageAspectFlags aspect_mask);
3654
3655 enum isl_format
3656 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3657
3658 static inline struct VkExtent3D
3659 anv_sanitize_image_extent(const VkImageType imageType,
3660 const struct VkExtent3D imageExtent)
3661 {
3662 switch (imageType) {
3663 case VK_IMAGE_TYPE_1D:
3664 return (VkExtent3D) { imageExtent.width, 1, 1 };
3665 case VK_IMAGE_TYPE_2D:
3666 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3667 case VK_IMAGE_TYPE_3D:
3668 return imageExtent;
3669 default:
3670 unreachable("invalid image type");
3671 }
3672 }
3673
3674 static inline struct VkOffset3D
3675 anv_sanitize_image_offset(const VkImageType imageType,
3676 const struct VkOffset3D imageOffset)
3677 {
3678 switch (imageType) {
3679 case VK_IMAGE_TYPE_1D:
3680 return (VkOffset3D) { imageOffset.x, 0, 0 };
3681 case VK_IMAGE_TYPE_2D:
3682 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3683 case VK_IMAGE_TYPE_3D:
3684 return imageOffset;
3685 default:
3686 unreachable("invalid image type");
3687 }
3688 }
3689
3690 VkFormatFeatureFlags
3691 anv_get_image_format_features(const struct gen_device_info *devinfo,
3692 VkFormat vk_format,
3693 const struct anv_format *anv_format,
3694 VkImageTiling vk_tiling);
3695
3696 void anv_fill_buffer_surface_state(struct anv_device *device,
3697 struct anv_state state,
3698 enum isl_format format,
3699 struct anv_address address,
3700 uint32_t range, uint32_t stride);
3701
3702 static inline void
3703 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3704 const struct anv_attachment_state *att_state,
3705 const struct anv_image_view *iview)
3706 {
3707 const struct isl_format_layout *view_fmtl =
3708 isl_format_get_layout(iview->planes[0].isl.format);
3709
3710 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3711 if (view_fmtl->channels.c.bits) \
3712 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3713
3714 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3715 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3716 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3717 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3718
3719 #undef COPY_CLEAR_COLOR_CHANNEL
3720 }
3721
3722
3723 struct anv_ycbcr_conversion {
3724 const struct anv_format * format;
3725 VkSamplerYcbcrModelConversion ycbcr_model;
3726 VkSamplerYcbcrRange ycbcr_range;
3727 VkComponentSwizzle mapping[4];
3728 VkChromaLocation chroma_offsets[2];
3729 VkFilter chroma_filter;
3730 bool chroma_reconstruction;
3731 };
3732
3733 struct anv_sampler {
3734 uint32_t state[3][4];
3735 uint32_t n_planes;
3736 struct anv_ycbcr_conversion *conversion;
3737
3738 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3739 * and with a 32-byte stride for use as bindless samplers.
3740 */
3741 struct anv_state bindless_state;
3742 };
3743
3744 struct anv_framebuffer {
3745 uint32_t width;
3746 uint32_t height;
3747 uint32_t layers;
3748
3749 uint32_t attachment_count;
3750 struct anv_image_view * attachments[0];
3751 };
3752
3753 struct anv_subpass_attachment {
3754 VkImageUsageFlagBits usage;
3755 uint32_t attachment;
3756 VkImageLayout layout;
3757
3758 /* Used only with attachment containing stencil data. */
3759 VkImageLayout stencil_layout;
3760 };
3761
3762 struct anv_subpass {
3763 uint32_t attachment_count;
3764
3765 /**
3766 * A pointer to all attachment references used in this subpass.
3767 * Only valid if ::attachment_count > 0.
3768 */
3769 struct anv_subpass_attachment * attachments;
3770 uint32_t input_count;
3771 struct anv_subpass_attachment * input_attachments;
3772 uint32_t color_count;
3773 struct anv_subpass_attachment * color_attachments;
3774 struct anv_subpass_attachment * resolve_attachments;
3775
3776 struct anv_subpass_attachment * depth_stencil_attachment;
3777 struct anv_subpass_attachment * ds_resolve_attachment;
3778 VkResolveModeFlagBitsKHR depth_resolve_mode;
3779 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3780
3781 uint32_t view_mask;
3782
3783 /** Subpass has a depth/stencil self-dependency */
3784 bool has_ds_self_dep;
3785
3786 /** Subpass has at least one color resolve attachment */
3787 bool has_color_resolve;
3788 };
3789
3790 static inline unsigned
3791 anv_subpass_view_count(const struct anv_subpass *subpass)
3792 {
3793 return MAX2(1, util_bitcount(subpass->view_mask));
3794 }
3795
3796 struct anv_render_pass_attachment {
3797 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3798 * its members individually.
3799 */
3800 VkFormat format;
3801 uint32_t samples;
3802 VkImageUsageFlags usage;
3803 VkAttachmentLoadOp load_op;
3804 VkAttachmentStoreOp store_op;
3805 VkAttachmentLoadOp stencil_load_op;
3806 VkImageLayout initial_layout;
3807 VkImageLayout final_layout;
3808 VkImageLayout first_subpass_layout;
3809
3810 VkImageLayout stencil_initial_layout;
3811 VkImageLayout stencil_final_layout;
3812
3813 /* The subpass id in which the attachment will be used last. */
3814 uint32_t last_subpass_idx;
3815 };
3816
3817 struct anv_render_pass {
3818 uint32_t attachment_count;
3819 uint32_t subpass_count;
3820 /* An array of subpass_count+1 flushes, one per subpass boundary */
3821 enum anv_pipe_bits * subpass_flushes;
3822 struct anv_render_pass_attachment * attachments;
3823 struct anv_subpass subpasses[0];
3824 };
3825
3826 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3827
3828 struct anv_query_pool {
3829 VkQueryType type;
3830 VkQueryPipelineStatisticFlags pipeline_statistics;
3831 /** Stride between slots, in bytes */
3832 uint32_t stride;
3833 /** Number of slots in this query pool */
3834 uint32_t slots;
3835 struct anv_bo * bo;
3836 };
3837
3838 int anv_get_instance_entrypoint_index(const char *name);
3839 int anv_get_device_entrypoint_index(const char *name);
3840 int anv_get_physical_device_entrypoint_index(const char *name);
3841
3842 const char *anv_get_instance_entry_name(int index);
3843 const char *anv_get_physical_device_entry_name(int index);
3844 const char *anv_get_device_entry_name(int index);
3845
3846 bool
3847 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3848 const struct anv_instance_extension_table *instance);
3849 bool
3850 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3851 const struct anv_instance_extension_table *instance);
3852 bool
3853 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3854 const struct anv_instance_extension_table *instance,
3855 const struct anv_device_extension_table *device);
3856
3857 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3858 const char *name);
3859
3860 void anv_dump_image_to_ppm(struct anv_device *device,
3861 struct anv_image *image, unsigned miplevel,
3862 unsigned array_layer, VkImageAspectFlagBits aspect,
3863 const char *filename);
3864
3865 enum anv_dump_action {
3866 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3867 };
3868
3869 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3870 void anv_dump_finish(void);
3871
3872 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3873
3874 static inline uint32_t
3875 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3876 {
3877 /* This function must be called from within a subpass. */
3878 assert(cmd_state->pass && cmd_state->subpass);
3879
3880 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3881
3882 /* The id of this subpass shouldn't exceed the number of subpasses in this
3883 * render pass minus 1.
3884 */
3885 assert(subpass_id < cmd_state->pass->subpass_count);
3886 return subpass_id;
3887 }
3888
3889 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3890 void anv_device_perf_init(struct anv_device *device);
3891
3892 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3893 \
3894 static inline struct __anv_type * \
3895 __anv_type ## _from_handle(__VkType _handle) \
3896 { \
3897 return (struct __anv_type *) _handle; \
3898 } \
3899 \
3900 static inline __VkType \
3901 __anv_type ## _to_handle(struct __anv_type *_obj) \
3902 { \
3903 return (__VkType) _obj; \
3904 }
3905
3906 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3907 \
3908 static inline struct __anv_type * \
3909 __anv_type ## _from_handle(__VkType _handle) \
3910 { \
3911 return (struct __anv_type *)(uintptr_t) _handle; \
3912 } \
3913 \
3914 static inline __VkType \
3915 __anv_type ## _to_handle(struct __anv_type *_obj) \
3916 { \
3917 return (__VkType)(uintptr_t) _obj; \
3918 }
3919
3920 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3921 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3922
3923 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3924 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3925 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3926 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3927 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3928
3929 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3930 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3931 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3932 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3933 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3934 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3935 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3936 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3950 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3951 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3952
3953 /* Gen-specific function declarations */
3954 #ifdef genX
3955 # include "anv_genX.h"
3956 #else
3957 # define genX(x) gen7_##x
3958 # include "anv_genX.h"
3959 # undef genX
3960 # define genX(x) gen75_##x
3961 # include "anv_genX.h"
3962 # undef genX
3963 # define genX(x) gen8_##x
3964 # include "anv_genX.h"
3965 # undef genX
3966 # define genX(x) gen9_##x
3967 # include "anv_genX.h"
3968 # undef genX
3969 # define genX(x) gen10_##x
3970 # include "anv_genX.h"
3971 # undef genX
3972 # define genX(x) gen11_##x
3973 # include "anv_genX.h"
3974 # undef genX
3975 # define genX(x) gen12_##x
3976 # include "anv_genX.h"
3977 # undef genX
3978 #endif
3979
3980 #endif /* ANV_PRIVATE_H */