anv: Add anv_pipeline_init/finish helpers
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /* Driver-internal book-keeping */
1040 VkDeviceSize used;
1041 };
1042
1043 struct anv_physical_device {
1044 struct vk_object_base base;
1045
1046 /* Link in anv_instance::physical_devices */
1047 struct list_head link;
1048
1049 struct anv_instance * instance;
1050 bool no_hw;
1051 char path[20];
1052 const char * name;
1053 struct {
1054 uint16_t domain;
1055 uint8_t bus;
1056 uint8_t device;
1057 uint8_t function;
1058 } pci_info;
1059 struct gen_device_info info;
1060 /** Amount of "GPU memory" we want to advertise
1061 *
1062 * Clearly, this value is bogus since Intel is a UMA architecture. On
1063 * gen7 platforms, we are limited by GTT size unless we want to implement
1064 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1065 * practically unlimited. However, we will never report more than 3/4 of
1066 * the total system ram to try and avoid running out of RAM.
1067 */
1068 bool supports_48bit_addresses;
1069 struct brw_compiler * compiler;
1070 struct isl_device isl_dev;
1071 struct gen_perf_config * perf;
1072 int cmd_parser_version;
1073 bool has_softpin;
1074 bool has_exec_async;
1075 bool has_exec_capture;
1076 bool has_exec_fence;
1077 bool has_syncobj;
1078 bool has_syncobj_wait;
1079 bool has_context_priority;
1080 bool has_context_isolation;
1081 bool has_mem_available;
1082 bool has_mmap_offset;
1083 uint64_t gtt_size;
1084
1085 bool use_softpin;
1086 bool always_use_bindless;
1087
1088 /** True if we can access buffers using A64 messages */
1089 bool has_a64_buffer_access;
1090 /** True if we can use bindless access for images */
1091 bool has_bindless_images;
1092 /** True if we can use bindless access for samplers */
1093 bool has_bindless_samplers;
1094
1095 /** True if we can read the GPU timestamp register
1096 *
1097 * When running in a virtual context, the timestamp register is unreadable
1098 * on Gen12+.
1099 */
1100 bool has_reg_timestamp;
1101
1102 /** True if this device has implicit AUX
1103 *
1104 * If true, CCS is handled as an implicit attachment to the BO rather than
1105 * as an explicitly bound surface.
1106 */
1107 bool has_implicit_ccs;
1108
1109 bool always_flush_cache;
1110
1111 struct anv_device_extension_table supported_extensions;
1112
1113 uint32_t eu_total;
1114 uint32_t subslice_total;
1115
1116 struct {
1117 uint32_t type_count;
1118 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1119 uint32_t heap_count;
1120 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1121 } memory;
1122
1123 uint8_t driver_build_sha1[20];
1124 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1125 uint8_t driver_uuid[VK_UUID_SIZE];
1126 uint8_t device_uuid[VK_UUID_SIZE];
1127
1128 struct disk_cache * disk_cache;
1129
1130 struct wsi_device wsi_device;
1131 int local_fd;
1132 int master_fd;
1133 };
1134
1135 struct anv_app_info {
1136 const char* app_name;
1137 uint32_t app_version;
1138 const char* engine_name;
1139 uint32_t engine_version;
1140 uint32_t api_version;
1141 };
1142
1143 struct anv_instance {
1144 struct vk_object_base base;
1145
1146 VkAllocationCallbacks alloc;
1147
1148 struct anv_app_info app_info;
1149
1150 struct anv_instance_extension_table enabled_extensions;
1151 struct anv_instance_dispatch_table dispatch;
1152 struct anv_physical_device_dispatch_table physical_device_dispatch;
1153 struct anv_device_dispatch_table device_dispatch;
1154
1155 bool physical_devices_enumerated;
1156 struct list_head physical_devices;
1157
1158 bool pipeline_cache_enabled;
1159
1160 struct vk_debug_report_instance debug_report_callbacks;
1161
1162 struct driOptionCache dri_options;
1163 struct driOptionCache available_dri_options;
1164 };
1165
1166 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1167 void anv_finish_wsi(struct anv_physical_device *physical_device);
1168
1169 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1170 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1171 const char *name);
1172
1173 struct anv_queue_submit {
1174 struct anv_cmd_buffer * cmd_buffer;
1175
1176 uint32_t fence_count;
1177 uint32_t fence_array_length;
1178 struct drm_i915_gem_exec_fence * fences;
1179
1180 uint32_t temporary_semaphore_count;
1181 uint32_t temporary_semaphore_array_length;
1182 struct anv_semaphore_impl * temporary_semaphores;
1183
1184 /* Semaphores to be signaled with a SYNC_FD. */
1185 struct anv_semaphore ** sync_fd_semaphores;
1186 uint32_t sync_fd_semaphore_count;
1187 uint32_t sync_fd_semaphore_array_length;
1188
1189 /* Allocated only with non shareable timelines. */
1190 struct anv_timeline ** wait_timelines;
1191 uint32_t wait_timeline_count;
1192 uint32_t wait_timeline_array_length;
1193 uint64_t * wait_timeline_values;
1194
1195 struct anv_timeline ** signal_timelines;
1196 uint32_t signal_timeline_count;
1197 uint32_t signal_timeline_array_length;
1198 uint64_t * signal_timeline_values;
1199
1200 int in_fence;
1201 bool need_out_fence;
1202 int out_fence;
1203
1204 uint32_t fence_bo_count;
1205 uint32_t fence_bo_array_length;
1206 /* An array of struct anv_bo pointers with lower bit used as a flag to
1207 * signal we will wait on that BO (see anv_(un)pack_ptr).
1208 */
1209 uintptr_t * fence_bos;
1210
1211 int perf_query_pass;
1212
1213 const VkAllocationCallbacks * alloc;
1214 VkSystemAllocationScope alloc_scope;
1215
1216 struct anv_bo * simple_bo;
1217 uint32_t simple_bo_size;
1218
1219 struct list_head link;
1220 };
1221
1222 struct anv_queue {
1223 struct vk_object_base base;
1224
1225 struct anv_device * device;
1226
1227 /*
1228 * A list of struct anv_queue_submit to be submitted to i915.
1229 */
1230 struct list_head queued_submits;
1231
1232 VkDeviceQueueCreateFlags flags;
1233 };
1234
1235 struct anv_pipeline_cache {
1236 struct vk_object_base base;
1237 struct anv_device * device;
1238 pthread_mutex_t mutex;
1239
1240 struct hash_table * nir_cache;
1241
1242 struct hash_table * cache;
1243 };
1244
1245 struct nir_xfb_info;
1246 struct anv_pipeline_bind_map;
1247
1248 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1249 struct anv_device *device,
1250 bool cache_enabled);
1251 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1252
1253 struct anv_shader_bin *
1254 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1255 const void *key, uint32_t key_size);
1256 struct anv_shader_bin *
1257 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1258 gl_shader_stage stage,
1259 const void *key_data, uint32_t key_size,
1260 const void *kernel_data, uint32_t kernel_size,
1261 const void *constant_data,
1262 uint32_t constant_data_size,
1263 const struct brw_stage_prog_data *prog_data,
1264 uint32_t prog_data_size,
1265 const struct brw_compile_stats *stats,
1266 uint32_t num_stats,
1267 const struct nir_xfb_info *xfb_info,
1268 const struct anv_pipeline_bind_map *bind_map);
1269
1270 struct anv_shader_bin *
1271 anv_device_search_for_kernel(struct anv_device *device,
1272 struct anv_pipeline_cache *cache,
1273 const void *key_data, uint32_t key_size,
1274 bool *user_cache_bit);
1275
1276 struct anv_shader_bin *
1277 anv_device_upload_kernel(struct anv_device *device,
1278 struct anv_pipeline_cache *cache,
1279 gl_shader_stage stage,
1280 const void *key_data, uint32_t key_size,
1281 const void *kernel_data, uint32_t kernel_size,
1282 const void *constant_data,
1283 uint32_t constant_data_size,
1284 const struct brw_stage_prog_data *prog_data,
1285 uint32_t prog_data_size,
1286 const struct brw_compile_stats *stats,
1287 uint32_t num_stats,
1288 const struct nir_xfb_info *xfb_info,
1289 const struct anv_pipeline_bind_map *bind_map);
1290
1291 struct nir_shader;
1292 struct nir_shader_compiler_options;
1293
1294 struct nir_shader *
1295 anv_device_search_for_nir(struct anv_device *device,
1296 struct anv_pipeline_cache *cache,
1297 const struct nir_shader_compiler_options *nir_options,
1298 unsigned char sha1_key[20],
1299 void *mem_ctx);
1300
1301 void
1302 anv_device_upload_nir(struct anv_device *device,
1303 struct anv_pipeline_cache *cache,
1304 const struct nir_shader *nir,
1305 unsigned char sha1_key[20]);
1306
1307 struct anv_address {
1308 struct anv_bo *bo;
1309 uint32_t offset;
1310 };
1311
1312 struct anv_device {
1313 struct vk_device vk;
1314
1315 struct anv_physical_device * physical;
1316 bool no_hw;
1317 struct gen_device_info info;
1318 struct isl_device isl_dev;
1319 int context_id;
1320 int fd;
1321 bool can_chain_batches;
1322 bool robust_buffer_access;
1323 struct anv_device_extension_table enabled_extensions;
1324 struct anv_device_dispatch_table dispatch;
1325
1326 pthread_mutex_t vma_mutex;
1327 struct util_vma_heap vma_lo;
1328 struct util_vma_heap vma_cva;
1329 struct util_vma_heap vma_hi;
1330
1331 /** List of all anv_device_memory objects */
1332 struct list_head memory_objects;
1333
1334 struct anv_bo_pool batch_bo_pool;
1335
1336 struct anv_bo_cache bo_cache;
1337
1338 struct anv_state_pool dynamic_state_pool;
1339 struct anv_state_pool instruction_state_pool;
1340 struct anv_state_pool binding_table_pool;
1341 struct anv_state_pool surface_state_pool;
1342
1343 struct anv_state_reserved_pool custom_border_colors;
1344
1345 /** BO used for various workarounds
1346 *
1347 * There are a number of workarounds on our hardware which require writing
1348 * data somewhere and it doesn't really matter where. For that, we use
1349 * this BO and just write to the first dword or so.
1350 *
1351 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1352 * For that, we use the high bytes (>= 1024) of the workaround BO.
1353 */
1354 struct anv_bo * workaround_bo;
1355 struct anv_address workaround_address;
1356
1357 struct anv_bo * trivial_batch_bo;
1358 struct anv_bo * hiz_clear_bo;
1359 struct anv_state null_surface_state;
1360
1361 struct anv_pipeline_cache default_pipeline_cache;
1362 struct blorp_context blorp;
1363
1364 struct anv_state border_colors;
1365
1366 struct anv_state slice_hash;
1367
1368 struct anv_queue queue;
1369
1370 struct anv_scratch_pool scratch_pool;
1371
1372 pthread_mutex_t mutex;
1373 pthread_cond_t queue_submit;
1374 int _lost;
1375
1376 struct gen_batch_decode_ctx decoder_ctx;
1377 /*
1378 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1379 * the cmd_buffer's list.
1380 */
1381 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1382
1383 int perf_fd; /* -1 if no opened */
1384 uint64_t perf_metric; /* 0 if unset */
1385
1386 struct gen_aux_map_context *aux_map_ctx;
1387 };
1388
1389 static inline struct anv_instance *
1390 anv_device_instance_or_null(const struct anv_device *device)
1391 {
1392 return device ? device->physical->instance : NULL;
1393 }
1394
1395 static inline struct anv_state_pool *
1396 anv_binding_table_pool(struct anv_device *device)
1397 {
1398 if (device->physical->use_softpin)
1399 return &device->binding_table_pool;
1400 else
1401 return &device->surface_state_pool;
1402 }
1403
1404 static inline struct anv_state
1405 anv_binding_table_pool_alloc(struct anv_device *device) {
1406 if (device->physical->use_softpin)
1407 return anv_state_pool_alloc(&device->binding_table_pool,
1408 device->binding_table_pool.block_size, 0);
1409 else
1410 return anv_state_pool_alloc_back(&device->surface_state_pool);
1411 }
1412
1413 static inline void
1414 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1415 anv_state_pool_free(anv_binding_table_pool(device), state);
1416 }
1417
1418 static inline uint32_t
1419 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1420 {
1421 if (bo->is_external)
1422 return device->isl_dev.mocs.external;
1423 else
1424 return device->isl_dev.mocs.internal;
1425 }
1426
1427 void anv_device_init_blorp(struct anv_device *device);
1428 void anv_device_finish_blorp(struct anv_device *device);
1429
1430 void _anv_device_set_all_queue_lost(struct anv_device *device);
1431 VkResult _anv_device_set_lost(struct anv_device *device,
1432 const char *file, int line,
1433 const char *msg, ...)
1434 anv_printflike(4, 5);
1435 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1436 const char *file, int line,
1437 const char *msg, ...)
1438 anv_printflike(4, 5);
1439 #define anv_device_set_lost(dev, ...) \
1440 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1441 #define anv_queue_set_lost(queue, ...) \
1442 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1443
1444 static inline bool
1445 anv_device_is_lost(struct anv_device *device)
1446 {
1447 return unlikely(p_atomic_read(&device->_lost));
1448 }
1449
1450 VkResult anv_device_query_status(struct anv_device *device);
1451
1452
1453 enum anv_bo_alloc_flags {
1454 /** Specifies that the BO must have a 32-bit address
1455 *
1456 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1457 */
1458 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1459
1460 /** Specifies that the BO may be shared externally */
1461 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1462
1463 /** Specifies that the BO should be mapped */
1464 ANV_BO_ALLOC_MAPPED = (1 << 2),
1465
1466 /** Specifies that the BO should be snooped so we get coherency */
1467 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1468
1469 /** Specifies that the BO should be captured in error states */
1470 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1471
1472 /** Specifies that the BO will have an address assigned by the caller
1473 *
1474 * Such BOs do not exist in any VMA heap.
1475 */
1476 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1477
1478 /** Enables implicit synchronization on the BO
1479 *
1480 * This is the opposite of EXEC_OBJECT_ASYNC.
1481 */
1482 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1483
1484 /** Enables implicit synchronization on the BO
1485 *
1486 * This is equivalent to EXEC_OBJECT_WRITE.
1487 */
1488 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1489
1490 /** Has an address which is visible to the client */
1491 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1492
1493 /** This buffer has implicit CCS data attached to it */
1494 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1495 };
1496
1497 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1498 enum anv_bo_alloc_flags alloc_flags,
1499 uint64_t explicit_address,
1500 struct anv_bo **bo);
1501 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1502 void *host_ptr, uint32_t size,
1503 enum anv_bo_alloc_flags alloc_flags,
1504 uint64_t client_address,
1505 struct anv_bo **bo_out);
1506 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1507 enum anv_bo_alloc_flags alloc_flags,
1508 uint64_t client_address,
1509 struct anv_bo **bo);
1510 VkResult anv_device_export_bo(struct anv_device *device,
1511 struct anv_bo *bo, int *fd_out);
1512 void anv_device_release_bo(struct anv_device *device,
1513 struct anv_bo *bo);
1514
1515 static inline struct anv_bo *
1516 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1517 {
1518 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1519 }
1520
1521 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1522 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1523 int64_t timeout);
1524
1525 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1526 void anv_queue_finish(struct anv_queue *queue);
1527
1528 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1529 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1530 struct anv_batch *batch);
1531
1532 uint64_t anv_gettime_ns(void);
1533 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1534
1535 void* anv_gem_mmap(struct anv_device *device,
1536 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1537 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1538 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1539 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1540 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1541 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1542 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1543 int anv_gem_execbuffer(struct anv_device *device,
1544 struct drm_i915_gem_execbuffer2 *execbuf);
1545 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1546 uint32_t stride, uint32_t tiling);
1547 int anv_gem_create_context(struct anv_device *device);
1548 bool anv_gem_has_context_priority(int fd);
1549 int anv_gem_destroy_context(struct anv_device *device, int context);
1550 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1551 uint64_t value);
1552 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1553 uint64_t *value);
1554 int anv_gem_get_param(int fd, uint32_t param);
1555 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1556 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1557 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1558 uint32_t *active, uint32_t *pending);
1559 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1560 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1561 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1562 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1563 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1564 uint32_t read_domains, uint32_t write_domain);
1565 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1566 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1567 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1568 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1569 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1570 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1571 uint32_t handle);
1572 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1573 uint32_t handle, int fd);
1574 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1575 bool anv_gem_supports_syncobj_wait(int fd);
1576 int anv_gem_syncobj_wait(struct anv_device *device,
1577 uint32_t *handles, uint32_t num_handles,
1578 int64_t abs_timeout_ns, bool wait_all);
1579
1580 uint64_t anv_vma_alloc(struct anv_device *device,
1581 uint64_t size, uint64_t align,
1582 enum anv_bo_alloc_flags alloc_flags,
1583 uint64_t client_address);
1584 void anv_vma_free(struct anv_device *device,
1585 uint64_t address, uint64_t size);
1586
1587 struct anv_reloc_list {
1588 uint32_t num_relocs;
1589 uint32_t array_length;
1590 struct drm_i915_gem_relocation_entry * relocs;
1591 struct anv_bo ** reloc_bos;
1592 uint32_t dep_words;
1593 BITSET_WORD * deps;
1594 };
1595
1596 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1597 const VkAllocationCallbacks *alloc);
1598 void anv_reloc_list_finish(struct anv_reloc_list *list,
1599 const VkAllocationCallbacks *alloc);
1600
1601 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1602 const VkAllocationCallbacks *alloc,
1603 uint32_t offset, struct anv_bo *target_bo,
1604 uint32_t delta, uint64_t *address_u64_out);
1605
1606 struct anv_batch_bo {
1607 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1608 struct list_head link;
1609
1610 struct anv_bo * bo;
1611
1612 /* Bytes actually consumed in this batch BO */
1613 uint32_t length;
1614
1615 struct anv_reloc_list relocs;
1616 };
1617
1618 struct anv_batch {
1619 const VkAllocationCallbacks * alloc;
1620
1621 struct anv_address start_addr;
1622
1623 void * start;
1624 void * end;
1625 void * next;
1626
1627 struct anv_reloc_list * relocs;
1628
1629 /* This callback is called (with the associated user data) in the event
1630 * that the batch runs out of space.
1631 */
1632 VkResult (*extend_cb)(struct anv_batch *, void *);
1633 void * user_data;
1634
1635 /**
1636 * Current error status of the command buffer. Used to track inconsistent
1637 * or incomplete command buffer states that are the consequence of run-time
1638 * errors such as out of memory scenarios. We want to track this in the
1639 * batch because the command buffer object is not visible to some parts
1640 * of the driver.
1641 */
1642 VkResult status;
1643 };
1644
1645 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1646 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1647 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1648 void *location, struct anv_bo *bo, uint32_t offset);
1649 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1650
1651 static inline void
1652 anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
1653 void *map, size_t size)
1654 {
1655 batch->start_addr = addr;
1656 batch->next = batch->start = map;
1657 batch->end = map + size;
1658 }
1659
1660 static inline VkResult
1661 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1662 {
1663 assert(error != VK_SUCCESS);
1664 if (batch->status == VK_SUCCESS)
1665 batch->status = error;
1666 return batch->status;
1667 }
1668
1669 static inline bool
1670 anv_batch_has_error(struct anv_batch *batch)
1671 {
1672 return batch->status != VK_SUCCESS;
1673 }
1674
1675 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1676
1677 static inline bool
1678 anv_address_is_null(struct anv_address addr)
1679 {
1680 return addr.bo == NULL && addr.offset == 0;
1681 }
1682
1683 static inline uint64_t
1684 anv_address_physical(struct anv_address addr)
1685 {
1686 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1687 return gen_canonical_address(addr.bo->offset + addr.offset);
1688 else
1689 return gen_canonical_address(addr.offset);
1690 }
1691
1692 static inline struct anv_address
1693 anv_address_add(struct anv_address addr, uint64_t offset)
1694 {
1695 addr.offset += offset;
1696 return addr;
1697 }
1698
1699 static inline void
1700 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1701 {
1702 unsigned reloc_size = 0;
1703 if (device->info.gen >= 8) {
1704 reloc_size = sizeof(uint64_t);
1705 *(uint64_t *)p = gen_canonical_address(v);
1706 } else {
1707 reloc_size = sizeof(uint32_t);
1708 *(uint32_t *)p = v;
1709 }
1710
1711 if (flush && !device->info.has_llc)
1712 gen_flush_range(p, reloc_size);
1713 }
1714
1715 static inline uint64_t
1716 _anv_combine_address(struct anv_batch *batch, void *location,
1717 const struct anv_address address, uint32_t delta)
1718 {
1719 if (address.bo == NULL) {
1720 return address.offset + delta;
1721 } else {
1722 assert(batch->start <= location && location < batch->end);
1723
1724 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1725 }
1726 }
1727
1728 #define __gen_address_type struct anv_address
1729 #define __gen_user_data struct anv_batch
1730 #define __gen_combine_address _anv_combine_address
1731
1732 /* Wrapper macros needed to work around preprocessor argument issues. In
1733 * particular, arguments don't get pre-evaluated if they are concatenated.
1734 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1735 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1736 * We can work around this easily enough with these helpers.
1737 */
1738 #define __anv_cmd_length(cmd) cmd ## _length
1739 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1740 #define __anv_cmd_header(cmd) cmd ## _header
1741 #define __anv_cmd_pack(cmd) cmd ## _pack
1742 #define __anv_reg_num(reg) reg ## _num
1743
1744 #define anv_pack_struct(dst, struc, ...) do { \
1745 struct struc __template = { \
1746 __VA_ARGS__ \
1747 }; \
1748 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1749 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1750 } while (0)
1751
1752 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1753 void *__dst = anv_batch_emit_dwords(batch, n); \
1754 if (__dst) { \
1755 struct cmd __template = { \
1756 __anv_cmd_header(cmd), \
1757 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1758 __VA_ARGS__ \
1759 }; \
1760 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1761 } \
1762 __dst; \
1763 })
1764
1765 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1766 do { \
1767 uint32_t *dw; \
1768 \
1769 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1770 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1771 if (!dw) \
1772 break; \
1773 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1774 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1775 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1776 } while (0)
1777
1778 #define anv_batch_emit(batch, cmd, name) \
1779 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1780 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1781 __builtin_expect(_dst != NULL, 1); \
1782 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1783 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1784 _dst = NULL; \
1785 }))
1786
1787 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1788 /* #define __gen_get_batch_address anv_batch_address */
1789 /* #define __gen_address_value anv_address_physical */
1790 /* #define __gen_address_offset anv_address_add */
1791
1792 struct anv_device_memory {
1793 struct vk_object_base base;
1794
1795 struct list_head link;
1796
1797 struct anv_bo * bo;
1798 struct anv_memory_type * type;
1799 VkDeviceSize map_size;
1800 void * map;
1801
1802 /* If set, we are holding reference to AHardwareBuffer
1803 * which we must release when memory is freed.
1804 */
1805 struct AHardwareBuffer * ahw;
1806
1807 /* If set, this memory comes from a host pointer. */
1808 void * host_ptr;
1809 };
1810
1811 /**
1812 * Header for Vertex URB Entry (VUE)
1813 */
1814 struct anv_vue_header {
1815 uint32_t Reserved;
1816 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1817 uint32_t ViewportIndex;
1818 float PointWidth;
1819 };
1820
1821 /** Struct representing a sampled image descriptor
1822 *
1823 * This descriptor layout is used for sampled images, bare sampler, and
1824 * combined image/sampler descriptors.
1825 */
1826 struct anv_sampled_image_descriptor {
1827 /** Bindless image handle
1828 *
1829 * This is expected to already be shifted such that the 20-bit
1830 * SURFACE_STATE table index is in the top 20 bits.
1831 */
1832 uint32_t image;
1833
1834 /** Bindless sampler handle
1835 *
1836 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1837 * to the dynamic state base address.
1838 */
1839 uint32_t sampler;
1840 };
1841
1842 struct anv_texture_swizzle_descriptor {
1843 /** Texture swizzle
1844 *
1845 * See also nir_intrinsic_channel_select_intel
1846 */
1847 uint8_t swizzle[4];
1848
1849 /** Unused padding to ensure the struct is a multiple of 64 bits */
1850 uint32_t _pad;
1851 };
1852
1853 /** Struct representing a storage image descriptor */
1854 struct anv_storage_image_descriptor {
1855 /** Bindless image handles
1856 *
1857 * These are expected to already be shifted such that the 20-bit
1858 * SURFACE_STATE table index is in the top 20 bits.
1859 */
1860 uint32_t read_write;
1861 uint32_t write_only;
1862 };
1863
1864 /** Struct representing a address/range descriptor
1865 *
1866 * The fields of this struct correspond directly to the data layout of
1867 * nir_address_format_64bit_bounded_global addresses. The last field is the
1868 * offset in the NIR address so it must be zero so that when you load the
1869 * descriptor you get a pointer to the start of the range.
1870 */
1871 struct anv_address_range_descriptor {
1872 uint64_t address;
1873 uint32_t range;
1874 uint32_t zero;
1875 };
1876
1877 enum anv_descriptor_data {
1878 /** The descriptor contains a BTI reference to a surface state */
1879 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1880 /** The descriptor contains a BTI reference to a sampler state */
1881 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1882 /** The descriptor contains an actual buffer view */
1883 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1884 /** The descriptor contains auxiliary image layout data */
1885 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1886 /** The descriptor contains auxiliary image layout data */
1887 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1888 /** anv_address_range_descriptor with a buffer address and range */
1889 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1890 /** Bindless surface handle */
1891 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1892 /** Storage image handles */
1893 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1894 /** Storage image handles */
1895 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1896 };
1897
1898 struct anv_descriptor_set_binding_layout {
1899 #ifndef NDEBUG
1900 /* The type of the descriptors in this binding */
1901 VkDescriptorType type;
1902 #endif
1903
1904 /* Flags provided when this binding was created */
1905 VkDescriptorBindingFlagsEXT flags;
1906
1907 /* Bitfield representing the type of data this descriptor contains */
1908 enum anv_descriptor_data data;
1909
1910 /* Maximum number of YCbCr texture/sampler planes */
1911 uint8_t max_plane_count;
1912
1913 /* Number of array elements in this binding (or size in bytes for inline
1914 * uniform data)
1915 */
1916 uint16_t array_size;
1917
1918 /* Index into the flattend descriptor set */
1919 uint16_t descriptor_index;
1920
1921 /* Index into the dynamic state array for a dynamic buffer */
1922 int16_t dynamic_offset_index;
1923
1924 /* Index into the descriptor set buffer views */
1925 int16_t buffer_view_index;
1926
1927 /* Offset into the descriptor buffer where this descriptor lives */
1928 uint32_t descriptor_offset;
1929
1930 /* Immutable samplers (or NULL if no immutable samplers) */
1931 struct anv_sampler **immutable_samplers;
1932 };
1933
1934 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1935
1936 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1937 VkDescriptorType type);
1938
1939 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1940 const struct anv_descriptor_set_binding_layout *binding,
1941 bool sampler);
1942
1943 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1944 const struct anv_descriptor_set_binding_layout *binding,
1945 bool sampler);
1946
1947 struct anv_descriptor_set_layout {
1948 struct vk_object_base base;
1949
1950 /* Descriptor set layouts can be destroyed at almost any time */
1951 uint32_t ref_cnt;
1952
1953 /* Number of bindings in this descriptor set */
1954 uint16_t binding_count;
1955
1956 /* Total size of the descriptor set with room for all array entries */
1957 uint16_t size;
1958
1959 /* Shader stages affected by this descriptor set */
1960 uint16_t shader_stages;
1961
1962 /* Number of buffer views in this descriptor set */
1963 uint16_t buffer_view_count;
1964
1965 /* Number of dynamic offsets used by this descriptor set */
1966 uint16_t dynamic_offset_count;
1967
1968 /* For each shader stage, which offsets apply to that stage */
1969 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1970
1971 /* Size of the descriptor buffer for this descriptor set */
1972 uint32_t descriptor_buffer_size;
1973
1974 /* Bindings in this descriptor set */
1975 struct anv_descriptor_set_binding_layout binding[0];
1976 };
1977
1978 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1979 struct anv_descriptor_set_layout *layout);
1980
1981 static inline void
1982 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1983 {
1984 assert(layout && layout->ref_cnt >= 1);
1985 p_atomic_inc(&layout->ref_cnt);
1986 }
1987
1988 static inline void
1989 anv_descriptor_set_layout_unref(struct anv_device *device,
1990 struct anv_descriptor_set_layout *layout)
1991 {
1992 assert(layout && layout->ref_cnt >= 1);
1993 if (p_atomic_dec_zero(&layout->ref_cnt))
1994 anv_descriptor_set_layout_destroy(device, layout);
1995 }
1996
1997 struct anv_descriptor {
1998 VkDescriptorType type;
1999
2000 union {
2001 struct {
2002 VkImageLayout layout;
2003 struct anv_image_view *image_view;
2004 struct anv_sampler *sampler;
2005 };
2006
2007 struct {
2008 struct anv_buffer *buffer;
2009 uint64_t offset;
2010 uint64_t range;
2011 };
2012
2013 struct anv_buffer_view *buffer_view;
2014 };
2015 };
2016
2017 struct anv_descriptor_set {
2018 struct vk_object_base base;
2019
2020 struct anv_descriptor_pool *pool;
2021 struct anv_descriptor_set_layout *layout;
2022 uint32_t size;
2023
2024 /* State relative to anv_descriptor_pool::bo */
2025 struct anv_state desc_mem;
2026 /* Surface state for the descriptor buffer */
2027 struct anv_state desc_surface_state;
2028
2029 uint32_t buffer_view_count;
2030 struct anv_buffer_view *buffer_views;
2031
2032 /* Link to descriptor pool's desc_sets list . */
2033 struct list_head pool_link;
2034
2035 struct anv_descriptor descriptors[0];
2036 };
2037
2038 struct anv_buffer_view {
2039 struct vk_object_base base;
2040
2041 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2042 uint64_t range; /**< VkBufferViewCreateInfo::range */
2043
2044 struct anv_address address;
2045
2046 struct anv_state surface_state;
2047 struct anv_state storage_surface_state;
2048 struct anv_state writeonly_storage_surface_state;
2049
2050 struct brw_image_param storage_image_param;
2051 };
2052
2053 struct anv_push_descriptor_set {
2054 struct anv_descriptor_set set;
2055
2056 /* Put this field right behind anv_descriptor_set so it fills up the
2057 * descriptors[0] field. */
2058 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2059
2060 /** True if the descriptor set buffer has been referenced by a draw or
2061 * dispatch command.
2062 */
2063 bool set_used_on_gpu;
2064
2065 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2066 };
2067
2068 struct anv_descriptor_pool {
2069 struct vk_object_base base;
2070
2071 uint32_t size;
2072 uint32_t next;
2073 uint32_t free_list;
2074
2075 struct anv_bo *bo;
2076 struct util_vma_heap bo_heap;
2077
2078 struct anv_state_stream surface_state_stream;
2079 void *surface_state_free_list;
2080
2081 struct list_head desc_sets;
2082
2083 char data[0];
2084 };
2085
2086 enum anv_descriptor_template_entry_type {
2087 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2088 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2089 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2090 };
2091
2092 struct anv_descriptor_template_entry {
2093 /* The type of descriptor in this entry */
2094 VkDescriptorType type;
2095
2096 /* Binding in the descriptor set */
2097 uint32_t binding;
2098
2099 /* Offset at which to write into the descriptor set binding */
2100 uint32_t array_element;
2101
2102 /* Number of elements to write into the descriptor set binding */
2103 uint32_t array_count;
2104
2105 /* Offset into the user provided data */
2106 size_t offset;
2107
2108 /* Stride between elements into the user provided data */
2109 size_t stride;
2110 };
2111
2112 struct anv_descriptor_update_template {
2113 struct vk_object_base base;
2114
2115 VkPipelineBindPoint bind_point;
2116
2117 /* The descriptor set this template corresponds to. This value is only
2118 * valid if the template was created with the templateType
2119 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2120 */
2121 uint8_t set;
2122
2123 /* Number of entries in this template */
2124 uint32_t entry_count;
2125
2126 /* Entries of the template */
2127 struct anv_descriptor_template_entry entries[0];
2128 };
2129
2130 size_t
2131 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2132
2133 void
2134 anv_descriptor_set_write_image_view(struct anv_device *device,
2135 struct anv_descriptor_set *set,
2136 const VkDescriptorImageInfo * const info,
2137 VkDescriptorType type,
2138 uint32_t binding,
2139 uint32_t element);
2140
2141 void
2142 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2143 struct anv_descriptor_set *set,
2144 VkDescriptorType type,
2145 struct anv_buffer_view *buffer_view,
2146 uint32_t binding,
2147 uint32_t element);
2148
2149 void
2150 anv_descriptor_set_write_buffer(struct anv_device *device,
2151 struct anv_descriptor_set *set,
2152 struct anv_state_stream *alloc_stream,
2153 VkDescriptorType type,
2154 struct anv_buffer *buffer,
2155 uint32_t binding,
2156 uint32_t element,
2157 VkDeviceSize offset,
2158 VkDeviceSize range);
2159 void
2160 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2161 struct anv_descriptor_set *set,
2162 uint32_t binding,
2163 const void *data,
2164 size_t offset,
2165 size_t size);
2166
2167 void
2168 anv_descriptor_set_write_template(struct anv_device *device,
2169 struct anv_descriptor_set *set,
2170 struct anv_state_stream *alloc_stream,
2171 const struct anv_descriptor_update_template *template,
2172 const void *data);
2173
2174 VkResult
2175 anv_descriptor_set_create(struct anv_device *device,
2176 struct anv_descriptor_pool *pool,
2177 struct anv_descriptor_set_layout *layout,
2178 struct anv_descriptor_set **out_set);
2179
2180 void
2181 anv_descriptor_set_destroy(struct anv_device *device,
2182 struct anv_descriptor_pool *pool,
2183 struct anv_descriptor_set *set);
2184
2185 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2186 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2187 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2188 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2189 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2190 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2191
2192 struct anv_pipeline_binding {
2193 /** Index in the descriptor set
2194 *
2195 * This is a flattened index; the descriptor set layout is already taken
2196 * into account.
2197 */
2198 uint32_t index;
2199
2200 /** The descriptor set this surface corresponds to.
2201 *
2202 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2203 * binding is not a normal descriptor set but something else.
2204 */
2205 uint8_t set;
2206
2207 union {
2208 /** Plane in the binding index for images */
2209 uint8_t plane;
2210
2211 /** Input attachment index (relative to the subpass) */
2212 uint8_t input_attachment_index;
2213
2214 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2215 uint8_t dynamic_offset_index;
2216 };
2217
2218 /** For a storage image, whether it is write-only */
2219 uint8_t write_only;
2220
2221 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2222 * assuming POD zero-initialization.
2223 */
2224 uint8_t pad;
2225 };
2226
2227 struct anv_push_range {
2228 /** Index in the descriptor set */
2229 uint32_t index;
2230
2231 /** Descriptor set index */
2232 uint8_t set;
2233
2234 /** Dynamic offset index (for dynamic UBOs) */
2235 uint8_t dynamic_offset_index;
2236
2237 /** Start offset in units of 32B */
2238 uint8_t start;
2239
2240 /** Range in units of 32B */
2241 uint8_t length;
2242 };
2243
2244 struct anv_pipeline_layout {
2245 struct vk_object_base base;
2246
2247 struct {
2248 struct anv_descriptor_set_layout *layout;
2249 uint32_t dynamic_offset_start;
2250 } set[MAX_SETS];
2251
2252 uint32_t num_sets;
2253
2254 unsigned char sha1[20];
2255 };
2256
2257 struct anv_buffer {
2258 struct vk_object_base base;
2259
2260 struct anv_device * device;
2261 VkDeviceSize size;
2262
2263 VkBufferUsageFlags usage;
2264
2265 /* Set when bound */
2266 struct anv_address address;
2267 };
2268
2269 static inline uint64_t
2270 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2271 {
2272 assert(offset <= buffer->size);
2273 if (range == VK_WHOLE_SIZE) {
2274 return buffer->size - offset;
2275 } else {
2276 assert(range + offset >= range);
2277 assert(range + offset <= buffer->size);
2278 return range;
2279 }
2280 }
2281
2282 enum anv_cmd_dirty_bits {
2283 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2284 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2285 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2286 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2287 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2288 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2289 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2290 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2291 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2292 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2293 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2294 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2295 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2296 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2297 };
2298 typedef uint32_t anv_cmd_dirty_mask_t;
2299
2300 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2301 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2302 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2303 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2304 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2305 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2306 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2307 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2308 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2309 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2310 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2311
2312 static inline enum anv_cmd_dirty_bits
2313 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2314 {
2315 switch (vk_state) {
2316 case VK_DYNAMIC_STATE_VIEWPORT:
2317 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2318 case VK_DYNAMIC_STATE_SCISSOR:
2319 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2320 case VK_DYNAMIC_STATE_LINE_WIDTH:
2321 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2322 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2323 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2324 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2325 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2326 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2327 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2328 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2329 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2330 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2331 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2332 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2333 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2334 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2335 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2336 default:
2337 assert(!"Unsupported dynamic state");
2338 return 0;
2339 }
2340 }
2341
2342
2343 enum anv_pipe_bits {
2344 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2345 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2346 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2347 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2348 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2349 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2350 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2351 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2352 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2353 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2354 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2355 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2356 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2357
2358 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2359 * a flush has happened but not a CS stall. The next time we do any sort
2360 * of invalidation we need to insert a CS stall at that time. Otherwise,
2361 * we would have to CS stall on every flush which could be bad.
2362 */
2363 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2364
2365 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2366 * target operations related to transfer commands with VkBuffer as
2367 * destination are ongoing. Some operations like copies on the command
2368 * streamer might need to be aware of this to trigger the appropriate stall
2369 * before they can proceed with the copy.
2370 */
2371 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2372
2373 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2374 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2375 * done by writing the AUX-TT register.
2376 */
2377 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2378
2379 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2380 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2381 * implement a workaround for Gen9.
2382 */
2383 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2384 };
2385
2386 #define ANV_PIPE_FLUSH_BITS ( \
2387 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2388 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2389 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2390 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2391
2392 #define ANV_PIPE_STALL_BITS ( \
2393 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2394 ANV_PIPE_DEPTH_STALL_BIT | \
2395 ANV_PIPE_CS_STALL_BIT)
2396
2397 #define ANV_PIPE_INVALIDATE_BITS ( \
2398 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2399 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2400 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2401 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2402 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2403 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2404 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2405
2406 static inline enum anv_pipe_bits
2407 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2408 {
2409 enum anv_pipe_bits pipe_bits = 0;
2410
2411 unsigned b;
2412 for_each_bit(b, flags) {
2413 switch ((VkAccessFlagBits)(1 << b)) {
2414 case VK_ACCESS_SHADER_WRITE_BIT:
2415 /* We're transitioning a buffer that was previously used as write
2416 * destination through the data port. To make its content available
2417 * to future operations, flush the data cache.
2418 */
2419 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2420 break;
2421 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2422 /* We're transitioning a buffer that was previously used as render
2423 * target. To make its content available to future operations, flush
2424 * the render target cache.
2425 */
2426 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2427 break;
2428 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2429 /* We're transitioning a buffer that was previously used as depth
2430 * buffer. To make its content available to future operations, flush
2431 * the depth cache.
2432 */
2433 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2434 break;
2435 case VK_ACCESS_TRANSFER_WRITE_BIT:
2436 /* We're transitioning a buffer that was previously used as a
2437 * transfer write destination. Generic write operations include color
2438 * & depth operations as well as buffer operations like :
2439 * - vkCmdClearColorImage()
2440 * - vkCmdClearDepthStencilImage()
2441 * - vkCmdBlitImage()
2442 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2443 *
2444 * Most of these operations are implemented using Blorp which writes
2445 * through the render target, so flush that cache to make it visible
2446 * to future operations. And for depth related operations we also
2447 * need to flush the depth cache.
2448 */
2449 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2450 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2451 break;
2452 case VK_ACCESS_MEMORY_WRITE_BIT:
2453 /* We're transitioning a buffer for generic write operations. Flush
2454 * all the caches.
2455 */
2456 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2457 break;
2458 default:
2459 break; /* Nothing to do */
2460 }
2461 }
2462
2463 return pipe_bits;
2464 }
2465
2466 static inline enum anv_pipe_bits
2467 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2468 {
2469 enum anv_pipe_bits pipe_bits = 0;
2470
2471 unsigned b;
2472 for_each_bit(b, flags) {
2473 switch ((VkAccessFlagBits)(1 << b)) {
2474 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2475 /* Indirect draw commands take a buffer as input that we're going to
2476 * read from the command streamer to load some of the HW registers
2477 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2478 * command streamer stall so that all the cache flushes have
2479 * completed before the command streamer loads from memory.
2480 */
2481 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2482 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2483 * through a vertex buffer, so invalidate that cache.
2484 */
2485 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2486 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2487 * UBO from the buffer, so we need to invalidate constant cache.
2488 */
2489 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2490 break;
2491 case VK_ACCESS_INDEX_READ_BIT:
2492 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2493 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2494 * commands, so we invalidate the VF cache to make sure there is no
2495 * stale data when we start rendering.
2496 */
2497 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2498 break;
2499 case VK_ACCESS_UNIFORM_READ_BIT:
2500 /* We transitioning a buffer to be used as uniform data. Because
2501 * uniform is accessed through the data port & sampler, we need to
2502 * invalidate the texture cache (sampler) & constant cache (data
2503 * port) to avoid stale data.
2504 */
2505 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2506 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2507 break;
2508 case VK_ACCESS_SHADER_READ_BIT:
2509 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2510 case VK_ACCESS_TRANSFER_READ_BIT:
2511 /* Transitioning a buffer to be read through the sampler, so
2512 * invalidate the texture cache, we don't want any stale data.
2513 */
2514 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2515 break;
2516 case VK_ACCESS_MEMORY_READ_BIT:
2517 /* Transitioning a buffer for generic read, invalidate all the
2518 * caches.
2519 */
2520 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2521 break;
2522 case VK_ACCESS_MEMORY_WRITE_BIT:
2523 /* Generic write, make sure all previously written things land in
2524 * memory.
2525 */
2526 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2527 break;
2528 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2529 /* Transitioning a buffer for conditional rendering. We'll load the
2530 * content of this buffer into HW registers using the command
2531 * streamer, so we need to stall the command streamer to make sure
2532 * any in-flight flush operations have completed.
2533 */
2534 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2535 break;
2536 default:
2537 break; /* Nothing to do */
2538 }
2539 }
2540
2541 return pipe_bits;
2542 }
2543
2544 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2545 VK_IMAGE_ASPECT_COLOR_BIT | \
2546 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2547 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2548 VK_IMAGE_ASPECT_PLANE_2_BIT)
2549 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2550 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2551 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2552 VK_IMAGE_ASPECT_PLANE_2_BIT)
2553
2554 struct anv_vertex_binding {
2555 struct anv_buffer * buffer;
2556 VkDeviceSize offset;
2557 };
2558
2559 struct anv_xfb_binding {
2560 struct anv_buffer * buffer;
2561 VkDeviceSize offset;
2562 VkDeviceSize size;
2563 };
2564
2565 struct anv_push_constants {
2566 /** Push constant data provided by the client through vkPushConstants */
2567 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2568
2569 /** Dynamic offsets for dynamic UBOs and SSBOs */
2570 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2571
2572 uint64_t push_reg_mask;
2573
2574 /** Pad out to a multiple of 32 bytes */
2575 uint32_t pad[2];
2576
2577 struct {
2578 /** Base workgroup ID
2579 *
2580 * Used for vkCmdDispatchBase.
2581 */
2582 uint32_t base_work_group_id[3];
2583
2584 /** Subgroup ID
2585 *
2586 * This is never set by software but is implicitly filled out when
2587 * uploading the push constants for compute shaders.
2588 */
2589 uint32_t subgroup_id;
2590 } cs;
2591 };
2592
2593 struct anv_dynamic_state {
2594 struct {
2595 uint32_t count;
2596 VkViewport viewports[MAX_VIEWPORTS];
2597 } viewport;
2598
2599 struct {
2600 uint32_t count;
2601 VkRect2D scissors[MAX_SCISSORS];
2602 } scissor;
2603
2604 float line_width;
2605
2606 struct {
2607 float bias;
2608 float clamp;
2609 float slope;
2610 } depth_bias;
2611
2612 float blend_constants[4];
2613
2614 struct {
2615 float min;
2616 float max;
2617 } depth_bounds;
2618
2619 struct {
2620 uint32_t front;
2621 uint32_t back;
2622 } stencil_compare_mask;
2623
2624 struct {
2625 uint32_t front;
2626 uint32_t back;
2627 } stencil_write_mask;
2628
2629 struct {
2630 uint32_t front;
2631 uint32_t back;
2632 } stencil_reference;
2633
2634 struct {
2635 uint32_t factor;
2636 uint16_t pattern;
2637 } line_stipple;
2638 };
2639
2640 extern const struct anv_dynamic_state default_dynamic_state;
2641
2642 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2643 const struct anv_dynamic_state *src,
2644 uint32_t copy_mask);
2645
2646 struct anv_surface_state {
2647 struct anv_state state;
2648 /** Address of the surface referred to by this state
2649 *
2650 * This address is relative to the start of the BO.
2651 */
2652 struct anv_address address;
2653 /* Address of the aux surface, if any
2654 *
2655 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2656 *
2657 * With the exception of gen8, the bottom 12 bits of this address' offset
2658 * include extra aux information.
2659 */
2660 struct anv_address aux_address;
2661 /* Address of the clear color, if any
2662 *
2663 * This address is relative to the start of the BO.
2664 */
2665 struct anv_address clear_address;
2666 };
2667
2668 /**
2669 * Attachment state when recording a renderpass instance.
2670 *
2671 * The clear value is valid only if there exists a pending clear.
2672 */
2673 struct anv_attachment_state {
2674 enum isl_aux_usage aux_usage;
2675 struct anv_surface_state color;
2676 struct anv_surface_state input;
2677
2678 VkImageLayout current_layout;
2679 VkImageLayout current_stencil_layout;
2680 VkImageAspectFlags pending_clear_aspects;
2681 VkImageAspectFlags pending_load_aspects;
2682 bool fast_clear;
2683 VkClearValue clear_value;
2684
2685 /* When multiview is active, attachments with a renderpass clear
2686 * operation have their respective layers cleared on the first
2687 * subpass that uses them, and only in that subpass. We keep track
2688 * of this using a bitfield to indicate which layers of an attachment
2689 * have not been cleared yet when multiview is active.
2690 */
2691 uint32_t pending_clear_views;
2692 struct anv_image_view * image_view;
2693 };
2694
2695 /** State tracking for vertex buffer flushes
2696 *
2697 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2698 * addresses. If you happen to have two vertex buffers which get placed
2699 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2700 * collisions. In order to solve this problem, we track vertex address ranges
2701 * which are live in the cache and invalidate the cache if one ever exceeds 32
2702 * bits.
2703 */
2704 struct anv_vb_cache_range {
2705 /* Virtual address at which the live vertex buffer cache range starts for
2706 * this vertex buffer index.
2707 */
2708 uint64_t start;
2709
2710 /* Virtual address of the byte after where vertex buffer cache range ends.
2711 * This is exclusive such that end - start is the size of the range.
2712 */
2713 uint64_t end;
2714 };
2715
2716 /** State tracking for particular pipeline bind point
2717 *
2718 * This struct is the base struct for anv_cmd_graphics_state and
2719 * anv_cmd_compute_state. These are used to track state which is bound to a
2720 * particular type of pipeline. Generic state that applies per-stage such as
2721 * binding table offsets and push constants is tracked generically with a
2722 * per-stage array in anv_cmd_state.
2723 */
2724 struct anv_cmd_pipeline_state {
2725 struct anv_descriptor_set *descriptors[MAX_SETS];
2726 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2727 };
2728
2729 /** State tracking for graphics pipeline
2730 *
2731 * This has anv_cmd_pipeline_state as a base struct to track things which get
2732 * bound to a graphics pipeline. Along with general pipeline bind point state
2733 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2734 * state which is graphics-specific.
2735 */
2736 struct anv_cmd_graphics_state {
2737 struct anv_cmd_pipeline_state base;
2738
2739 struct anv_graphics_pipeline *pipeline;
2740
2741 anv_cmd_dirty_mask_t dirty;
2742 uint32_t vb_dirty;
2743
2744 struct anv_vb_cache_range ib_bound_range;
2745 struct anv_vb_cache_range ib_dirty_range;
2746 struct anv_vb_cache_range vb_bound_ranges[33];
2747 struct anv_vb_cache_range vb_dirty_ranges[33];
2748
2749 struct anv_dynamic_state dynamic;
2750
2751 struct {
2752 struct anv_buffer *index_buffer;
2753 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2754 uint32_t index_offset;
2755 } gen7;
2756 };
2757
2758 /** State tracking for compute pipeline
2759 *
2760 * This has anv_cmd_pipeline_state as a base struct to track things which get
2761 * bound to a compute pipeline. Along with general pipeline bind point state
2762 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2763 * state which is compute-specific.
2764 */
2765 struct anv_cmd_compute_state {
2766 struct anv_cmd_pipeline_state base;
2767
2768 struct anv_compute_pipeline *pipeline;
2769
2770 bool pipeline_dirty;
2771
2772 struct anv_address num_workgroups;
2773 };
2774
2775 /** State required while building cmd buffer */
2776 struct anv_cmd_state {
2777 /* PIPELINE_SELECT.PipelineSelection */
2778 uint32_t current_pipeline;
2779 const struct gen_l3_config * current_l3_config;
2780 uint32_t last_aux_map_state;
2781
2782 struct anv_cmd_graphics_state gfx;
2783 struct anv_cmd_compute_state compute;
2784
2785 enum anv_pipe_bits pending_pipe_bits;
2786 VkShaderStageFlags descriptors_dirty;
2787 VkShaderStageFlags push_constants_dirty;
2788
2789 struct anv_framebuffer * framebuffer;
2790 struct anv_render_pass * pass;
2791 struct anv_subpass * subpass;
2792 VkRect2D render_area;
2793 uint32_t restart_index;
2794 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2795 bool xfb_enabled;
2796 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2797 VkShaderStageFlags push_constant_stages;
2798 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2799 struct anv_state binding_tables[MESA_SHADER_STAGES];
2800 struct anv_state samplers[MESA_SHADER_STAGES];
2801
2802 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2803 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2804 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2805
2806 /**
2807 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2808 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2809 * and before invoking the secondary in ExecuteCommands.
2810 */
2811 bool pma_fix_enabled;
2812
2813 /**
2814 * Whether or not we know for certain that HiZ is enabled for the current
2815 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2816 * enabled or not, this will be false.
2817 */
2818 bool hiz_enabled;
2819
2820 bool conditional_render_enabled;
2821
2822 /**
2823 * Last rendering scale argument provided to
2824 * genX(cmd_buffer_emit_hashing_mode)().
2825 */
2826 unsigned current_hash_scale;
2827
2828 /**
2829 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2830 * valid only when recording a render pass instance.
2831 */
2832 struct anv_attachment_state * attachments;
2833
2834 /**
2835 * Surface states for color render targets. These are stored in a single
2836 * flat array. For depth-stencil attachments, the surface state is simply
2837 * left blank.
2838 */
2839 struct anv_state attachment_states;
2840
2841 /**
2842 * A null surface state of the right size to match the framebuffer. This
2843 * is one of the states in attachment_states.
2844 */
2845 struct anv_state null_surface_state;
2846 };
2847
2848 struct anv_cmd_pool {
2849 struct vk_object_base base;
2850 VkAllocationCallbacks alloc;
2851 struct list_head cmd_buffers;
2852 };
2853
2854 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2855
2856 enum anv_cmd_buffer_exec_mode {
2857 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2858 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2859 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2860 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2861 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2862 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2863 };
2864
2865 struct anv_cmd_buffer {
2866 struct vk_object_base base;
2867
2868 struct anv_device * device;
2869
2870 struct anv_cmd_pool * pool;
2871 struct list_head pool_link;
2872
2873 struct anv_batch batch;
2874
2875 /* Fields required for the actual chain of anv_batch_bo's.
2876 *
2877 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2878 */
2879 struct list_head batch_bos;
2880 enum anv_cmd_buffer_exec_mode exec_mode;
2881
2882 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2883 * referenced by this command buffer
2884 *
2885 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2886 */
2887 struct u_vector seen_bbos;
2888
2889 /* A vector of int32_t's for every block of binding tables.
2890 *
2891 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2892 */
2893 struct u_vector bt_block_states;
2894 struct anv_state bt_next;
2895
2896 struct anv_reloc_list surface_relocs;
2897 /** Last seen surface state block pool center bo offset */
2898 uint32_t last_ss_pool_center;
2899
2900 /* Serial for tracking buffer completion */
2901 uint32_t serial;
2902
2903 /* Stream objects for storing temporary data */
2904 struct anv_state_stream surface_state_stream;
2905 struct anv_state_stream dynamic_state_stream;
2906
2907 VkCommandBufferUsageFlags usage_flags;
2908 VkCommandBufferLevel level;
2909
2910 struct anv_query_pool *perf_query_pool;
2911
2912 struct anv_cmd_state state;
2913
2914 struct anv_address return_addr;
2915
2916 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2917 uint64_t intel_perf_marker;
2918 };
2919
2920 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2921 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2922 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2923 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2924 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2925 struct anv_cmd_buffer *secondary);
2926 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2927 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2928 struct anv_cmd_buffer *cmd_buffer,
2929 const VkSemaphore *in_semaphores,
2930 const uint64_t *in_wait_values,
2931 uint32_t num_in_semaphores,
2932 const VkSemaphore *out_semaphores,
2933 const uint64_t *out_signal_values,
2934 uint32_t num_out_semaphores,
2935 VkFence fence,
2936 int perf_query_pass);
2937
2938 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2939
2940 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2941 const void *data, uint32_t size, uint32_t alignment);
2942 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2943 uint32_t *a, uint32_t *b,
2944 uint32_t dwords, uint32_t alignment);
2945
2946 struct anv_address
2947 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2948 struct anv_state
2949 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2950 uint32_t entries, uint32_t *state_offset);
2951 struct anv_state
2952 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2953 struct anv_state
2954 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2955 uint32_t size, uint32_t alignment);
2956
2957 VkResult
2958 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2959
2960 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2961 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2962 bool depth_clamp_enable);
2963 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2964
2965 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2966 struct anv_render_pass *pass,
2967 struct anv_framebuffer *framebuffer,
2968 const VkClearValue *clear_values);
2969
2970 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2971
2972 struct anv_state
2973 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2974 gl_shader_stage stage);
2975 struct anv_state
2976 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2977
2978 const struct anv_image_view *
2979 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2980
2981 VkResult
2982 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2983 uint32_t num_entries,
2984 uint32_t *state_offset,
2985 struct anv_state *bt_state);
2986
2987 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2988
2989 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2990
2991 enum anv_fence_type {
2992 ANV_FENCE_TYPE_NONE = 0,
2993 ANV_FENCE_TYPE_BO,
2994 ANV_FENCE_TYPE_WSI_BO,
2995 ANV_FENCE_TYPE_SYNCOBJ,
2996 ANV_FENCE_TYPE_WSI,
2997 };
2998
2999 enum anv_bo_fence_state {
3000 /** Indicates that this is a new (or newly reset fence) */
3001 ANV_BO_FENCE_STATE_RESET,
3002
3003 /** Indicates that this fence has been submitted to the GPU but is still
3004 * (as far as we know) in use by the GPU.
3005 */
3006 ANV_BO_FENCE_STATE_SUBMITTED,
3007
3008 ANV_BO_FENCE_STATE_SIGNALED,
3009 };
3010
3011 struct anv_fence_impl {
3012 enum anv_fence_type type;
3013
3014 union {
3015 /** Fence implementation for BO fences
3016 *
3017 * These fences use a BO and a set of CPU-tracked state flags. The BO
3018 * is added to the object list of the last execbuf call in a QueueSubmit
3019 * and is marked EXEC_WRITE. The state flags track when the BO has been
3020 * submitted to the kernel. We need to do this because Vulkan lets you
3021 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3022 * will say it's idle in this case.
3023 */
3024 struct {
3025 struct anv_bo *bo;
3026 enum anv_bo_fence_state state;
3027 } bo;
3028
3029 /** DRM syncobj handle for syncobj-based fences */
3030 uint32_t syncobj;
3031
3032 /** WSI fence */
3033 struct wsi_fence *fence_wsi;
3034 };
3035 };
3036
3037 struct anv_fence {
3038 struct vk_object_base base;
3039
3040 /* Permanent fence state. Every fence has some form of permanent state
3041 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3042 * cross-process fences) or it could just be a dummy for use internally.
3043 */
3044 struct anv_fence_impl permanent;
3045
3046 /* Temporary fence state. A fence *may* have temporary state. That state
3047 * is added to the fence by an import operation and is reset back to
3048 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3049 * state cannot be signaled because the fence must already be signaled
3050 * before the temporary state can be exported from the fence in the other
3051 * process and imported here.
3052 */
3053 struct anv_fence_impl temporary;
3054 };
3055
3056 void anv_fence_reset_temporary(struct anv_device *device,
3057 struct anv_fence *fence);
3058
3059 struct anv_event {
3060 struct vk_object_base base;
3061 uint64_t semaphore;
3062 struct anv_state state;
3063 };
3064
3065 enum anv_semaphore_type {
3066 ANV_SEMAPHORE_TYPE_NONE = 0,
3067 ANV_SEMAPHORE_TYPE_DUMMY,
3068 ANV_SEMAPHORE_TYPE_BO,
3069 ANV_SEMAPHORE_TYPE_WSI_BO,
3070 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3071 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3072 ANV_SEMAPHORE_TYPE_TIMELINE,
3073 };
3074
3075 struct anv_timeline_point {
3076 struct list_head link;
3077
3078 uint64_t serial;
3079
3080 /* Number of waiter on this point, when > 0 the point should not be garbage
3081 * collected.
3082 */
3083 int waiting;
3084
3085 /* BO used for synchronization. */
3086 struct anv_bo *bo;
3087 };
3088
3089 struct anv_timeline {
3090 pthread_mutex_t mutex;
3091 pthread_cond_t cond;
3092
3093 uint64_t highest_past;
3094 uint64_t highest_pending;
3095
3096 struct list_head points;
3097 struct list_head free_points;
3098 };
3099
3100 struct anv_semaphore_impl {
3101 enum anv_semaphore_type type;
3102
3103 union {
3104 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3105 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3106 * object list on any execbuf2 calls for which this semaphore is used as
3107 * a wait or signal fence. When used as a signal fence or when type ==
3108 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3109 */
3110 struct anv_bo *bo;
3111
3112 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3113 * If the semaphore is in the unsignaled state due to either just being
3114 * created or because it has been used for a wait, fd will be -1.
3115 */
3116 int fd;
3117
3118 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3119 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3120 * import so we don't need to bother with a userspace cache.
3121 */
3122 uint32_t syncobj;
3123
3124 /* Non shareable timeline semaphore
3125 *
3126 * Used when kernel don't have support for timeline semaphores.
3127 */
3128 struct anv_timeline timeline;
3129 };
3130 };
3131
3132 struct anv_semaphore {
3133 struct vk_object_base base;
3134
3135 uint32_t refcount;
3136
3137 /* Permanent semaphore state. Every semaphore has some form of permanent
3138 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3139 * (for cross-process semaphores0 or it could just be a dummy for use
3140 * internally.
3141 */
3142 struct anv_semaphore_impl permanent;
3143
3144 /* Temporary semaphore state. A semaphore *may* have temporary state.
3145 * That state is added to the semaphore by an import operation and is reset
3146 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3147 * semaphore with temporary state cannot be signaled because the semaphore
3148 * must already be signaled before the temporary state can be exported from
3149 * the semaphore in the other process and imported here.
3150 */
3151 struct anv_semaphore_impl temporary;
3152 };
3153
3154 void anv_semaphore_reset_temporary(struct anv_device *device,
3155 struct anv_semaphore *semaphore);
3156
3157 struct anv_shader_module {
3158 struct vk_object_base base;
3159
3160 unsigned char sha1[20];
3161 uint32_t size;
3162 char data[0];
3163 };
3164
3165 static inline gl_shader_stage
3166 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3167 {
3168 assert(__builtin_popcount(vk_stage) == 1);
3169 return ffs(vk_stage) - 1;
3170 }
3171
3172 static inline VkShaderStageFlagBits
3173 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3174 {
3175 return (1 << mesa_stage);
3176 }
3177
3178 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3179
3180 #define anv_foreach_stage(stage, stage_bits) \
3181 for (gl_shader_stage stage, \
3182 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3183 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3184 __tmp &= ~(1 << (stage)))
3185
3186 struct anv_pipeline_bind_map {
3187 unsigned char surface_sha1[20];
3188 unsigned char sampler_sha1[20];
3189 unsigned char push_sha1[20];
3190
3191 uint32_t surface_count;
3192 uint32_t sampler_count;
3193
3194 struct anv_pipeline_binding * surface_to_descriptor;
3195 struct anv_pipeline_binding * sampler_to_descriptor;
3196
3197 struct anv_push_range push_ranges[4];
3198 };
3199
3200 struct anv_shader_bin_key {
3201 uint32_t size;
3202 uint8_t data[0];
3203 };
3204
3205 struct anv_shader_bin {
3206 uint32_t ref_cnt;
3207
3208 gl_shader_stage stage;
3209
3210 const struct anv_shader_bin_key *key;
3211
3212 struct anv_state kernel;
3213 uint32_t kernel_size;
3214
3215 struct anv_state constant_data;
3216 uint32_t constant_data_size;
3217
3218 const struct brw_stage_prog_data *prog_data;
3219 uint32_t prog_data_size;
3220
3221 struct brw_compile_stats stats[3];
3222 uint32_t num_stats;
3223
3224 struct nir_xfb_info *xfb_info;
3225
3226 struct anv_pipeline_bind_map bind_map;
3227 };
3228
3229 struct anv_shader_bin *
3230 anv_shader_bin_create(struct anv_device *device,
3231 gl_shader_stage stage,
3232 const void *key, uint32_t key_size,
3233 const void *kernel, uint32_t kernel_size,
3234 const void *constant_data, uint32_t constant_data_size,
3235 const struct brw_stage_prog_data *prog_data,
3236 uint32_t prog_data_size,
3237 const struct brw_compile_stats *stats, uint32_t num_stats,
3238 const struct nir_xfb_info *xfb_info,
3239 const struct anv_pipeline_bind_map *bind_map);
3240
3241 void
3242 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3243
3244 static inline void
3245 anv_shader_bin_ref(struct anv_shader_bin *shader)
3246 {
3247 assert(shader && shader->ref_cnt >= 1);
3248 p_atomic_inc(&shader->ref_cnt);
3249 }
3250
3251 static inline void
3252 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3253 {
3254 assert(shader && shader->ref_cnt >= 1);
3255 if (p_atomic_dec_zero(&shader->ref_cnt))
3256 anv_shader_bin_destroy(device, shader);
3257 }
3258
3259 struct anv_pipeline_executable {
3260 gl_shader_stage stage;
3261
3262 struct brw_compile_stats stats;
3263
3264 char *nir;
3265 char *disasm;
3266 };
3267
3268 enum anv_pipeline_type {
3269 ANV_PIPELINE_GRAPHICS,
3270 ANV_PIPELINE_COMPUTE,
3271 };
3272
3273 struct anv_pipeline {
3274 struct vk_object_base base;
3275
3276 struct anv_device * device;
3277
3278 struct anv_batch batch;
3279 struct anv_reloc_list batch_relocs;
3280
3281 void * mem_ctx;
3282
3283 enum anv_pipeline_type type;
3284 VkPipelineCreateFlags flags;
3285
3286 struct util_dynarray executables;
3287
3288 const struct gen_l3_config * l3_config;
3289 };
3290
3291 struct anv_graphics_pipeline {
3292 struct anv_pipeline base;
3293
3294 uint32_t batch_data[512];
3295
3296 anv_cmd_dirty_mask_t dynamic_state_mask;
3297 struct anv_dynamic_state dynamic_state;
3298
3299 uint32_t topology;
3300
3301 struct anv_subpass * subpass;
3302
3303 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3304
3305 VkShaderStageFlags active_stages;
3306
3307 bool primitive_restart;
3308 bool writes_depth;
3309 bool depth_test_enable;
3310 bool writes_stencil;
3311 bool stencil_test_enable;
3312 bool depth_clamp_enable;
3313 bool depth_clip_enable;
3314 bool sample_shading_enable;
3315 bool kill_pixel;
3316 bool depth_bounds_test_enable;
3317
3318 /* When primitive replication is used, subpass->view_mask will describe what
3319 * views to replicate.
3320 */
3321 bool use_primitive_replication;
3322
3323 struct anv_state blend_state;
3324
3325 uint32_t vb_used;
3326 struct anv_pipeline_vertex_binding {
3327 uint32_t stride;
3328 bool instanced;
3329 uint32_t instance_divisor;
3330 } vb[MAX_VBS];
3331
3332 struct {
3333 uint32_t sf[7];
3334 uint32_t depth_stencil_state[3];
3335 } gen7;
3336
3337 struct {
3338 uint32_t sf[4];
3339 uint32_t raster[5];
3340 uint32_t wm_depth_stencil[3];
3341 } gen8;
3342
3343 struct {
3344 uint32_t wm_depth_stencil[4];
3345 } gen9;
3346 };
3347
3348 struct anv_compute_pipeline {
3349 struct anv_pipeline base;
3350
3351 struct anv_shader_bin * cs;
3352 uint32_t cs_right_mask;
3353 uint32_t batch_data[9];
3354 uint32_t interface_descriptor_data[8];
3355 };
3356
3357 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3358 static inline struct anv_##pipe_type##_pipeline * \
3359 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3360 { \
3361 assert(pipeline->type == pipe_enum); \
3362 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3363 }
3364
3365 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3366 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3367
3368 static inline bool
3369 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3370 gl_shader_stage stage)
3371 {
3372 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3373 }
3374
3375 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3376 static inline const struct brw_##prefix##_prog_data * \
3377 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3378 { \
3379 if (anv_pipeline_has_stage(pipeline, stage)) { \
3380 return (const struct brw_##prefix##_prog_data *) \
3381 pipeline->shaders[stage]->prog_data; \
3382 } else { \
3383 return NULL; \
3384 } \
3385 }
3386
3387 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3388 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3389 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3390 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3391 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3392
3393 static inline const struct brw_cs_prog_data *
3394 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3395 {
3396 assert(pipeline->cs);
3397 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3398 }
3399
3400 static inline const struct brw_vue_prog_data *
3401 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3402 {
3403 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3404 return &get_gs_prog_data(pipeline)->base;
3405 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3406 return &get_tes_prog_data(pipeline)->base;
3407 else
3408 return &get_vs_prog_data(pipeline)->base;
3409 }
3410
3411 VkResult
3412 anv_pipeline_init(struct anv_pipeline *pipeline,
3413 struct anv_device *device,
3414 enum anv_pipeline_type type,
3415 VkPipelineCreateFlags flags,
3416 const VkAllocationCallbacks *pAllocator);
3417
3418 void
3419 anv_pipeline_finish(struct anv_pipeline *pipeline,
3420 struct anv_device *device,
3421 const VkAllocationCallbacks *pAllocator);
3422
3423 VkResult
3424 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3425 struct anv_pipeline_cache *cache,
3426 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3427 const VkAllocationCallbacks *alloc);
3428
3429 VkResult
3430 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3431 struct anv_pipeline_cache *cache,
3432 const VkComputePipelineCreateInfo *info,
3433 const struct anv_shader_module *module,
3434 const char *entrypoint,
3435 const VkSpecializationInfo *spec_info);
3436
3437 struct anv_cs_parameters {
3438 uint32_t group_size;
3439 uint32_t simd_size;
3440 uint32_t threads;
3441 };
3442
3443 struct anv_cs_parameters
3444 anv_cs_parameters(const struct anv_compute_pipeline *pipeline);
3445
3446 struct anv_format_plane {
3447 enum isl_format isl_format:16;
3448 struct isl_swizzle swizzle;
3449
3450 /* Whether this plane contains chroma channels */
3451 bool has_chroma;
3452
3453 /* For downscaling of YUV planes */
3454 uint8_t denominator_scales[2];
3455
3456 /* How to map sampled ycbcr planes to a single 4 component element. */
3457 struct isl_swizzle ycbcr_swizzle;
3458
3459 /* What aspect is associated to this plane */
3460 VkImageAspectFlags aspect;
3461 };
3462
3463
3464 struct anv_format {
3465 struct anv_format_plane planes[3];
3466 VkFormat vk_format;
3467 uint8_t n_planes;
3468 bool can_ycbcr;
3469 };
3470
3471 /**
3472 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3473 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3474 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3475 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3476 */
3477 static inline uint32_t
3478 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3479 VkImageAspectFlags aspect_mask)
3480 {
3481 switch (aspect_mask) {
3482 case VK_IMAGE_ASPECT_COLOR_BIT:
3483 case VK_IMAGE_ASPECT_DEPTH_BIT:
3484 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3485 return 0;
3486 case VK_IMAGE_ASPECT_STENCIL_BIT:
3487 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3488 return 0;
3489 /* Fall-through */
3490 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3491 return 1;
3492 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3493 return 2;
3494 default:
3495 /* Purposefully assert with depth/stencil aspects. */
3496 unreachable("invalid image aspect");
3497 }
3498 }
3499
3500 static inline VkImageAspectFlags
3501 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3502 uint32_t plane)
3503 {
3504 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3505 if (util_bitcount(image_aspects) > 1)
3506 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3507 return VK_IMAGE_ASPECT_COLOR_BIT;
3508 }
3509 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3510 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3511 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3512 return VK_IMAGE_ASPECT_STENCIL_BIT;
3513 }
3514
3515 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3516 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3517
3518 const struct anv_format *
3519 anv_get_format(VkFormat format);
3520
3521 static inline uint32_t
3522 anv_get_format_planes(VkFormat vk_format)
3523 {
3524 const struct anv_format *format = anv_get_format(vk_format);
3525
3526 return format != NULL ? format->n_planes : 0;
3527 }
3528
3529 struct anv_format_plane
3530 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3531 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3532
3533 static inline enum isl_format
3534 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3535 VkImageAspectFlags aspect, VkImageTiling tiling)
3536 {
3537 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3538 }
3539
3540 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3541 VkImageCreateFlags create_flags,
3542 VkFormat vk_format,
3543 VkImageTiling vk_tiling,
3544 const VkImageFormatListCreateInfoKHR *fmt_list);
3545
3546 static inline struct isl_swizzle
3547 anv_swizzle_for_render(struct isl_swizzle swizzle)
3548 {
3549 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3550 * RGB as RGBA for texturing
3551 */
3552 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3553 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3554
3555 /* But it doesn't matter what we render to that channel */
3556 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3557
3558 return swizzle;
3559 }
3560
3561 void
3562 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3563
3564 /**
3565 * Subsurface of an anv_image.
3566 */
3567 struct anv_surface {
3568 /** Valid only if isl_surf::size_B > 0. */
3569 struct isl_surf isl;
3570
3571 /**
3572 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3573 */
3574 uint32_t offset;
3575 };
3576
3577 struct anv_image {
3578 struct vk_object_base base;
3579
3580 VkImageType type; /**< VkImageCreateInfo::imageType */
3581 /* The original VkFormat provided by the client. This may not match any
3582 * of the actual surface formats.
3583 */
3584 VkFormat vk_format;
3585 const struct anv_format *format;
3586
3587 VkImageAspectFlags aspects;
3588 VkExtent3D extent;
3589 uint32_t levels;
3590 uint32_t array_size;
3591 uint32_t samples; /**< VkImageCreateInfo::samples */
3592 uint32_t n_planes;
3593 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3594 VkImageUsageFlags stencil_usage;
3595 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3596 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3597
3598 /** True if this is needs to be bound to an appropriately tiled BO.
3599 *
3600 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3601 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3602 * we require a dedicated allocation so that we can know to allocate a
3603 * tiled buffer.
3604 */
3605 bool needs_set_tiling;
3606
3607 /**
3608 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3609 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3610 */
3611 uint64_t drm_format_mod;
3612
3613 VkDeviceSize size;
3614 uint32_t alignment;
3615
3616 /* Whether the image is made of several underlying buffer objects rather a
3617 * single one with different offsets.
3618 */
3619 bool disjoint;
3620
3621 /* Image was created with external format. */
3622 bool external_format;
3623
3624 /**
3625 * Image subsurfaces
3626 *
3627 * For each foo, anv_image::planes[x].surface is valid if and only if
3628 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3629 * to figure the number associated with a given aspect.
3630 *
3631 * The hardware requires that the depth buffer and stencil buffer be
3632 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3633 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3634 * allocate the depth and stencil buffers as separate surfaces in the same
3635 * bo.
3636 *
3637 * Memory layout :
3638 *
3639 * -----------------------
3640 * | surface0 | /|\
3641 * ----------------------- |
3642 * | shadow surface0 | |
3643 * ----------------------- | Plane 0
3644 * | aux surface0 | |
3645 * ----------------------- |
3646 * | fast clear colors0 | \|/
3647 * -----------------------
3648 * | surface1 | /|\
3649 * ----------------------- |
3650 * | shadow surface1 | |
3651 * ----------------------- | Plane 1
3652 * | aux surface1 | |
3653 * ----------------------- |
3654 * | fast clear colors1 | \|/
3655 * -----------------------
3656 * | ... |
3657 * | |
3658 * -----------------------
3659 */
3660 struct {
3661 /**
3662 * Offset of the entire plane (whenever the image is disjoint this is
3663 * set to 0).
3664 */
3665 uint32_t offset;
3666
3667 VkDeviceSize size;
3668 uint32_t alignment;
3669
3670 struct anv_surface surface;
3671
3672 /**
3673 * A surface which shadows the main surface and may have different
3674 * tiling. This is used for sampling using a tiling that isn't supported
3675 * for other operations.
3676 */
3677 struct anv_surface shadow_surface;
3678
3679 /**
3680 * The base aux usage for this image. For color images, this can be
3681 * either CCS_E or CCS_D depending on whether or not we can reliably
3682 * leave CCS on all the time.
3683 */
3684 enum isl_aux_usage aux_usage;
3685
3686 struct anv_surface aux_surface;
3687
3688 /**
3689 * Offset of the fast clear state (used to compute the
3690 * fast_clear_state_offset of the following planes).
3691 */
3692 uint32_t fast_clear_state_offset;
3693
3694 /**
3695 * BO associated with this plane, set when bound.
3696 */
3697 struct anv_address address;
3698
3699 /**
3700 * When destroying the image, also free the bo.
3701 * */
3702 bool bo_is_owned;
3703 } planes[3];
3704 };
3705
3706 /* The ordering of this enum is important */
3707 enum anv_fast_clear_type {
3708 /** Image does not have/support any fast-clear blocks */
3709 ANV_FAST_CLEAR_NONE = 0,
3710 /** Image has/supports fast-clear but only to the default value */
3711 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3712 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3713 ANV_FAST_CLEAR_ANY = 2,
3714 };
3715
3716 /* Returns the number of auxiliary buffer levels attached to an image. */
3717 static inline uint8_t
3718 anv_image_aux_levels(const struct anv_image * const image,
3719 VkImageAspectFlagBits aspect)
3720 {
3721 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3722 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3723 return 0;
3724
3725 /* The Gen12 CCS aux surface is represented with only one level. */
3726 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3727 image->planes[plane].surface.isl.levels :
3728 image->planes[plane].aux_surface.isl.levels;
3729 }
3730
3731 /* Returns the number of auxiliary buffer layers attached to an image. */
3732 static inline uint32_t
3733 anv_image_aux_layers(const struct anv_image * const image,
3734 VkImageAspectFlagBits aspect,
3735 const uint8_t miplevel)
3736 {
3737 assert(image);
3738
3739 /* The miplevel must exist in the main buffer. */
3740 assert(miplevel < image->levels);
3741
3742 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3743 /* There are no layers with auxiliary data because the miplevel has no
3744 * auxiliary data.
3745 */
3746 return 0;
3747 } else {
3748 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3749
3750 /* The Gen12 CCS aux surface is represented with only one layer. */
3751 const struct isl_extent4d *aux_logical_level0_px =
3752 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3753 &image->planes[plane].surface.isl.logical_level0_px :
3754 &image->planes[plane].aux_surface.isl.logical_level0_px;
3755
3756 return MAX2(aux_logical_level0_px->array_len,
3757 aux_logical_level0_px->depth >> miplevel);
3758 }
3759 }
3760
3761 static inline struct anv_address
3762 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3763 const struct anv_image *image,
3764 VkImageAspectFlagBits aspect)
3765 {
3766 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3767
3768 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3769 return anv_address_add(image->planes[plane].address,
3770 image->planes[plane].fast_clear_state_offset);
3771 }
3772
3773 static inline struct anv_address
3774 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3775 const struct anv_image *image,
3776 VkImageAspectFlagBits aspect)
3777 {
3778 struct anv_address addr =
3779 anv_image_get_clear_color_addr(device, image, aspect);
3780
3781 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3782 device->isl_dev.ss.clear_color_state_size :
3783 device->isl_dev.ss.clear_value_size;
3784 return anv_address_add(addr, clear_color_state_size);
3785 }
3786
3787 static inline struct anv_address
3788 anv_image_get_compression_state_addr(const struct anv_device *device,
3789 const struct anv_image *image,
3790 VkImageAspectFlagBits aspect,
3791 uint32_t level, uint32_t array_layer)
3792 {
3793 assert(level < anv_image_aux_levels(image, aspect));
3794 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3795 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3796 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3797
3798 struct anv_address addr =
3799 anv_image_get_fast_clear_type_addr(device, image, aspect);
3800 addr.offset += 4; /* Go past the fast clear type */
3801
3802 if (image->type == VK_IMAGE_TYPE_3D) {
3803 for (uint32_t l = 0; l < level; l++)
3804 addr.offset += anv_minify(image->extent.depth, l) * 4;
3805 } else {
3806 addr.offset += level * image->array_size * 4;
3807 }
3808 addr.offset += array_layer * 4;
3809
3810 assert(addr.offset <
3811 image->planes[plane].address.offset + image->planes[plane].size);
3812 return addr;
3813 }
3814
3815 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3816 static inline bool
3817 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3818 const struct anv_image *image)
3819 {
3820 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3821 return false;
3822
3823 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3824 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3825 * say:
3826 *
3827 * "If this field is set to AUX_HIZ, Number of Multisamples must
3828 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3829 */
3830 if (image->type == VK_IMAGE_TYPE_3D)
3831 return false;
3832
3833 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3834 * struct. There's documentation which suggests that this feature actually
3835 * reduces performance on BDW, but it has only been observed to help so
3836 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3837 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3838 */
3839 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3840 return false;
3841
3842 return image->samples == 1;
3843 }
3844
3845 static inline bool
3846 anv_image_plane_uses_aux_map(const struct anv_device *device,
3847 const struct anv_image *image,
3848 uint32_t plane)
3849 {
3850 return device->info.has_aux_map &&
3851 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3852 }
3853
3854 void
3855 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3856 const struct anv_image *image,
3857 VkImageAspectFlagBits aspect,
3858 enum isl_aux_usage aux_usage,
3859 uint32_t level,
3860 uint32_t base_layer,
3861 uint32_t layer_count);
3862
3863 void
3864 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3865 const struct anv_image *image,
3866 VkImageAspectFlagBits aspect,
3867 enum isl_aux_usage aux_usage,
3868 enum isl_format format, struct isl_swizzle swizzle,
3869 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3870 VkRect2D area, union isl_color_value clear_color);
3871 void
3872 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3873 const struct anv_image *image,
3874 VkImageAspectFlags aspects,
3875 enum isl_aux_usage depth_aux_usage,
3876 uint32_t level,
3877 uint32_t base_layer, uint32_t layer_count,
3878 VkRect2D area,
3879 float depth_value, uint8_t stencil_value);
3880 void
3881 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3882 const struct anv_image *src_image,
3883 enum isl_aux_usage src_aux_usage,
3884 uint32_t src_level, uint32_t src_base_layer,
3885 const struct anv_image *dst_image,
3886 enum isl_aux_usage dst_aux_usage,
3887 uint32_t dst_level, uint32_t dst_base_layer,
3888 VkImageAspectFlagBits aspect,
3889 uint32_t src_x, uint32_t src_y,
3890 uint32_t dst_x, uint32_t dst_y,
3891 uint32_t width, uint32_t height,
3892 uint32_t layer_count,
3893 enum blorp_filter filter);
3894 void
3895 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3896 const struct anv_image *image,
3897 VkImageAspectFlagBits aspect, uint32_t level,
3898 uint32_t base_layer, uint32_t layer_count,
3899 enum isl_aux_op hiz_op);
3900 void
3901 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3902 const struct anv_image *image,
3903 VkImageAspectFlags aspects,
3904 uint32_t level,
3905 uint32_t base_layer, uint32_t layer_count,
3906 VkRect2D area, uint8_t stencil_value);
3907 void
3908 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3909 const struct anv_image *image,
3910 enum isl_format format, struct isl_swizzle swizzle,
3911 VkImageAspectFlagBits aspect,
3912 uint32_t base_layer, uint32_t layer_count,
3913 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3914 bool predicate);
3915 void
3916 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3917 const struct anv_image *image,
3918 enum isl_format format, struct isl_swizzle swizzle,
3919 VkImageAspectFlagBits aspect, uint32_t level,
3920 uint32_t base_layer, uint32_t layer_count,
3921 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3922 bool predicate);
3923
3924 void
3925 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3926 const struct anv_image *image,
3927 VkImageAspectFlagBits aspect,
3928 uint32_t base_level, uint32_t level_count,
3929 uint32_t base_layer, uint32_t layer_count);
3930
3931 enum isl_aux_state
3932 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3933 const struct anv_image *image,
3934 const VkImageAspectFlagBits aspect,
3935 const VkImageLayout layout);
3936
3937 enum isl_aux_usage
3938 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3939 const struct anv_image *image,
3940 const VkImageAspectFlagBits aspect,
3941 const VkImageUsageFlagBits usage,
3942 const VkImageLayout layout);
3943
3944 enum anv_fast_clear_type
3945 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3946 const struct anv_image * const image,
3947 const VkImageAspectFlagBits aspect,
3948 const VkImageLayout layout);
3949
3950 /* This is defined as a macro so that it works for both
3951 * VkImageSubresourceRange and VkImageSubresourceLayers
3952 */
3953 #define anv_get_layerCount(_image, _range) \
3954 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3955 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3956
3957 static inline uint32_t
3958 anv_get_levelCount(const struct anv_image *image,
3959 const VkImageSubresourceRange *range)
3960 {
3961 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3962 image->levels - range->baseMipLevel : range->levelCount;
3963 }
3964
3965 static inline VkImageAspectFlags
3966 anv_image_expand_aspects(const struct anv_image *image,
3967 VkImageAspectFlags aspects)
3968 {
3969 /* If the underlying image has color plane aspects and
3970 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3971 * the underlying image. */
3972 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3973 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3974 return image->aspects;
3975
3976 return aspects;
3977 }
3978
3979 static inline bool
3980 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3981 VkImageAspectFlags aspects2)
3982 {
3983 if (aspects1 == aspects2)
3984 return true;
3985
3986 /* Only 1 color aspects are compatibles. */
3987 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3988 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3989 util_bitcount(aspects1) == util_bitcount(aspects2))
3990 return true;
3991
3992 return false;
3993 }
3994
3995 struct anv_image_view {
3996 struct vk_object_base base;
3997
3998 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3999
4000 VkImageAspectFlags aspect_mask;
4001 VkFormat vk_format;
4002 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
4003
4004 unsigned n_planes;
4005 struct {
4006 uint32_t image_plane;
4007
4008 struct isl_view isl;
4009
4010 /**
4011 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4012 * image layout of SHADER_READ_ONLY_OPTIMAL or
4013 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
4014 */
4015 struct anv_surface_state optimal_sampler_surface_state;
4016
4017 /**
4018 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4019 * image layout of GENERAL.
4020 */
4021 struct anv_surface_state general_sampler_surface_state;
4022
4023 /**
4024 * RENDER_SURFACE_STATE when using image as a storage image. Separate
4025 * states for write-only and readable, using the real format for
4026 * write-only and the lowered format for readable.
4027 */
4028 struct anv_surface_state storage_surface_state;
4029 struct anv_surface_state writeonly_storage_surface_state;
4030
4031 struct brw_image_param storage_image_param;
4032 } planes[3];
4033 };
4034
4035 enum anv_image_view_state_flags {
4036 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4037 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4038 };
4039
4040 void anv_image_fill_surface_state(struct anv_device *device,
4041 const struct anv_image *image,
4042 VkImageAspectFlagBits aspect,
4043 const struct isl_view *view,
4044 isl_surf_usage_flags_t view_usage,
4045 enum isl_aux_usage aux_usage,
4046 const union isl_color_value *clear_color,
4047 enum anv_image_view_state_flags flags,
4048 struct anv_surface_state *state_inout,
4049 struct brw_image_param *image_param_out);
4050
4051 struct anv_image_create_info {
4052 const VkImageCreateInfo *vk_info;
4053
4054 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4055 isl_tiling_flags_t isl_tiling_flags;
4056
4057 /** These flags will be added to any derived from VkImageCreateInfo. */
4058 isl_surf_usage_flags_t isl_extra_usage_flags;
4059
4060 uint32_t stride;
4061 bool external_format;
4062 };
4063
4064 VkResult anv_image_create(VkDevice _device,
4065 const struct anv_image_create_info *info,
4066 const VkAllocationCallbacks* alloc,
4067 VkImage *pImage);
4068
4069 enum isl_format
4070 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4071
4072 static inline VkExtent3D
4073 anv_sanitize_image_extent(const VkImageType imageType,
4074 const VkExtent3D imageExtent)
4075 {
4076 switch (imageType) {
4077 case VK_IMAGE_TYPE_1D:
4078 return (VkExtent3D) { imageExtent.width, 1, 1 };
4079 case VK_IMAGE_TYPE_2D:
4080 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4081 case VK_IMAGE_TYPE_3D:
4082 return imageExtent;
4083 default:
4084 unreachable("invalid image type");
4085 }
4086 }
4087
4088 static inline VkOffset3D
4089 anv_sanitize_image_offset(const VkImageType imageType,
4090 const VkOffset3D imageOffset)
4091 {
4092 switch (imageType) {
4093 case VK_IMAGE_TYPE_1D:
4094 return (VkOffset3D) { imageOffset.x, 0, 0 };
4095 case VK_IMAGE_TYPE_2D:
4096 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4097 case VK_IMAGE_TYPE_3D:
4098 return imageOffset;
4099 default:
4100 unreachable("invalid image type");
4101 }
4102 }
4103
4104 VkFormatFeatureFlags
4105 anv_get_image_format_features(const struct gen_device_info *devinfo,
4106 VkFormat vk_format,
4107 const struct anv_format *anv_format,
4108 VkImageTiling vk_tiling);
4109
4110 void anv_fill_buffer_surface_state(struct anv_device *device,
4111 struct anv_state state,
4112 enum isl_format format,
4113 struct anv_address address,
4114 uint32_t range, uint32_t stride);
4115
4116 static inline void
4117 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4118 const struct anv_attachment_state *att_state,
4119 const struct anv_image_view *iview)
4120 {
4121 const struct isl_format_layout *view_fmtl =
4122 isl_format_get_layout(iview->planes[0].isl.format);
4123
4124 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4125 if (view_fmtl->channels.c.bits) \
4126 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4127
4128 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4129 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4130 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4131 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4132
4133 #undef COPY_CLEAR_COLOR_CHANNEL
4134 }
4135
4136
4137 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4138 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4139 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4140 * color as a separate entry /after/ the float color. The layout of this entry
4141 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4142 *
4143 * Since we don't know the format/bpp, we can't make any of the border colors
4144 * containing '1' work for all formats, as it would be in the wrong place for
4145 * some of them. We opt to make 32-bit integers work as this seems like the
4146 * most common option. Fortunately, transparent black works regardless, as
4147 * all zeroes is the same in every bit-size.
4148 */
4149 struct hsw_border_color {
4150 float float32[4];
4151 uint32_t _pad0[12];
4152 uint32_t uint32[4];
4153 uint32_t _pad1[108];
4154 };
4155
4156 struct gen8_border_color {
4157 union {
4158 float float32[4];
4159 uint32_t uint32[4];
4160 };
4161 /* Pad out to 64 bytes */
4162 uint32_t _pad[12];
4163 };
4164
4165 struct anv_ycbcr_conversion {
4166 struct vk_object_base base;
4167
4168 const struct anv_format * format;
4169 VkSamplerYcbcrModelConversion ycbcr_model;
4170 VkSamplerYcbcrRange ycbcr_range;
4171 VkComponentSwizzle mapping[4];
4172 VkChromaLocation chroma_offsets[2];
4173 VkFilter chroma_filter;
4174 bool chroma_reconstruction;
4175 };
4176
4177 struct anv_sampler {
4178 struct vk_object_base base;
4179
4180 uint32_t state[3][4];
4181 uint32_t n_planes;
4182 struct anv_ycbcr_conversion *conversion;
4183
4184 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4185 * and with a 32-byte stride for use as bindless samplers.
4186 */
4187 struct anv_state bindless_state;
4188
4189 struct anv_state custom_border_color;
4190 };
4191
4192 struct anv_framebuffer {
4193 struct vk_object_base base;
4194
4195 uint32_t width;
4196 uint32_t height;
4197 uint32_t layers;
4198
4199 uint32_t attachment_count;
4200 struct anv_image_view * attachments[0];
4201 };
4202
4203 struct anv_subpass_attachment {
4204 VkImageUsageFlagBits usage;
4205 uint32_t attachment;
4206 VkImageLayout layout;
4207
4208 /* Used only with attachment containing stencil data. */
4209 VkImageLayout stencil_layout;
4210 };
4211
4212 struct anv_subpass {
4213 uint32_t attachment_count;
4214
4215 /**
4216 * A pointer to all attachment references used in this subpass.
4217 * Only valid if ::attachment_count > 0.
4218 */
4219 struct anv_subpass_attachment * attachments;
4220 uint32_t input_count;
4221 struct anv_subpass_attachment * input_attachments;
4222 uint32_t color_count;
4223 struct anv_subpass_attachment * color_attachments;
4224 struct anv_subpass_attachment * resolve_attachments;
4225
4226 struct anv_subpass_attachment * depth_stencil_attachment;
4227 struct anv_subpass_attachment * ds_resolve_attachment;
4228 VkResolveModeFlagBitsKHR depth_resolve_mode;
4229 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4230
4231 uint32_t view_mask;
4232
4233 /** Subpass has a depth/stencil self-dependency */
4234 bool has_ds_self_dep;
4235
4236 /** Subpass has at least one color resolve attachment */
4237 bool has_color_resolve;
4238 };
4239
4240 static inline unsigned
4241 anv_subpass_view_count(const struct anv_subpass *subpass)
4242 {
4243 return MAX2(1, util_bitcount(subpass->view_mask));
4244 }
4245
4246 struct anv_render_pass_attachment {
4247 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4248 * its members individually.
4249 */
4250 VkFormat format;
4251 uint32_t samples;
4252 VkImageUsageFlags usage;
4253 VkAttachmentLoadOp load_op;
4254 VkAttachmentStoreOp store_op;
4255 VkAttachmentLoadOp stencil_load_op;
4256 VkImageLayout initial_layout;
4257 VkImageLayout final_layout;
4258 VkImageLayout first_subpass_layout;
4259
4260 VkImageLayout stencil_initial_layout;
4261 VkImageLayout stencil_final_layout;
4262
4263 /* The subpass id in which the attachment will be used last. */
4264 uint32_t last_subpass_idx;
4265 };
4266
4267 struct anv_render_pass {
4268 struct vk_object_base base;
4269
4270 uint32_t attachment_count;
4271 uint32_t subpass_count;
4272 /* An array of subpass_count+1 flushes, one per subpass boundary */
4273 enum anv_pipe_bits * subpass_flushes;
4274 struct anv_render_pass_attachment * attachments;
4275 struct anv_subpass subpasses[0];
4276 };
4277
4278 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4279
4280 #define OA_SNAPSHOT_SIZE (256)
4281 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4282
4283 struct anv_query_pool {
4284 struct vk_object_base base;
4285
4286 VkQueryType type;
4287 VkQueryPipelineStatisticFlags pipeline_statistics;
4288 /** Stride between slots, in bytes */
4289 uint32_t stride;
4290 /** Number of slots in this query pool */
4291 uint32_t slots;
4292 struct anv_bo * bo;
4293
4294 /* Perf queries : */
4295 struct anv_bo reset_bo;
4296 uint32_t n_counters;
4297 struct gen_perf_counter_pass *counter_pass;
4298 uint32_t n_passes;
4299 struct gen_perf_query_info **pass_query;
4300 };
4301
4302 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4303 uint32_t pass)
4304 {
4305 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4306 }
4307
4308 int anv_get_instance_entrypoint_index(const char *name);
4309 int anv_get_device_entrypoint_index(const char *name);
4310 int anv_get_physical_device_entrypoint_index(const char *name);
4311
4312 const char *anv_get_instance_entry_name(int index);
4313 const char *anv_get_physical_device_entry_name(int index);
4314 const char *anv_get_device_entry_name(int index);
4315
4316 bool
4317 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4318 const struct anv_instance_extension_table *instance);
4319 bool
4320 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4321 const struct anv_instance_extension_table *instance);
4322 bool
4323 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4324 const struct anv_instance_extension_table *instance,
4325 const struct anv_device_extension_table *device);
4326
4327 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4328 const char *name);
4329
4330 void anv_dump_image_to_ppm(struct anv_device *device,
4331 struct anv_image *image, unsigned miplevel,
4332 unsigned array_layer, VkImageAspectFlagBits aspect,
4333 const char *filename);
4334
4335 enum anv_dump_action {
4336 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4337 };
4338
4339 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4340 void anv_dump_finish(void);
4341
4342 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4343
4344 static inline uint32_t
4345 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4346 {
4347 /* This function must be called from within a subpass. */
4348 assert(cmd_state->pass && cmd_state->subpass);
4349
4350 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4351
4352 /* The id of this subpass shouldn't exceed the number of subpasses in this
4353 * render pass minus 1.
4354 */
4355 assert(subpass_id < cmd_state->pass->subpass_count);
4356 return subpass_id;
4357 }
4358
4359 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4360 void anv_device_perf_init(struct anv_device *device);
4361 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4362 struct anv_query_pool *pool, uint32_t pass,
4363 const struct gen_perf_query_result *accumulated_results,
4364 union VkPerformanceCounterResultKHR *results);
4365
4366 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4367 VK_FROM_HANDLE(__anv_type, __name, __handle)
4368
4369 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4370 VK_OBJECT_TYPE_COMMAND_BUFFER)
4371 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4372 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4373 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4374 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4375 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4376
4377 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4378 VK_OBJECT_TYPE_COMMAND_POOL)
4379 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4380 VK_OBJECT_TYPE_BUFFER)
4381 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4382 VK_OBJECT_TYPE_BUFFER_VIEW)
4383 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4384 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4385 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4386 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4387 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4388 VkDescriptorSetLayout,
4389 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4390 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4391 VkDescriptorUpdateTemplate,
4392 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4393 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4394 VK_OBJECT_TYPE_DEVICE_MEMORY)
4395 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4396 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4397 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4398 VK_OBJECT_TYPE_FRAMEBUFFER)
4399 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4400 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4401 VK_OBJECT_TYPE_IMAGE_VIEW);
4402 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4403 VK_OBJECT_TYPE_PIPELINE_CACHE)
4404 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4405 VK_OBJECT_TYPE_PIPELINE)
4406 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4407 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4408 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4409 VK_OBJECT_TYPE_QUERY_POOL)
4410 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4411 VK_OBJECT_TYPE_RENDER_PASS)
4412 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4413 VK_OBJECT_TYPE_SAMPLER)
4414 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4415 VK_OBJECT_TYPE_SEMAPHORE)
4416 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4417 VK_OBJECT_TYPE_SHADER_MODULE)
4418 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4419 VkSamplerYcbcrConversion,
4420 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4421
4422 /* Gen-specific function declarations */
4423 #ifdef genX
4424 # include "anv_genX.h"
4425 #else
4426 # define genX(x) gen7_##x
4427 # include "anv_genX.h"
4428 # undef genX
4429 # define genX(x) gen75_##x
4430 # include "anv_genX.h"
4431 # undef genX
4432 # define genX(x) gen8_##x
4433 # include "anv_genX.h"
4434 # undef genX
4435 # define genX(x) gen9_##x
4436 # include "anv_genX.h"
4437 # undef genX
4438 # define genX(x) gen10_##x
4439 # include "anv_genX.h"
4440 # undef genX
4441 # define genX(x) gen11_##x
4442 # include "anv_genX.h"
4443 # undef genX
4444 # define genX(x) gen12_##x
4445 # include "anv_genX.h"
4446 # undef genX
4447 #endif
4448
4449 #endif /* ANV_PRIVATE_H */