anv/gen11: Emit SLICE_HASH_TABLE when pipes are unbalanced.
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "vk_alloc.h"
61 #include "vk_debug_report.h"
62
63 /* Pre-declarations needed for WSI entrypoints */
64 struct wl_surface;
65 struct wl_display;
66 typedef struct xcb_connection_t xcb_connection_t;
67 typedef uint32_t xcb_visualid_t;
68 typedef uint32_t xcb_window_t;
69
70 struct anv_buffer;
71 struct anv_buffer_view;
72 struct anv_image_view;
73 struct anv_instance;
74
75 struct gen_l3_config;
76
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79 #include <vulkan/vk_icd.h>
80
81 #include "anv_android.h"
82 #include "anv_entrypoints.h"
83 #include "anv_extensions.h"
84 #include "isl/isl.h"
85
86 #include "dev/gen_debug.h"
87 #include "common/intel_log.h"
88 #include "wsi_common.h"
89
90 /* anv Virtual Memory Layout
91 * =========================
92 *
93 * When the anv driver is determining the virtual graphics addresses of memory
94 * objects itself using the softpin mechanism, the following memory ranges
95 * will be used.
96 *
97 * Three special considerations to notice:
98 *
99 * (1) the dynamic state pool is located within the same 4 GiB as the low
100 * heap. This is to work around a VF cache issue described in a comment in
101 * anv_physical_device_init_heaps.
102 *
103 * (2) the binding table pool is located at lower addresses than the surface
104 * state pool, within a 4 GiB range. This allows surface state base addresses
105 * to cover both binding tables (16 bit offsets) and surface states (32 bit
106 * offsets).
107 *
108 * (3) the last 4 GiB of the address space is withheld from the high
109 * heap. Various hardware units will read past the end of an object for
110 * various reasons. This healthy margin prevents reads from wrapping around
111 * 48-bit addresses.
112 */
113 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
114 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
115 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
116 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
117 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
118 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
119 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
120 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
121 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
122 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
123 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
124
125 #define LOW_HEAP_SIZE \
126 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
127 #define DYNAMIC_STATE_POOL_SIZE \
128 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
129 #define BINDING_TABLE_POOL_SIZE \
130 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
131 #define SURFACE_STATE_POOL_SIZE \
132 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
133 #define INSTRUCTION_STATE_POOL_SIZE \
134 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
135
136 /* Allowing different clear colors requires us to perform a depth resolve at
137 * the end of certain render passes. This is because while slow clears store
138 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
139 * See the PRMs for examples describing when additional resolves would be
140 * necessary. To enable fast clears without requiring extra resolves, we set
141 * the clear value to a globally-defined one. We could allow different values
142 * if the user doesn't expect coherent data during or after a render passes
143 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
144 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
145 * 1.0f seems to be the only value used. The only application that doesn't set
146 * this value does so through the usage of an seemingly uninitialized clear
147 * value.
148 */
149 #define ANV_HZ_FC_VAL 1.0f
150
151 #define MAX_VBS 28
152 #define MAX_XFB_BUFFERS 4
153 #define MAX_XFB_STREAMS 4
154 #define MAX_SETS 8
155 #define MAX_RTS 8
156 #define MAX_VIEWPORTS 16
157 #define MAX_SCISSORS 16
158 #define MAX_PUSH_CONSTANTS_SIZE 128
159 #define MAX_DYNAMIC_BUFFERS 16
160 #define MAX_IMAGES 64
161 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
162 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
163 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
164
165 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
166 *
167 * "The surface state model is used when a Binding Table Index (specified
168 * in the message descriptor) of less than 240 is specified. In this model,
169 * the Binding Table Index is used to index into the binding table, and the
170 * binding table entry contains a pointer to the SURFACE_STATE."
171 *
172 * Binding table values above 240 are used for various things in the hardware
173 * such as stateless, stateless with incoherent cache, SLM, and bindless.
174 */
175 #define MAX_BINDING_TABLE_SIZE 240
176
177 /* The kernel relocation API has a limitation of a 32-bit delta value
178 * applied to the address before it is written which, in spite of it being
179 * unsigned, is treated as signed . Because of the way that this maps to
180 * the Vulkan API, we cannot handle an offset into a buffer that does not
181 * fit into a signed 32 bits. The only mechanism we have for dealing with
182 * this at the moment is to limit all VkDeviceMemory objects to a maximum
183 * of 2GB each. The Vulkan spec allows us to do this:
184 *
185 * "Some platforms may have a limit on the maximum size of a single
186 * allocation. For example, certain systems may fail to create
187 * allocations with a size greater than or equal to 4GB. Such a limit is
188 * implementation-dependent, and if such a failure occurs then the error
189 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
190 *
191 * We don't use vk_error here because it's not an error so much as an
192 * indication to the application that the allocation is too large.
193 */
194 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
195
196 #define ANV_SVGS_VB_INDEX MAX_VBS
197 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
198
199 /* We reserve this MI ALU register for the purpose of handling predication.
200 * Other code which uses the MI ALU should leave it alone.
201 */
202 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
203
204 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
205
206 static inline uint32_t
207 align_down_npot_u32(uint32_t v, uint32_t a)
208 {
209 return v - (v % a);
210 }
211
212 static inline uint32_t
213 align_u32(uint32_t v, uint32_t a)
214 {
215 assert(a != 0 && a == (a & -a));
216 return (v + a - 1) & ~(a - 1);
217 }
218
219 static inline uint64_t
220 align_u64(uint64_t v, uint64_t a)
221 {
222 assert(a != 0 && a == (a & -a));
223 return (v + a - 1) & ~(a - 1);
224 }
225
226 static inline int32_t
227 align_i32(int32_t v, int32_t a)
228 {
229 assert(a != 0 && a == (a & -a));
230 return (v + a - 1) & ~(a - 1);
231 }
232
233 /** Alignment must be a power of 2. */
234 static inline bool
235 anv_is_aligned(uintmax_t n, uintmax_t a)
236 {
237 assert(a == (a & -a));
238 return (n & (a - 1)) == 0;
239 }
240
241 static inline uint32_t
242 anv_minify(uint32_t n, uint32_t levels)
243 {
244 if (unlikely(n == 0))
245 return 0;
246 else
247 return MAX2(n >> levels, 1);
248 }
249
250 static inline float
251 anv_clamp_f(float f, float min, float max)
252 {
253 assert(min < max);
254
255 if (f > max)
256 return max;
257 else if (f < min)
258 return min;
259 else
260 return f;
261 }
262
263 static inline bool
264 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
265 {
266 if (*inout_mask & clear_mask) {
267 *inout_mask &= ~clear_mask;
268 return true;
269 } else {
270 return false;
271 }
272 }
273
274 static inline union isl_color_value
275 vk_to_isl_color(VkClearColorValue color)
276 {
277 return (union isl_color_value) {
278 .u32 = {
279 color.uint32[0],
280 color.uint32[1],
281 color.uint32[2],
282 color.uint32[3],
283 },
284 };
285 }
286
287 #define for_each_bit(b, dword) \
288 for (uint32_t __dword = (dword); \
289 (b) = __builtin_ffs(__dword) - 1, __dword; \
290 __dword &= ~(1 << (b)))
291
292 #define typed_memcpy(dest, src, count) ({ \
293 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
294 memcpy((dest), (src), (count) * sizeof(*(src))); \
295 })
296
297 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
298 * to be added here in order to utilize mapping in debug/error/perf macros.
299 */
300 #define REPORT_OBJECT_TYPE(o) \
301 __builtin_choose_expr ( \
302 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
303 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
304 __builtin_choose_expr ( \
305 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
306 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
307 __builtin_choose_expr ( \
308 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
309 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
310 __builtin_choose_expr ( \
311 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
312 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
313 __builtin_choose_expr ( \
314 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
315 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
316 __builtin_choose_expr ( \
317 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
318 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
319 __builtin_choose_expr ( \
320 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
321 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
322 __builtin_choose_expr ( \
323 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
324 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
325 __builtin_choose_expr ( \
326 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
327 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
328 __builtin_choose_expr ( \
329 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
330 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), void*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
394 /* The void expression results in a compile-time error \
395 when assigning the result to something. */ \
396 (void)0)))))))))))))))))))))))))))))))
397
398 /* Whenever we generate an error, pass it through this function. Useful for
399 * debugging, where we can break on it. Only call at error site, not when
400 * propagating errors. Might be useful to plug in a stack trace here.
401 */
402
403 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
404 VkDebugReportObjectTypeEXT type, VkResult error,
405 const char *file, int line, const char *format,
406 va_list args);
407
408 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
409 VkDebugReportObjectTypeEXT type, VkResult error,
410 const char *file, int line, const char *format, ...);
411
412 #ifdef DEBUG
413 #define vk_error(error) __vk_errorf(NULL, NULL,\
414 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
415 error, __FILE__, __LINE__, NULL)
416 #define vk_errorv(instance, obj, error, format, args)\
417 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
418 __FILE__, __LINE__, format, args)
419 #define vk_errorf(instance, obj, error, format, ...)\
420 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
421 __FILE__, __LINE__, format, ## __VA_ARGS__)
422 #else
423 #define vk_error(error) error
424 #define vk_errorf(instance, obj, error, format, ...) error
425 #endif
426
427 /**
428 * Warn on ignored extension structs.
429 *
430 * The Vulkan spec requires us to ignore unsupported or unknown structs in
431 * a pNext chain. In debug mode, emitting warnings for ignored structs may
432 * help us discover structs that we should not have ignored.
433 *
434 *
435 * From the Vulkan 1.0.38 spec:
436 *
437 * Any component of the implementation (the loader, any enabled layers,
438 * and drivers) must skip over, without processing (other than reading the
439 * sType and pNext members) any chained structures with sType values not
440 * defined by extensions supported by that component.
441 */
442 #define anv_debug_ignored_stype(sType) \
443 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
444
445 void __anv_perf_warn(struct anv_instance *instance, const void *object,
446 VkDebugReportObjectTypeEXT type, const char *file,
447 int line, const char *format, ...)
448 anv_printflike(6, 7);
449 void anv_loge(const char *format, ...) anv_printflike(1, 2);
450 void anv_loge_v(const char *format, va_list va);
451
452 /**
453 * Print a FINISHME message, including its source location.
454 */
455 #define anv_finishme(format, ...) \
456 do { \
457 static bool reported = false; \
458 if (!reported) { \
459 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
460 ##__VA_ARGS__); \
461 reported = true; \
462 } \
463 } while (0)
464
465 /**
466 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
467 */
468 #define anv_perf_warn(instance, obj, format, ...) \
469 do { \
470 static bool reported = false; \
471 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
472 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
473 format, ##__VA_ARGS__); \
474 reported = true; \
475 } \
476 } while (0)
477
478 /* A non-fatal assert. Useful for debugging. */
479 #ifdef DEBUG
480 #define anv_assert(x) ({ \
481 if (unlikely(!(x))) \
482 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
483 })
484 #else
485 #define anv_assert(x)
486 #endif
487
488 /* A multi-pointer allocator
489 *
490 * When copying data structures from the user (such as a render pass), it's
491 * common to need to allocate data for a bunch of different things. Instead
492 * of doing several allocations and having to handle all of the error checking
493 * that entails, it can be easier to do a single allocation. This struct
494 * helps facilitate that. The intended usage looks like this:
495 *
496 * ANV_MULTIALLOC(ma)
497 * anv_multialloc_add(&ma, &main_ptr, 1);
498 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
499 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
500 *
501 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
502 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
503 */
504 struct anv_multialloc {
505 size_t size;
506 size_t align;
507
508 uint32_t ptr_count;
509 void **ptrs[8];
510 };
511
512 #define ANV_MULTIALLOC_INIT \
513 ((struct anv_multialloc) { 0, })
514
515 #define ANV_MULTIALLOC(_name) \
516 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
517
518 __attribute__((always_inline))
519 static inline void
520 _anv_multialloc_add(struct anv_multialloc *ma,
521 void **ptr, size_t size, size_t align)
522 {
523 size_t offset = align_u64(ma->size, align);
524 ma->size = offset + size;
525 ma->align = MAX2(ma->align, align);
526
527 /* Store the offset in the pointer. */
528 *ptr = (void *)(uintptr_t)offset;
529
530 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
531 ma->ptrs[ma->ptr_count++] = ptr;
532 }
533
534 #define anv_multialloc_add_size(_ma, _ptr, _size) \
535 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
536
537 #define anv_multialloc_add(_ma, _ptr, _count) \
538 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
539
540 __attribute__((always_inline))
541 static inline void *
542 anv_multialloc_alloc(struct anv_multialloc *ma,
543 const VkAllocationCallbacks *alloc,
544 VkSystemAllocationScope scope)
545 {
546 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
547 if (!ptr)
548 return NULL;
549
550 /* Fill out each of the pointers with their final value.
551 *
552 * for (uint32_t i = 0; i < ma->ptr_count; i++)
553 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
554 *
555 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
556 * constant, GCC is incapable of figuring this out and unrolling the loop
557 * so we have to give it a little help.
558 */
559 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
560 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
561 if ((_i) < ma->ptr_count) \
562 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
563 _ANV_MULTIALLOC_UPDATE_POINTER(0);
564 _ANV_MULTIALLOC_UPDATE_POINTER(1);
565 _ANV_MULTIALLOC_UPDATE_POINTER(2);
566 _ANV_MULTIALLOC_UPDATE_POINTER(3);
567 _ANV_MULTIALLOC_UPDATE_POINTER(4);
568 _ANV_MULTIALLOC_UPDATE_POINTER(5);
569 _ANV_MULTIALLOC_UPDATE_POINTER(6);
570 _ANV_MULTIALLOC_UPDATE_POINTER(7);
571 #undef _ANV_MULTIALLOC_UPDATE_POINTER
572
573 return ptr;
574 }
575
576 __attribute__((always_inline))
577 static inline void *
578 anv_multialloc_alloc2(struct anv_multialloc *ma,
579 const VkAllocationCallbacks *parent_alloc,
580 const VkAllocationCallbacks *alloc,
581 VkSystemAllocationScope scope)
582 {
583 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
584 }
585
586 /* Extra ANV-defined BO flags which won't be passed to the kernel */
587 #define ANV_BO_EXTERNAL (1ull << 31)
588 #define ANV_BO_FLAG_MASK (1ull << 31)
589
590 struct anv_bo {
591 uint32_t gem_handle;
592
593 /* Index into the current validation list. This is used by the
594 * validation list building alrogithm to track which buffers are already
595 * in the validation list so that we can ensure uniqueness.
596 */
597 uint32_t index;
598
599 /* Last known offset. This value is provided by the kernel when we
600 * execbuf and is used as the presumed offset for the next bunch of
601 * relocations.
602 */
603 uint64_t offset;
604
605 uint64_t size;
606 void *map;
607
608 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
609 uint32_t flags;
610 };
611
612 static inline void
613 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
614 {
615 bo->gem_handle = gem_handle;
616 bo->index = 0;
617 bo->offset = -1;
618 bo->size = size;
619 bo->map = NULL;
620 bo->flags = 0;
621 }
622
623 /* Represents a lock-free linked list of "free" things. This is used by
624 * both the block pool and the state pools. Unfortunately, in order to
625 * solve the ABA problem, we can't use a single uint32_t head.
626 */
627 union anv_free_list {
628 struct {
629 uint32_t offset;
630
631 /* A simple count that is incremented every time the head changes. */
632 uint32_t count;
633 };
634 uint64_t u64;
635 };
636
637 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
638
639 struct anv_block_state {
640 union {
641 struct {
642 uint32_t next;
643 uint32_t end;
644 };
645 uint64_t u64;
646 };
647 };
648
649 #define anv_block_pool_foreach_bo(bo, pool) \
650 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
651
652 #define ANV_MAX_BLOCK_POOL_BOS 20
653
654 struct anv_block_pool {
655 struct anv_device *device;
656
657 uint64_t bo_flags;
658
659 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
660 struct anv_bo *bo;
661 uint32_t nbos;
662
663 uint64_t size;
664
665 /* The address where the start of the pool is pinned. The various bos that
666 * are created as the pool grows will have addresses in the range
667 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
668 */
669 uint64_t start_address;
670
671 /* The offset from the start of the bo to the "center" of the block
672 * pool. Pointers to allocated blocks are given by
673 * bo.map + center_bo_offset + offsets.
674 */
675 uint32_t center_bo_offset;
676
677 /* Current memory map of the block pool. This pointer may or may not
678 * point to the actual beginning of the block pool memory. If
679 * anv_block_pool_alloc_back has ever been called, then this pointer
680 * will point to the "center" position of the buffer and all offsets
681 * (negative or positive) given out by the block pool alloc functions
682 * will be valid relative to this pointer.
683 *
684 * In particular, map == bo.map + center_offset
685 *
686 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
687 * since it will handle the softpin case as well, where this points to NULL.
688 */
689 void *map;
690 int fd;
691
692 /**
693 * Array of mmaps and gem handles owned by the block pool, reclaimed when
694 * the block pool is destroyed.
695 */
696 struct u_vector mmap_cleanups;
697
698 struct anv_block_state state;
699
700 struct anv_block_state back_state;
701 };
702
703 /* Block pools are backed by a fixed-size 1GB memfd */
704 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
705
706 /* The center of the block pool is also the middle of the memfd. This may
707 * change in the future if we decide differently for some reason.
708 */
709 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
710
711 static inline uint32_t
712 anv_block_pool_size(struct anv_block_pool *pool)
713 {
714 return pool->state.end + pool->back_state.end;
715 }
716
717 struct anv_state {
718 int32_t offset;
719 uint32_t alloc_size;
720 void *map;
721 uint32_t idx;
722 };
723
724 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
725
726 struct anv_fixed_size_state_pool {
727 union anv_free_list free_list;
728 struct anv_block_state block;
729 };
730
731 #define ANV_MIN_STATE_SIZE_LOG2 6
732 #define ANV_MAX_STATE_SIZE_LOG2 21
733
734 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
735
736 struct anv_free_entry {
737 uint32_t next;
738 struct anv_state state;
739 };
740
741 struct anv_state_table {
742 struct anv_device *device;
743 int fd;
744 struct anv_free_entry *map;
745 uint32_t size;
746 struct anv_block_state state;
747 struct u_vector cleanups;
748 };
749
750 struct anv_state_pool {
751 struct anv_block_pool block_pool;
752
753 struct anv_state_table table;
754
755 /* The size of blocks which will be allocated from the block pool */
756 uint32_t block_size;
757
758 /** Free list for "back" allocations */
759 union anv_free_list back_alloc_free_list;
760
761 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
762 };
763
764 struct anv_state_stream_block;
765
766 struct anv_state_stream {
767 struct anv_state_pool *state_pool;
768
769 /* The size of blocks to allocate from the state pool */
770 uint32_t block_size;
771
772 /* Current block we're allocating from */
773 struct anv_state block;
774
775 /* Offset into the current block at which to allocate the next state */
776 uint32_t next;
777
778 /* List of all blocks allocated from this pool */
779 struct anv_state_stream_block *block_list;
780 };
781
782 /* The block_pool functions exported for testing only. The block pool should
783 * only be used via a state pool (see below).
784 */
785 VkResult anv_block_pool_init(struct anv_block_pool *pool,
786 struct anv_device *device,
787 uint64_t start_address,
788 uint32_t initial_size,
789 uint64_t bo_flags);
790 void anv_block_pool_finish(struct anv_block_pool *pool);
791 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
792 uint32_t block_size, uint32_t *padding);
793 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
794 uint32_t block_size);
795 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
796
797 VkResult anv_state_pool_init(struct anv_state_pool *pool,
798 struct anv_device *device,
799 uint64_t start_address,
800 uint32_t block_size,
801 uint64_t bo_flags);
802 void anv_state_pool_finish(struct anv_state_pool *pool);
803 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
804 uint32_t state_size, uint32_t alignment);
805 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
806 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
807 void anv_state_stream_init(struct anv_state_stream *stream,
808 struct anv_state_pool *state_pool,
809 uint32_t block_size);
810 void anv_state_stream_finish(struct anv_state_stream *stream);
811 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
812 uint32_t size, uint32_t alignment);
813
814 VkResult anv_state_table_init(struct anv_state_table *table,
815 struct anv_device *device,
816 uint32_t initial_entries);
817 void anv_state_table_finish(struct anv_state_table *table);
818 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
819 uint32_t count);
820 void anv_free_list_push(union anv_free_list *list,
821 struct anv_state_table *table,
822 uint32_t idx, uint32_t count);
823 struct anv_state* anv_free_list_pop(union anv_free_list *list,
824 struct anv_state_table *table);
825
826
827 static inline struct anv_state *
828 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
829 {
830 return &table->map[idx].state;
831 }
832 /**
833 * Implements a pool of re-usable BOs. The interface is identical to that
834 * of block_pool except that each block is its own BO.
835 */
836 struct anv_bo_pool {
837 struct anv_device *device;
838
839 uint64_t bo_flags;
840
841 void *free_list[16];
842 };
843
844 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
845 uint64_t bo_flags);
846 void anv_bo_pool_finish(struct anv_bo_pool *pool);
847 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
848 uint32_t size);
849 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
850
851 struct anv_scratch_bo {
852 bool exists;
853 struct anv_bo bo;
854 };
855
856 struct anv_scratch_pool {
857 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
858 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
859 };
860
861 void anv_scratch_pool_init(struct anv_device *device,
862 struct anv_scratch_pool *pool);
863 void anv_scratch_pool_finish(struct anv_device *device,
864 struct anv_scratch_pool *pool);
865 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
866 struct anv_scratch_pool *pool,
867 gl_shader_stage stage,
868 unsigned per_thread_scratch);
869
870 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
871 struct anv_bo_cache {
872 struct hash_table *bo_map;
873 pthread_mutex_t mutex;
874 };
875
876 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
877 void anv_bo_cache_finish(struct anv_bo_cache *cache);
878 VkResult anv_bo_cache_alloc(struct anv_device *device,
879 struct anv_bo_cache *cache,
880 uint64_t size, uint64_t bo_flags,
881 struct anv_bo **bo);
882 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
883 struct anv_bo_cache *cache,
884 void *host_ptr, uint32_t size,
885 uint64_t bo_flags, struct anv_bo **bo_out);
886 VkResult anv_bo_cache_import(struct anv_device *device,
887 struct anv_bo_cache *cache,
888 int fd, uint64_t bo_flags,
889 struct anv_bo **bo);
890 VkResult anv_bo_cache_export(struct anv_device *device,
891 struct anv_bo_cache *cache,
892 struct anv_bo *bo_in, int *fd_out);
893 void anv_bo_cache_release(struct anv_device *device,
894 struct anv_bo_cache *cache,
895 struct anv_bo *bo);
896
897 struct anv_memory_type {
898 /* Standard bits passed on to the client */
899 VkMemoryPropertyFlags propertyFlags;
900 uint32_t heapIndex;
901
902 /* Driver-internal book-keeping */
903 VkBufferUsageFlags valid_buffer_usage;
904 };
905
906 struct anv_memory_heap {
907 /* Standard bits passed on to the client */
908 VkDeviceSize size;
909 VkMemoryHeapFlags flags;
910
911 /* Driver-internal book-keeping */
912 uint64_t vma_start;
913 uint64_t vma_size;
914 bool supports_48bit_addresses;
915 VkDeviceSize used;
916 };
917
918 struct anv_physical_device {
919 VK_LOADER_DATA _loader_data;
920
921 struct anv_instance * instance;
922 uint32_t chipset_id;
923 bool no_hw;
924 char path[20];
925 const char * name;
926 struct {
927 uint16_t domain;
928 uint8_t bus;
929 uint8_t device;
930 uint8_t function;
931 } pci_info;
932 struct gen_device_info info;
933 /** Amount of "GPU memory" we want to advertise
934 *
935 * Clearly, this value is bogus since Intel is a UMA architecture. On
936 * gen7 platforms, we are limited by GTT size unless we want to implement
937 * fine-grained tracking and GTT splitting. On Broadwell and above we are
938 * practically unlimited. However, we will never report more than 3/4 of
939 * the total system ram to try and avoid running out of RAM.
940 */
941 bool supports_48bit_addresses;
942 struct brw_compiler * compiler;
943 struct isl_device isl_dev;
944 int cmd_parser_version;
945 bool has_exec_async;
946 bool has_exec_capture;
947 bool has_exec_fence;
948 bool has_syncobj;
949 bool has_syncobj_wait;
950 bool has_context_priority;
951 bool use_softpin;
952 bool has_context_isolation;
953 bool has_mem_available;
954 bool always_use_bindless;
955
956 /** True if we can access buffers using A64 messages */
957 bool has_a64_buffer_access;
958 /** True if we can use bindless access for images */
959 bool has_bindless_images;
960 /** True if we can use bindless access for samplers */
961 bool has_bindless_samplers;
962
963 struct anv_device_extension_table supported_extensions;
964
965 uint32_t eu_total;
966 uint32_t subslice_total;
967
968 struct {
969 uint32_t type_count;
970 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
971 uint32_t heap_count;
972 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
973 } memory;
974
975 uint8_t driver_build_sha1[20];
976 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
977 uint8_t driver_uuid[VK_UUID_SIZE];
978 uint8_t device_uuid[VK_UUID_SIZE];
979
980 struct disk_cache * disk_cache;
981
982 struct wsi_device wsi_device;
983 int local_fd;
984 int master_fd;
985 };
986
987 struct anv_app_info {
988 const char* app_name;
989 uint32_t app_version;
990 const char* engine_name;
991 uint32_t engine_version;
992 uint32_t api_version;
993 };
994
995 struct anv_instance {
996 VK_LOADER_DATA _loader_data;
997
998 VkAllocationCallbacks alloc;
999
1000 struct anv_app_info app_info;
1001
1002 struct anv_instance_extension_table enabled_extensions;
1003 struct anv_instance_dispatch_table dispatch;
1004 struct anv_device_dispatch_table device_dispatch;
1005
1006 int physicalDeviceCount;
1007 struct anv_physical_device physicalDevice;
1008
1009 bool pipeline_cache_enabled;
1010
1011 struct vk_debug_report_instance debug_report_callbacks;
1012 };
1013
1014 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1015 void anv_finish_wsi(struct anv_physical_device *physical_device);
1016
1017 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1018 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1019 const char *name);
1020
1021 struct anv_queue {
1022 VK_LOADER_DATA _loader_data;
1023
1024 struct anv_device * device;
1025
1026 VkDeviceQueueCreateFlags flags;
1027 };
1028
1029 struct anv_pipeline_cache {
1030 struct anv_device * device;
1031 pthread_mutex_t mutex;
1032
1033 struct hash_table * nir_cache;
1034
1035 struct hash_table * cache;
1036 };
1037
1038 struct nir_xfb_info;
1039 struct anv_pipeline_bind_map;
1040
1041 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1042 struct anv_device *device,
1043 bool cache_enabled);
1044 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1045
1046 struct anv_shader_bin *
1047 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1048 const void *key, uint32_t key_size);
1049 struct anv_shader_bin *
1050 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1051 const void *key_data, uint32_t key_size,
1052 const void *kernel_data, uint32_t kernel_size,
1053 const void *constant_data,
1054 uint32_t constant_data_size,
1055 const struct brw_stage_prog_data *prog_data,
1056 uint32_t prog_data_size,
1057 const struct brw_compile_stats *stats,
1058 uint32_t num_stats,
1059 const struct nir_xfb_info *xfb_info,
1060 const struct anv_pipeline_bind_map *bind_map);
1061
1062 struct anv_shader_bin *
1063 anv_device_search_for_kernel(struct anv_device *device,
1064 struct anv_pipeline_cache *cache,
1065 const void *key_data, uint32_t key_size,
1066 bool *user_cache_bit);
1067
1068 struct anv_shader_bin *
1069 anv_device_upload_kernel(struct anv_device *device,
1070 struct anv_pipeline_cache *cache,
1071 const void *key_data, uint32_t key_size,
1072 const void *kernel_data, uint32_t kernel_size,
1073 const void *constant_data,
1074 uint32_t constant_data_size,
1075 const struct brw_stage_prog_data *prog_data,
1076 uint32_t prog_data_size,
1077 const struct brw_compile_stats *stats,
1078 uint32_t num_stats,
1079 const struct nir_xfb_info *xfb_info,
1080 const struct anv_pipeline_bind_map *bind_map);
1081
1082 struct nir_shader;
1083 struct nir_shader_compiler_options;
1084
1085 struct nir_shader *
1086 anv_device_search_for_nir(struct anv_device *device,
1087 struct anv_pipeline_cache *cache,
1088 const struct nir_shader_compiler_options *nir_options,
1089 unsigned char sha1_key[20],
1090 void *mem_ctx);
1091
1092 void
1093 anv_device_upload_nir(struct anv_device *device,
1094 struct anv_pipeline_cache *cache,
1095 const struct nir_shader *nir,
1096 unsigned char sha1_key[20]);
1097
1098 struct anv_device {
1099 VK_LOADER_DATA _loader_data;
1100
1101 VkAllocationCallbacks alloc;
1102
1103 struct anv_instance * instance;
1104 uint32_t chipset_id;
1105 bool no_hw;
1106 struct gen_device_info info;
1107 struct isl_device isl_dev;
1108 int context_id;
1109 int fd;
1110 bool can_chain_batches;
1111 bool robust_buffer_access;
1112 struct anv_device_extension_table enabled_extensions;
1113 struct anv_device_dispatch_table dispatch;
1114
1115 pthread_mutex_t vma_mutex;
1116 struct util_vma_heap vma_lo;
1117 struct util_vma_heap vma_hi;
1118 uint64_t vma_lo_available;
1119 uint64_t vma_hi_available;
1120
1121 /** List of all anv_device_memory objects */
1122 struct list_head memory_objects;
1123
1124 struct anv_bo_pool batch_bo_pool;
1125
1126 struct anv_bo_cache bo_cache;
1127
1128 struct anv_state_pool dynamic_state_pool;
1129 struct anv_state_pool instruction_state_pool;
1130 struct anv_state_pool binding_table_pool;
1131 struct anv_state_pool surface_state_pool;
1132
1133 struct anv_bo workaround_bo;
1134 struct anv_bo trivial_batch_bo;
1135 struct anv_bo hiz_clear_bo;
1136
1137 struct anv_pipeline_cache default_pipeline_cache;
1138 struct blorp_context blorp;
1139
1140 struct anv_state border_colors;
1141
1142 struct anv_state slice_hash;
1143
1144 struct anv_queue queue;
1145
1146 struct anv_scratch_pool scratch_pool;
1147
1148 uint32_t default_mocs;
1149 uint32_t external_mocs;
1150
1151 pthread_mutex_t mutex;
1152 pthread_cond_t queue_submit;
1153 bool _lost;
1154
1155 struct gen_batch_decode_ctx decoder_ctx;
1156 /*
1157 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1158 * the cmd_buffer's list.
1159 */
1160 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1161 };
1162
1163 static inline struct anv_state_pool *
1164 anv_binding_table_pool(struct anv_device *device)
1165 {
1166 if (device->instance->physicalDevice.use_softpin)
1167 return &device->binding_table_pool;
1168 else
1169 return &device->surface_state_pool;
1170 }
1171
1172 static inline struct anv_state
1173 anv_binding_table_pool_alloc(struct anv_device *device) {
1174 if (device->instance->physicalDevice.use_softpin)
1175 return anv_state_pool_alloc(&device->binding_table_pool,
1176 device->binding_table_pool.block_size, 0);
1177 else
1178 return anv_state_pool_alloc_back(&device->surface_state_pool);
1179 }
1180
1181 static inline void
1182 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1183 anv_state_pool_free(anv_binding_table_pool(device), state);
1184 }
1185
1186 static inline uint32_t
1187 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1188 {
1189 if (bo->flags & ANV_BO_EXTERNAL)
1190 return device->external_mocs;
1191 else
1192 return device->default_mocs;
1193 }
1194
1195 void anv_device_init_blorp(struct anv_device *device);
1196 void anv_device_finish_blorp(struct anv_device *device);
1197
1198 VkResult _anv_device_set_lost(struct anv_device *device,
1199 const char *file, int line,
1200 const char *msg, ...);
1201 #define anv_device_set_lost(dev, ...) \
1202 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1203
1204 static inline bool
1205 anv_device_is_lost(struct anv_device *device)
1206 {
1207 return unlikely(device->_lost);
1208 }
1209
1210 VkResult anv_device_execbuf(struct anv_device *device,
1211 struct drm_i915_gem_execbuffer2 *execbuf,
1212 struct anv_bo **execbuf_bos);
1213 VkResult anv_device_query_status(struct anv_device *device);
1214 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1215 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1216 int64_t timeout);
1217
1218 void* anv_gem_mmap(struct anv_device *device,
1219 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1220 void anv_gem_munmap(void *p, uint64_t size);
1221 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1222 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1223 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1224 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1225 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1226 int anv_gem_execbuffer(struct anv_device *device,
1227 struct drm_i915_gem_execbuffer2 *execbuf);
1228 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1229 uint32_t stride, uint32_t tiling);
1230 int anv_gem_create_context(struct anv_device *device);
1231 bool anv_gem_has_context_priority(int fd);
1232 int anv_gem_destroy_context(struct anv_device *device, int context);
1233 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1234 uint64_t value);
1235 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1236 uint64_t *value);
1237 int anv_gem_get_param(int fd, uint32_t param);
1238 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1239 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1240 int anv_gem_get_aperture(int fd, uint64_t *size);
1241 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1242 uint32_t *active, uint32_t *pending);
1243 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1244 int anv_gem_reg_read(struct anv_device *device,
1245 uint32_t offset, uint64_t *result);
1246 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1247 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1248 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1249 uint32_t read_domains, uint32_t write_domain);
1250 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1251 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1252 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1253 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1254 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1255 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1256 uint32_t handle);
1257 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1258 uint32_t handle, int fd);
1259 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1260 bool anv_gem_supports_syncobj_wait(int fd);
1261 int anv_gem_syncobj_wait(struct anv_device *device,
1262 uint32_t *handles, uint32_t num_handles,
1263 int64_t abs_timeout_ns, bool wait_all);
1264
1265 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1266 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1267
1268 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1269
1270 struct anv_reloc_list {
1271 uint32_t num_relocs;
1272 uint32_t array_length;
1273 struct drm_i915_gem_relocation_entry * relocs;
1274 struct anv_bo ** reloc_bos;
1275 struct set * deps;
1276 };
1277
1278 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1279 const VkAllocationCallbacks *alloc);
1280 void anv_reloc_list_finish(struct anv_reloc_list *list,
1281 const VkAllocationCallbacks *alloc);
1282
1283 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1284 const VkAllocationCallbacks *alloc,
1285 uint32_t offset, struct anv_bo *target_bo,
1286 uint32_t delta);
1287
1288 struct anv_batch_bo {
1289 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1290 struct list_head link;
1291
1292 struct anv_bo bo;
1293
1294 /* Bytes actually consumed in this batch BO */
1295 uint32_t length;
1296
1297 struct anv_reloc_list relocs;
1298 };
1299
1300 struct anv_batch {
1301 const VkAllocationCallbacks * alloc;
1302
1303 void * start;
1304 void * end;
1305 void * next;
1306
1307 struct anv_reloc_list * relocs;
1308
1309 /* This callback is called (with the associated user data) in the event
1310 * that the batch runs out of space.
1311 */
1312 VkResult (*extend_cb)(struct anv_batch *, void *);
1313 void * user_data;
1314
1315 /**
1316 * Current error status of the command buffer. Used to track inconsistent
1317 * or incomplete command buffer states that are the consequence of run-time
1318 * errors such as out of memory scenarios. We want to track this in the
1319 * batch because the command buffer object is not visible to some parts
1320 * of the driver.
1321 */
1322 VkResult status;
1323 };
1324
1325 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1326 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1327 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1328 void *location, struct anv_bo *bo, uint32_t offset);
1329 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1330 struct anv_batch *batch);
1331
1332 static inline VkResult
1333 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1334 {
1335 assert(error != VK_SUCCESS);
1336 if (batch->status == VK_SUCCESS)
1337 batch->status = error;
1338 return batch->status;
1339 }
1340
1341 static inline bool
1342 anv_batch_has_error(struct anv_batch *batch)
1343 {
1344 return batch->status != VK_SUCCESS;
1345 }
1346
1347 struct anv_address {
1348 struct anv_bo *bo;
1349 uint32_t offset;
1350 };
1351
1352 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1353
1354 static inline bool
1355 anv_address_is_null(struct anv_address addr)
1356 {
1357 return addr.bo == NULL && addr.offset == 0;
1358 }
1359
1360 static inline uint64_t
1361 anv_address_physical(struct anv_address addr)
1362 {
1363 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1364 return gen_canonical_address(addr.bo->offset + addr.offset);
1365 else
1366 return gen_canonical_address(addr.offset);
1367 }
1368
1369 static inline struct anv_address
1370 anv_address_add(struct anv_address addr, uint64_t offset)
1371 {
1372 addr.offset += offset;
1373 return addr;
1374 }
1375
1376 static inline void
1377 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1378 {
1379 unsigned reloc_size = 0;
1380 if (device->info.gen >= 8) {
1381 reloc_size = sizeof(uint64_t);
1382 *(uint64_t *)p = gen_canonical_address(v);
1383 } else {
1384 reloc_size = sizeof(uint32_t);
1385 *(uint32_t *)p = v;
1386 }
1387
1388 if (flush && !device->info.has_llc)
1389 gen_flush_range(p, reloc_size);
1390 }
1391
1392 static inline uint64_t
1393 _anv_combine_address(struct anv_batch *batch, void *location,
1394 const struct anv_address address, uint32_t delta)
1395 {
1396 if (address.bo == NULL) {
1397 return address.offset + delta;
1398 } else {
1399 assert(batch->start <= location && location < batch->end);
1400
1401 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1402 }
1403 }
1404
1405 #define __gen_address_type struct anv_address
1406 #define __gen_user_data struct anv_batch
1407 #define __gen_combine_address _anv_combine_address
1408
1409 /* Wrapper macros needed to work around preprocessor argument issues. In
1410 * particular, arguments don't get pre-evaluated if they are concatenated.
1411 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1412 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1413 * We can work around this easily enough with these helpers.
1414 */
1415 #define __anv_cmd_length(cmd) cmd ## _length
1416 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1417 #define __anv_cmd_header(cmd) cmd ## _header
1418 #define __anv_cmd_pack(cmd) cmd ## _pack
1419 #define __anv_reg_num(reg) reg ## _num
1420
1421 #define anv_pack_struct(dst, struc, ...) do { \
1422 struct struc __template = { \
1423 __VA_ARGS__ \
1424 }; \
1425 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1426 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1427 } while (0)
1428
1429 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1430 void *__dst = anv_batch_emit_dwords(batch, n); \
1431 if (__dst) { \
1432 struct cmd __template = { \
1433 __anv_cmd_header(cmd), \
1434 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1435 __VA_ARGS__ \
1436 }; \
1437 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1438 } \
1439 __dst; \
1440 })
1441
1442 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1443 do { \
1444 uint32_t *dw; \
1445 \
1446 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1447 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1448 if (!dw) \
1449 break; \
1450 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1451 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1452 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1453 } while (0)
1454
1455 #define anv_batch_emit(batch, cmd, name) \
1456 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1457 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1458 __builtin_expect(_dst != NULL, 1); \
1459 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1460 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1461 _dst = NULL; \
1462 }))
1463
1464 /* MEMORY_OBJECT_CONTROL_STATE:
1465 * .GraphicsDataTypeGFDT = 0,
1466 * .LLCCacheabilityControlLLCCC = 0,
1467 * .L3CacheabilityControlL3CC = 1,
1468 */
1469 #define GEN7_MOCS 1
1470
1471 /* MEMORY_OBJECT_CONTROL_STATE:
1472 * .LLCeLLCCacheabilityControlLLCCC = 0,
1473 * .L3CacheabilityControlL3CC = 1,
1474 */
1475 #define GEN75_MOCS 1
1476
1477 /* MEMORY_OBJECT_CONTROL_STATE:
1478 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1479 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1480 * .AgeforQUADLRU = 0
1481 */
1482 #define GEN8_MOCS 0x78
1483
1484 /* MEMORY_OBJECT_CONTROL_STATE:
1485 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1486 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1487 * .AgeforQUADLRU = 0
1488 */
1489 #define GEN8_EXTERNAL_MOCS 0x18
1490
1491 /* Skylake: MOCS is now an index into an array of 62 different caching
1492 * configurations programmed by the kernel.
1493 */
1494
1495 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1496 #define GEN9_MOCS (2 << 1)
1497
1498 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1499 #define GEN9_EXTERNAL_MOCS (1 << 1)
1500
1501 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1502 #define GEN10_MOCS GEN9_MOCS
1503 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1504
1505 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1506 #define GEN11_MOCS GEN9_MOCS
1507 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1508
1509 struct anv_device_memory {
1510 struct list_head link;
1511
1512 struct anv_bo * bo;
1513 struct anv_memory_type * type;
1514 VkDeviceSize map_size;
1515 void * map;
1516
1517 /* If set, we are holding reference to AHardwareBuffer
1518 * which we must release when memory is freed.
1519 */
1520 struct AHardwareBuffer * ahw;
1521
1522 /* If set, this memory comes from a host pointer. */
1523 void * host_ptr;
1524 };
1525
1526 /**
1527 * Header for Vertex URB Entry (VUE)
1528 */
1529 struct anv_vue_header {
1530 uint32_t Reserved;
1531 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1532 uint32_t ViewportIndex;
1533 float PointWidth;
1534 };
1535
1536 /** Struct representing a sampled image descriptor
1537 *
1538 * This descriptor layout is used for sampled images, bare sampler, and
1539 * combined image/sampler descriptors.
1540 */
1541 struct anv_sampled_image_descriptor {
1542 /** Bindless image handle
1543 *
1544 * This is expected to already be shifted such that the 20-bit
1545 * SURFACE_STATE table index is in the top 20 bits.
1546 */
1547 uint32_t image;
1548
1549 /** Bindless sampler handle
1550 *
1551 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1552 * to the dynamic state base address.
1553 */
1554 uint32_t sampler;
1555 };
1556
1557 struct anv_texture_swizzle_descriptor {
1558 /** Texture swizzle
1559 *
1560 * See also nir_intrinsic_channel_select_intel
1561 */
1562 uint8_t swizzle[4];
1563
1564 /** Unused padding to ensure the struct is a multiple of 64 bits */
1565 uint32_t _pad;
1566 };
1567
1568 /** Struct representing a storage image descriptor */
1569 struct anv_storage_image_descriptor {
1570 /** Bindless image handles
1571 *
1572 * These are expected to already be shifted such that the 20-bit
1573 * SURFACE_STATE table index is in the top 20 bits.
1574 */
1575 uint32_t read_write;
1576 uint32_t write_only;
1577 };
1578
1579 /** Struct representing a address/range descriptor
1580 *
1581 * The fields of this struct correspond directly to the data layout of
1582 * nir_address_format_64bit_bounded_global addresses. The last field is the
1583 * offset in the NIR address so it must be zero so that when you load the
1584 * descriptor you get a pointer to the start of the range.
1585 */
1586 struct anv_address_range_descriptor {
1587 uint64_t address;
1588 uint32_t range;
1589 uint32_t zero;
1590 };
1591
1592 enum anv_descriptor_data {
1593 /** The descriptor contains a BTI reference to a surface state */
1594 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1595 /** The descriptor contains a BTI reference to a sampler state */
1596 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1597 /** The descriptor contains an actual buffer view */
1598 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1599 /** The descriptor contains auxiliary image layout data */
1600 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1601 /** The descriptor contains auxiliary image layout data */
1602 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1603 /** anv_address_range_descriptor with a buffer address and range */
1604 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1605 /** Bindless surface handle */
1606 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1607 /** Storage image handles */
1608 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1609 /** Storage image handles */
1610 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1611 };
1612
1613 struct anv_descriptor_set_binding_layout {
1614 #ifndef NDEBUG
1615 /* The type of the descriptors in this binding */
1616 VkDescriptorType type;
1617 #endif
1618
1619 /* Flags provided when this binding was created */
1620 VkDescriptorBindingFlagsEXT flags;
1621
1622 /* Bitfield representing the type of data this descriptor contains */
1623 enum anv_descriptor_data data;
1624
1625 /* Maximum number of YCbCr texture/sampler planes */
1626 uint8_t max_plane_count;
1627
1628 /* Number of array elements in this binding (or size in bytes for inline
1629 * uniform data)
1630 */
1631 uint16_t array_size;
1632
1633 /* Index into the flattend descriptor set */
1634 uint16_t descriptor_index;
1635
1636 /* Index into the dynamic state array for a dynamic buffer */
1637 int16_t dynamic_offset_index;
1638
1639 /* Index into the descriptor set buffer views */
1640 int16_t buffer_view_index;
1641
1642 /* Offset into the descriptor buffer where this descriptor lives */
1643 uint32_t descriptor_offset;
1644
1645 /* Immutable samplers (or NULL if no immutable samplers) */
1646 struct anv_sampler **immutable_samplers;
1647 };
1648
1649 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1650
1651 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1652 VkDescriptorType type);
1653
1654 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1655 const struct anv_descriptor_set_binding_layout *binding,
1656 bool sampler);
1657
1658 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1659 const struct anv_descriptor_set_binding_layout *binding,
1660 bool sampler);
1661
1662 struct anv_descriptor_set_layout {
1663 /* Descriptor set layouts can be destroyed at almost any time */
1664 uint32_t ref_cnt;
1665
1666 /* Number of bindings in this descriptor set */
1667 uint16_t binding_count;
1668
1669 /* Total size of the descriptor set with room for all array entries */
1670 uint16_t size;
1671
1672 /* Shader stages affected by this descriptor set */
1673 uint16_t shader_stages;
1674
1675 /* Number of buffer views in this descriptor set */
1676 uint16_t buffer_view_count;
1677
1678 /* Number of dynamic offsets used by this descriptor set */
1679 uint16_t dynamic_offset_count;
1680
1681 /* Size of the descriptor buffer for this descriptor set */
1682 uint32_t descriptor_buffer_size;
1683
1684 /* Bindings in this descriptor set */
1685 struct anv_descriptor_set_binding_layout binding[0];
1686 };
1687
1688 static inline void
1689 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1690 {
1691 assert(layout && layout->ref_cnt >= 1);
1692 p_atomic_inc(&layout->ref_cnt);
1693 }
1694
1695 static inline void
1696 anv_descriptor_set_layout_unref(struct anv_device *device,
1697 struct anv_descriptor_set_layout *layout)
1698 {
1699 assert(layout && layout->ref_cnt >= 1);
1700 if (p_atomic_dec_zero(&layout->ref_cnt))
1701 vk_free(&device->alloc, layout);
1702 }
1703
1704 struct anv_descriptor {
1705 VkDescriptorType type;
1706
1707 union {
1708 struct {
1709 VkImageLayout layout;
1710 struct anv_image_view *image_view;
1711 struct anv_sampler *sampler;
1712 };
1713
1714 struct {
1715 struct anv_buffer *buffer;
1716 uint64_t offset;
1717 uint64_t range;
1718 };
1719
1720 struct anv_buffer_view *buffer_view;
1721 };
1722 };
1723
1724 struct anv_descriptor_set {
1725 struct anv_descriptor_pool *pool;
1726 struct anv_descriptor_set_layout *layout;
1727 uint32_t size;
1728
1729 /* State relative to anv_descriptor_pool::bo */
1730 struct anv_state desc_mem;
1731 /* Surface state for the descriptor buffer */
1732 struct anv_state desc_surface_state;
1733
1734 uint32_t buffer_view_count;
1735 struct anv_buffer_view *buffer_views;
1736
1737 /* Link to descriptor pool's desc_sets list . */
1738 struct list_head pool_link;
1739
1740 struct anv_descriptor descriptors[0];
1741 };
1742
1743 struct anv_buffer_view {
1744 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1745 uint64_t range; /**< VkBufferViewCreateInfo::range */
1746
1747 struct anv_address address;
1748
1749 struct anv_state surface_state;
1750 struct anv_state storage_surface_state;
1751 struct anv_state writeonly_storage_surface_state;
1752
1753 struct brw_image_param storage_image_param;
1754 };
1755
1756 struct anv_push_descriptor_set {
1757 struct anv_descriptor_set set;
1758
1759 /* Put this field right behind anv_descriptor_set so it fills up the
1760 * descriptors[0] field. */
1761 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1762
1763 /** True if the descriptor set buffer has been referenced by a draw or
1764 * dispatch command.
1765 */
1766 bool set_used_on_gpu;
1767
1768 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1769 };
1770
1771 struct anv_descriptor_pool {
1772 uint32_t size;
1773 uint32_t next;
1774 uint32_t free_list;
1775
1776 struct anv_bo bo;
1777 struct util_vma_heap bo_heap;
1778
1779 struct anv_state_stream surface_state_stream;
1780 void *surface_state_free_list;
1781
1782 struct list_head desc_sets;
1783
1784 char data[0];
1785 };
1786
1787 enum anv_descriptor_template_entry_type {
1788 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1789 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1790 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1791 };
1792
1793 struct anv_descriptor_template_entry {
1794 /* The type of descriptor in this entry */
1795 VkDescriptorType type;
1796
1797 /* Binding in the descriptor set */
1798 uint32_t binding;
1799
1800 /* Offset at which to write into the descriptor set binding */
1801 uint32_t array_element;
1802
1803 /* Number of elements to write into the descriptor set binding */
1804 uint32_t array_count;
1805
1806 /* Offset into the user provided data */
1807 size_t offset;
1808
1809 /* Stride between elements into the user provided data */
1810 size_t stride;
1811 };
1812
1813 struct anv_descriptor_update_template {
1814 VkPipelineBindPoint bind_point;
1815
1816 /* The descriptor set this template corresponds to. This value is only
1817 * valid if the template was created with the templateType
1818 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1819 */
1820 uint8_t set;
1821
1822 /* Number of entries in this template */
1823 uint32_t entry_count;
1824
1825 /* Entries of the template */
1826 struct anv_descriptor_template_entry entries[0];
1827 };
1828
1829 size_t
1830 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1831
1832 void
1833 anv_descriptor_set_write_image_view(struct anv_device *device,
1834 struct anv_descriptor_set *set,
1835 const VkDescriptorImageInfo * const info,
1836 VkDescriptorType type,
1837 uint32_t binding,
1838 uint32_t element);
1839
1840 void
1841 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1842 struct anv_descriptor_set *set,
1843 VkDescriptorType type,
1844 struct anv_buffer_view *buffer_view,
1845 uint32_t binding,
1846 uint32_t element);
1847
1848 void
1849 anv_descriptor_set_write_buffer(struct anv_device *device,
1850 struct anv_descriptor_set *set,
1851 struct anv_state_stream *alloc_stream,
1852 VkDescriptorType type,
1853 struct anv_buffer *buffer,
1854 uint32_t binding,
1855 uint32_t element,
1856 VkDeviceSize offset,
1857 VkDeviceSize range);
1858 void
1859 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1860 struct anv_descriptor_set *set,
1861 uint32_t binding,
1862 const void *data,
1863 size_t offset,
1864 size_t size);
1865
1866 void
1867 anv_descriptor_set_write_template(struct anv_device *device,
1868 struct anv_descriptor_set *set,
1869 struct anv_state_stream *alloc_stream,
1870 const struct anv_descriptor_update_template *template,
1871 const void *data);
1872
1873 VkResult
1874 anv_descriptor_set_create(struct anv_device *device,
1875 struct anv_descriptor_pool *pool,
1876 struct anv_descriptor_set_layout *layout,
1877 struct anv_descriptor_set **out_set);
1878
1879 void
1880 anv_descriptor_set_destroy(struct anv_device *device,
1881 struct anv_descriptor_pool *pool,
1882 struct anv_descriptor_set *set);
1883
1884 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1885 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1886 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1887 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1888
1889 struct anv_pipeline_binding {
1890 /* The descriptor set this surface corresponds to. The special value of
1891 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1892 * to a color attachment and not a regular descriptor.
1893 */
1894 uint8_t set;
1895
1896 /* Binding in the descriptor set */
1897 uint32_t binding;
1898
1899 /* Index in the binding */
1900 uint32_t index;
1901
1902 /* Plane in the binding index */
1903 uint8_t plane;
1904
1905 /* Input attachment index (relative to the subpass) */
1906 uint8_t input_attachment_index;
1907
1908 /* For a storage image, whether it is write-only */
1909 bool write_only;
1910 };
1911
1912 struct anv_pipeline_layout {
1913 struct {
1914 struct anv_descriptor_set_layout *layout;
1915 uint32_t dynamic_offset_start;
1916 } set[MAX_SETS];
1917
1918 uint32_t num_sets;
1919
1920 unsigned char sha1[20];
1921 };
1922
1923 struct anv_buffer {
1924 struct anv_device * device;
1925 VkDeviceSize size;
1926
1927 VkBufferUsageFlags usage;
1928
1929 /* Set when bound */
1930 struct anv_address address;
1931 };
1932
1933 static inline uint64_t
1934 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1935 {
1936 assert(offset <= buffer->size);
1937 if (range == VK_WHOLE_SIZE) {
1938 return buffer->size - offset;
1939 } else {
1940 assert(range + offset >= range);
1941 assert(range + offset <= buffer->size);
1942 return range;
1943 }
1944 }
1945
1946 enum anv_cmd_dirty_bits {
1947 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1948 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1949 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1950 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1951 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1952 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1953 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1954 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1955 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1956 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1957 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1958 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1959 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1960 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
1961 };
1962 typedef uint32_t anv_cmd_dirty_mask_t;
1963
1964 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
1965 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
1966 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
1967 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
1968 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
1969 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
1970 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
1971 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
1972 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
1973 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
1974 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
1975
1976 static inline enum anv_cmd_dirty_bits
1977 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
1978 {
1979 switch (vk_state) {
1980 case VK_DYNAMIC_STATE_VIEWPORT:
1981 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
1982 case VK_DYNAMIC_STATE_SCISSOR:
1983 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
1984 case VK_DYNAMIC_STATE_LINE_WIDTH:
1985 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
1986 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1987 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
1988 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1989 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
1990 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
1991 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
1992 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
1993 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
1994 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
1995 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
1996 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
1997 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
1998 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
1999 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2000 default:
2001 assert(!"Unsupported dynamic state");
2002 return 0;
2003 }
2004 }
2005
2006
2007 enum anv_pipe_bits {
2008 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2009 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2010 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2011 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2012 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2013 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2014 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2015 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2016 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2017 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2018 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2019
2020 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2021 * a flush has happened but not a CS stall. The next time we do any sort
2022 * of invalidation we need to insert a CS stall at that time. Otherwise,
2023 * we would have to CS stall on every flush which could be bad.
2024 */
2025 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2026
2027 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2028 * target operations related to transfer commands with VkBuffer as
2029 * destination are ongoing. Some operations like copies on the command
2030 * streamer might need to be aware of this to trigger the appropriate stall
2031 * before they can proceed with the copy.
2032 */
2033 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2034 };
2035
2036 #define ANV_PIPE_FLUSH_BITS ( \
2037 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2038 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2039 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2040
2041 #define ANV_PIPE_STALL_BITS ( \
2042 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2043 ANV_PIPE_DEPTH_STALL_BIT | \
2044 ANV_PIPE_CS_STALL_BIT)
2045
2046 #define ANV_PIPE_INVALIDATE_BITS ( \
2047 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2048 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2049 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2050 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2051 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2052 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2053
2054 static inline enum anv_pipe_bits
2055 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2056 {
2057 enum anv_pipe_bits pipe_bits = 0;
2058
2059 unsigned b;
2060 for_each_bit(b, flags) {
2061 switch ((VkAccessFlagBits)(1 << b)) {
2062 case VK_ACCESS_SHADER_WRITE_BIT:
2063 /* We're transitioning a buffer that was previously used as write
2064 * destination through the data port. To make its content available
2065 * to future operations, flush the data cache.
2066 */
2067 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2068 break;
2069 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2070 /* We're transitioning a buffer that was previously used as render
2071 * target. To make its content available to future operations, flush
2072 * the render target cache.
2073 */
2074 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2075 break;
2076 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2077 /* We're transitioning a buffer that was previously used as depth
2078 * buffer. To make its content available to future operations, flush
2079 * the depth cache.
2080 */
2081 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2082 break;
2083 case VK_ACCESS_TRANSFER_WRITE_BIT:
2084 /* We're transitioning a buffer that was previously used as a
2085 * transfer write destination. Generic write operations include color
2086 * & depth operations as well as buffer operations like :
2087 * - vkCmdClearColorImage()
2088 * - vkCmdClearDepthStencilImage()
2089 * - vkCmdBlitImage()
2090 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2091 *
2092 * Most of these operations are implemented using Blorp which writes
2093 * through the render target, so flush that cache to make it visible
2094 * to future operations. And for depth related operations we also
2095 * need to flush the depth cache.
2096 */
2097 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2098 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2099 break;
2100 case VK_ACCESS_MEMORY_WRITE_BIT:
2101 /* We're transitioning a buffer for generic write operations. Flush
2102 * all the caches.
2103 */
2104 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2105 break;
2106 default:
2107 break; /* Nothing to do */
2108 }
2109 }
2110
2111 return pipe_bits;
2112 }
2113
2114 static inline enum anv_pipe_bits
2115 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2116 {
2117 enum anv_pipe_bits pipe_bits = 0;
2118
2119 unsigned b;
2120 for_each_bit(b, flags) {
2121 switch ((VkAccessFlagBits)(1 << b)) {
2122 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2123 /* Indirect draw commands take a buffer as input that we're going to
2124 * read from the command streamer to load some of the HW registers
2125 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2126 * command streamer stall so that all the cache flushes have
2127 * completed before the command streamer loads from memory.
2128 */
2129 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2130 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2131 * through a vertex buffer, so invalidate that cache.
2132 */
2133 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2134 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2135 * UBO from the buffer, so we need to invalidate constant cache.
2136 */
2137 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2138 break;
2139 case VK_ACCESS_INDEX_READ_BIT:
2140 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2141 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2142 * commands, so we invalidate the VF cache to make sure there is no
2143 * stale data when we start rendering.
2144 */
2145 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2146 break;
2147 case VK_ACCESS_UNIFORM_READ_BIT:
2148 /* We transitioning a buffer to be used as uniform data. Because
2149 * uniform is accessed through the data port & sampler, we need to
2150 * invalidate the texture cache (sampler) & constant cache (data
2151 * port) to avoid stale data.
2152 */
2153 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2154 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2155 break;
2156 case VK_ACCESS_SHADER_READ_BIT:
2157 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2158 case VK_ACCESS_TRANSFER_READ_BIT:
2159 /* Transitioning a buffer to be read through the sampler, so
2160 * invalidate the texture cache, we don't want any stale data.
2161 */
2162 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2163 break;
2164 case VK_ACCESS_MEMORY_READ_BIT:
2165 /* Transitioning a buffer for generic read, invalidate all the
2166 * caches.
2167 */
2168 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2169 break;
2170 case VK_ACCESS_MEMORY_WRITE_BIT:
2171 /* Generic write, make sure all previously written things land in
2172 * memory.
2173 */
2174 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2175 break;
2176 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2177 /* Transitioning a buffer for conditional rendering. We'll load the
2178 * content of this buffer into HW registers using the command
2179 * streamer, so we need to stall the command streamer to make sure
2180 * any in-flight flush operations have completed.
2181 */
2182 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2183 break;
2184 default:
2185 break; /* Nothing to do */
2186 }
2187 }
2188
2189 return pipe_bits;
2190 }
2191
2192 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2193 VK_IMAGE_ASPECT_COLOR_BIT | \
2194 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2195 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2196 VK_IMAGE_ASPECT_PLANE_2_BIT)
2197 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2198 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2199 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2200 VK_IMAGE_ASPECT_PLANE_2_BIT)
2201
2202 struct anv_vertex_binding {
2203 struct anv_buffer * buffer;
2204 VkDeviceSize offset;
2205 };
2206
2207 struct anv_xfb_binding {
2208 struct anv_buffer * buffer;
2209 VkDeviceSize offset;
2210 VkDeviceSize size;
2211 };
2212
2213 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2214 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2215 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2216
2217 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2218 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2219 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2220
2221 struct anv_push_constants {
2222 /* Push constant data provided by the client through vkPushConstants */
2223 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2224
2225 /* Used for vkCmdDispatchBase */
2226 uint32_t base_work_group_id[3];
2227 };
2228
2229 struct anv_dynamic_state {
2230 struct {
2231 uint32_t count;
2232 VkViewport viewports[MAX_VIEWPORTS];
2233 } viewport;
2234
2235 struct {
2236 uint32_t count;
2237 VkRect2D scissors[MAX_SCISSORS];
2238 } scissor;
2239
2240 float line_width;
2241
2242 struct {
2243 float bias;
2244 float clamp;
2245 float slope;
2246 } depth_bias;
2247
2248 float blend_constants[4];
2249
2250 struct {
2251 float min;
2252 float max;
2253 } depth_bounds;
2254
2255 struct {
2256 uint32_t front;
2257 uint32_t back;
2258 } stencil_compare_mask;
2259
2260 struct {
2261 uint32_t front;
2262 uint32_t back;
2263 } stencil_write_mask;
2264
2265 struct {
2266 uint32_t front;
2267 uint32_t back;
2268 } stencil_reference;
2269
2270 struct {
2271 uint32_t factor;
2272 uint16_t pattern;
2273 } line_stipple;
2274 };
2275
2276 extern const struct anv_dynamic_state default_dynamic_state;
2277
2278 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2279 const struct anv_dynamic_state *src,
2280 uint32_t copy_mask);
2281
2282 struct anv_surface_state {
2283 struct anv_state state;
2284 /** Address of the surface referred to by this state
2285 *
2286 * This address is relative to the start of the BO.
2287 */
2288 struct anv_address address;
2289 /* Address of the aux surface, if any
2290 *
2291 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2292 *
2293 * With the exception of gen8, the bottom 12 bits of this address' offset
2294 * include extra aux information.
2295 */
2296 struct anv_address aux_address;
2297 /* Address of the clear color, if any
2298 *
2299 * This address is relative to the start of the BO.
2300 */
2301 struct anv_address clear_address;
2302 };
2303
2304 /**
2305 * Attachment state when recording a renderpass instance.
2306 *
2307 * The clear value is valid only if there exists a pending clear.
2308 */
2309 struct anv_attachment_state {
2310 enum isl_aux_usage aux_usage;
2311 enum isl_aux_usage input_aux_usage;
2312 struct anv_surface_state color;
2313 struct anv_surface_state input;
2314
2315 VkImageLayout current_layout;
2316 VkImageAspectFlags pending_clear_aspects;
2317 VkImageAspectFlags pending_load_aspects;
2318 bool fast_clear;
2319 VkClearValue clear_value;
2320 bool clear_color_is_zero_one;
2321 bool clear_color_is_zero;
2322
2323 /* When multiview is active, attachments with a renderpass clear
2324 * operation have their respective layers cleared on the first
2325 * subpass that uses them, and only in that subpass. We keep track
2326 * of this using a bitfield to indicate which layers of an attachment
2327 * have not been cleared yet when multiview is active.
2328 */
2329 uint32_t pending_clear_views;
2330 struct anv_image_view * image_view;
2331 };
2332
2333 /** State tracking for particular pipeline bind point
2334 *
2335 * This struct is the base struct for anv_cmd_graphics_state and
2336 * anv_cmd_compute_state. These are used to track state which is bound to a
2337 * particular type of pipeline. Generic state that applies per-stage such as
2338 * binding table offsets and push constants is tracked generically with a
2339 * per-stage array in anv_cmd_state.
2340 */
2341 struct anv_cmd_pipeline_state {
2342 struct anv_pipeline *pipeline;
2343 struct anv_pipeline_layout *layout;
2344
2345 struct anv_descriptor_set *descriptors[MAX_SETS];
2346 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2347
2348 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2349 };
2350
2351 /** State tracking for graphics pipeline
2352 *
2353 * This has anv_cmd_pipeline_state as a base struct to track things which get
2354 * bound to a graphics pipeline. Along with general pipeline bind point state
2355 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2356 * state which is graphics-specific.
2357 */
2358 struct anv_cmd_graphics_state {
2359 struct anv_cmd_pipeline_state base;
2360
2361 anv_cmd_dirty_mask_t dirty;
2362 uint32_t vb_dirty;
2363
2364 struct anv_dynamic_state dynamic;
2365
2366 struct {
2367 struct anv_buffer *index_buffer;
2368 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2369 uint32_t index_offset;
2370 } gen7;
2371 };
2372
2373 /** State tracking for compute pipeline
2374 *
2375 * This has anv_cmd_pipeline_state as a base struct to track things which get
2376 * bound to a compute pipeline. Along with general pipeline bind point state
2377 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2378 * state which is compute-specific.
2379 */
2380 struct anv_cmd_compute_state {
2381 struct anv_cmd_pipeline_state base;
2382
2383 bool pipeline_dirty;
2384
2385 struct anv_address num_workgroups;
2386 };
2387
2388 /** State required while building cmd buffer */
2389 struct anv_cmd_state {
2390 /* PIPELINE_SELECT.PipelineSelection */
2391 uint32_t current_pipeline;
2392 const struct gen_l3_config * current_l3_config;
2393
2394 struct anv_cmd_graphics_state gfx;
2395 struct anv_cmd_compute_state compute;
2396
2397 enum anv_pipe_bits pending_pipe_bits;
2398 VkShaderStageFlags descriptors_dirty;
2399 VkShaderStageFlags push_constants_dirty;
2400
2401 struct anv_framebuffer * framebuffer;
2402 struct anv_render_pass * pass;
2403 struct anv_subpass * subpass;
2404 VkRect2D render_area;
2405 uint32_t restart_index;
2406 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2407 bool xfb_enabled;
2408 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2409 VkShaderStageFlags push_constant_stages;
2410 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2411 struct anv_state binding_tables[MESA_SHADER_STAGES];
2412 struct anv_state samplers[MESA_SHADER_STAGES];
2413
2414 /**
2415 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2416 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2417 * and before invoking the secondary in ExecuteCommands.
2418 */
2419 bool pma_fix_enabled;
2420
2421 /**
2422 * Whether or not we know for certain that HiZ is enabled for the current
2423 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2424 * enabled or not, this will be false.
2425 */
2426 bool hiz_enabled;
2427
2428 bool conditional_render_enabled;
2429
2430 /**
2431 * Last rendering scale argument provided to
2432 * genX(cmd_buffer_emit_hashing_mode)().
2433 */
2434 unsigned current_hash_scale;
2435
2436 /**
2437 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2438 * valid only when recording a render pass instance.
2439 */
2440 struct anv_attachment_state * attachments;
2441
2442 /**
2443 * Surface states for color render targets. These are stored in a single
2444 * flat array. For depth-stencil attachments, the surface state is simply
2445 * left blank.
2446 */
2447 struct anv_state render_pass_states;
2448
2449 /**
2450 * A null surface state of the right size to match the framebuffer. This
2451 * is one of the states in render_pass_states.
2452 */
2453 struct anv_state null_surface_state;
2454 };
2455
2456 struct anv_cmd_pool {
2457 VkAllocationCallbacks alloc;
2458 struct list_head cmd_buffers;
2459 };
2460
2461 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2462
2463 enum anv_cmd_buffer_exec_mode {
2464 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2465 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2466 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2467 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2468 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2469 };
2470
2471 struct anv_cmd_buffer {
2472 VK_LOADER_DATA _loader_data;
2473
2474 struct anv_device * device;
2475
2476 struct anv_cmd_pool * pool;
2477 struct list_head pool_link;
2478
2479 struct anv_batch batch;
2480
2481 /* Fields required for the actual chain of anv_batch_bo's.
2482 *
2483 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2484 */
2485 struct list_head batch_bos;
2486 enum anv_cmd_buffer_exec_mode exec_mode;
2487
2488 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2489 * referenced by this command buffer
2490 *
2491 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2492 */
2493 struct u_vector seen_bbos;
2494
2495 /* A vector of int32_t's for every block of binding tables.
2496 *
2497 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2498 */
2499 struct u_vector bt_block_states;
2500 uint32_t bt_next;
2501
2502 struct anv_reloc_list surface_relocs;
2503 /** Last seen surface state block pool center bo offset */
2504 uint32_t last_ss_pool_center;
2505
2506 /* Serial for tracking buffer completion */
2507 uint32_t serial;
2508
2509 /* Stream objects for storing temporary data */
2510 struct anv_state_stream surface_state_stream;
2511 struct anv_state_stream dynamic_state_stream;
2512
2513 VkCommandBufferUsageFlags usage_flags;
2514 VkCommandBufferLevel level;
2515
2516 struct anv_cmd_state state;
2517 };
2518
2519 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2520 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2521 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2522 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2523 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2524 struct anv_cmd_buffer *secondary);
2525 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2526 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2527 struct anv_cmd_buffer *cmd_buffer,
2528 const VkSemaphore *in_semaphores,
2529 uint32_t num_in_semaphores,
2530 const VkSemaphore *out_semaphores,
2531 uint32_t num_out_semaphores,
2532 VkFence fence);
2533
2534 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2535
2536 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2537 const void *data, uint32_t size, uint32_t alignment);
2538 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2539 uint32_t *a, uint32_t *b,
2540 uint32_t dwords, uint32_t alignment);
2541
2542 struct anv_address
2543 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2544 struct anv_state
2545 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2546 uint32_t entries, uint32_t *state_offset);
2547 struct anv_state
2548 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2549 struct anv_state
2550 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2551 uint32_t size, uint32_t alignment);
2552
2553 VkResult
2554 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2555
2556 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2557 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2558 bool depth_clamp_enable);
2559 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2560
2561 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2562 struct anv_render_pass *pass,
2563 struct anv_framebuffer *framebuffer,
2564 const VkClearValue *clear_values);
2565
2566 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2567
2568 struct anv_state
2569 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2570 gl_shader_stage stage);
2571 struct anv_state
2572 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2573
2574 const struct anv_image_view *
2575 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2576
2577 VkResult
2578 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2579 uint32_t num_entries,
2580 uint32_t *state_offset,
2581 struct anv_state *bt_state);
2582
2583 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2584
2585 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2586
2587 enum anv_fence_type {
2588 ANV_FENCE_TYPE_NONE = 0,
2589 ANV_FENCE_TYPE_BO,
2590 ANV_FENCE_TYPE_SYNCOBJ,
2591 ANV_FENCE_TYPE_WSI,
2592 };
2593
2594 enum anv_bo_fence_state {
2595 /** Indicates that this is a new (or newly reset fence) */
2596 ANV_BO_FENCE_STATE_RESET,
2597
2598 /** Indicates that this fence has been submitted to the GPU but is still
2599 * (as far as we know) in use by the GPU.
2600 */
2601 ANV_BO_FENCE_STATE_SUBMITTED,
2602
2603 ANV_BO_FENCE_STATE_SIGNALED,
2604 };
2605
2606 struct anv_fence_impl {
2607 enum anv_fence_type type;
2608
2609 union {
2610 /** Fence implementation for BO fences
2611 *
2612 * These fences use a BO and a set of CPU-tracked state flags. The BO
2613 * is added to the object list of the last execbuf call in a QueueSubmit
2614 * and is marked EXEC_WRITE. The state flags track when the BO has been
2615 * submitted to the kernel. We need to do this because Vulkan lets you
2616 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2617 * will say it's idle in this case.
2618 */
2619 struct {
2620 struct anv_bo bo;
2621 enum anv_bo_fence_state state;
2622 } bo;
2623
2624 /** DRM syncobj handle for syncobj-based fences */
2625 uint32_t syncobj;
2626
2627 /** WSI fence */
2628 struct wsi_fence *fence_wsi;
2629 };
2630 };
2631
2632 struct anv_fence {
2633 /* Permanent fence state. Every fence has some form of permanent state
2634 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2635 * cross-process fences) or it could just be a dummy for use internally.
2636 */
2637 struct anv_fence_impl permanent;
2638
2639 /* Temporary fence state. A fence *may* have temporary state. That state
2640 * is added to the fence by an import operation and is reset back to
2641 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2642 * state cannot be signaled because the fence must already be signaled
2643 * before the temporary state can be exported from the fence in the other
2644 * process and imported here.
2645 */
2646 struct anv_fence_impl temporary;
2647 };
2648
2649 struct anv_event {
2650 uint64_t semaphore;
2651 struct anv_state state;
2652 };
2653
2654 enum anv_semaphore_type {
2655 ANV_SEMAPHORE_TYPE_NONE = 0,
2656 ANV_SEMAPHORE_TYPE_DUMMY,
2657 ANV_SEMAPHORE_TYPE_BO,
2658 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2659 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2660 };
2661
2662 struct anv_semaphore_impl {
2663 enum anv_semaphore_type type;
2664
2665 union {
2666 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2667 * This BO will be added to the object list on any execbuf2 calls for
2668 * which this semaphore is used as a wait or signal fence. When used as
2669 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2670 */
2671 struct anv_bo *bo;
2672
2673 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2674 * If the semaphore is in the unsignaled state due to either just being
2675 * created or because it has been used for a wait, fd will be -1.
2676 */
2677 int fd;
2678
2679 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2680 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2681 * import so we don't need to bother with a userspace cache.
2682 */
2683 uint32_t syncobj;
2684 };
2685 };
2686
2687 struct anv_semaphore {
2688 /* Permanent semaphore state. Every semaphore has some form of permanent
2689 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2690 * (for cross-process semaphores0 or it could just be a dummy for use
2691 * internally.
2692 */
2693 struct anv_semaphore_impl permanent;
2694
2695 /* Temporary semaphore state. A semaphore *may* have temporary state.
2696 * That state is added to the semaphore by an import operation and is reset
2697 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2698 * semaphore with temporary state cannot be signaled because the semaphore
2699 * must already be signaled before the temporary state can be exported from
2700 * the semaphore in the other process and imported here.
2701 */
2702 struct anv_semaphore_impl temporary;
2703 };
2704
2705 void anv_semaphore_reset_temporary(struct anv_device *device,
2706 struct anv_semaphore *semaphore);
2707
2708 struct anv_shader_module {
2709 unsigned char sha1[20];
2710 uint32_t size;
2711 char data[0];
2712 };
2713
2714 static inline gl_shader_stage
2715 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2716 {
2717 assert(__builtin_popcount(vk_stage) == 1);
2718 return ffs(vk_stage) - 1;
2719 }
2720
2721 static inline VkShaderStageFlagBits
2722 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2723 {
2724 return (1 << mesa_stage);
2725 }
2726
2727 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2728
2729 #define anv_foreach_stage(stage, stage_bits) \
2730 for (gl_shader_stage stage, \
2731 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2732 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2733 __tmp &= ~(1 << (stage)))
2734
2735 struct anv_pipeline_bind_map {
2736 uint32_t surface_count;
2737 uint32_t sampler_count;
2738
2739 struct anv_pipeline_binding * surface_to_descriptor;
2740 struct anv_pipeline_binding * sampler_to_descriptor;
2741 };
2742
2743 struct anv_shader_bin_key {
2744 uint32_t size;
2745 uint8_t data[0];
2746 };
2747
2748 struct anv_shader_bin {
2749 uint32_t ref_cnt;
2750
2751 const struct anv_shader_bin_key *key;
2752
2753 struct anv_state kernel;
2754 uint32_t kernel_size;
2755
2756 struct anv_state constant_data;
2757 uint32_t constant_data_size;
2758
2759 const struct brw_stage_prog_data *prog_data;
2760 uint32_t prog_data_size;
2761
2762 struct brw_compile_stats stats[3];
2763 uint32_t num_stats;
2764
2765 struct nir_xfb_info *xfb_info;
2766
2767 struct anv_pipeline_bind_map bind_map;
2768 };
2769
2770 struct anv_shader_bin *
2771 anv_shader_bin_create(struct anv_device *device,
2772 const void *key, uint32_t key_size,
2773 const void *kernel, uint32_t kernel_size,
2774 const void *constant_data, uint32_t constant_data_size,
2775 const struct brw_stage_prog_data *prog_data,
2776 uint32_t prog_data_size, const void *prog_data_param,
2777 const struct brw_compile_stats *stats, uint32_t num_stats,
2778 const struct nir_xfb_info *xfb_info,
2779 const struct anv_pipeline_bind_map *bind_map);
2780
2781 void
2782 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2783
2784 static inline void
2785 anv_shader_bin_ref(struct anv_shader_bin *shader)
2786 {
2787 assert(shader && shader->ref_cnt >= 1);
2788 p_atomic_inc(&shader->ref_cnt);
2789 }
2790
2791 static inline void
2792 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2793 {
2794 assert(shader && shader->ref_cnt >= 1);
2795 if (p_atomic_dec_zero(&shader->ref_cnt))
2796 anv_shader_bin_destroy(device, shader);
2797 }
2798
2799 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2800 #define MAX_PIPELINE_EXECUTABLES 7
2801
2802 struct anv_pipeline_executable {
2803 gl_shader_stage stage;
2804
2805 struct brw_compile_stats stats;
2806
2807 char *disasm;
2808 };
2809
2810 struct anv_pipeline {
2811 struct anv_device * device;
2812 struct anv_batch batch;
2813 uint32_t batch_data[512];
2814 struct anv_reloc_list batch_relocs;
2815 anv_cmd_dirty_mask_t dynamic_state_mask;
2816 struct anv_dynamic_state dynamic_state;
2817
2818 void * mem_ctx;
2819
2820 VkPipelineCreateFlags flags;
2821 struct anv_subpass * subpass;
2822
2823 bool needs_data_cache;
2824
2825 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2826
2827 uint32_t num_executables;
2828 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2829
2830 struct {
2831 const struct gen_l3_config * l3_config;
2832 uint32_t total_size;
2833 } urb;
2834
2835 VkShaderStageFlags active_stages;
2836 struct anv_state blend_state;
2837
2838 uint32_t vb_used;
2839 struct anv_pipeline_vertex_binding {
2840 uint32_t stride;
2841 bool instanced;
2842 uint32_t instance_divisor;
2843 } vb[MAX_VBS];
2844
2845 uint8_t xfb_used;
2846
2847 bool primitive_restart;
2848 uint32_t topology;
2849
2850 uint32_t cs_right_mask;
2851
2852 bool writes_depth;
2853 bool depth_test_enable;
2854 bool writes_stencil;
2855 bool stencil_test_enable;
2856 bool depth_clamp_enable;
2857 bool depth_clip_enable;
2858 bool sample_shading_enable;
2859 bool kill_pixel;
2860
2861 struct {
2862 uint32_t sf[7];
2863 uint32_t depth_stencil_state[3];
2864 } gen7;
2865
2866 struct {
2867 uint32_t sf[4];
2868 uint32_t raster[5];
2869 uint32_t wm_depth_stencil[3];
2870 } gen8;
2871
2872 struct {
2873 uint32_t wm_depth_stencil[4];
2874 } gen9;
2875
2876 uint32_t interface_descriptor_data[8];
2877 };
2878
2879 static inline bool
2880 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2881 gl_shader_stage stage)
2882 {
2883 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2884 }
2885
2886 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2887 static inline const struct brw_##prefix##_prog_data * \
2888 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2889 { \
2890 if (anv_pipeline_has_stage(pipeline, stage)) { \
2891 return (const struct brw_##prefix##_prog_data *) \
2892 pipeline->shaders[stage]->prog_data; \
2893 } else { \
2894 return NULL; \
2895 } \
2896 }
2897
2898 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2899 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2900 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2901 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2902 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2903 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2904
2905 static inline const struct brw_vue_prog_data *
2906 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2907 {
2908 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2909 return &get_gs_prog_data(pipeline)->base;
2910 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2911 return &get_tes_prog_data(pipeline)->base;
2912 else
2913 return &get_vs_prog_data(pipeline)->base;
2914 }
2915
2916 VkResult
2917 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2918 struct anv_pipeline_cache *cache,
2919 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2920 const VkAllocationCallbacks *alloc);
2921
2922 VkResult
2923 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2924 struct anv_pipeline_cache *cache,
2925 const VkComputePipelineCreateInfo *info,
2926 const struct anv_shader_module *module,
2927 const char *entrypoint,
2928 const VkSpecializationInfo *spec_info);
2929
2930 struct anv_format_plane {
2931 enum isl_format isl_format:16;
2932 struct isl_swizzle swizzle;
2933
2934 /* Whether this plane contains chroma channels */
2935 bool has_chroma;
2936
2937 /* For downscaling of YUV planes */
2938 uint8_t denominator_scales[2];
2939
2940 /* How to map sampled ycbcr planes to a single 4 component element. */
2941 struct isl_swizzle ycbcr_swizzle;
2942
2943 /* What aspect is associated to this plane */
2944 VkImageAspectFlags aspect;
2945 };
2946
2947
2948 struct anv_format {
2949 struct anv_format_plane planes[3];
2950 VkFormat vk_format;
2951 uint8_t n_planes;
2952 bool can_ycbcr;
2953 };
2954
2955 static inline uint32_t
2956 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2957 VkImageAspectFlags aspect_mask)
2958 {
2959 switch (aspect_mask) {
2960 case VK_IMAGE_ASPECT_COLOR_BIT:
2961 case VK_IMAGE_ASPECT_DEPTH_BIT:
2962 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2963 return 0;
2964 case VK_IMAGE_ASPECT_STENCIL_BIT:
2965 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2966 return 0;
2967 /* Fall-through */
2968 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2969 return 1;
2970 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2971 return 2;
2972 default:
2973 /* Purposefully assert with depth/stencil aspects. */
2974 unreachable("invalid image aspect");
2975 }
2976 }
2977
2978 static inline VkImageAspectFlags
2979 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2980 uint32_t plane)
2981 {
2982 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2983 if (util_bitcount(image_aspects) > 1)
2984 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2985 return VK_IMAGE_ASPECT_COLOR_BIT;
2986 }
2987 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2988 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2989 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2990 return VK_IMAGE_ASPECT_STENCIL_BIT;
2991 }
2992
2993 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2994 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2995
2996 const struct anv_format *
2997 anv_get_format(VkFormat format);
2998
2999 static inline uint32_t
3000 anv_get_format_planes(VkFormat vk_format)
3001 {
3002 const struct anv_format *format = anv_get_format(vk_format);
3003
3004 return format != NULL ? format->n_planes : 0;
3005 }
3006
3007 struct anv_format_plane
3008 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3009 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3010
3011 static inline enum isl_format
3012 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3013 VkImageAspectFlags aspect, VkImageTiling tiling)
3014 {
3015 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3016 }
3017
3018 static inline struct isl_swizzle
3019 anv_swizzle_for_render(struct isl_swizzle swizzle)
3020 {
3021 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3022 * RGB as RGBA for texturing
3023 */
3024 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3025 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3026
3027 /* But it doesn't matter what we render to that channel */
3028 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3029
3030 return swizzle;
3031 }
3032
3033 void
3034 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3035
3036 /**
3037 * Subsurface of an anv_image.
3038 */
3039 struct anv_surface {
3040 /** Valid only if isl_surf::size_B > 0. */
3041 struct isl_surf isl;
3042
3043 /**
3044 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3045 */
3046 uint32_t offset;
3047 };
3048
3049 struct anv_image {
3050 VkImageType type; /**< VkImageCreateInfo::imageType */
3051 /* The original VkFormat provided by the client. This may not match any
3052 * of the actual surface formats.
3053 */
3054 VkFormat vk_format;
3055 const struct anv_format *format;
3056
3057 VkImageAspectFlags aspects;
3058 VkExtent3D extent;
3059 uint32_t levels;
3060 uint32_t array_size;
3061 uint32_t samples; /**< VkImageCreateInfo::samples */
3062 uint32_t n_planes;
3063 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3064 VkImageUsageFlags stencil_usage;
3065 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3066 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3067
3068 /** True if this is needs to be bound to an appropriately tiled BO.
3069 *
3070 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3071 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3072 * we require a dedicated allocation so that we can know to allocate a
3073 * tiled buffer.
3074 */
3075 bool needs_set_tiling;
3076
3077 /**
3078 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3079 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3080 */
3081 uint64_t drm_format_mod;
3082
3083 VkDeviceSize size;
3084 uint32_t alignment;
3085
3086 /* Whether the image is made of several underlying buffer objects rather a
3087 * single one with different offsets.
3088 */
3089 bool disjoint;
3090
3091 /* All the formats that can be used when creating views of this image
3092 * are CCS_E compatible.
3093 */
3094 bool ccs_e_compatible;
3095
3096 /* Image was created with external format. */
3097 bool external_format;
3098
3099 /**
3100 * Image subsurfaces
3101 *
3102 * For each foo, anv_image::planes[x].surface is valid if and only if
3103 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3104 * to figure the number associated with a given aspect.
3105 *
3106 * The hardware requires that the depth buffer and stencil buffer be
3107 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3108 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3109 * allocate the depth and stencil buffers as separate surfaces in the same
3110 * bo.
3111 *
3112 * Memory layout :
3113 *
3114 * -----------------------
3115 * | surface0 | /|\
3116 * ----------------------- |
3117 * | shadow surface0 | |
3118 * ----------------------- | Plane 0
3119 * | aux surface0 | |
3120 * ----------------------- |
3121 * | fast clear colors0 | \|/
3122 * -----------------------
3123 * | surface1 | /|\
3124 * ----------------------- |
3125 * | shadow surface1 | |
3126 * ----------------------- | Plane 1
3127 * | aux surface1 | |
3128 * ----------------------- |
3129 * | fast clear colors1 | \|/
3130 * -----------------------
3131 * | ... |
3132 * | |
3133 * -----------------------
3134 */
3135 struct {
3136 /**
3137 * Offset of the entire plane (whenever the image is disjoint this is
3138 * set to 0).
3139 */
3140 uint32_t offset;
3141
3142 VkDeviceSize size;
3143 uint32_t alignment;
3144
3145 struct anv_surface surface;
3146
3147 /**
3148 * A surface which shadows the main surface and may have different
3149 * tiling. This is used for sampling using a tiling that isn't supported
3150 * for other operations.
3151 */
3152 struct anv_surface shadow_surface;
3153
3154 /**
3155 * For color images, this is the aux usage for this image when not used
3156 * as a color attachment.
3157 *
3158 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3159 * image has a HiZ buffer.
3160 */
3161 enum isl_aux_usage aux_usage;
3162
3163 struct anv_surface aux_surface;
3164
3165 /**
3166 * Offset of the fast clear state (used to compute the
3167 * fast_clear_state_offset of the following planes).
3168 */
3169 uint32_t fast_clear_state_offset;
3170
3171 /**
3172 * BO associated with this plane, set when bound.
3173 */
3174 struct anv_address address;
3175
3176 /**
3177 * When destroying the image, also free the bo.
3178 * */
3179 bool bo_is_owned;
3180 } planes[3];
3181 };
3182
3183 /* The ordering of this enum is important */
3184 enum anv_fast_clear_type {
3185 /** Image does not have/support any fast-clear blocks */
3186 ANV_FAST_CLEAR_NONE = 0,
3187 /** Image has/supports fast-clear but only to the default value */
3188 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3189 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3190 ANV_FAST_CLEAR_ANY = 2,
3191 };
3192
3193 /* Returns the number of auxiliary buffer levels attached to an image. */
3194 static inline uint8_t
3195 anv_image_aux_levels(const struct anv_image * const image,
3196 VkImageAspectFlagBits aspect)
3197 {
3198 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3199 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3200 image->planes[plane].aux_surface.isl.levels : 0;
3201 }
3202
3203 /* Returns the number of auxiliary buffer layers attached to an image. */
3204 static inline uint32_t
3205 anv_image_aux_layers(const struct anv_image * const image,
3206 VkImageAspectFlagBits aspect,
3207 const uint8_t miplevel)
3208 {
3209 assert(image);
3210
3211 /* The miplevel must exist in the main buffer. */
3212 assert(miplevel < image->levels);
3213
3214 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3215 /* There are no layers with auxiliary data because the miplevel has no
3216 * auxiliary data.
3217 */
3218 return 0;
3219 } else {
3220 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3221 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3222 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3223 }
3224 }
3225
3226 static inline struct anv_address
3227 anv_image_get_clear_color_addr(const struct anv_device *device,
3228 const struct anv_image *image,
3229 VkImageAspectFlagBits aspect)
3230 {
3231 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3232
3233 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3234 return anv_address_add(image->planes[plane].address,
3235 image->planes[plane].fast_clear_state_offset);
3236 }
3237
3238 static inline struct anv_address
3239 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3240 const struct anv_image *image,
3241 VkImageAspectFlagBits aspect)
3242 {
3243 struct anv_address addr =
3244 anv_image_get_clear_color_addr(device, image, aspect);
3245
3246 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3247 device->isl_dev.ss.clear_color_state_size :
3248 device->isl_dev.ss.clear_value_size;
3249 return anv_address_add(addr, clear_color_state_size);
3250 }
3251
3252 static inline struct anv_address
3253 anv_image_get_compression_state_addr(const struct anv_device *device,
3254 const struct anv_image *image,
3255 VkImageAspectFlagBits aspect,
3256 uint32_t level, uint32_t array_layer)
3257 {
3258 assert(level < anv_image_aux_levels(image, aspect));
3259 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3260 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3261 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3262
3263 struct anv_address addr =
3264 anv_image_get_fast_clear_type_addr(device, image, aspect);
3265 addr.offset += 4; /* Go past the fast clear type */
3266
3267 if (image->type == VK_IMAGE_TYPE_3D) {
3268 for (uint32_t l = 0; l < level; l++)
3269 addr.offset += anv_minify(image->extent.depth, l) * 4;
3270 } else {
3271 addr.offset += level * image->array_size * 4;
3272 }
3273 addr.offset += array_layer * 4;
3274
3275 return addr;
3276 }
3277
3278 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3279 static inline bool
3280 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3281 const struct anv_image *image)
3282 {
3283 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3284 return false;
3285
3286 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3287 * struct. There's documentation which suggests that this feature actually
3288 * reduces performance on BDW, but it has only been observed to help so
3289 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3290 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3291 */
3292 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3293 return false;
3294
3295 return image->samples == 1;
3296 }
3297
3298 void
3299 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3300 const struct anv_image *image,
3301 VkImageAspectFlagBits aspect,
3302 enum isl_aux_usage aux_usage,
3303 uint32_t level,
3304 uint32_t base_layer,
3305 uint32_t layer_count);
3306
3307 void
3308 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3309 const struct anv_image *image,
3310 VkImageAspectFlagBits aspect,
3311 enum isl_aux_usage aux_usage,
3312 enum isl_format format, struct isl_swizzle swizzle,
3313 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3314 VkRect2D area, union isl_color_value clear_color);
3315 void
3316 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3317 const struct anv_image *image,
3318 VkImageAspectFlags aspects,
3319 enum isl_aux_usage depth_aux_usage,
3320 uint32_t level,
3321 uint32_t base_layer, uint32_t layer_count,
3322 VkRect2D area,
3323 float depth_value, uint8_t stencil_value);
3324 void
3325 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3326 const struct anv_image *src_image,
3327 enum isl_aux_usage src_aux_usage,
3328 uint32_t src_level, uint32_t src_base_layer,
3329 const struct anv_image *dst_image,
3330 enum isl_aux_usage dst_aux_usage,
3331 uint32_t dst_level, uint32_t dst_base_layer,
3332 VkImageAspectFlagBits aspect,
3333 uint32_t src_x, uint32_t src_y,
3334 uint32_t dst_x, uint32_t dst_y,
3335 uint32_t width, uint32_t height,
3336 uint32_t layer_count,
3337 enum blorp_filter filter);
3338 void
3339 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3340 const struct anv_image *image,
3341 VkImageAspectFlagBits aspect, uint32_t level,
3342 uint32_t base_layer, uint32_t layer_count,
3343 enum isl_aux_op hiz_op);
3344 void
3345 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3346 const struct anv_image *image,
3347 VkImageAspectFlags aspects,
3348 uint32_t level,
3349 uint32_t base_layer, uint32_t layer_count,
3350 VkRect2D area, uint8_t stencil_value);
3351 void
3352 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3353 const struct anv_image *image,
3354 enum isl_format format,
3355 VkImageAspectFlagBits aspect,
3356 uint32_t base_layer, uint32_t layer_count,
3357 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3358 bool predicate);
3359 void
3360 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3361 const struct anv_image *image,
3362 enum isl_format format,
3363 VkImageAspectFlagBits aspect, uint32_t level,
3364 uint32_t base_layer, uint32_t layer_count,
3365 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3366 bool predicate);
3367
3368 void
3369 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3370 const struct anv_image *image,
3371 VkImageAspectFlagBits aspect,
3372 uint32_t base_level, uint32_t level_count,
3373 uint32_t base_layer, uint32_t layer_count);
3374
3375 enum isl_aux_usage
3376 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3377 const struct anv_image *image,
3378 const VkImageAspectFlagBits aspect,
3379 const VkImageLayout layout);
3380
3381 enum anv_fast_clear_type
3382 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3383 const struct anv_image * const image,
3384 const VkImageAspectFlagBits aspect,
3385 const VkImageLayout layout);
3386
3387 /* This is defined as a macro so that it works for both
3388 * VkImageSubresourceRange and VkImageSubresourceLayers
3389 */
3390 #define anv_get_layerCount(_image, _range) \
3391 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3392 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3393
3394 static inline uint32_t
3395 anv_get_levelCount(const struct anv_image *image,
3396 const VkImageSubresourceRange *range)
3397 {
3398 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3399 image->levels - range->baseMipLevel : range->levelCount;
3400 }
3401
3402 static inline VkImageAspectFlags
3403 anv_image_expand_aspects(const struct anv_image *image,
3404 VkImageAspectFlags aspects)
3405 {
3406 /* If the underlying image has color plane aspects and
3407 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3408 * the underlying image. */
3409 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3410 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3411 return image->aspects;
3412
3413 return aspects;
3414 }
3415
3416 static inline bool
3417 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3418 VkImageAspectFlags aspects2)
3419 {
3420 if (aspects1 == aspects2)
3421 return true;
3422
3423 /* Only 1 color aspects are compatibles. */
3424 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3425 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3426 util_bitcount(aspects1) == util_bitcount(aspects2))
3427 return true;
3428
3429 return false;
3430 }
3431
3432 struct anv_image_view {
3433 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3434
3435 VkImageAspectFlags aspect_mask;
3436 VkFormat vk_format;
3437 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3438
3439 unsigned n_planes;
3440 struct {
3441 uint32_t image_plane;
3442
3443 struct isl_view isl;
3444
3445 /**
3446 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3447 * image layout of SHADER_READ_ONLY_OPTIMAL or
3448 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3449 */
3450 struct anv_surface_state optimal_sampler_surface_state;
3451
3452 /**
3453 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3454 * image layout of GENERAL.
3455 */
3456 struct anv_surface_state general_sampler_surface_state;
3457
3458 /**
3459 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3460 * states for write-only and readable, using the real format for
3461 * write-only and the lowered format for readable.
3462 */
3463 struct anv_surface_state storage_surface_state;
3464 struct anv_surface_state writeonly_storage_surface_state;
3465
3466 struct brw_image_param storage_image_param;
3467 } planes[3];
3468 };
3469
3470 enum anv_image_view_state_flags {
3471 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3472 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3473 };
3474
3475 void anv_image_fill_surface_state(struct anv_device *device,
3476 const struct anv_image *image,
3477 VkImageAspectFlagBits aspect,
3478 const struct isl_view *view,
3479 isl_surf_usage_flags_t view_usage,
3480 enum isl_aux_usage aux_usage,
3481 const union isl_color_value *clear_color,
3482 enum anv_image_view_state_flags flags,
3483 struct anv_surface_state *state_inout,
3484 struct brw_image_param *image_param_out);
3485
3486 struct anv_image_create_info {
3487 const VkImageCreateInfo *vk_info;
3488
3489 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3490 isl_tiling_flags_t isl_tiling_flags;
3491
3492 /** These flags will be added to any derived from VkImageCreateInfo. */
3493 isl_surf_usage_flags_t isl_extra_usage_flags;
3494
3495 uint32_t stride;
3496 bool external_format;
3497 };
3498
3499 VkResult anv_image_create(VkDevice _device,
3500 const struct anv_image_create_info *info,
3501 const VkAllocationCallbacks* alloc,
3502 VkImage *pImage);
3503
3504 const struct anv_surface *
3505 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3506 VkImageAspectFlags aspect_mask);
3507
3508 enum isl_format
3509 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3510
3511 static inline struct VkExtent3D
3512 anv_sanitize_image_extent(const VkImageType imageType,
3513 const struct VkExtent3D imageExtent)
3514 {
3515 switch (imageType) {
3516 case VK_IMAGE_TYPE_1D:
3517 return (VkExtent3D) { imageExtent.width, 1, 1 };
3518 case VK_IMAGE_TYPE_2D:
3519 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3520 case VK_IMAGE_TYPE_3D:
3521 return imageExtent;
3522 default:
3523 unreachable("invalid image type");
3524 }
3525 }
3526
3527 static inline struct VkOffset3D
3528 anv_sanitize_image_offset(const VkImageType imageType,
3529 const struct VkOffset3D imageOffset)
3530 {
3531 switch (imageType) {
3532 case VK_IMAGE_TYPE_1D:
3533 return (VkOffset3D) { imageOffset.x, 0, 0 };
3534 case VK_IMAGE_TYPE_2D:
3535 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3536 case VK_IMAGE_TYPE_3D:
3537 return imageOffset;
3538 default:
3539 unreachable("invalid image type");
3540 }
3541 }
3542
3543 VkFormatFeatureFlags
3544 anv_get_image_format_features(const struct gen_device_info *devinfo,
3545 VkFormat vk_format,
3546 const struct anv_format *anv_format,
3547 VkImageTiling vk_tiling);
3548
3549 void anv_fill_buffer_surface_state(struct anv_device *device,
3550 struct anv_state state,
3551 enum isl_format format,
3552 struct anv_address address,
3553 uint32_t range, uint32_t stride);
3554
3555 static inline void
3556 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3557 const struct anv_attachment_state *att_state,
3558 const struct anv_image_view *iview)
3559 {
3560 const struct isl_format_layout *view_fmtl =
3561 isl_format_get_layout(iview->planes[0].isl.format);
3562
3563 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3564 if (view_fmtl->channels.c.bits) \
3565 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3566
3567 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3568 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3569 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3570 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3571
3572 #undef COPY_CLEAR_COLOR_CHANNEL
3573 }
3574
3575
3576 struct anv_ycbcr_conversion {
3577 const struct anv_format * format;
3578 VkSamplerYcbcrModelConversion ycbcr_model;
3579 VkSamplerYcbcrRange ycbcr_range;
3580 VkComponentSwizzle mapping[4];
3581 VkChromaLocation chroma_offsets[2];
3582 VkFilter chroma_filter;
3583 bool chroma_reconstruction;
3584 };
3585
3586 struct anv_sampler {
3587 uint32_t state[3][4];
3588 uint32_t n_planes;
3589 struct anv_ycbcr_conversion *conversion;
3590
3591 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3592 * and with a 32-byte stride for use as bindless samplers.
3593 */
3594 struct anv_state bindless_state;
3595 };
3596
3597 struct anv_framebuffer {
3598 uint32_t width;
3599 uint32_t height;
3600 uint32_t layers;
3601
3602 uint32_t attachment_count;
3603 struct anv_image_view * attachments[0];
3604 };
3605
3606 struct anv_subpass_attachment {
3607 VkImageUsageFlagBits usage;
3608 uint32_t attachment;
3609 VkImageLayout layout;
3610 };
3611
3612 struct anv_subpass {
3613 uint32_t attachment_count;
3614
3615 /**
3616 * A pointer to all attachment references used in this subpass.
3617 * Only valid if ::attachment_count > 0.
3618 */
3619 struct anv_subpass_attachment * attachments;
3620 uint32_t input_count;
3621 struct anv_subpass_attachment * input_attachments;
3622 uint32_t color_count;
3623 struct anv_subpass_attachment * color_attachments;
3624 struct anv_subpass_attachment * resolve_attachments;
3625
3626 struct anv_subpass_attachment * depth_stencil_attachment;
3627 struct anv_subpass_attachment * ds_resolve_attachment;
3628 VkResolveModeFlagBitsKHR depth_resolve_mode;
3629 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3630
3631 uint32_t view_mask;
3632
3633 /** Subpass has a depth/stencil self-dependency */
3634 bool has_ds_self_dep;
3635
3636 /** Subpass has at least one color resolve attachment */
3637 bool has_color_resolve;
3638 };
3639
3640 static inline unsigned
3641 anv_subpass_view_count(const struct anv_subpass *subpass)
3642 {
3643 return MAX2(1, util_bitcount(subpass->view_mask));
3644 }
3645
3646 struct anv_render_pass_attachment {
3647 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3648 * its members individually.
3649 */
3650 VkFormat format;
3651 uint32_t samples;
3652 VkImageUsageFlags usage;
3653 VkAttachmentLoadOp load_op;
3654 VkAttachmentStoreOp store_op;
3655 VkAttachmentLoadOp stencil_load_op;
3656 VkImageLayout initial_layout;
3657 VkImageLayout final_layout;
3658 VkImageLayout first_subpass_layout;
3659
3660 /* The subpass id in which the attachment will be used last. */
3661 uint32_t last_subpass_idx;
3662 };
3663
3664 struct anv_render_pass {
3665 uint32_t attachment_count;
3666 uint32_t subpass_count;
3667 /* An array of subpass_count+1 flushes, one per subpass boundary */
3668 enum anv_pipe_bits * subpass_flushes;
3669 struct anv_render_pass_attachment * attachments;
3670 struct anv_subpass subpasses[0];
3671 };
3672
3673 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3674
3675 struct anv_query_pool {
3676 VkQueryType type;
3677 VkQueryPipelineStatisticFlags pipeline_statistics;
3678 /** Stride between slots, in bytes */
3679 uint32_t stride;
3680 /** Number of slots in this query pool */
3681 uint32_t slots;
3682 struct anv_bo bo;
3683 };
3684
3685 int anv_get_instance_entrypoint_index(const char *name);
3686 int anv_get_device_entrypoint_index(const char *name);
3687
3688 bool
3689 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3690 const struct anv_instance_extension_table *instance);
3691
3692 bool
3693 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3694 const struct anv_instance_extension_table *instance,
3695 const struct anv_device_extension_table *device);
3696
3697 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3698 const char *name);
3699
3700 void anv_dump_image_to_ppm(struct anv_device *device,
3701 struct anv_image *image, unsigned miplevel,
3702 unsigned array_layer, VkImageAspectFlagBits aspect,
3703 const char *filename);
3704
3705 enum anv_dump_action {
3706 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3707 };
3708
3709 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3710 void anv_dump_finish(void);
3711
3712 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3713
3714 static inline uint32_t
3715 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3716 {
3717 /* This function must be called from within a subpass. */
3718 assert(cmd_state->pass && cmd_state->subpass);
3719
3720 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3721
3722 /* The id of this subpass shouldn't exceed the number of subpasses in this
3723 * render pass minus 1.
3724 */
3725 assert(subpass_id < cmd_state->pass->subpass_count);
3726 return subpass_id;
3727 }
3728
3729 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3730 \
3731 static inline struct __anv_type * \
3732 __anv_type ## _from_handle(__VkType _handle) \
3733 { \
3734 return (struct __anv_type *) _handle; \
3735 } \
3736 \
3737 static inline __VkType \
3738 __anv_type ## _to_handle(struct __anv_type *_obj) \
3739 { \
3740 return (__VkType) _obj; \
3741 }
3742
3743 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3744 \
3745 static inline struct __anv_type * \
3746 __anv_type ## _from_handle(__VkType _handle) \
3747 { \
3748 return (struct __anv_type *)(uintptr_t) _handle; \
3749 } \
3750 \
3751 static inline __VkType \
3752 __anv_type ## _to_handle(struct __anv_type *_obj) \
3753 { \
3754 return (__VkType)(uintptr_t) _obj; \
3755 }
3756
3757 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3758 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3759
3760 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3761 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3762 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3763 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3764 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3765
3766 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3767 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3768 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3769 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3770 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3771 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3772 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3773 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3774 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3775 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3776 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3777 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3778 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3779 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3780 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3781 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3782 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3783 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3784 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3785 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3786 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3787 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3788 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3789
3790 /* Gen-specific function declarations */
3791 #ifdef genX
3792 # include "anv_genX.h"
3793 #else
3794 # define genX(x) gen7_##x
3795 # include "anv_genX.h"
3796 # undef genX
3797 # define genX(x) gen75_##x
3798 # include "anv_genX.h"
3799 # undef genX
3800 # define genX(x) gen8_##x
3801 # include "anv_genX.h"
3802 # undef genX
3803 # define genX(x) gen9_##x
3804 # include "anv_genX.h"
3805 # undef genX
3806 # define genX(x) gen10_##x
3807 # include "anv_genX.h"
3808 # undef genX
3809 # define genX(x) gen11_##x
3810 # include "anv_genX.h"
3811 # undef genX
3812 #endif
3813
3814 #endif /* ANV_PRIVATE_H */