mesa: extract helper function from _mesa_GetPointerv
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_buffer;
73 struct anv_buffer_view;
74 struct anv_image_view;
75 struct anv_instance;
76
77 struct gen_aux_map_context;
78 struct gen_l3_config;
79 struct gen_perf_config;
80
81 #include <vulkan/vulkan.h>
82 #include <vulkan/vulkan_intel.h>
83 #include <vulkan/vk_icd.h>
84
85 #include "anv_android.h"
86 #include "anv_entrypoints.h"
87 #include "anv_extensions.h"
88 #include "isl/isl.h"
89
90 #include "dev/gen_debug.h"
91 #include "common/intel_log.h"
92 #include "wsi_common.h"
93
94 /* anv Virtual Memory Layout
95 * =========================
96 *
97 * When the anv driver is determining the virtual graphics addresses of memory
98 * objects itself using the softpin mechanism, the following memory ranges
99 * will be used.
100 *
101 * Three special considerations to notice:
102 *
103 * (1) the dynamic state pool is located within the same 4 GiB as the low
104 * heap. This is to work around a VF cache issue described in a comment in
105 * anv_physical_device_init_heaps.
106 *
107 * (2) the binding table pool is located at lower addresses than the surface
108 * state pool, within a 4 GiB range. This allows surface state base addresses
109 * to cover both binding tables (16 bit offsets) and surface states (32 bit
110 * offsets).
111 *
112 * (3) the last 4 GiB of the address space is withheld from the high
113 * heap. Various hardware units will read past the end of an object for
114 * various reasons. This healthy margin prevents reads from wrapping around
115 * 48-bit addresses.
116 */
117 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
118 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
119 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
120 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
121 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
122 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
123 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
124 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
125 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
126 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
127 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
128
129 #define LOW_HEAP_SIZE \
130 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
131 #define DYNAMIC_STATE_POOL_SIZE \
132 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
133 #define BINDING_TABLE_POOL_SIZE \
134 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
135 #define SURFACE_STATE_POOL_SIZE \
136 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
137 #define INSTRUCTION_STATE_POOL_SIZE \
138 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
139
140 /* Allowing different clear colors requires us to perform a depth resolve at
141 * the end of certain render passes. This is because while slow clears store
142 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
143 * See the PRMs for examples describing when additional resolves would be
144 * necessary. To enable fast clears without requiring extra resolves, we set
145 * the clear value to a globally-defined one. We could allow different values
146 * if the user doesn't expect coherent data during or after a render passes
147 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
148 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
149 * 1.0f seems to be the only value used. The only application that doesn't set
150 * this value does so through the usage of an seemingly uninitialized clear
151 * value.
152 */
153 #define ANV_HZ_FC_VAL 1.0f
154
155 #define MAX_VBS 28
156 #define MAX_XFB_BUFFERS 4
157 #define MAX_XFB_STREAMS 4
158 #define MAX_SETS 8
159 #define MAX_RTS 8
160 #define MAX_VIEWPORTS 16
161 #define MAX_SCISSORS 16
162 #define MAX_PUSH_CONSTANTS_SIZE 128
163 #define MAX_DYNAMIC_BUFFERS 16
164 #define MAX_IMAGES 64
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
167 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
168
169 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
170 *
171 * "The surface state model is used when a Binding Table Index (specified
172 * in the message descriptor) of less than 240 is specified. In this model,
173 * the Binding Table Index is used to index into the binding table, and the
174 * binding table entry contains a pointer to the SURFACE_STATE."
175 *
176 * Binding table values above 240 are used for various things in the hardware
177 * such as stateless, stateless with incoherent cache, SLM, and bindless.
178 */
179 #define MAX_BINDING_TABLE_SIZE 240
180
181 /* The kernel relocation API has a limitation of a 32-bit delta value
182 * applied to the address before it is written which, in spite of it being
183 * unsigned, is treated as signed . Because of the way that this maps to
184 * the Vulkan API, we cannot handle an offset into a buffer that does not
185 * fit into a signed 32 bits. The only mechanism we have for dealing with
186 * this at the moment is to limit all VkDeviceMemory objects to a maximum
187 * of 2GB each. The Vulkan spec allows us to do this:
188 *
189 * "Some platforms may have a limit on the maximum size of a single
190 * allocation. For example, certain systems may fail to create
191 * allocations with a size greater than or equal to 4GB. Such a limit is
192 * implementation-dependent, and if such a failure occurs then the error
193 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
194 *
195 * We don't use vk_error here because it's not an error so much as an
196 * indication to the application that the allocation is too large.
197 */
198 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
199
200 #define ANV_SVGS_VB_INDEX MAX_VBS
201 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
202
203 /* We reserve this MI ALU register for the purpose of handling predication.
204 * Other code which uses the MI ALU should leave it alone.
205 */
206 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
207
208 /* For gen12 we set the streamout buffers using 4 separate commands
209 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
210 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
211 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
212 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
213 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
214 * 3DSTATE_SO_BUFFER_INDEX_0.
215 */
216 #define SO_BUFFER_INDEX_0_CMD 0x60
217 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
218
219 static inline uint32_t
220 align_down_npot_u32(uint32_t v, uint32_t a)
221 {
222 return v - (v % a);
223 }
224
225 static inline uint32_t
226 align_u32(uint32_t v, uint32_t a)
227 {
228 assert(a != 0 && a == (a & -a));
229 return (v + a - 1) & ~(a - 1);
230 }
231
232 static inline uint64_t
233 align_u64(uint64_t v, uint64_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline int32_t
240 align_i32(int32_t v, int32_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 /** Alignment must be a power of 2. */
247 static inline bool
248 anv_is_aligned(uintmax_t n, uintmax_t a)
249 {
250 assert(a == (a & -a));
251 return (n & (a - 1)) == 0;
252 }
253
254 static inline uint32_t
255 anv_minify(uint32_t n, uint32_t levels)
256 {
257 if (unlikely(n == 0))
258 return 0;
259 else
260 return MAX2(n >> levels, 1);
261 }
262
263 static inline float
264 anv_clamp_f(float f, float min, float max)
265 {
266 assert(min < max);
267
268 if (f > max)
269 return max;
270 else if (f < min)
271 return min;
272 else
273 return f;
274 }
275
276 static inline bool
277 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
278 {
279 if (*inout_mask & clear_mask) {
280 *inout_mask &= ~clear_mask;
281 return true;
282 } else {
283 return false;
284 }
285 }
286
287 static inline union isl_color_value
288 vk_to_isl_color(VkClearColorValue color)
289 {
290 return (union isl_color_value) {
291 .u32 = {
292 color.uint32[0],
293 color.uint32[1],
294 color.uint32[2],
295 color.uint32[3],
296 },
297 };
298 }
299
300 #define for_each_bit(b, dword) \
301 for (uint32_t __dword = (dword); \
302 (b) = __builtin_ffs(__dword) - 1, __dword; \
303 __dword &= ~(1 << (b)))
304
305 #define typed_memcpy(dest, src, count) ({ \
306 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
307 memcpy((dest), (src), (count) * sizeof(*(src))); \
308 })
309
310 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
311 * to be added here in order to utilize mapping in debug/error/perf macros.
312 */
313 #define REPORT_OBJECT_TYPE(o) \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), void*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
407 /* The void expression results in a compile-time error \
408 when assigning the result to something. */ \
409 (void)0)))))))))))))))))))))))))))))))
410
411 /* Whenever we generate an error, pass it through this function. Useful for
412 * debugging, where we can break on it. Only call at error site, not when
413 * propagating errors. Might be useful to plug in a stack trace here.
414 */
415
416 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
417 VkDebugReportObjectTypeEXT type, VkResult error,
418 const char *file, int line, const char *format,
419 va_list args);
420
421 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
422 VkDebugReportObjectTypeEXT type, VkResult error,
423 const char *file, int line, const char *format, ...)
424 anv_printflike(7, 8);
425
426 #ifdef DEBUG
427 #define vk_error(error) __vk_errorf(NULL, NULL,\
428 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
429 error, __FILE__, __LINE__, NULL)
430 #define vk_errorv(instance, obj, error, format, args)\
431 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
432 __FILE__, __LINE__, format, args)
433 #define vk_errorf(instance, obj, error, format, ...)\
434 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, ## __VA_ARGS__)
436 #else
437 #define vk_error(error) error
438 #define vk_errorf(instance, obj, error, format, ...) error
439 #endif
440
441 /**
442 * Warn on ignored extension structs.
443 *
444 * The Vulkan spec requires us to ignore unsupported or unknown structs in
445 * a pNext chain. In debug mode, emitting warnings for ignored structs may
446 * help us discover structs that we should not have ignored.
447 *
448 *
449 * From the Vulkan 1.0.38 spec:
450 *
451 * Any component of the implementation (the loader, any enabled layers,
452 * and drivers) must skip over, without processing (other than reading the
453 * sType and pNext members) any chained structures with sType values not
454 * defined by extensions supported by that component.
455 */
456 #define anv_debug_ignored_stype(sType) \
457 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
458
459 void __anv_perf_warn(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, const char *file,
461 int line, const char *format, ...)
462 anv_printflike(6, 7);
463 void anv_loge(const char *format, ...) anv_printflike(1, 2);
464 void anv_loge_v(const char *format, va_list va);
465
466 /**
467 * Print a FINISHME message, including its source location.
468 */
469 #define anv_finishme(format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported) { \
473 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
474 ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /**
480 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
481 */
482 #define anv_perf_warn(instance, obj, format, ...) \
483 do { \
484 static bool reported = false; \
485 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
486 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
487 format, ##__VA_ARGS__); \
488 reported = true; \
489 } \
490 } while (0)
491
492 /* A non-fatal assert. Useful for debugging. */
493 #ifdef DEBUG
494 #define anv_assert(x) ({ \
495 if (unlikely(!(x))) \
496 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
497 })
498 #else
499 #define anv_assert(x)
500 #endif
501
502 /* A multi-pointer allocator
503 *
504 * When copying data structures from the user (such as a render pass), it's
505 * common to need to allocate data for a bunch of different things. Instead
506 * of doing several allocations and having to handle all of the error checking
507 * that entails, it can be easier to do a single allocation. This struct
508 * helps facilitate that. The intended usage looks like this:
509 *
510 * ANV_MULTIALLOC(ma)
511 * anv_multialloc_add(&ma, &main_ptr, 1);
512 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
513 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
514 *
515 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
516 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
517 */
518 struct anv_multialloc {
519 size_t size;
520 size_t align;
521
522 uint32_t ptr_count;
523 void **ptrs[8];
524 };
525
526 #define ANV_MULTIALLOC_INIT \
527 ((struct anv_multialloc) { 0, })
528
529 #define ANV_MULTIALLOC(_name) \
530 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
531
532 __attribute__((always_inline))
533 static inline void
534 _anv_multialloc_add(struct anv_multialloc *ma,
535 void **ptr, size_t size, size_t align)
536 {
537 size_t offset = align_u64(ma->size, align);
538 ma->size = offset + size;
539 ma->align = MAX2(ma->align, align);
540
541 /* Store the offset in the pointer. */
542 *ptr = (void *)(uintptr_t)offset;
543
544 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
545 ma->ptrs[ma->ptr_count++] = ptr;
546 }
547
548 #define anv_multialloc_add_size(_ma, _ptr, _size) \
549 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
550
551 #define anv_multialloc_add(_ma, _ptr, _count) \
552 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
553
554 __attribute__((always_inline))
555 static inline void *
556 anv_multialloc_alloc(struct anv_multialloc *ma,
557 const VkAllocationCallbacks *alloc,
558 VkSystemAllocationScope scope)
559 {
560 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
561 if (!ptr)
562 return NULL;
563
564 /* Fill out each of the pointers with their final value.
565 *
566 * for (uint32_t i = 0; i < ma->ptr_count; i++)
567 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
568 *
569 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
570 * constant, GCC is incapable of figuring this out and unrolling the loop
571 * so we have to give it a little help.
572 */
573 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
574 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
575 if ((_i) < ma->ptr_count) \
576 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
577 _ANV_MULTIALLOC_UPDATE_POINTER(0);
578 _ANV_MULTIALLOC_UPDATE_POINTER(1);
579 _ANV_MULTIALLOC_UPDATE_POINTER(2);
580 _ANV_MULTIALLOC_UPDATE_POINTER(3);
581 _ANV_MULTIALLOC_UPDATE_POINTER(4);
582 _ANV_MULTIALLOC_UPDATE_POINTER(5);
583 _ANV_MULTIALLOC_UPDATE_POINTER(6);
584 _ANV_MULTIALLOC_UPDATE_POINTER(7);
585 #undef _ANV_MULTIALLOC_UPDATE_POINTER
586
587 return ptr;
588 }
589
590 __attribute__((always_inline))
591 static inline void *
592 anv_multialloc_alloc2(struct anv_multialloc *ma,
593 const VkAllocationCallbacks *parent_alloc,
594 const VkAllocationCallbacks *alloc,
595 VkSystemAllocationScope scope)
596 {
597 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
598 }
599
600 struct anv_bo {
601 uint32_t gem_handle;
602
603 uint32_t refcount;
604
605 /* Index into the current validation list. This is used by the
606 * validation list building alrogithm to track which buffers are already
607 * in the validation list so that we can ensure uniqueness.
608 */
609 uint32_t index;
610
611 /* Index for use with util_sparse_array_free_list */
612 uint32_t free_index;
613
614 /* Last known offset. This value is provided by the kernel when we
615 * execbuf and is used as the presumed offset for the next bunch of
616 * relocations.
617 */
618 uint64_t offset;
619
620 uint64_t size;
621
622 /* Map for internally mapped BOs.
623 *
624 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
625 */
626 void *map;
627
628 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
629 uint32_t flags;
630
631 /** True if this BO may be shared with other processes */
632 bool is_external:1;
633
634 /** True if this BO is a wrapper
635 *
636 * When set to true, none of the fields in this BO are meaningful except
637 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
638 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
639 * is set in the physical device.
640 */
641 bool is_wrapper:1;
642
643 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
644 bool has_fixed_address:1;
645
646 /** True if this BO wraps a host pointer */
647 bool from_host_ptr:1;
648 };
649
650 static inline struct anv_bo *
651 anv_bo_unwrap(struct anv_bo *bo)
652 {
653 while (bo->is_wrapper)
654 bo = bo->map;
655 return bo;
656 }
657
658 /* Represents a lock-free linked list of "free" things. This is used by
659 * both the block pool and the state pools. Unfortunately, in order to
660 * solve the ABA problem, we can't use a single uint32_t head.
661 */
662 union anv_free_list {
663 struct {
664 uint32_t offset;
665
666 /* A simple count that is incremented every time the head changes. */
667 uint32_t count;
668 };
669 /* Make sure it's aligned to 64 bits. This will make atomic operations
670 * faster on 32 bit platforms.
671 */
672 uint64_t u64 __attribute__ ((aligned (8)));
673 };
674
675 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
676
677 struct anv_block_state {
678 union {
679 struct {
680 uint32_t next;
681 uint32_t end;
682 };
683 /* Make sure it's aligned to 64 bits. This will make atomic operations
684 * faster on 32 bit platforms.
685 */
686 uint64_t u64 __attribute__ ((aligned (8)));
687 };
688 };
689
690 #define anv_block_pool_foreach_bo(bo, pool) \
691 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
692 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
693 _pp_bo++)
694
695 #define ANV_MAX_BLOCK_POOL_BOS 20
696
697 struct anv_block_pool {
698 struct anv_device *device;
699 bool use_softpin;
700
701 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
702 * around the actual BO so that we grow the pool after the wrapper BO has
703 * been put in a relocation list. This is only used in the non-softpin
704 * case.
705 */
706 struct anv_bo wrapper_bo;
707
708 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
709 struct anv_bo *bo;
710 uint32_t nbos;
711
712 uint64_t size;
713
714 /* The address where the start of the pool is pinned. The various bos that
715 * are created as the pool grows will have addresses in the range
716 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
717 */
718 uint64_t start_address;
719
720 /* The offset from the start of the bo to the "center" of the block
721 * pool. Pointers to allocated blocks are given by
722 * bo.map + center_bo_offset + offsets.
723 */
724 uint32_t center_bo_offset;
725
726 /* Current memory map of the block pool. This pointer may or may not
727 * point to the actual beginning of the block pool memory. If
728 * anv_block_pool_alloc_back has ever been called, then this pointer
729 * will point to the "center" position of the buffer and all offsets
730 * (negative or positive) given out by the block pool alloc functions
731 * will be valid relative to this pointer.
732 *
733 * In particular, map == bo.map + center_offset
734 *
735 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
736 * since it will handle the softpin case as well, where this points to NULL.
737 */
738 void *map;
739 int fd;
740
741 /**
742 * Array of mmaps and gem handles owned by the block pool, reclaimed when
743 * the block pool is destroyed.
744 */
745 struct u_vector mmap_cleanups;
746
747 struct anv_block_state state;
748
749 struct anv_block_state back_state;
750 };
751
752 /* Block pools are backed by a fixed-size 1GB memfd */
753 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
754
755 /* The center of the block pool is also the middle of the memfd. This may
756 * change in the future if we decide differently for some reason.
757 */
758 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
759
760 static inline uint32_t
761 anv_block_pool_size(struct anv_block_pool *pool)
762 {
763 return pool->state.end + pool->back_state.end;
764 }
765
766 struct anv_state {
767 int32_t offset;
768 uint32_t alloc_size;
769 void *map;
770 uint32_t idx;
771 };
772
773 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
774
775 struct anv_fixed_size_state_pool {
776 union anv_free_list free_list;
777 struct anv_block_state block;
778 };
779
780 #define ANV_MIN_STATE_SIZE_LOG2 6
781 #define ANV_MAX_STATE_SIZE_LOG2 21
782
783 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
784
785 struct anv_free_entry {
786 uint32_t next;
787 struct anv_state state;
788 };
789
790 struct anv_state_table {
791 struct anv_device *device;
792 int fd;
793 struct anv_free_entry *map;
794 uint32_t size;
795 struct anv_block_state state;
796 struct u_vector cleanups;
797 };
798
799 struct anv_state_pool {
800 struct anv_block_pool block_pool;
801
802 struct anv_state_table table;
803
804 /* The size of blocks which will be allocated from the block pool */
805 uint32_t block_size;
806
807 /** Free list for "back" allocations */
808 union anv_free_list back_alloc_free_list;
809
810 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
811 };
812
813 struct anv_state_stream_block;
814
815 struct anv_state_stream {
816 struct anv_state_pool *state_pool;
817
818 /* The size of blocks to allocate from the state pool */
819 uint32_t block_size;
820
821 /* Current block we're allocating from */
822 struct anv_state block;
823
824 /* Offset into the current block at which to allocate the next state */
825 uint32_t next;
826
827 /* List of all blocks allocated from this pool */
828 struct anv_state_stream_block *block_list;
829 };
830
831 /* The block_pool functions exported for testing only. The block pool should
832 * only be used via a state pool (see below).
833 */
834 VkResult anv_block_pool_init(struct anv_block_pool *pool,
835 struct anv_device *device,
836 uint64_t start_address,
837 uint32_t initial_size);
838 void anv_block_pool_finish(struct anv_block_pool *pool);
839 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
840 uint32_t block_size, uint32_t *padding);
841 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
842 uint32_t block_size);
843 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
844
845 VkResult anv_state_pool_init(struct anv_state_pool *pool,
846 struct anv_device *device,
847 uint64_t start_address,
848 uint32_t block_size);
849 void anv_state_pool_finish(struct anv_state_pool *pool);
850 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
851 uint32_t state_size, uint32_t alignment);
852 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
853 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
854 void anv_state_stream_init(struct anv_state_stream *stream,
855 struct anv_state_pool *state_pool,
856 uint32_t block_size);
857 void anv_state_stream_finish(struct anv_state_stream *stream);
858 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
859 uint32_t size, uint32_t alignment);
860
861 VkResult anv_state_table_init(struct anv_state_table *table,
862 struct anv_device *device,
863 uint32_t initial_entries);
864 void anv_state_table_finish(struct anv_state_table *table);
865 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
866 uint32_t count);
867 void anv_free_list_push(union anv_free_list *list,
868 struct anv_state_table *table,
869 uint32_t idx, uint32_t count);
870 struct anv_state* anv_free_list_pop(union anv_free_list *list,
871 struct anv_state_table *table);
872
873
874 static inline struct anv_state *
875 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
876 {
877 return &table->map[idx].state;
878 }
879 /**
880 * Implements a pool of re-usable BOs. The interface is identical to that
881 * of block_pool except that each block is its own BO.
882 */
883 struct anv_bo_pool {
884 struct anv_device *device;
885
886 uint64_t bo_flags;
887
888 struct util_sparse_array_free_list free_list[16];
889 };
890
891 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
892 uint64_t bo_flags);
893 void anv_bo_pool_finish(struct anv_bo_pool *pool);
894 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
895 struct anv_bo **bo_out);
896 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
897
898 struct anv_scratch_pool {
899 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
900 struct anv_bo *bos[16][MESA_SHADER_STAGES];
901 };
902
903 void anv_scratch_pool_init(struct anv_device *device,
904 struct anv_scratch_pool *pool);
905 void anv_scratch_pool_finish(struct anv_device *device,
906 struct anv_scratch_pool *pool);
907 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
908 struct anv_scratch_pool *pool,
909 gl_shader_stage stage,
910 unsigned per_thread_scratch);
911
912 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
913 struct anv_bo_cache {
914 struct util_sparse_array bo_map;
915 pthread_mutex_t mutex;
916 };
917
918 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
919 void anv_bo_cache_finish(struct anv_bo_cache *cache);
920
921 struct anv_memory_type {
922 /* Standard bits passed on to the client */
923 VkMemoryPropertyFlags propertyFlags;
924 uint32_t heapIndex;
925
926 /* Driver-internal book-keeping */
927 VkBufferUsageFlags valid_buffer_usage;
928 };
929
930 struct anv_memory_heap {
931 /* Standard bits passed on to the client */
932 VkDeviceSize size;
933 VkMemoryHeapFlags flags;
934
935 /* Driver-internal book-keeping */
936 uint64_t vma_start;
937 uint64_t vma_size;
938 bool supports_48bit_addresses;
939 VkDeviceSize used;
940 };
941
942 struct anv_physical_device {
943 VK_LOADER_DATA _loader_data;
944
945 struct anv_instance * instance;
946 uint32_t chipset_id;
947 bool no_hw;
948 char path[20];
949 const char * name;
950 struct {
951 uint16_t domain;
952 uint8_t bus;
953 uint8_t device;
954 uint8_t function;
955 } pci_info;
956 struct gen_device_info info;
957 /** Amount of "GPU memory" we want to advertise
958 *
959 * Clearly, this value is bogus since Intel is a UMA architecture. On
960 * gen7 platforms, we are limited by GTT size unless we want to implement
961 * fine-grained tracking and GTT splitting. On Broadwell and above we are
962 * practically unlimited. However, we will never report more than 3/4 of
963 * the total system ram to try and avoid running out of RAM.
964 */
965 bool supports_48bit_addresses;
966 struct brw_compiler * compiler;
967 struct isl_device isl_dev;
968 struct gen_perf_config * perf;
969 int cmd_parser_version;
970 bool has_exec_async;
971 bool has_exec_capture;
972 bool has_exec_fence;
973 bool has_syncobj;
974 bool has_syncobj_wait;
975 bool has_context_priority;
976 bool use_softpin;
977 bool has_context_isolation;
978 bool has_mem_available;
979 bool always_use_bindless;
980
981 /** True if we can access buffers using A64 messages */
982 bool has_a64_buffer_access;
983 /** True if we can use bindless access for images */
984 bool has_bindless_images;
985 /** True if we can use bindless access for samplers */
986 bool has_bindless_samplers;
987
988 struct anv_device_extension_table supported_extensions;
989 struct anv_physical_device_dispatch_table dispatch;
990
991 uint32_t eu_total;
992 uint32_t subslice_total;
993
994 struct {
995 uint32_t type_count;
996 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
997 uint32_t heap_count;
998 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
999 } memory;
1000
1001 uint8_t driver_build_sha1[20];
1002 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1003 uint8_t driver_uuid[VK_UUID_SIZE];
1004 uint8_t device_uuid[VK_UUID_SIZE];
1005
1006 struct disk_cache * disk_cache;
1007
1008 struct wsi_device wsi_device;
1009 int local_fd;
1010 int master_fd;
1011 };
1012
1013 struct anv_app_info {
1014 const char* app_name;
1015 uint32_t app_version;
1016 const char* engine_name;
1017 uint32_t engine_version;
1018 uint32_t api_version;
1019 };
1020
1021 struct anv_instance {
1022 VK_LOADER_DATA _loader_data;
1023
1024 VkAllocationCallbacks alloc;
1025
1026 struct anv_app_info app_info;
1027
1028 struct anv_instance_extension_table enabled_extensions;
1029 struct anv_instance_dispatch_table dispatch;
1030 struct anv_device_dispatch_table device_dispatch;
1031
1032 int physicalDeviceCount;
1033 struct anv_physical_device physicalDevice;
1034
1035 bool pipeline_cache_enabled;
1036
1037 struct vk_debug_report_instance debug_report_callbacks;
1038
1039 struct driOptionCache dri_options;
1040 struct driOptionCache available_dri_options;
1041 };
1042
1043 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1044 void anv_finish_wsi(struct anv_physical_device *physical_device);
1045
1046 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1047 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1048 const char *name);
1049
1050 struct anv_queue {
1051 VK_LOADER_DATA _loader_data;
1052
1053 struct anv_device * device;
1054
1055 VkDeviceQueueCreateFlags flags;
1056 };
1057
1058 struct anv_pipeline_cache {
1059 struct anv_device * device;
1060 pthread_mutex_t mutex;
1061
1062 struct hash_table * nir_cache;
1063
1064 struct hash_table * cache;
1065 };
1066
1067 struct nir_xfb_info;
1068 struct anv_pipeline_bind_map;
1069
1070 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1071 struct anv_device *device,
1072 bool cache_enabled);
1073 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1074
1075 struct anv_shader_bin *
1076 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1077 const void *key, uint32_t key_size);
1078 struct anv_shader_bin *
1079 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1080 const void *key_data, uint32_t key_size,
1081 const void *kernel_data, uint32_t kernel_size,
1082 const void *constant_data,
1083 uint32_t constant_data_size,
1084 const struct brw_stage_prog_data *prog_data,
1085 uint32_t prog_data_size,
1086 const struct brw_compile_stats *stats,
1087 uint32_t num_stats,
1088 const struct nir_xfb_info *xfb_info,
1089 const struct anv_pipeline_bind_map *bind_map);
1090
1091 struct anv_shader_bin *
1092 anv_device_search_for_kernel(struct anv_device *device,
1093 struct anv_pipeline_cache *cache,
1094 const void *key_data, uint32_t key_size,
1095 bool *user_cache_bit);
1096
1097 struct anv_shader_bin *
1098 anv_device_upload_kernel(struct anv_device *device,
1099 struct anv_pipeline_cache *cache,
1100 const void *key_data, uint32_t key_size,
1101 const void *kernel_data, uint32_t kernel_size,
1102 const void *constant_data,
1103 uint32_t constant_data_size,
1104 const struct brw_stage_prog_data *prog_data,
1105 uint32_t prog_data_size,
1106 const struct brw_compile_stats *stats,
1107 uint32_t num_stats,
1108 const struct nir_xfb_info *xfb_info,
1109 const struct anv_pipeline_bind_map *bind_map);
1110
1111 struct nir_shader;
1112 struct nir_shader_compiler_options;
1113
1114 struct nir_shader *
1115 anv_device_search_for_nir(struct anv_device *device,
1116 struct anv_pipeline_cache *cache,
1117 const struct nir_shader_compiler_options *nir_options,
1118 unsigned char sha1_key[20],
1119 void *mem_ctx);
1120
1121 void
1122 anv_device_upload_nir(struct anv_device *device,
1123 struct anv_pipeline_cache *cache,
1124 const struct nir_shader *nir,
1125 unsigned char sha1_key[20]);
1126
1127 struct anv_device {
1128 VK_LOADER_DATA _loader_data;
1129
1130 VkAllocationCallbacks alloc;
1131
1132 struct anv_instance * instance;
1133 uint32_t chipset_id;
1134 bool no_hw;
1135 struct gen_device_info info;
1136 struct isl_device isl_dev;
1137 int context_id;
1138 int fd;
1139 bool can_chain_batches;
1140 bool robust_buffer_access;
1141 struct anv_device_extension_table enabled_extensions;
1142 struct anv_device_dispatch_table dispatch;
1143
1144 pthread_mutex_t vma_mutex;
1145 struct util_vma_heap vma_lo;
1146 struct util_vma_heap vma_hi;
1147 uint64_t vma_lo_available;
1148 uint64_t vma_hi_available;
1149
1150 /** List of all anv_device_memory objects */
1151 struct list_head memory_objects;
1152
1153 struct anv_bo_pool batch_bo_pool;
1154
1155 struct anv_bo_cache bo_cache;
1156
1157 struct anv_state_pool dynamic_state_pool;
1158 struct anv_state_pool instruction_state_pool;
1159 struct anv_state_pool binding_table_pool;
1160 struct anv_state_pool surface_state_pool;
1161
1162 struct anv_bo * workaround_bo;
1163 struct anv_bo * trivial_batch_bo;
1164 struct anv_bo * hiz_clear_bo;
1165
1166 struct anv_pipeline_cache default_pipeline_cache;
1167 struct blorp_context blorp;
1168
1169 struct anv_state border_colors;
1170
1171 struct anv_state slice_hash;
1172
1173 struct anv_queue queue;
1174
1175 struct anv_scratch_pool scratch_pool;
1176
1177 uint32_t default_mocs;
1178 uint32_t external_mocs;
1179
1180 pthread_mutex_t mutex;
1181 pthread_cond_t queue_submit;
1182 bool _lost;
1183
1184 struct gen_batch_decode_ctx decoder_ctx;
1185 /*
1186 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1187 * the cmd_buffer's list.
1188 */
1189 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1190
1191 int perf_fd; /* -1 if no opened */
1192 uint64_t perf_metric; /* 0 if unset */
1193
1194 struct gen_aux_map_context *aux_map_ctx;
1195 };
1196
1197 static inline struct anv_state_pool *
1198 anv_binding_table_pool(struct anv_device *device)
1199 {
1200 if (device->instance->physicalDevice.use_softpin)
1201 return &device->binding_table_pool;
1202 else
1203 return &device->surface_state_pool;
1204 }
1205
1206 static inline struct anv_state
1207 anv_binding_table_pool_alloc(struct anv_device *device) {
1208 if (device->instance->physicalDevice.use_softpin)
1209 return anv_state_pool_alloc(&device->binding_table_pool,
1210 device->binding_table_pool.block_size, 0);
1211 else
1212 return anv_state_pool_alloc_back(&device->surface_state_pool);
1213 }
1214
1215 static inline void
1216 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1217 anv_state_pool_free(anv_binding_table_pool(device), state);
1218 }
1219
1220 static inline uint32_t
1221 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1222 {
1223 if (bo->is_external)
1224 return device->external_mocs;
1225 else
1226 return device->default_mocs;
1227 }
1228
1229 void anv_device_init_blorp(struct anv_device *device);
1230 void anv_device_finish_blorp(struct anv_device *device);
1231
1232 VkResult _anv_device_set_lost(struct anv_device *device,
1233 const char *file, int line,
1234 const char *msg, ...)
1235 anv_printflike(4, 5);
1236 #define anv_device_set_lost(dev, ...) \
1237 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1238
1239 static inline bool
1240 anv_device_is_lost(struct anv_device *device)
1241 {
1242 return unlikely(device->_lost);
1243 }
1244
1245 VkResult anv_device_execbuf(struct anv_device *device,
1246 struct drm_i915_gem_execbuffer2 *execbuf,
1247 struct anv_bo **execbuf_bos);
1248 VkResult anv_device_query_status(struct anv_device *device);
1249
1250
1251 enum anv_bo_alloc_flags {
1252 /** Specifies that the BO must have a 32-bit address
1253 *
1254 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1255 */
1256 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1257
1258 /** Specifies that the BO may be shared externally */
1259 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1260
1261 /** Specifies that the BO should be mapped */
1262 ANV_BO_ALLOC_MAPPED = (1 << 2),
1263
1264 /** Specifies that the BO should be snooped so we get coherency */
1265 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1266
1267 /** Specifies that the BO should be captured in error states */
1268 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1269
1270 /** Specifies that the BO will have an address assigned by the caller */
1271 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1272
1273 /** Enables implicit synchronization on the BO
1274 *
1275 * This is the opposite of EXEC_OBJECT_ASYNC.
1276 */
1277 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1278
1279 /** Enables implicit synchronization on the BO
1280 *
1281 * This is equivalent to EXEC_OBJECT_WRITE.
1282 */
1283 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1284 };
1285
1286 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1287 enum anv_bo_alloc_flags alloc_flags,
1288 struct anv_bo **bo);
1289 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1290 void *host_ptr, uint32_t size,
1291 enum anv_bo_alloc_flags alloc_flags,
1292 struct anv_bo **bo_out);
1293 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1294 enum anv_bo_alloc_flags alloc_flags,
1295 struct anv_bo **bo);
1296 VkResult anv_device_export_bo(struct anv_device *device,
1297 struct anv_bo *bo, int *fd_out);
1298 void anv_device_release_bo(struct anv_device *device,
1299 struct anv_bo *bo);
1300
1301 static inline struct anv_bo *
1302 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1303 {
1304 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1305 }
1306
1307 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1308 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1309 int64_t timeout);
1310
1311 void* anv_gem_mmap(struct anv_device *device,
1312 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1313 void anv_gem_munmap(void *p, uint64_t size);
1314 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1315 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1316 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1317 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1318 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1319 int anv_gem_execbuffer(struct anv_device *device,
1320 struct drm_i915_gem_execbuffer2 *execbuf);
1321 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1322 uint32_t stride, uint32_t tiling);
1323 int anv_gem_create_context(struct anv_device *device);
1324 bool anv_gem_has_context_priority(int fd);
1325 int anv_gem_destroy_context(struct anv_device *device, int context);
1326 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1327 uint64_t value);
1328 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1329 uint64_t *value);
1330 int anv_gem_get_param(int fd, uint32_t param);
1331 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1332 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1333 int anv_gem_get_aperture(int fd, uint64_t *size);
1334 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1335 uint32_t *active, uint32_t *pending);
1336 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1337 int anv_gem_reg_read(struct anv_device *device,
1338 uint32_t offset, uint64_t *result);
1339 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1340 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1341 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1342 uint32_t read_domains, uint32_t write_domain);
1343 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1344 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1345 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1346 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1347 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1348 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1349 uint32_t handle);
1350 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1351 uint32_t handle, int fd);
1352 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1353 bool anv_gem_supports_syncobj_wait(int fd);
1354 int anv_gem_syncobj_wait(struct anv_device *device,
1355 uint32_t *handles, uint32_t num_handles,
1356 int64_t abs_timeout_ns, bool wait_all);
1357
1358 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1359 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1360
1361 struct anv_reloc_list {
1362 uint32_t num_relocs;
1363 uint32_t array_length;
1364 struct drm_i915_gem_relocation_entry * relocs;
1365 struct anv_bo ** reloc_bos;
1366 uint32_t dep_words;
1367 BITSET_WORD * deps;
1368 };
1369
1370 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1371 const VkAllocationCallbacks *alloc);
1372 void anv_reloc_list_finish(struct anv_reloc_list *list,
1373 const VkAllocationCallbacks *alloc);
1374
1375 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1376 const VkAllocationCallbacks *alloc,
1377 uint32_t offset, struct anv_bo *target_bo,
1378 uint32_t delta, uint64_t *address_u64_out);
1379
1380 struct anv_batch_bo {
1381 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1382 struct list_head link;
1383
1384 struct anv_bo * bo;
1385
1386 /* Bytes actually consumed in this batch BO */
1387 uint32_t length;
1388
1389 struct anv_reloc_list relocs;
1390 };
1391
1392 struct anv_batch {
1393 const VkAllocationCallbacks * alloc;
1394
1395 void * start;
1396 void * end;
1397 void * next;
1398
1399 struct anv_reloc_list * relocs;
1400
1401 /* This callback is called (with the associated user data) in the event
1402 * that the batch runs out of space.
1403 */
1404 VkResult (*extend_cb)(struct anv_batch *, void *);
1405 void * user_data;
1406
1407 /**
1408 * Current error status of the command buffer. Used to track inconsistent
1409 * or incomplete command buffer states that are the consequence of run-time
1410 * errors such as out of memory scenarios. We want to track this in the
1411 * batch because the command buffer object is not visible to some parts
1412 * of the driver.
1413 */
1414 VkResult status;
1415 };
1416
1417 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1418 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1419 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1420 void *location, struct anv_bo *bo, uint32_t offset);
1421 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1422 struct anv_batch *batch);
1423
1424 static inline VkResult
1425 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1426 {
1427 assert(error != VK_SUCCESS);
1428 if (batch->status == VK_SUCCESS)
1429 batch->status = error;
1430 return batch->status;
1431 }
1432
1433 static inline bool
1434 anv_batch_has_error(struct anv_batch *batch)
1435 {
1436 return batch->status != VK_SUCCESS;
1437 }
1438
1439 struct anv_address {
1440 struct anv_bo *bo;
1441 uint32_t offset;
1442 };
1443
1444 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1445
1446 static inline bool
1447 anv_address_is_null(struct anv_address addr)
1448 {
1449 return addr.bo == NULL && addr.offset == 0;
1450 }
1451
1452 static inline uint64_t
1453 anv_address_physical(struct anv_address addr)
1454 {
1455 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1456 return gen_canonical_address(addr.bo->offset + addr.offset);
1457 else
1458 return gen_canonical_address(addr.offset);
1459 }
1460
1461 static inline struct anv_address
1462 anv_address_add(struct anv_address addr, uint64_t offset)
1463 {
1464 addr.offset += offset;
1465 return addr;
1466 }
1467
1468 static inline void
1469 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1470 {
1471 unsigned reloc_size = 0;
1472 if (device->info.gen >= 8) {
1473 reloc_size = sizeof(uint64_t);
1474 *(uint64_t *)p = gen_canonical_address(v);
1475 } else {
1476 reloc_size = sizeof(uint32_t);
1477 *(uint32_t *)p = v;
1478 }
1479
1480 if (flush && !device->info.has_llc)
1481 gen_flush_range(p, reloc_size);
1482 }
1483
1484 static inline uint64_t
1485 _anv_combine_address(struct anv_batch *batch, void *location,
1486 const struct anv_address address, uint32_t delta)
1487 {
1488 if (address.bo == NULL) {
1489 return address.offset + delta;
1490 } else {
1491 assert(batch->start <= location && location < batch->end);
1492
1493 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1494 }
1495 }
1496
1497 #define __gen_address_type struct anv_address
1498 #define __gen_user_data struct anv_batch
1499 #define __gen_combine_address _anv_combine_address
1500
1501 /* Wrapper macros needed to work around preprocessor argument issues. In
1502 * particular, arguments don't get pre-evaluated if they are concatenated.
1503 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1504 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1505 * We can work around this easily enough with these helpers.
1506 */
1507 #define __anv_cmd_length(cmd) cmd ## _length
1508 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1509 #define __anv_cmd_header(cmd) cmd ## _header
1510 #define __anv_cmd_pack(cmd) cmd ## _pack
1511 #define __anv_reg_num(reg) reg ## _num
1512
1513 #define anv_pack_struct(dst, struc, ...) do { \
1514 struct struc __template = { \
1515 __VA_ARGS__ \
1516 }; \
1517 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1518 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1519 } while (0)
1520
1521 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1522 void *__dst = anv_batch_emit_dwords(batch, n); \
1523 if (__dst) { \
1524 struct cmd __template = { \
1525 __anv_cmd_header(cmd), \
1526 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1527 __VA_ARGS__ \
1528 }; \
1529 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1530 } \
1531 __dst; \
1532 })
1533
1534 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1535 do { \
1536 uint32_t *dw; \
1537 \
1538 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1539 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1540 if (!dw) \
1541 break; \
1542 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1543 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1544 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1545 } while (0)
1546
1547 #define anv_batch_emit(batch, cmd, name) \
1548 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1549 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1550 __builtin_expect(_dst != NULL, 1); \
1551 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1552 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1553 _dst = NULL; \
1554 }))
1555
1556 /* MEMORY_OBJECT_CONTROL_STATE:
1557 * .GraphicsDataTypeGFDT = 0,
1558 * .LLCCacheabilityControlLLCCC = 0,
1559 * .L3CacheabilityControlL3CC = 1,
1560 */
1561 #define GEN7_MOCS 1
1562
1563 /* MEMORY_OBJECT_CONTROL_STATE:
1564 * .LLCeLLCCacheabilityControlLLCCC = 0,
1565 * .L3CacheabilityControlL3CC = 1,
1566 */
1567 #define GEN75_MOCS 1
1568
1569 /* MEMORY_OBJECT_CONTROL_STATE:
1570 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1571 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1572 * .AgeforQUADLRU = 0
1573 */
1574 #define GEN8_MOCS 0x78
1575
1576 /* MEMORY_OBJECT_CONTROL_STATE:
1577 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1578 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1579 * .AgeforQUADLRU = 0
1580 */
1581 #define GEN8_EXTERNAL_MOCS 0x18
1582
1583 /* Skylake: MOCS is now an index into an array of 62 different caching
1584 * configurations programmed by the kernel.
1585 */
1586
1587 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1588 #define GEN9_MOCS (2 << 1)
1589
1590 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1591 #define GEN9_EXTERNAL_MOCS (1 << 1)
1592
1593 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1594 #define GEN10_MOCS GEN9_MOCS
1595 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1596
1597 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1598 #define GEN11_MOCS GEN9_MOCS
1599 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1600
1601 /* TigerLake MOCS */
1602 #define GEN12_MOCS GEN9_MOCS
1603 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1604 #define GEN12_EXTERNAL_MOCS (3 << 1)
1605
1606 struct anv_device_memory {
1607 struct list_head link;
1608
1609 struct anv_bo * bo;
1610 struct anv_memory_type * type;
1611 VkDeviceSize map_size;
1612 void * map;
1613
1614 /* If set, we are holding reference to AHardwareBuffer
1615 * which we must release when memory is freed.
1616 */
1617 struct AHardwareBuffer * ahw;
1618
1619 /* If set, this memory comes from a host pointer. */
1620 void * host_ptr;
1621 };
1622
1623 /**
1624 * Header for Vertex URB Entry (VUE)
1625 */
1626 struct anv_vue_header {
1627 uint32_t Reserved;
1628 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1629 uint32_t ViewportIndex;
1630 float PointWidth;
1631 };
1632
1633 /** Struct representing a sampled image descriptor
1634 *
1635 * This descriptor layout is used for sampled images, bare sampler, and
1636 * combined image/sampler descriptors.
1637 */
1638 struct anv_sampled_image_descriptor {
1639 /** Bindless image handle
1640 *
1641 * This is expected to already be shifted such that the 20-bit
1642 * SURFACE_STATE table index is in the top 20 bits.
1643 */
1644 uint32_t image;
1645
1646 /** Bindless sampler handle
1647 *
1648 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1649 * to the dynamic state base address.
1650 */
1651 uint32_t sampler;
1652 };
1653
1654 struct anv_texture_swizzle_descriptor {
1655 /** Texture swizzle
1656 *
1657 * See also nir_intrinsic_channel_select_intel
1658 */
1659 uint8_t swizzle[4];
1660
1661 /** Unused padding to ensure the struct is a multiple of 64 bits */
1662 uint32_t _pad;
1663 };
1664
1665 /** Struct representing a storage image descriptor */
1666 struct anv_storage_image_descriptor {
1667 /** Bindless image handles
1668 *
1669 * These are expected to already be shifted such that the 20-bit
1670 * SURFACE_STATE table index is in the top 20 bits.
1671 */
1672 uint32_t read_write;
1673 uint32_t write_only;
1674 };
1675
1676 /** Struct representing a address/range descriptor
1677 *
1678 * The fields of this struct correspond directly to the data layout of
1679 * nir_address_format_64bit_bounded_global addresses. The last field is the
1680 * offset in the NIR address so it must be zero so that when you load the
1681 * descriptor you get a pointer to the start of the range.
1682 */
1683 struct anv_address_range_descriptor {
1684 uint64_t address;
1685 uint32_t range;
1686 uint32_t zero;
1687 };
1688
1689 enum anv_descriptor_data {
1690 /** The descriptor contains a BTI reference to a surface state */
1691 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1692 /** The descriptor contains a BTI reference to a sampler state */
1693 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1694 /** The descriptor contains an actual buffer view */
1695 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1696 /** The descriptor contains auxiliary image layout data */
1697 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1698 /** The descriptor contains auxiliary image layout data */
1699 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1700 /** anv_address_range_descriptor with a buffer address and range */
1701 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1702 /** Bindless surface handle */
1703 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1704 /** Storage image handles */
1705 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1706 /** Storage image handles */
1707 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1708 };
1709
1710 struct anv_descriptor_set_binding_layout {
1711 #ifndef NDEBUG
1712 /* The type of the descriptors in this binding */
1713 VkDescriptorType type;
1714 #endif
1715
1716 /* Flags provided when this binding was created */
1717 VkDescriptorBindingFlagsEXT flags;
1718
1719 /* Bitfield representing the type of data this descriptor contains */
1720 enum anv_descriptor_data data;
1721
1722 /* Maximum number of YCbCr texture/sampler planes */
1723 uint8_t max_plane_count;
1724
1725 /* Number of array elements in this binding (or size in bytes for inline
1726 * uniform data)
1727 */
1728 uint16_t array_size;
1729
1730 /* Index into the flattend descriptor set */
1731 uint16_t descriptor_index;
1732
1733 /* Index into the dynamic state array for a dynamic buffer */
1734 int16_t dynamic_offset_index;
1735
1736 /* Index into the descriptor set buffer views */
1737 int16_t buffer_view_index;
1738
1739 /* Offset into the descriptor buffer where this descriptor lives */
1740 uint32_t descriptor_offset;
1741
1742 /* Immutable samplers (or NULL if no immutable samplers) */
1743 struct anv_sampler **immutable_samplers;
1744 };
1745
1746 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1747
1748 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1749 VkDescriptorType type);
1750
1751 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1752 const struct anv_descriptor_set_binding_layout *binding,
1753 bool sampler);
1754
1755 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1756 const struct anv_descriptor_set_binding_layout *binding,
1757 bool sampler);
1758
1759 struct anv_descriptor_set_layout {
1760 /* Descriptor set layouts can be destroyed at almost any time */
1761 uint32_t ref_cnt;
1762
1763 /* Number of bindings in this descriptor set */
1764 uint16_t binding_count;
1765
1766 /* Total size of the descriptor set with room for all array entries */
1767 uint16_t size;
1768
1769 /* Shader stages affected by this descriptor set */
1770 uint16_t shader_stages;
1771
1772 /* Number of buffer views in this descriptor set */
1773 uint16_t buffer_view_count;
1774
1775 /* Number of dynamic offsets used by this descriptor set */
1776 uint16_t dynamic_offset_count;
1777
1778 /* Size of the descriptor buffer for this descriptor set */
1779 uint32_t descriptor_buffer_size;
1780
1781 /* Bindings in this descriptor set */
1782 struct anv_descriptor_set_binding_layout binding[0];
1783 };
1784
1785 static inline void
1786 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1787 {
1788 assert(layout && layout->ref_cnt >= 1);
1789 p_atomic_inc(&layout->ref_cnt);
1790 }
1791
1792 static inline void
1793 anv_descriptor_set_layout_unref(struct anv_device *device,
1794 struct anv_descriptor_set_layout *layout)
1795 {
1796 assert(layout && layout->ref_cnt >= 1);
1797 if (p_atomic_dec_zero(&layout->ref_cnt))
1798 vk_free(&device->alloc, layout);
1799 }
1800
1801 struct anv_descriptor {
1802 VkDescriptorType type;
1803
1804 union {
1805 struct {
1806 VkImageLayout layout;
1807 struct anv_image_view *image_view;
1808 struct anv_sampler *sampler;
1809 };
1810
1811 struct {
1812 struct anv_buffer *buffer;
1813 uint64_t offset;
1814 uint64_t range;
1815 };
1816
1817 struct anv_buffer_view *buffer_view;
1818 };
1819 };
1820
1821 struct anv_descriptor_set {
1822 struct anv_descriptor_pool *pool;
1823 struct anv_descriptor_set_layout *layout;
1824 uint32_t size;
1825
1826 /* State relative to anv_descriptor_pool::bo */
1827 struct anv_state desc_mem;
1828 /* Surface state for the descriptor buffer */
1829 struct anv_state desc_surface_state;
1830
1831 uint32_t buffer_view_count;
1832 struct anv_buffer_view *buffer_views;
1833
1834 /* Link to descriptor pool's desc_sets list . */
1835 struct list_head pool_link;
1836
1837 struct anv_descriptor descriptors[0];
1838 };
1839
1840 struct anv_buffer_view {
1841 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1842 uint64_t range; /**< VkBufferViewCreateInfo::range */
1843
1844 struct anv_address address;
1845
1846 struct anv_state surface_state;
1847 struct anv_state storage_surface_state;
1848 struct anv_state writeonly_storage_surface_state;
1849
1850 struct brw_image_param storage_image_param;
1851 };
1852
1853 struct anv_push_descriptor_set {
1854 struct anv_descriptor_set set;
1855
1856 /* Put this field right behind anv_descriptor_set so it fills up the
1857 * descriptors[0] field. */
1858 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1859
1860 /** True if the descriptor set buffer has been referenced by a draw or
1861 * dispatch command.
1862 */
1863 bool set_used_on_gpu;
1864
1865 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1866 };
1867
1868 struct anv_descriptor_pool {
1869 uint32_t size;
1870 uint32_t next;
1871 uint32_t free_list;
1872
1873 struct anv_bo *bo;
1874 struct util_vma_heap bo_heap;
1875
1876 struct anv_state_stream surface_state_stream;
1877 void *surface_state_free_list;
1878
1879 struct list_head desc_sets;
1880
1881 char data[0];
1882 };
1883
1884 enum anv_descriptor_template_entry_type {
1885 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1886 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1887 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1888 };
1889
1890 struct anv_descriptor_template_entry {
1891 /* The type of descriptor in this entry */
1892 VkDescriptorType type;
1893
1894 /* Binding in the descriptor set */
1895 uint32_t binding;
1896
1897 /* Offset at which to write into the descriptor set binding */
1898 uint32_t array_element;
1899
1900 /* Number of elements to write into the descriptor set binding */
1901 uint32_t array_count;
1902
1903 /* Offset into the user provided data */
1904 size_t offset;
1905
1906 /* Stride between elements into the user provided data */
1907 size_t stride;
1908 };
1909
1910 struct anv_descriptor_update_template {
1911 VkPipelineBindPoint bind_point;
1912
1913 /* The descriptor set this template corresponds to. This value is only
1914 * valid if the template was created with the templateType
1915 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1916 */
1917 uint8_t set;
1918
1919 /* Number of entries in this template */
1920 uint32_t entry_count;
1921
1922 /* Entries of the template */
1923 struct anv_descriptor_template_entry entries[0];
1924 };
1925
1926 size_t
1927 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1928
1929 void
1930 anv_descriptor_set_write_image_view(struct anv_device *device,
1931 struct anv_descriptor_set *set,
1932 const VkDescriptorImageInfo * const info,
1933 VkDescriptorType type,
1934 uint32_t binding,
1935 uint32_t element);
1936
1937 void
1938 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1939 struct anv_descriptor_set *set,
1940 VkDescriptorType type,
1941 struct anv_buffer_view *buffer_view,
1942 uint32_t binding,
1943 uint32_t element);
1944
1945 void
1946 anv_descriptor_set_write_buffer(struct anv_device *device,
1947 struct anv_descriptor_set *set,
1948 struct anv_state_stream *alloc_stream,
1949 VkDescriptorType type,
1950 struct anv_buffer *buffer,
1951 uint32_t binding,
1952 uint32_t element,
1953 VkDeviceSize offset,
1954 VkDeviceSize range);
1955 void
1956 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1957 struct anv_descriptor_set *set,
1958 uint32_t binding,
1959 const void *data,
1960 size_t offset,
1961 size_t size);
1962
1963 void
1964 anv_descriptor_set_write_template(struct anv_device *device,
1965 struct anv_descriptor_set *set,
1966 struct anv_state_stream *alloc_stream,
1967 const struct anv_descriptor_update_template *template,
1968 const void *data);
1969
1970 VkResult
1971 anv_descriptor_set_create(struct anv_device *device,
1972 struct anv_descriptor_pool *pool,
1973 struct anv_descriptor_set_layout *layout,
1974 struct anv_descriptor_set **out_set);
1975
1976 void
1977 anv_descriptor_set_destroy(struct anv_device *device,
1978 struct anv_descriptor_pool *pool,
1979 struct anv_descriptor_set *set);
1980
1981 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1982 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1983 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1984 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1985
1986 struct anv_pipeline_binding {
1987 /* The descriptor set this surface corresponds to. The special value of
1988 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1989 * to a color attachment and not a regular descriptor.
1990 */
1991 uint8_t set;
1992
1993 /* Binding in the descriptor set */
1994 uint32_t binding;
1995
1996 /* Index in the binding */
1997 uint32_t index;
1998
1999 /* Plane in the binding index */
2000 uint8_t plane;
2001
2002 /* Input attachment index (relative to the subpass) */
2003 uint8_t input_attachment_index;
2004
2005 /* For a storage image, whether it is write-only */
2006 bool write_only;
2007 };
2008
2009 struct anv_pipeline_layout {
2010 struct {
2011 struct anv_descriptor_set_layout *layout;
2012 uint32_t dynamic_offset_start;
2013 } set[MAX_SETS];
2014
2015 uint32_t num_sets;
2016
2017 unsigned char sha1[20];
2018 };
2019
2020 struct anv_buffer {
2021 struct anv_device * device;
2022 VkDeviceSize size;
2023
2024 VkBufferUsageFlags usage;
2025
2026 /* Set when bound */
2027 struct anv_address address;
2028 };
2029
2030 static inline uint64_t
2031 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2032 {
2033 assert(offset <= buffer->size);
2034 if (range == VK_WHOLE_SIZE) {
2035 return buffer->size - offset;
2036 } else {
2037 assert(range + offset >= range);
2038 assert(range + offset <= buffer->size);
2039 return range;
2040 }
2041 }
2042
2043 enum anv_cmd_dirty_bits {
2044 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2045 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2046 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2047 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2048 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2049 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2050 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2051 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2052 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2053 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2054 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2055 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2056 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2057 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2058 };
2059 typedef uint32_t anv_cmd_dirty_mask_t;
2060
2061 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2062 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2063 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2064 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2065 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2066 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2067 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2068 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2069 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2070 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2071 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2072
2073 static inline enum anv_cmd_dirty_bits
2074 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2075 {
2076 switch (vk_state) {
2077 case VK_DYNAMIC_STATE_VIEWPORT:
2078 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2079 case VK_DYNAMIC_STATE_SCISSOR:
2080 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2081 case VK_DYNAMIC_STATE_LINE_WIDTH:
2082 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2083 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2084 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2085 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2086 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2087 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2088 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2089 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2090 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2091 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2092 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2093 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2094 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2095 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2096 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2097 default:
2098 assert(!"Unsupported dynamic state");
2099 return 0;
2100 }
2101 }
2102
2103
2104 enum anv_pipe_bits {
2105 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2106 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2107 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2108 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2109 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2110 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2111 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2112 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2113 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2114 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2115 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2116 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2117
2118 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2119 * a flush has happened but not a CS stall. The next time we do any sort
2120 * of invalidation we need to insert a CS stall at that time. Otherwise,
2121 * we would have to CS stall on every flush which could be bad.
2122 */
2123 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2124
2125 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2126 * target operations related to transfer commands with VkBuffer as
2127 * destination are ongoing. Some operations like copies on the command
2128 * streamer might need to be aware of this to trigger the appropriate stall
2129 * before they can proceed with the copy.
2130 */
2131 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2132 };
2133
2134 #define ANV_PIPE_FLUSH_BITS ( \
2135 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2136 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2137 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2138 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2139
2140 #define ANV_PIPE_STALL_BITS ( \
2141 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2142 ANV_PIPE_DEPTH_STALL_BIT | \
2143 ANV_PIPE_CS_STALL_BIT)
2144
2145 #define ANV_PIPE_INVALIDATE_BITS ( \
2146 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2147 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2148 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2149 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2150 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2151 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2152
2153 static inline enum anv_pipe_bits
2154 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2155 {
2156 enum anv_pipe_bits pipe_bits = 0;
2157
2158 unsigned b;
2159 for_each_bit(b, flags) {
2160 switch ((VkAccessFlagBits)(1 << b)) {
2161 case VK_ACCESS_SHADER_WRITE_BIT:
2162 /* We're transitioning a buffer that was previously used as write
2163 * destination through the data port. To make its content available
2164 * to future operations, flush the data cache.
2165 */
2166 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2167 break;
2168 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2169 /* We're transitioning a buffer that was previously used as render
2170 * target. To make its content available to future operations, flush
2171 * the render target cache.
2172 */
2173 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2174 break;
2175 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2176 /* We're transitioning a buffer that was previously used as depth
2177 * buffer. To make its content available to future operations, flush
2178 * the depth cache.
2179 */
2180 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2181 break;
2182 case VK_ACCESS_TRANSFER_WRITE_BIT:
2183 /* We're transitioning a buffer that was previously used as a
2184 * transfer write destination. Generic write operations include color
2185 * & depth operations as well as buffer operations like :
2186 * - vkCmdClearColorImage()
2187 * - vkCmdClearDepthStencilImage()
2188 * - vkCmdBlitImage()
2189 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2190 *
2191 * Most of these operations are implemented using Blorp which writes
2192 * through the render target, so flush that cache to make it visible
2193 * to future operations. And for depth related operations we also
2194 * need to flush the depth cache.
2195 */
2196 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2197 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2198 break;
2199 case VK_ACCESS_MEMORY_WRITE_BIT:
2200 /* We're transitioning a buffer for generic write operations. Flush
2201 * all the caches.
2202 */
2203 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2204 break;
2205 default:
2206 break; /* Nothing to do */
2207 }
2208 }
2209
2210 return pipe_bits;
2211 }
2212
2213 static inline enum anv_pipe_bits
2214 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2215 {
2216 enum anv_pipe_bits pipe_bits = 0;
2217
2218 unsigned b;
2219 for_each_bit(b, flags) {
2220 switch ((VkAccessFlagBits)(1 << b)) {
2221 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2222 /* Indirect draw commands take a buffer as input that we're going to
2223 * read from the command streamer to load some of the HW registers
2224 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2225 * command streamer stall so that all the cache flushes have
2226 * completed before the command streamer loads from memory.
2227 */
2228 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2229 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2230 * through a vertex buffer, so invalidate that cache.
2231 */
2232 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2233 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2234 * UBO from the buffer, so we need to invalidate constant cache.
2235 */
2236 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2237 break;
2238 case VK_ACCESS_INDEX_READ_BIT:
2239 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2240 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2241 * commands, so we invalidate the VF cache to make sure there is no
2242 * stale data when we start rendering.
2243 */
2244 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2245 break;
2246 case VK_ACCESS_UNIFORM_READ_BIT:
2247 /* We transitioning a buffer to be used as uniform data. Because
2248 * uniform is accessed through the data port & sampler, we need to
2249 * invalidate the texture cache (sampler) & constant cache (data
2250 * port) to avoid stale data.
2251 */
2252 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2253 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2254 break;
2255 case VK_ACCESS_SHADER_READ_BIT:
2256 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2257 case VK_ACCESS_TRANSFER_READ_BIT:
2258 /* Transitioning a buffer to be read through the sampler, so
2259 * invalidate the texture cache, we don't want any stale data.
2260 */
2261 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2262 break;
2263 case VK_ACCESS_MEMORY_READ_BIT:
2264 /* Transitioning a buffer for generic read, invalidate all the
2265 * caches.
2266 */
2267 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2268 break;
2269 case VK_ACCESS_MEMORY_WRITE_BIT:
2270 /* Generic write, make sure all previously written things land in
2271 * memory.
2272 */
2273 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2274 break;
2275 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2276 /* Transitioning a buffer for conditional rendering. We'll load the
2277 * content of this buffer into HW registers using the command
2278 * streamer, so we need to stall the command streamer to make sure
2279 * any in-flight flush operations have completed.
2280 */
2281 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2282 break;
2283 default:
2284 break; /* Nothing to do */
2285 }
2286 }
2287
2288 return pipe_bits;
2289 }
2290
2291 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2292 VK_IMAGE_ASPECT_COLOR_BIT | \
2293 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2294 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2295 VK_IMAGE_ASPECT_PLANE_2_BIT)
2296 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2297 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2298 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2299 VK_IMAGE_ASPECT_PLANE_2_BIT)
2300
2301 struct anv_vertex_binding {
2302 struct anv_buffer * buffer;
2303 VkDeviceSize offset;
2304 };
2305
2306 struct anv_xfb_binding {
2307 struct anv_buffer * buffer;
2308 VkDeviceSize offset;
2309 VkDeviceSize size;
2310 };
2311
2312 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2313 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2314 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2315
2316 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2317 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2318 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2319
2320 struct anv_push_constants {
2321 /* Push constant data provided by the client through vkPushConstants */
2322 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2323
2324 /* Used for vkCmdDispatchBase */
2325 uint32_t base_work_group_id[3];
2326 };
2327
2328 struct anv_dynamic_state {
2329 struct {
2330 uint32_t count;
2331 VkViewport viewports[MAX_VIEWPORTS];
2332 } viewport;
2333
2334 struct {
2335 uint32_t count;
2336 VkRect2D scissors[MAX_SCISSORS];
2337 } scissor;
2338
2339 float line_width;
2340
2341 struct {
2342 float bias;
2343 float clamp;
2344 float slope;
2345 } depth_bias;
2346
2347 float blend_constants[4];
2348
2349 struct {
2350 float min;
2351 float max;
2352 } depth_bounds;
2353
2354 struct {
2355 uint32_t front;
2356 uint32_t back;
2357 } stencil_compare_mask;
2358
2359 struct {
2360 uint32_t front;
2361 uint32_t back;
2362 } stencil_write_mask;
2363
2364 struct {
2365 uint32_t front;
2366 uint32_t back;
2367 } stencil_reference;
2368
2369 struct {
2370 uint32_t factor;
2371 uint16_t pattern;
2372 } line_stipple;
2373 };
2374
2375 extern const struct anv_dynamic_state default_dynamic_state;
2376
2377 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2378 const struct anv_dynamic_state *src,
2379 uint32_t copy_mask);
2380
2381 struct anv_surface_state {
2382 struct anv_state state;
2383 /** Address of the surface referred to by this state
2384 *
2385 * This address is relative to the start of the BO.
2386 */
2387 struct anv_address address;
2388 /* Address of the aux surface, if any
2389 *
2390 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2391 *
2392 * With the exception of gen8, the bottom 12 bits of this address' offset
2393 * include extra aux information.
2394 */
2395 struct anv_address aux_address;
2396 /* Address of the clear color, if any
2397 *
2398 * This address is relative to the start of the BO.
2399 */
2400 struct anv_address clear_address;
2401 };
2402
2403 /**
2404 * Attachment state when recording a renderpass instance.
2405 *
2406 * The clear value is valid only if there exists a pending clear.
2407 */
2408 struct anv_attachment_state {
2409 enum isl_aux_usage aux_usage;
2410 enum isl_aux_usage input_aux_usage;
2411 struct anv_surface_state color;
2412 struct anv_surface_state input;
2413
2414 VkImageLayout current_layout;
2415 VkImageAspectFlags pending_clear_aspects;
2416 VkImageAspectFlags pending_load_aspects;
2417 bool fast_clear;
2418 VkClearValue clear_value;
2419 bool clear_color_is_zero_one;
2420 bool clear_color_is_zero;
2421
2422 /* When multiview is active, attachments with a renderpass clear
2423 * operation have their respective layers cleared on the first
2424 * subpass that uses them, and only in that subpass. We keep track
2425 * of this using a bitfield to indicate which layers of an attachment
2426 * have not been cleared yet when multiview is active.
2427 */
2428 uint32_t pending_clear_views;
2429 struct anv_image_view * image_view;
2430 };
2431
2432 /** State tracking for particular pipeline bind point
2433 *
2434 * This struct is the base struct for anv_cmd_graphics_state and
2435 * anv_cmd_compute_state. These are used to track state which is bound to a
2436 * particular type of pipeline. Generic state that applies per-stage such as
2437 * binding table offsets and push constants is tracked generically with a
2438 * per-stage array in anv_cmd_state.
2439 */
2440 struct anv_cmd_pipeline_state {
2441 struct anv_pipeline *pipeline;
2442 struct anv_pipeline_layout *layout;
2443
2444 struct anv_descriptor_set *descriptors[MAX_SETS];
2445 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2446
2447 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2448 };
2449
2450 /** State tracking for graphics pipeline
2451 *
2452 * This has anv_cmd_pipeline_state as a base struct to track things which get
2453 * bound to a graphics pipeline. Along with general pipeline bind point state
2454 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2455 * state which is graphics-specific.
2456 */
2457 struct anv_cmd_graphics_state {
2458 struct anv_cmd_pipeline_state base;
2459
2460 anv_cmd_dirty_mask_t dirty;
2461 uint32_t vb_dirty;
2462
2463 struct anv_dynamic_state dynamic;
2464
2465 struct {
2466 struct anv_buffer *index_buffer;
2467 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2468 uint32_t index_offset;
2469 } gen7;
2470 };
2471
2472 /** State tracking for compute pipeline
2473 *
2474 * This has anv_cmd_pipeline_state as a base struct to track things which get
2475 * bound to a compute pipeline. Along with general pipeline bind point state
2476 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2477 * state which is compute-specific.
2478 */
2479 struct anv_cmd_compute_state {
2480 struct anv_cmd_pipeline_state base;
2481
2482 bool pipeline_dirty;
2483
2484 struct anv_address num_workgroups;
2485 };
2486
2487 /** State required while building cmd buffer */
2488 struct anv_cmd_state {
2489 /* PIPELINE_SELECT.PipelineSelection */
2490 uint32_t current_pipeline;
2491 const struct gen_l3_config * current_l3_config;
2492 uint32_t last_aux_map_state;
2493
2494 struct anv_cmd_graphics_state gfx;
2495 struct anv_cmd_compute_state compute;
2496
2497 enum anv_pipe_bits pending_pipe_bits;
2498 VkShaderStageFlags descriptors_dirty;
2499 VkShaderStageFlags push_constants_dirty;
2500
2501 struct anv_framebuffer * framebuffer;
2502 struct anv_render_pass * pass;
2503 struct anv_subpass * subpass;
2504 VkRect2D render_area;
2505 uint32_t restart_index;
2506 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2507 bool xfb_enabled;
2508 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2509 VkShaderStageFlags push_constant_stages;
2510 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2511 struct anv_state binding_tables[MESA_SHADER_STAGES];
2512 struct anv_state samplers[MESA_SHADER_STAGES];
2513
2514 /**
2515 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2516 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2517 * and before invoking the secondary in ExecuteCommands.
2518 */
2519 bool pma_fix_enabled;
2520
2521 /**
2522 * Whether or not we know for certain that HiZ is enabled for the current
2523 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2524 * enabled or not, this will be false.
2525 */
2526 bool hiz_enabled;
2527
2528 bool conditional_render_enabled;
2529
2530 /**
2531 * Last rendering scale argument provided to
2532 * genX(cmd_buffer_emit_hashing_mode)().
2533 */
2534 unsigned current_hash_scale;
2535
2536 /**
2537 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2538 * valid only when recording a render pass instance.
2539 */
2540 struct anv_attachment_state * attachments;
2541
2542 /**
2543 * Surface states for color render targets. These are stored in a single
2544 * flat array. For depth-stencil attachments, the surface state is simply
2545 * left blank.
2546 */
2547 struct anv_state render_pass_states;
2548
2549 /**
2550 * A null surface state of the right size to match the framebuffer. This
2551 * is one of the states in render_pass_states.
2552 */
2553 struct anv_state null_surface_state;
2554 };
2555
2556 struct anv_cmd_pool {
2557 VkAllocationCallbacks alloc;
2558 struct list_head cmd_buffers;
2559 };
2560
2561 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2562
2563 enum anv_cmd_buffer_exec_mode {
2564 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2565 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2566 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2567 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2568 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2569 };
2570
2571 struct anv_cmd_buffer {
2572 VK_LOADER_DATA _loader_data;
2573
2574 struct anv_device * device;
2575
2576 struct anv_cmd_pool * pool;
2577 struct list_head pool_link;
2578
2579 struct anv_batch batch;
2580
2581 /* Fields required for the actual chain of anv_batch_bo's.
2582 *
2583 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2584 */
2585 struct list_head batch_bos;
2586 enum anv_cmd_buffer_exec_mode exec_mode;
2587
2588 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2589 * referenced by this command buffer
2590 *
2591 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2592 */
2593 struct u_vector seen_bbos;
2594
2595 /* A vector of int32_t's for every block of binding tables.
2596 *
2597 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2598 */
2599 struct u_vector bt_block_states;
2600 uint32_t bt_next;
2601
2602 struct anv_reloc_list surface_relocs;
2603 /** Last seen surface state block pool center bo offset */
2604 uint32_t last_ss_pool_center;
2605
2606 /* Serial for tracking buffer completion */
2607 uint32_t serial;
2608
2609 /* Stream objects for storing temporary data */
2610 struct anv_state_stream surface_state_stream;
2611 struct anv_state_stream dynamic_state_stream;
2612
2613 VkCommandBufferUsageFlags usage_flags;
2614 VkCommandBufferLevel level;
2615
2616 struct anv_cmd_state state;
2617
2618 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2619 uint64_t intel_perf_marker;
2620 };
2621
2622 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2623 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2624 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2625 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2626 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2627 struct anv_cmd_buffer *secondary);
2628 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2629 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2630 struct anv_cmd_buffer *cmd_buffer,
2631 const VkSemaphore *in_semaphores,
2632 uint32_t num_in_semaphores,
2633 const VkSemaphore *out_semaphores,
2634 uint32_t num_out_semaphores,
2635 VkFence fence);
2636
2637 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2638
2639 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2640 const void *data, uint32_t size, uint32_t alignment);
2641 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2642 uint32_t *a, uint32_t *b,
2643 uint32_t dwords, uint32_t alignment);
2644
2645 struct anv_address
2646 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2647 struct anv_state
2648 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2649 uint32_t entries, uint32_t *state_offset);
2650 struct anv_state
2651 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2652 struct anv_state
2653 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2654 uint32_t size, uint32_t alignment);
2655
2656 VkResult
2657 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2658
2659 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2660 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2661 bool depth_clamp_enable);
2662 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2663
2664 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2665 struct anv_render_pass *pass,
2666 struct anv_framebuffer *framebuffer,
2667 const VkClearValue *clear_values);
2668
2669 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2670
2671 struct anv_state
2672 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2673 gl_shader_stage stage);
2674 struct anv_state
2675 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2676
2677 const struct anv_image_view *
2678 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2679
2680 VkResult
2681 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2682 uint32_t num_entries,
2683 uint32_t *state_offset,
2684 struct anv_state *bt_state);
2685
2686 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2687
2688 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2689
2690 enum anv_fence_type {
2691 ANV_FENCE_TYPE_NONE = 0,
2692 ANV_FENCE_TYPE_BO,
2693 ANV_FENCE_TYPE_SYNCOBJ,
2694 ANV_FENCE_TYPE_WSI,
2695 };
2696
2697 enum anv_bo_fence_state {
2698 /** Indicates that this is a new (or newly reset fence) */
2699 ANV_BO_FENCE_STATE_RESET,
2700
2701 /** Indicates that this fence has been submitted to the GPU but is still
2702 * (as far as we know) in use by the GPU.
2703 */
2704 ANV_BO_FENCE_STATE_SUBMITTED,
2705
2706 ANV_BO_FENCE_STATE_SIGNALED,
2707 };
2708
2709 struct anv_fence_impl {
2710 enum anv_fence_type type;
2711
2712 union {
2713 /** Fence implementation for BO fences
2714 *
2715 * These fences use a BO and a set of CPU-tracked state flags. The BO
2716 * is added to the object list of the last execbuf call in a QueueSubmit
2717 * and is marked EXEC_WRITE. The state flags track when the BO has been
2718 * submitted to the kernel. We need to do this because Vulkan lets you
2719 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2720 * will say it's idle in this case.
2721 */
2722 struct {
2723 struct anv_bo *bo;
2724 enum anv_bo_fence_state state;
2725 } bo;
2726
2727 /** DRM syncobj handle for syncobj-based fences */
2728 uint32_t syncobj;
2729
2730 /** WSI fence */
2731 struct wsi_fence *fence_wsi;
2732 };
2733 };
2734
2735 struct anv_fence {
2736 /* Permanent fence state. Every fence has some form of permanent state
2737 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2738 * cross-process fences) or it could just be a dummy for use internally.
2739 */
2740 struct anv_fence_impl permanent;
2741
2742 /* Temporary fence state. A fence *may* have temporary state. That state
2743 * is added to the fence by an import operation and is reset back to
2744 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2745 * state cannot be signaled because the fence must already be signaled
2746 * before the temporary state can be exported from the fence in the other
2747 * process and imported here.
2748 */
2749 struct anv_fence_impl temporary;
2750 };
2751
2752 struct anv_event {
2753 uint64_t semaphore;
2754 struct anv_state state;
2755 };
2756
2757 enum anv_semaphore_type {
2758 ANV_SEMAPHORE_TYPE_NONE = 0,
2759 ANV_SEMAPHORE_TYPE_DUMMY,
2760 ANV_SEMAPHORE_TYPE_BO,
2761 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2762 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2763 };
2764
2765 struct anv_semaphore_impl {
2766 enum anv_semaphore_type type;
2767
2768 union {
2769 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2770 * This BO will be added to the object list on any execbuf2 calls for
2771 * which this semaphore is used as a wait or signal fence. When used as
2772 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2773 */
2774 struct anv_bo *bo;
2775
2776 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2777 * If the semaphore is in the unsignaled state due to either just being
2778 * created or because it has been used for a wait, fd will be -1.
2779 */
2780 int fd;
2781
2782 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2783 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2784 * import so we don't need to bother with a userspace cache.
2785 */
2786 uint32_t syncobj;
2787 };
2788 };
2789
2790 struct anv_semaphore {
2791 /* Permanent semaphore state. Every semaphore has some form of permanent
2792 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2793 * (for cross-process semaphores0 or it could just be a dummy for use
2794 * internally.
2795 */
2796 struct anv_semaphore_impl permanent;
2797
2798 /* Temporary semaphore state. A semaphore *may* have temporary state.
2799 * That state is added to the semaphore by an import operation and is reset
2800 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2801 * semaphore with temporary state cannot be signaled because the semaphore
2802 * must already be signaled before the temporary state can be exported from
2803 * the semaphore in the other process and imported here.
2804 */
2805 struct anv_semaphore_impl temporary;
2806 };
2807
2808 void anv_semaphore_reset_temporary(struct anv_device *device,
2809 struct anv_semaphore *semaphore);
2810
2811 struct anv_shader_module {
2812 unsigned char sha1[20];
2813 uint32_t size;
2814 char data[0];
2815 };
2816
2817 static inline gl_shader_stage
2818 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2819 {
2820 assert(__builtin_popcount(vk_stage) == 1);
2821 return ffs(vk_stage) - 1;
2822 }
2823
2824 static inline VkShaderStageFlagBits
2825 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2826 {
2827 return (1 << mesa_stage);
2828 }
2829
2830 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2831
2832 #define anv_foreach_stage(stage, stage_bits) \
2833 for (gl_shader_stage stage, \
2834 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2835 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2836 __tmp &= ~(1 << (stage)))
2837
2838 struct anv_pipeline_bind_map {
2839 uint32_t surface_count;
2840 uint32_t sampler_count;
2841
2842 struct anv_pipeline_binding * surface_to_descriptor;
2843 struct anv_pipeline_binding * sampler_to_descriptor;
2844 };
2845
2846 struct anv_shader_bin_key {
2847 uint32_t size;
2848 uint8_t data[0];
2849 };
2850
2851 struct anv_shader_bin {
2852 uint32_t ref_cnt;
2853
2854 const struct anv_shader_bin_key *key;
2855
2856 struct anv_state kernel;
2857 uint32_t kernel_size;
2858
2859 struct anv_state constant_data;
2860 uint32_t constant_data_size;
2861
2862 const struct brw_stage_prog_data *prog_data;
2863 uint32_t prog_data_size;
2864
2865 struct brw_compile_stats stats[3];
2866 uint32_t num_stats;
2867
2868 struct nir_xfb_info *xfb_info;
2869
2870 struct anv_pipeline_bind_map bind_map;
2871 };
2872
2873 struct anv_shader_bin *
2874 anv_shader_bin_create(struct anv_device *device,
2875 const void *key, uint32_t key_size,
2876 const void *kernel, uint32_t kernel_size,
2877 const void *constant_data, uint32_t constant_data_size,
2878 const struct brw_stage_prog_data *prog_data,
2879 uint32_t prog_data_size, const void *prog_data_param,
2880 const struct brw_compile_stats *stats, uint32_t num_stats,
2881 const struct nir_xfb_info *xfb_info,
2882 const struct anv_pipeline_bind_map *bind_map);
2883
2884 void
2885 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2886
2887 static inline void
2888 anv_shader_bin_ref(struct anv_shader_bin *shader)
2889 {
2890 assert(shader && shader->ref_cnt >= 1);
2891 p_atomic_inc(&shader->ref_cnt);
2892 }
2893
2894 static inline void
2895 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2896 {
2897 assert(shader && shader->ref_cnt >= 1);
2898 if (p_atomic_dec_zero(&shader->ref_cnt))
2899 anv_shader_bin_destroy(device, shader);
2900 }
2901
2902 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2903 #define MAX_PIPELINE_EXECUTABLES 7
2904
2905 struct anv_pipeline_executable {
2906 gl_shader_stage stage;
2907
2908 struct brw_compile_stats stats;
2909
2910 char *nir;
2911 char *disasm;
2912 };
2913
2914 struct anv_pipeline {
2915 struct anv_device * device;
2916 struct anv_batch batch;
2917 uint32_t batch_data[512];
2918 struct anv_reloc_list batch_relocs;
2919 anv_cmd_dirty_mask_t dynamic_state_mask;
2920 struct anv_dynamic_state dynamic_state;
2921
2922 void * mem_ctx;
2923
2924 VkPipelineCreateFlags flags;
2925 struct anv_subpass * subpass;
2926
2927 bool needs_data_cache;
2928
2929 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2930
2931 uint32_t num_executables;
2932 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2933
2934 struct {
2935 const struct gen_l3_config * l3_config;
2936 uint32_t total_size;
2937 } urb;
2938
2939 VkShaderStageFlags active_stages;
2940 struct anv_state blend_state;
2941
2942 uint32_t vb_used;
2943 struct anv_pipeline_vertex_binding {
2944 uint32_t stride;
2945 bool instanced;
2946 uint32_t instance_divisor;
2947 } vb[MAX_VBS];
2948
2949 uint8_t xfb_used;
2950
2951 bool primitive_restart;
2952 uint32_t topology;
2953
2954 uint32_t cs_right_mask;
2955
2956 bool writes_depth;
2957 bool depth_test_enable;
2958 bool writes_stencil;
2959 bool stencil_test_enable;
2960 bool depth_clamp_enable;
2961 bool depth_clip_enable;
2962 bool sample_shading_enable;
2963 bool kill_pixel;
2964 bool depth_bounds_test_enable;
2965
2966 struct {
2967 uint32_t sf[7];
2968 uint32_t depth_stencil_state[3];
2969 } gen7;
2970
2971 struct {
2972 uint32_t sf[4];
2973 uint32_t raster[5];
2974 uint32_t wm_depth_stencil[3];
2975 } gen8;
2976
2977 struct {
2978 uint32_t wm_depth_stencil[4];
2979 } gen9;
2980
2981 uint32_t interface_descriptor_data[8];
2982 };
2983
2984 static inline bool
2985 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2986 gl_shader_stage stage)
2987 {
2988 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2989 }
2990
2991 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2992 static inline const struct brw_##prefix##_prog_data * \
2993 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2994 { \
2995 if (anv_pipeline_has_stage(pipeline, stage)) { \
2996 return (const struct brw_##prefix##_prog_data *) \
2997 pipeline->shaders[stage]->prog_data; \
2998 } else { \
2999 return NULL; \
3000 } \
3001 }
3002
3003 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3004 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3005 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3006 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3007 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3008 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3009
3010 static inline const struct brw_vue_prog_data *
3011 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3012 {
3013 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3014 return &get_gs_prog_data(pipeline)->base;
3015 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3016 return &get_tes_prog_data(pipeline)->base;
3017 else
3018 return &get_vs_prog_data(pipeline)->base;
3019 }
3020
3021 VkResult
3022 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3023 struct anv_pipeline_cache *cache,
3024 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3025 const VkAllocationCallbacks *alloc);
3026
3027 VkResult
3028 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3029 struct anv_pipeline_cache *cache,
3030 const VkComputePipelineCreateInfo *info,
3031 const struct anv_shader_module *module,
3032 const char *entrypoint,
3033 const VkSpecializationInfo *spec_info);
3034
3035 struct anv_format_plane {
3036 enum isl_format isl_format:16;
3037 struct isl_swizzle swizzle;
3038
3039 /* Whether this plane contains chroma channels */
3040 bool has_chroma;
3041
3042 /* For downscaling of YUV planes */
3043 uint8_t denominator_scales[2];
3044
3045 /* How to map sampled ycbcr planes to a single 4 component element. */
3046 struct isl_swizzle ycbcr_swizzle;
3047
3048 /* What aspect is associated to this plane */
3049 VkImageAspectFlags aspect;
3050 };
3051
3052
3053 struct anv_format {
3054 struct anv_format_plane planes[3];
3055 VkFormat vk_format;
3056 uint8_t n_planes;
3057 bool can_ycbcr;
3058 };
3059
3060 static inline uint32_t
3061 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3062 VkImageAspectFlags aspect_mask)
3063 {
3064 switch (aspect_mask) {
3065 case VK_IMAGE_ASPECT_COLOR_BIT:
3066 case VK_IMAGE_ASPECT_DEPTH_BIT:
3067 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3068 return 0;
3069 case VK_IMAGE_ASPECT_STENCIL_BIT:
3070 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3071 return 0;
3072 /* Fall-through */
3073 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3074 return 1;
3075 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3076 return 2;
3077 default:
3078 /* Purposefully assert with depth/stencil aspects. */
3079 unreachable("invalid image aspect");
3080 }
3081 }
3082
3083 static inline VkImageAspectFlags
3084 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3085 uint32_t plane)
3086 {
3087 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3088 if (util_bitcount(image_aspects) > 1)
3089 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3090 return VK_IMAGE_ASPECT_COLOR_BIT;
3091 }
3092 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3093 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3094 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3095 return VK_IMAGE_ASPECT_STENCIL_BIT;
3096 }
3097
3098 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3099 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3100
3101 const struct anv_format *
3102 anv_get_format(VkFormat format);
3103
3104 static inline uint32_t
3105 anv_get_format_planes(VkFormat vk_format)
3106 {
3107 const struct anv_format *format = anv_get_format(vk_format);
3108
3109 return format != NULL ? format->n_planes : 0;
3110 }
3111
3112 struct anv_format_plane
3113 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3114 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3115
3116 static inline enum isl_format
3117 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3118 VkImageAspectFlags aspect, VkImageTiling tiling)
3119 {
3120 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3121 }
3122
3123 static inline struct isl_swizzle
3124 anv_swizzle_for_render(struct isl_swizzle swizzle)
3125 {
3126 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3127 * RGB as RGBA for texturing
3128 */
3129 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3130 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3131
3132 /* But it doesn't matter what we render to that channel */
3133 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3134
3135 return swizzle;
3136 }
3137
3138 void
3139 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3140
3141 /**
3142 * Subsurface of an anv_image.
3143 */
3144 struct anv_surface {
3145 /** Valid only if isl_surf::size_B > 0. */
3146 struct isl_surf isl;
3147
3148 /**
3149 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3150 */
3151 uint32_t offset;
3152 };
3153
3154 struct anv_image {
3155 VkImageType type; /**< VkImageCreateInfo::imageType */
3156 /* The original VkFormat provided by the client. This may not match any
3157 * of the actual surface formats.
3158 */
3159 VkFormat vk_format;
3160 const struct anv_format *format;
3161
3162 VkImageAspectFlags aspects;
3163 VkExtent3D extent;
3164 uint32_t levels;
3165 uint32_t array_size;
3166 uint32_t samples; /**< VkImageCreateInfo::samples */
3167 uint32_t n_planes;
3168 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3169 VkImageUsageFlags stencil_usage;
3170 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3171 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3172
3173 /** True if this is needs to be bound to an appropriately tiled BO.
3174 *
3175 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3176 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3177 * we require a dedicated allocation so that we can know to allocate a
3178 * tiled buffer.
3179 */
3180 bool needs_set_tiling;
3181
3182 /**
3183 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3184 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3185 */
3186 uint64_t drm_format_mod;
3187
3188 VkDeviceSize size;
3189 uint32_t alignment;
3190
3191 /* Whether the image is made of several underlying buffer objects rather a
3192 * single one with different offsets.
3193 */
3194 bool disjoint;
3195
3196 /* All the formats that can be used when creating views of this image
3197 * are CCS_E compatible.
3198 */
3199 bool ccs_e_compatible;
3200
3201 /* Image was created with external format. */
3202 bool external_format;
3203
3204 /**
3205 * Image subsurfaces
3206 *
3207 * For each foo, anv_image::planes[x].surface is valid if and only if
3208 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3209 * to figure the number associated with a given aspect.
3210 *
3211 * The hardware requires that the depth buffer and stencil buffer be
3212 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3213 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3214 * allocate the depth and stencil buffers as separate surfaces in the same
3215 * bo.
3216 *
3217 * Memory layout :
3218 *
3219 * -----------------------
3220 * | surface0 | /|\
3221 * ----------------------- |
3222 * | shadow surface0 | |
3223 * ----------------------- | Plane 0
3224 * | aux surface0 | |
3225 * ----------------------- |
3226 * | fast clear colors0 | \|/
3227 * -----------------------
3228 * | surface1 | /|\
3229 * ----------------------- |
3230 * | shadow surface1 | |
3231 * ----------------------- | Plane 1
3232 * | aux surface1 | |
3233 * ----------------------- |
3234 * | fast clear colors1 | \|/
3235 * -----------------------
3236 * | ... |
3237 * | |
3238 * -----------------------
3239 */
3240 struct {
3241 /**
3242 * Offset of the entire plane (whenever the image is disjoint this is
3243 * set to 0).
3244 */
3245 uint32_t offset;
3246
3247 VkDeviceSize size;
3248 uint32_t alignment;
3249
3250 struct anv_surface surface;
3251
3252 /**
3253 * A surface which shadows the main surface and may have different
3254 * tiling. This is used for sampling using a tiling that isn't supported
3255 * for other operations.
3256 */
3257 struct anv_surface shadow_surface;
3258
3259 /**
3260 * For color images, this is the aux usage for this image when not used
3261 * as a color attachment.
3262 *
3263 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3264 * image has a HiZ buffer.
3265 */
3266 enum isl_aux_usage aux_usage;
3267
3268 struct anv_surface aux_surface;
3269
3270 /**
3271 * Offset of the fast clear state (used to compute the
3272 * fast_clear_state_offset of the following planes).
3273 */
3274 uint32_t fast_clear_state_offset;
3275
3276 /**
3277 * BO associated with this plane, set when bound.
3278 */
3279 struct anv_address address;
3280
3281 /**
3282 * Address of the main surface used to fill the aux map table. This is
3283 * used at destruction of the image since the Vulkan spec does not
3284 * guarantee that the address.bo field we still be valid at destruction.
3285 */
3286 uint64_t aux_map_surface_address;
3287
3288 /**
3289 * When destroying the image, also free the bo.
3290 * */
3291 bool bo_is_owned;
3292 } planes[3];
3293 };
3294
3295 /* The ordering of this enum is important */
3296 enum anv_fast_clear_type {
3297 /** Image does not have/support any fast-clear blocks */
3298 ANV_FAST_CLEAR_NONE = 0,
3299 /** Image has/supports fast-clear but only to the default value */
3300 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3301 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3302 ANV_FAST_CLEAR_ANY = 2,
3303 };
3304
3305 /* Returns the number of auxiliary buffer levels attached to an image. */
3306 static inline uint8_t
3307 anv_image_aux_levels(const struct anv_image * const image,
3308 VkImageAspectFlagBits aspect)
3309 {
3310 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3311
3312 /* The Gen12 CCS aux surface is represented with only one level. */
3313 const uint8_t aux_logical_levels =
3314 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3315 image->planes[plane].surface.isl.levels :
3316 image->planes[plane].aux_surface.isl.levels;
3317
3318 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3319 aux_logical_levels : 0;
3320 }
3321
3322 /* Returns the number of auxiliary buffer layers attached to an image. */
3323 static inline uint32_t
3324 anv_image_aux_layers(const struct anv_image * const image,
3325 VkImageAspectFlagBits aspect,
3326 const uint8_t miplevel)
3327 {
3328 assert(image);
3329
3330 /* The miplevel must exist in the main buffer. */
3331 assert(miplevel < image->levels);
3332
3333 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3334 /* There are no layers with auxiliary data because the miplevel has no
3335 * auxiliary data.
3336 */
3337 return 0;
3338 } else {
3339 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3340
3341 /* The Gen12 CCS aux surface is represented with only one layer. */
3342 const struct isl_extent4d *aux_logical_level0_px =
3343 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3344 &image->planes[plane].surface.isl.logical_level0_px :
3345 &image->planes[plane].aux_surface.isl.logical_level0_px;
3346
3347 return MAX2(aux_logical_level0_px->array_len,
3348 aux_logical_level0_px->depth >> miplevel);
3349 }
3350 }
3351
3352 static inline struct anv_address
3353 anv_image_get_clear_color_addr(const struct anv_device *device,
3354 const struct anv_image *image,
3355 VkImageAspectFlagBits aspect)
3356 {
3357 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3358
3359 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3360 return anv_address_add(image->planes[plane].address,
3361 image->planes[plane].fast_clear_state_offset);
3362 }
3363
3364 static inline struct anv_address
3365 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3366 const struct anv_image *image,
3367 VkImageAspectFlagBits aspect)
3368 {
3369 struct anv_address addr =
3370 anv_image_get_clear_color_addr(device, image, aspect);
3371
3372 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3373 device->isl_dev.ss.clear_color_state_size :
3374 device->isl_dev.ss.clear_value_size;
3375 return anv_address_add(addr, clear_color_state_size);
3376 }
3377
3378 static inline struct anv_address
3379 anv_image_get_compression_state_addr(const struct anv_device *device,
3380 const struct anv_image *image,
3381 VkImageAspectFlagBits aspect,
3382 uint32_t level, uint32_t array_layer)
3383 {
3384 assert(level < anv_image_aux_levels(image, aspect));
3385 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3386 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3387 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3388
3389 struct anv_address addr =
3390 anv_image_get_fast_clear_type_addr(device, image, aspect);
3391 addr.offset += 4; /* Go past the fast clear type */
3392
3393 if (image->type == VK_IMAGE_TYPE_3D) {
3394 for (uint32_t l = 0; l < level; l++)
3395 addr.offset += anv_minify(image->extent.depth, l) * 4;
3396 } else {
3397 addr.offset += level * image->array_size * 4;
3398 }
3399 addr.offset += array_layer * 4;
3400
3401 assert(addr.offset <
3402 image->planes[plane].address.offset + image->planes[plane].size);
3403 return addr;
3404 }
3405
3406 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3407 static inline bool
3408 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3409 const struct anv_image *image)
3410 {
3411 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3412 return false;
3413
3414 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3415 * struct. There's documentation which suggests that this feature actually
3416 * reduces performance on BDW, but it has only been observed to help so
3417 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3418 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3419 */
3420 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3421 return false;
3422
3423 return image->samples == 1;
3424 }
3425
3426 static inline bool
3427 anv_image_plane_uses_aux_map(const struct anv_device *device,
3428 const struct anv_image *image,
3429 uint32_t plane)
3430 {
3431 return device->info.has_aux_map &&
3432 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3433 }
3434
3435 void
3436 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3437 const struct anv_image *image,
3438 VkImageAspectFlagBits aspect,
3439 enum isl_aux_usage aux_usage,
3440 uint32_t level,
3441 uint32_t base_layer,
3442 uint32_t layer_count);
3443
3444 void
3445 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3446 const struct anv_image *image,
3447 VkImageAspectFlagBits aspect,
3448 enum isl_aux_usage aux_usage,
3449 enum isl_format format, struct isl_swizzle swizzle,
3450 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3451 VkRect2D area, union isl_color_value clear_color);
3452 void
3453 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3454 const struct anv_image *image,
3455 VkImageAspectFlags aspects,
3456 enum isl_aux_usage depth_aux_usage,
3457 uint32_t level,
3458 uint32_t base_layer, uint32_t layer_count,
3459 VkRect2D area,
3460 float depth_value, uint8_t stencil_value);
3461 void
3462 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3463 const struct anv_image *src_image,
3464 enum isl_aux_usage src_aux_usage,
3465 uint32_t src_level, uint32_t src_base_layer,
3466 const struct anv_image *dst_image,
3467 enum isl_aux_usage dst_aux_usage,
3468 uint32_t dst_level, uint32_t dst_base_layer,
3469 VkImageAspectFlagBits aspect,
3470 uint32_t src_x, uint32_t src_y,
3471 uint32_t dst_x, uint32_t dst_y,
3472 uint32_t width, uint32_t height,
3473 uint32_t layer_count,
3474 enum blorp_filter filter);
3475 void
3476 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3477 const struct anv_image *image,
3478 VkImageAspectFlagBits aspect, uint32_t level,
3479 uint32_t base_layer, uint32_t layer_count,
3480 enum isl_aux_op hiz_op);
3481 void
3482 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3483 const struct anv_image *image,
3484 VkImageAspectFlags aspects,
3485 uint32_t level,
3486 uint32_t base_layer, uint32_t layer_count,
3487 VkRect2D area, uint8_t stencil_value);
3488 void
3489 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3490 const struct anv_image *image,
3491 enum isl_format format,
3492 VkImageAspectFlagBits aspect,
3493 uint32_t base_layer, uint32_t layer_count,
3494 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3495 bool predicate);
3496 void
3497 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3498 const struct anv_image *image,
3499 enum isl_format format,
3500 VkImageAspectFlagBits aspect, uint32_t level,
3501 uint32_t base_layer, uint32_t layer_count,
3502 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3503 bool predicate);
3504
3505 void
3506 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3507 const struct anv_image *image,
3508 VkImageAspectFlagBits aspect,
3509 uint32_t base_level, uint32_t level_count,
3510 uint32_t base_layer, uint32_t layer_count);
3511
3512 enum isl_aux_usage
3513 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3514 const struct anv_image *image,
3515 const VkImageAspectFlagBits aspect,
3516 const VkImageLayout layout);
3517
3518 enum anv_fast_clear_type
3519 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3520 const struct anv_image * const image,
3521 const VkImageAspectFlagBits aspect,
3522 const VkImageLayout layout);
3523
3524 /* This is defined as a macro so that it works for both
3525 * VkImageSubresourceRange and VkImageSubresourceLayers
3526 */
3527 #define anv_get_layerCount(_image, _range) \
3528 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3529 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3530
3531 static inline uint32_t
3532 anv_get_levelCount(const struct anv_image *image,
3533 const VkImageSubresourceRange *range)
3534 {
3535 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3536 image->levels - range->baseMipLevel : range->levelCount;
3537 }
3538
3539 static inline VkImageAspectFlags
3540 anv_image_expand_aspects(const struct anv_image *image,
3541 VkImageAspectFlags aspects)
3542 {
3543 /* If the underlying image has color plane aspects and
3544 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3545 * the underlying image. */
3546 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3547 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3548 return image->aspects;
3549
3550 return aspects;
3551 }
3552
3553 static inline bool
3554 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3555 VkImageAspectFlags aspects2)
3556 {
3557 if (aspects1 == aspects2)
3558 return true;
3559
3560 /* Only 1 color aspects are compatibles. */
3561 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3562 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3563 util_bitcount(aspects1) == util_bitcount(aspects2))
3564 return true;
3565
3566 return false;
3567 }
3568
3569 struct anv_image_view {
3570 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3571
3572 VkImageAspectFlags aspect_mask;
3573 VkFormat vk_format;
3574 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3575
3576 unsigned n_planes;
3577 struct {
3578 uint32_t image_plane;
3579
3580 struct isl_view isl;
3581
3582 /**
3583 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3584 * image layout of SHADER_READ_ONLY_OPTIMAL or
3585 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3586 */
3587 struct anv_surface_state optimal_sampler_surface_state;
3588
3589 /**
3590 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3591 * image layout of GENERAL.
3592 */
3593 struct anv_surface_state general_sampler_surface_state;
3594
3595 /**
3596 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3597 * states for write-only and readable, using the real format for
3598 * write-only and the lowered format for readable.
3599 */
3600 struct anv_surface_state storage_surface_state;
3601 struct anv_surface_state writeonly_storage_surface_state;
3602
3603 struct brw_image_param storage_image_param;
3604 } planes[3];
3605 };
3606
3607 enum anv_image_view_state_flags {
3608 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3609 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3610 };
3611
3612 void anv_image_fill_surface_state(struct anv_device *device,
3613 const struct anv_image *image,
3614 VkImageAspectFlagBits aspect,
3615 const struct isl_view *view,
3616 isl_surf_usage_flags_t view_usage,
3617 enum isl_aux_usage aux_usage,
3618 const union isl_color_value *clear_color,
3619 enum anv_image_view_state_flags flags,
3620 struct anv_surface_state *state_inout,
3621 struct brw_image_param *image_param_out);
3622
3623 struct anv_image_create_info {
3624 const VkImageCreateInfo *vk_info;
3625
3626 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3627 isl_tiling_flags_t isl_tiling_flags;
3628
3629 /** These flags will be added to any derived from VkImageCreateInfo. */
3630 isl_surf_usage_flags_t isl_extra_usage_flags;
3631
3632 uint32_t stride;
3633 bool external_format;
3634 };
3635
3636 VkResult anv_image_create(VkDevice _device,
3637 const struct anv_image_create_info *info,
3638 const VkAllocationCallbacks* alloc,
3639 VkImage *pImage);
3640
3641 const struct anv_surface *
3642 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3643 VkImageAspectFlags aspect_mask);
3644
3645 enum isl_format
3646 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3647
3648 static inline struct VkExtent3D
3649 anv_sanitize_image_extent(const VkImageType imageType,
3650 const struct VkExtent3D imageExtent)
3651 {
3652 switch (imageType) {
3653 case VK_IMAGE_TYPE_1D:
3654 return (VkExtent3D) { imageExtent.width, 1, 1 };
3655 case VK_IMAGE_TYPE_2D:
3656 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3657 case VK_IMAGE_TYPE_3D:
3658 return imageExtent;
3659 default:
3660 unreachable("invalid image type");
3661 }
3662 }
3663
3664 static inline struct VkOffset3D
3665 anv_sanitize_image_offset(const VkImageType imageType,
3666 const struct VkOffset3D imageOffset)
3667 {
3668 switch (imageType) {
3669 case VK_IMAGE_TYPE_1D:
3670 return (VkOffset3D) { imageOffset.x, 0, 0 };
3671 case VK_IMAGE_TYPE_2D:
3672 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3673 case VK_IMAGE_TYPE_3D:
3674 return imageOffset;
3675 default:
3676 unreachable("invalid image type");
3677 }
3678 }
3679
3680 VkFormatFeatureFlags
3681 anv_get_image_format_features(const struct gen_device_info *devinfo,
3682 VkFormat vk_format,
3683 const struct anv_format *anv_format,
3684 VkImageTiling vk_tiling);
3685
3686 void anv_fill_buffer_surface_state(struct anv_device *device,
3687 struct anv_state state,
3688 enum isl_format format,
3689 struct anv_address address,
3690 uint32_t range, uint32_t stride);
3691
3692 static inline void
3693 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3694 const struct anv_attachment_state *att_state,
3695 const struct anv_image_view *iview)
3696 {
3697 const struct isl_format_layout *view_fmtl =
3698 isl_format_get_layout(iview->planes[0].isl.format);
3699
3700 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3701 if (view_fmtl->channels.c.bits) \
3702 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3703
3704 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3705 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3706 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3707 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3708
3709 #undef COPY_CLEAR_COLOR_CHANNEL
3710 }
3711
3712
3713 struct anv_ycbcr_conversion {
3714 const struct anv_format * format;
3715 VkSamplerYcbcrModelConversion ycbcr_model;
3716 VkSamplerYcbcrRange ycbcr_range;
3717 VkComponentSwizzle mapping[4];
3718 VkChromaLocation chroma_offsets[2];
3719 VkFilter chroma_filter;
3720 bool chroma_reconstruction;
3721 };
3722
3723 struct anv_sampler {
3724 uint32_t state[3][4];
3725 uint32_t n_planes;
3726 struct anv_ycbcr_conversion *conversion;
3727
3728 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3729 * and with a 32-byte stride for use as bindless samplers.
3730 */
3731 struct anv_state bindless_state;
3732 };
3733
3734 struct anv_framebuffer {
3735 uint32_t width;
3736 uint32_t height;
3737 uint32_t layers;
3738
3739 uint32_t attachment_count;
3740 struct anv_image_view * attachments[0];
3741 };
3742
3743 struct anv_subpass_attachment {
3744 VkImageUsageFlagBits usage;
3745 uint32_t attachment;
3746 VkImageLayout layout;
3747 };
3748
3749 struct anv_subpass {
3750 uint32_t attachment_count;
3751
3752 /**
3753 * A pointer to all attachment references used in this subpass.
3754 * Only valid if ::attachment_count > 0.
3755 */
3756 struct anv_subpass_attachment * attachments;
3757 uint32_t input_count;
3758 struct anv_subpass_attachment * input_attachments;
3759 uint32_t color_count;
3760 struct anv_subpass_attachment * color_attachments;
3761 struct anv_subpass_attachment * resolve_attachments;
3762
3763 struct anv_subpass_attachment * depth_stencil_attachment;
3764 struct anv_subpass_attachment * ds_resolve_attachment;
3765 VkResolveModeFlagBitsKHR depth_resolve_mode;
3766 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3767
3768 uint32_t view_mask;
3769
3770 /** Subpass has a depth/stencil self-dependency */
3771 bool has_ds_self_dep;
3772
3773 /** Subpass has at least one color resolve attachment */
3774 bool has_color_resolve;
3775 };
3776
3777 static inline unsigned
3778 anv_subpass_view_count(const struct anv_subpass *subpass)
3779 {
3780 return MAX2(1, util_bitcount(subpass->view_mask));
3781 }
3782
3783 struct anv_render_pass_attachment {
3784 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3785 * its members individually.
3786 */
3787 VkFormat format;
3788 uint32_t samples;
3789 VkImageUsageFlags usage;
3790 VkAttachmentLoadOp load_op;
3791 VkAttachmentStoreOp store_op;
3792 VkAttachmentLoadOp stencil_load_op;
3793 VkImageLayout initial_layout;
3794 VkImageLayout final_layout;
3795 VkImageLayout first_subpass_layout;
3796
3797 /* The subpass id in which the attachment will be used last. */
3798 uint32_t last_subpass_idx;
3799 };
3800
3801 struct anv_render_pass {
3802 uint32_t attachment_count;
3803 uint32_t subpass_count;
3804 /* An array of subpass_count+1 flushes, one per subpass boundary */
3805 enum anv_pipe_bits * subpass_flushes;
3806 struct anv_render_pass_attachment * attachments;
3807 struct anv_subpass subpasses[0];
3808 };
3809
3810 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3811
3812 struct anv_query_pool {
3813 VkQueryType type;
3814 VkQueryPipelineStatisticFlags pipeline_statistics;
3815 /** Stride between slots, in bytes */
3816 uint32_t stride;
3817 /** Number of slots in this query pool */
3818 uint32_t slots;
3819 struct anv_bo * bo;
3820 };
3821
3822 int anv_get_instance_entrypoint_index(const char *name);
3823 int anv_get_device_entrypoint_index(const char *name);
3824 int anv_get_physical_device_entrypoint_index(const char *name);
3825
3826 const char *anv_get_instance_entry_name(int index);
3827 const char *anv_get_physical_device_entry_name(int index);
3828 const char *anv_get_device_entry_name(int index);
3829
3830 bool
3831 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3832 const struct anv_instance_extension_table *instance);
3833 bool
3834 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3835 const struct anv_instance_extension_table *instance);
3836 bool
3837 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3838 const struct anv_instance_extension_table *instance,
3839 const struct anv_device_extension_table *device);
3840
3841 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3842 const char *name);
3843
3844 void anv_dump_image_to_ppm(struct anv_device *device,
3845 struct anv_image *image, unsigned miplevel,
3846 unsigned array_layer, VkImageAspectFlagBits aspect,
3847 const char *filename);
3848
3849 enum anv_dump_action {
3850 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3851 };
3852
3853 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3854 void anv_dump_finish(void);
3855
3856 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3857
3858 static inline uint32_t
3859 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3860 {
3861 /* This function must be called from within a subpass. */
3862 assert(cmd_state->pass && cmd_state->subpass);
3863
3864 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3865
3866 /* The id of this subpass shouldn't exceed the number of subpasses in this
3867 * render pass minus 1.
3868 */
3869 assert(subpass_id < cmd_state->pass->subpass_count);
3870 return subpass_id;
3871 }
3872
3873 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3874 void anv_device_perf_init(struct anv_device *device);
3875
3876 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3877 \
3878 static inline struct __anv_type * \
3879 __anv_type ## _from_handle(__VkType _handle) \
3880 { \
3881 return (struct __anv_type *) _handle; \
3882 } \
3883 \
3884 static inline __VkType \
3885 __anv_type ## _to_handle(struct __anv_type *_obj) \
3886 { \
3887 return (__VkType) _obj; \
3888 }
3889
3890 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3891 \
3892 static inline struct __anv_type * \
3893 __anv_type ## _from_handle(__VkType _handle) \
3894 { \
3895 return (struct __anv_type *)(uintptr_t) _handle; \
3896 } \
3897 \
3898 static inline __VkType \
3899 __anv_type ## _to_handle(struct __anv_type *_obj) \
3900 { \
3901 return (__VkType)(uintptr_t) _obj; \
3902 }
3903
3904 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3905 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3906
3907 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3908 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3909 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3910 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3911 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3912
3913 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3914 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3915 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3916 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3917 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3918 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3919 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3920 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3921 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3922 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3923 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3924 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3925 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3926 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3927 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3928 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3929 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3930 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3931 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3932 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3933 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3934 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3935 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3936
3937 /* Gen-specific function declarations */
3938 #ifdef genX
3939 # include "anv_genX.h"
3940 #else
3941 # define genX(x) gen7_##x
3942 # include "anv_genX.h"
3943 # undef genX
3944 # define genX(x) gen75_##x
3945 # include "anv_genX.h"
3946 # undef genX
3947 # define genX(x) gen8_##x
3948 # include "anv_genX.h"
3949 # undef genX
3950 # define genX(x) gen9_##x
3951 # include "anv_genX.h"
3952 # undef genX
3953 # define genX(x) gen10_##x
3954 # include "anv_genX.h"
3955 # undef genX
3956 # define genX(x) gen11_##x
3957 # include "anv_genX.h"
3958 # undef genX
3959 # define genX(x) gen12_##x
3960 # include "anv_genX.h"
3961 # undef genX
3962 #endif
3963
3964 #endif /* ANV_PRIVATE_H */