anv/allocator: Simplify anv_scratch_pool
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct gen_l3_config;
60
61 #include <vulkan/vulkan.h>
62 #include <vulkan/vulkan_intel.h>
63 #include <vulkan/vk_icd.h>
64
65 #include "anv_entrypoints.h"
66 #include "brw_context.h"
67 #include "isl/isl.h"
68
69 #include "wsi_common.h"
70
71 #ifdef __cplusplus
72 extern "C" {
73 #endif
74
75 #define MAX_VBS 32
76 #define MAX_SETS 8
77 #define MAX_RTS 8
78 #define MAX_VIEWPORTS 16
79 #define MAX_SCISSORS 16
80 #define MAX_PUSH_CONSTANTS_SIZE 128
81 #define MAX_DYNAMIC_BUFFERS 16
82 #define MAX_IMAGES 8
83 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
84
85 #define anv_noreturn __attribute__((__noreturn__))
86 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
87
88 static inline uint32_t
89 align_down_npot_u32(uint32_t v, uint32_t a)
90 {
91 return v - (v % a);
92 }
93
94 static inline uint32_t
95 align_u32(uint32_t v, uint32_t a)
96 {
97 assert(a != 0 && a == (a & -a));
98 return (v + a - 1) & ~(a - 1);
99 }
100
101 static inline uint64_t
102 align_u64(uint64_t v, uint64_t a)
103 {
104 assert(a != 0 && a == (a & -a));
105 return (v + a - 1) & ~(a - 1);
106 }
107
108 static inline int32_t
109 align_i32(int32_t v, int32_t a)
110 {
111 assert(a != 0 && a == (a & -a));
112 return (v + a - 1) & ~(a - 1);
113 }
114
115 /** Alignment must be a power of 2. */
116 static inline bool
117 anv_is_aligned(uintmax_t n, uintmax_t a)
118 {
119 assert(a == (a & -a));
120 return (n & (a - 1)) == 0;
121 }
122
123 static inline uint32_t
124 anv_minify(uint32_t n, uint32_t levels)
125 {
126 if (unlikely(n == 0))
127 return 0;
128 else
129 return MAX2(n >> levels, 1);
130 }
131
132 static inline float
133 anv_clamp_f(float f, float min, float max)
134 {
135 assert(min < max);
136
137 if (f > max)
138 return max;
139 else if (f < min)
140 return min;
141 else
142 return f;
143 }
144
145 static inline bool
146 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
147 {
148 if (*inout_mask & clear_mask) {
149 *inout_mask &= ~clear_mask;
150 return true;
151 } else {
152 return false;
153 }
154 }
155
156 #define for_each_bit(b, dword) \
157 for (uint32_t __dword = (dword); \
158 (b) = __builtin_ffs(__dword) - 1, __dword; \
159 __dword &= ~(1 << (b)))
160
161 #define typed_memcpy(dest, src, count) ({ \
162 static_assert(sizeof(*src) == sizeof(*dest), ""); \
163 memcpy((dest), (src), (count) * sizeof(*(src))); \
164 })
165
166 /* Define no kernel as 1, since that's an illegal offset for a kernel */
167 #define NO_KERNEL 1
168
169 struct anv_common {
170 VkStructureType sType;
171 const void* pNext;
172 };
173
174 /* Whenever we generate an error, pass it through this function. Useful for
175 * debugging, where we can break on it. Only call at error site, not when
176 * propagating errors. Might be useful to plug in a stack trace here.
177 */
178
179 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
180
181 #ifdef DEBUG
182 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
183 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
184 #else
185 #define vk_error(error) error
186 #define vk_errorf(error, format, ...) error
187 #endif
188
189 void __anv_finishme(const char *file, int line, const char *format, ...)
190 anv_printflike(3, 4);
191 void anv_loge(const char *format, ...) anv_printflike(1, 2);
192 void anv_loge_v(const char *format, va_list va);
193
194 /**
195 * Print a FINISHME message, including its source location.
196 */
197 #define anv_finishme(format, ...) ({ \
198 static bool reported = false; \
199 if (!reported) { \
200 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
201 reported = true; \
202 } \
203 })
204
205 /* A non-fatal assert. Useful for debugging. */
206 #ifdef DEBUG
207 #define anv_assert(x) ({ \
208 if (unlikely(!(x))) \
209 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
210 })
211 #else
212 #define anv_assert(x)
213 #endif
214
215 /**
216 * If a block of code is annotated with anv_validate, then the block runs only
217 * in debug builds.
218 */
219 #ifdef DEBUG
220 #define anv_validate if (1)
221 #else
222 #define anv_validate if (0)
223 #endif
224
225 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
226 void anv_abortfv(const char *format, va_list va) anv_noreturn;
227
228 #define stub_return(v) \
229 do { \
230 anv_finishme("stub %s", __func__); \
231 return (v); \
232 } while (0)
233
234 #define stub() \
235 do { \
236 anv_finishme("stub %s", __func__); \
237 return; \
238 } while (0)
239
240 /**
241 * A dynamically growable, circular buffer. Elements are added at head and
242 * removed from tail. head and tail are free-running uint32_t indices and we
243 * only compute the modulo with size when accessing the array. This way,
244 * number of bytes in the queue is always head - tail, even in case of
245 * wraparound.
246 */
247
248 struct anv_bo {
249 uint32_t gem_handle;
250
251 /* Index into the current validation list. This is used by the
252 * validation list building alrogithm to track which buffers are already
253 * in the validation list so that we can ensure uniqueness.
254 */
255 uint32_t index;
256
257 /* Last known offset. This value is provided by the kernel when we
258 * execbuf and is used as the presumed offset for the next bunch of
259 * relocations.
260 */
261 uint64_t offset;
262
263 uint64_t size;
264 void *map;
265
266 /* We need to set the WRITE flag on winsys bos so GEM will know we're
267 * writing to them and synchronize uses on other rings (eg if the display
268 * server uses the blitter ring).
269 */
270 bool is_winsys_bo;
271 };
272
273 static inline void
274 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
275 {
276 bo->gem_handle = gem_handle;
277 bo->index = 0;
278 bo->offset = 0;
279 bo->size = size;
280 bo->map = NULL;
281 bo->is_winsys_bo = false;
282 }
283
284 /* Represents a lock-free linked list of "free" things. This is used by
285 * both the block pool and the state pools. Unfortunately, in order to
286 * solve the ABA problem, we can't use a single uint32_t head.
287 */
288 union anv_free_list {
289 struct {
290 int32_t offset;
291
292 /* A simple count that is incremented every time the head changes. */
293 uint32_t count;
294 };
295 uint64_t u64;
296 };
297
298 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
299
300 struct anv_block_state {
301 union {
302 struct {
303 uint32_t next;
304 uint32_t end;
305 };
306 uint64_t u64;
307 };
308 };
309
310 struct anv_block_pool {
311 struct anv_device *device;
312
313 struct anv_bo bo;
314
315 /* The offset from the start of the bo to the "center" of the block
316 * pool. Pointers to allocated blocks are given by
317 * bo.map + center_bo_offset + offsets.
318 */
319 uint32_t center_bo_offset;
320
321 /* Current memory map of the block pool. This pointer may or may not
322 * point to the actual beginning of the block pool memory. If
323 * anv_block_pool_alloc_back has ever been called, then this pointer
324 * will point to the "center" position of the buffer and all offsets
325 * (negative or positive) given out by the block pool alloc functions
326 * will be valid relative to this pointer.
327 *
328 * In particular, map == bo.map + center_offset
329 */
330 void *map;
331 int fd;
332
333 /**
334 * Array of mmaps and gem handles owned by the block pool, reclaimed when
335 * the block pool is destroyed.
336 */
337 struct u_vector mmap_cleanups;
338
339 uint32_t block_size;
340
341 union anv_free_list free_list;
342 struct anv_block_state state;
343
344 union anv_free_list back_free_list;
345 struct anv_block_state back_state;
346 };
347
348 /* Block pools are backed by a fixed-size 2GB memfd */
349 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
350
351 /* The center of the block pool is also the middle of the memfd. This may
352 * change in the future if we decide differently for some reason.
353 */
354 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
355
356 static inline uint32_t
357 anv_block_pool_size(struct anv_block_pool *pool)
358 {
359 return pool->state.end + pool->back_state.end;
360 }
361
362 struct anv_state {
363 int32_t offset;
364 uint32_t alloc_size;
365 void *map;
366 };
367
368 struct anv_fixed_size_state_pool {
369 size_t state_size;
370 union anv_free_list free_list;
371 struct anv_block_state block;
372 };
373
374 #define ANV_MIN_STATE_SIZE_LOG2 6
375 #define ANV_MAX_STATE_SIZE_LOG2 17
376
377 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
378
379 struct anv_state_pool {
380 struct anv_block_pool *block_pool;
381 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
382 };
383
384 struct anv_state_stream_block;
385
386 struct anv_state_stream {
387 struct anv_block_pool *block_pool;
388
389 /* The current working block */
390 struct anv_state_stream_block *block;
391
392 /* Offset at which the current block starts */
393 uint32_t start;
394 /* Offset at which to allocate the next state */
395 uint32_t next;
396 /* Offset at which the current block ends */
397 uint32_t end;
398 };
399
400 #define CACHELINE_SIZE 64
401 #define CACHELINE_MASK 63
402
403 static inline void
404 anv_clflush_range(void *start, size_t size)
405 {
406 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
407 void *end = start + size;
408
409 __builtin_ia32_mfence();
410 while (p < end) {
411 __builtin_ia32_clflush(p);
412 p += CACHELINE_SIZE;
413 }
414 }
415
416 static void inline
417 anv_state_clflush(struct anv_state state)
418 {
419 anv_clflush_range(state.map, state.alloc_size);
420 }
421
422 void anv_block_pool_init(struct anv_block_pool *pool,
423 struct anv_device *device, uint32_t block_size);
424 void anv_block_pool_finish(struct anv_block_pool *pool);
425 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
426 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
427 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
428 void anv_state_pool_init(struct anv_state_pool *pool,
429 struct anv_block_pool *block_pool);
430 void anv_state_pool_finish(struct anv_state_pool *pool);
431 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
432 size_t state_size, size_t alignment);
433 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
434 void anv_state_stream_init(struct anv_state_stream *stream,
435 struct anv_block_pool *block_pool);
436 void anv_state_stream_finish(struct anv_state_stream *stream);
437 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
438 uint32_t size, uint32_t alignment);
439
440 /**
441 * Implements a pool of re-usable BOs. The interface is identical to that
442 * of block_pool except that each block is its own BO.
443 */
444 struct anv_bo_pool {
445 struct anv_device *device;
446
447 void *free_list[16];
448 };
449
450 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
451 void anv_bo_pool_finish(struct anv_bo_pool *pool);
452 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
453 uint32_t size);
454 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
455
456 struct anv_scratch_bo {
457 bool exists;
458 struct anv_bo bo;
459 };
460
461 struct anv_scratch_pool {
462 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
463 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
464 };
465
466 void anv_scratch_pool_init(struct anv_device *device,
467 struct anv_scratch_pool *pool);
468 void anv_scratch_pool_finish(struct anv_device *device,
469 struct anv_scratch_pool *pool);
470 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
471 struct anv_scratch_pool *pool,
472 gl_shader_stage stage,
473 unsigned per_thread_scratch);
474
475 extern struct anv_dispatch_table dtable;
476
477 #define VK_ICD_WSI_PLATFORM_MAX 5
478
479 struct anv_physical_device {
480 VK_LOADER_DATA _loader_data;
481
482 struct anv_instance * instance;
483 uint32_t chipset_id;
484 char path[20];
485 const char * name;
486 struct gen_device_info info;
487 uint64_t aperture_size;
488 struct brw_compiler * compiler;
489 struct isl_device isl_dev;
490 int cmd_parser_version;
491
492 uint32_t eu_total;
493 uint32_t subslice_total;
494
495 struct wsi_device wsi_device;
496 };
497
498 struct anv_instance {
499 VK_LOADER_DATA _loader_data;
500
501 VkAllocationCallbacks alloc;
502
503 uint32_t apiVersion;
504 int physicalDeviceCount;
505 struct anv_physical_device physicalDevice;
506 };
507
508 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
509 void anv_finish_wsi(struct anv_physical_device *physical_device);
510
511 struct anv_queue {
512 VK_LOADER_DATA _loader_data;
513
514 struct anv_device * device;
515
516 struct anv_state_pool * pool;
517 };
518
519 struct anv_pipeline_cache {
520 struct anv_device * device;
521 pthread_mutex_t mutex;
522
523 struct hash_table * cache;
524 };
525
526 struct anv_pipeline_bind_map;
527
528 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
529 struct anv_device *device,
530 bool cache_enabled);
531 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
532
533 struct anv_shader_bin *
534 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
535 const void *key, uint32_t key_size);
536 struct anv_shader_bin *
537 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
538 const void *key_data, uint32_t key_size,
539 const void *kernel_data, uint32_t kernel_size,
540 const struct brw_stage_prog_data *prog_data,
541 uint32_t prog_data_size,
542 const struct anv_pipeline_bind_map *bind_map);
543
544 struct anv_device {
545 VK_LOADER_DATA _loader_data;
546
547 VkAllocationCallbacks alloc;
548
549 struct anv_instance * instance;
550 uint32_t chipset_id;
551 struct gen_device_info info;
552 struct isl_device isl_dev;
553 int context_id;
554 int fd;
555 bool can_chain_batches;
556 bool robust_buffer_access;
557
558 struct anv_bo_pool batch_bo_pool;
559
560 struct anv_block_pool dynamic_state_block_pool;
561 struct anv_state_pool dynamic_state_pool;
562
563 struct anv_block_pool instruction_block_pool;
564 struct anv_state_pool instruction_state_pool;
565
566 struct anv_block_pool surface_state_block_pool;
567 struct anv_state_pool surface_state_pool;
568
569 struct anv_bo workaround_bo;
570
571 struct anv_pipeline_cache blorp_shader_cache;
572 struct blorp_context blorp;
573
574 struct anv_state border_colors;
575
576 struct anv_queue queue;
577
578 struct anv_scratch_pool scratch_pool;
579
580 uint32_t default_mocs;
581
582 pthread_mutex_t mutex;
583 };
584
585 void anv_device_get_cache_uuid(void *uuid);
586
587 void anv_device_init_blorp(struct anv_device *device);
588 void anv_device_finish_blorp(struct anv_device *device);
589
590 VkResult anv_device_execbuf(struct anv_device *device,
591 struct drm_i915_gem_execbuffer2 *execbuf,
592 struct anv_bo **execbuf_bos);
593
594 void* anv_gem_mmap(struct anv_device *device,
595 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
596 void anv_gem_munmap(void *p, uint64_t size);
597 uint32_t anv_gem_create(struct anv_device *device, size_t size);
598 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
599 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
600 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
601 int anv_gem_execbuffer(struct anv_device *device,
602 struct drm_i915_gem_execbuffer2 *execbuf);
603 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
604 uint32_t stride, uint32_t tiling);
605 int anv_gem_create_context(struct anv_device *device);
606 int anv_gem_destroy_context(struct anv_device *device, int context);
607 int anv_gem_get_param(int fd, uint32_t param);
608 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
609 int anv_gem_get_aperture(int fd, uint64_t *size);
610 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
611 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
612 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
613 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
614 uint32_t read_domains, uint32_t write_domain);
615
616 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
617
618 struct anv_reloc_list {
619 size_t num_relocs;
620 size_t array_length;
621 struct drm_i915_gem_relocation_entry * relocs;
622 struct anv_bo ** reloc_bos;
623 };
624
625 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
626 const VkAllocationCallbacks *alloc);
627 void anv_reloc_list_finish(struct anv_reloc_list *list,
628 const VkAllocationCallbacks *alloc);
629
630 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
631 const VkAllocationCallbacks *alloc,
632 uint32_t offset, struct anv_bo *target_bo,
633 uint32_t delta);
634
635 struct anv_batch_bo {
636 /* Link in the anv_cmd_buffer.owned_batch_bos list */
637 struct list_head link;
638
639 struct anv_bo bo;
640
641 /* Bytes actually consumed in this batch BO */
642 size_t length;
643
644 /* Last seen surface state block pool bo offset */
645 uint32_t last_ss_pool_bo_offset;
646
647 struct anv_reloc_list relocs;
648 };
649
650 struct anv_batch {
651 const VkAllocationCallbacks * alloc;
652
653 void * start;
654 void * end;
655 void * next;
656
657 struct anv_reloc_list * relocs;
658
659 /* This callback is called (with the associated user data) in the event
660 * that the batch runs out of space.
661 */
662 VkResult (*extend_cb)(struct anv_batch *, void *);
663 void * user_data;
664 };
665
666 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
667 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
668 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
669 void *location, struct anv_bo *bo, uint32_t offset);
670 VkResult anv_device_submit_simple_batch(struct anv_device *device,
671 struct anv_batch *batch);
672
673 struct anv_address {
674 struct anv_bo *bo;
675 uint32_t offset;
676 };
677
678 static inline uint64_t
679 _anv_combine_address(struct anv_batch *batch, void *location,
680 const struct anv_address address, uint32_t delta)
681 {
682 if (address.bo == NULL) {
683 return address.offset + delta;
684 } else {
685 assert(batch->start <= location && location < batch->end);
686
687 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
688 }
689 }
690
691 #define __gen_address_type struct anv_address
692 #define __gen_user_data struct anv_batch
693 #define __gen_combine_address _anv_combine_address
694
695 /* Wrapper macros needed to work around preprocessor argument issues. In
696 * particular, arguments don't get pre-evaluated if they are concatenated.
697 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
698 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
699 * We can work around this easily enough with these helpers.
700 */
701 #define __anv_cmd_length(cmd) cmd ## _length
702 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
703 #define __anv_cmd_header(cmd) cmd ## _header
704 #define __anv_cmd_pack(cmd) cmd ## _pack
705 #define __anv_reg_num(reg) reg ## _num
706
707 #define anv_pack_struct(dst, struc, ...) do { \
708 struct struc __template = { \
709 __VA_ARGS__ \
710 }; \
711 __anv_cmd_pack(struc)(NULL, dst, &__template); \
712 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
713 } while (0)
714
715 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
716 void *__dst = anv_batch_emit_dwords(batch, n); \
717 struct cmd __template = { \
718 __anv_cmd_header(cmd), \
719 .DWordLength = n - __anv_cmd_length_bias(cmd), \
720 __VA_ARGS__ \
721 }; \
722 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
723 __dst; \
724 })
725
726 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
727 do { \
728 uint32_t *dw; \
729 \
730 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
731 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
732 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
733 dw[i] = (dwords0)[i] | (dwords1)[i]; \
734 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
735 } while (0)
736
737 #define anv_batch_emit(batch, cmd, name) \
738 for (struct cmd name = { __anv_cmd_header(cmd) }, \
739 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
740 __builtin_expect(_dst != NULL, 1); \
741 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
742 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
743 _dst = NULL; \
744 }))
745
746 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
747 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
748 struct anv_state __state = \
749 anv_state_pool_alloc((pool), __size, align); \
750 struct cmd __template = { \
751 __VA_ARGS__ \
752 }; \
753 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
754 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
755 if (!(pool)->block_pool->device->info.has_llc) \
756 anv_state_clflush(__state); \
757 __state; \
758 })
759
760 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
761 .GraphicsDataTypeGFDT = 0, \
762 .LLCCacheabilityControlLLCCC = 0, \
763 .L3CacheabilityControlL3CC = 1, \
764 }
765
766 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
767 .LLCeLLCCacheabilityControlLLCCC = 0, \
768 .L3CacheabilityControlL3CC = 1, \
769 }
770
771 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
772 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
773 .TargetCache = L3DefertoPATforLLCeLLCselection, \
774 .AgeforQUADLRU = 0 \
775 }
776
777 /* Skylake: MOCS is now an index into an array of 62 different caching
778 * configurations programmed by the kernel.
779 */
780
781 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
782 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
783 .IndextoMOCSTables = 2 \
784 }
785
786 #define GEN9_MOCS_PTE { \
787 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
788 .IndextoMOCSTables = 1 \
789 }
790
791 struct anv_device_memory {
792 struct anv_bo bo;
793 uint32_t type_index;
794 VkDeviceSize map_size;
795 void * map;
796 };
797
798 /**
799 * Header for Vertex URB Entry (VUE)
800 */
801 struct anv_vue_header {
802 uint32_t Reserved;
803 uint32_t RTAIndex; /* RenderTargetArrayIndex */
804 uint32_t ViewportIndex;
805 float PointWidth;
806 };
807
808 struct anv_descriptor_set_binding_layout {
809 #ifndef NDEBUG
810 /* The type of the descriptors in this binding */
811 VkDescriptorType type;
812 #endif
813
814 /* Number of array elements in this binding */
815 uint16_t array_size;
816
817 /* Index into the flattend descriptor set */
818 uint16_t descriptor_index;
819
820 /* Index into the dynamic state array for a dynamic buffer */
821 int16_t dynamic_offset_index;
822
823 /* Index into the descriptor set buffer views */
824 int16_t buffer_index;
825
826 struct {
827 /* Index into the binding table for the associated surface */
828 int16_t surface_index;
829
830 /* Index into the sampler table for the associated sampler */
831 int16_t sampler_index;
832
833 /* Index into the image table for the associated image */
834 int16_t image_index;
835 } stage[MESA_SHADER_STAGES];
836
837 /* Immutable samplers (or NULL if no immutable samplers) */
838 struct anv_sampler **immutable_samplers;
839 };
840
841 struct anv_descriptor_set_layout {
842 /* Number of bindings in this descriptor set */
843 uint16_t binding_count;
844
845 /* Total size of the descriptor set with room for all array entries */
846 uint16_t size;
847
848 /* Shader stages affected by this descriptor set */
849 uint16_t shader_stages;
850
851 /* Number of buffers in this descriptor set */
852 uint16_t buffer_count;
853
854 /* Number of dynamic offsets used by this descriptor set */
855 uint16_t dynamic_offset_count;
856
857 /* Bindings in this descriptor set */
858 struct anv_descriptor_set_binding_layout binding[0];
859 };
860
861 struct anv_descriptor {
862 VkDescriptorType type;
863
864 union {
865 struct {
866 struct anv_image_view *image_view;
867 struct anv_sampler *sampler;
868 };
869
870 struct anv_buffer_view *buffer_view;
871 };
872 };
873
874 struct anv_descriptor_set {
875 const struct anv_descriptor_set_layout *layout;
876 uint32_t size;
877 uint32_t buffer_count;
878 struct anv_buffer_view *buffer_views;
879 struct anv_descriptor descriptors[0];
880 };
881
882 struct anv_descriptor_pool {
883 uint32_t size;
884 uint32_t next;
885 uint32_t free_list;
886
887 struct anv_state_stream surface_state_stream;
888 void *surface_state_free_list;
889
890 char data[0];
891 };
892
893 VkResult
894 anv_descriptor_set_create(struct anv_device *device,
895 struct anv_descriptor_pool *pool,
896 const struct anv_descriptor_set_layout *layout,
897 struct anv_descriptor_set **out_set);
898
899 void
900 anv_descriptor_set_destroy(struct anv_device *device,
901 struct anv_descriptor_pool *pool,
902 struct anv_descriptor_set *set);
903
904 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
905
906 struct anv_pipeline_binding {
907 /* The descriptor set this surface corresponds to. The special value of
908 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
909 * to a color attachment and not a regular descriptor.
910 */
911 uint8_t set;
912
913 /* Binding in the descriptor set */
914 uint8_t binding;
915
916 /* Index in the binding */
917 uint8_t index;
918 };
919
920 struct anv_pipeline_layout {
921 struct {
922 struct anv_descriptor_set_layout *layout;
923 uint32_t dynamic_offset_start;
924 } set[MAX_SETS];
925
926 uint32_t num_sets;
927
928 struct {
929 bool has_dynamic_offsets;
930 } stage[MESA_SHADER_STAGES];
931
932 unsigned char sha1[20];
933 };
934
935 struct anv_buffer {
936 struct anv_device * device;
937 VkDeviceSize size;
938
939 VkBufferUsageFlags usage;
940
941 /* Set when bound */
942 struct anv_bo * bo;
943 VkDeviceSize offset;
944 };
945
946 enum anv_cmd_dirty_bits {
947 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
948 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
949 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
950 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
951 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
952 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
953 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
954 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
955 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
956 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
957 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
958 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
959 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
960 };
961 typedef uint32_t anv_cmd_dirty_mask_t;
962
963 enum anv_pipe_bits {
964 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
965 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
966 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
967 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
968 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
969 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
970 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
971 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
972 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
973 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
974 ANV_PIPE_CS_STALL_BIT = (1 << 20),
975
976 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
977 * a flush has happened but not a CS stall. The next time we do any sort
978 * of invalidation we need to insert a CS stall at that time. Otherwise,
979 * we would have to CS stall on every flush which could be bad.
980 */
981 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
982 };
983
984 #define ANV_PIPE_FLUSH_BITS ( \
985 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
986 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
987 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
988
989 #define ANV_PIPE_STALL_BITS ( \
990 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
991 ANV_PIPE_DEPTH_STALL_BIT | \
992 ANV_PIPE_CS_STALL_BIT)
993
994 #define ANV_PIPE_INVALIDATE_BITS ( \
995 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
996 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
997 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
998 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
999 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1000 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1001
1002 struct anv_vertex_binding {
1003 struct anv_buffer * buffer;
1004 VkDeviceSize offset;
1005 };
1006
1007 struct anv_push_constants {
1008 /* Current allocated size of this push constants data structure.
1009 * Because a decent chunk of it may not be used (images on SKL, for
1010 * instance), we won't actually allocate the entire structure up-front.
1011 */
1012 uint32_t size;
1013
1014 /* Push constant data provided by the client through vkPushConstants */
1015 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1016
1017 /* Our hardware only provides zero-based vertex and instance id so, in
1018 * order to satisfy the vulkan requirements, we may have to push one or
1019 * both of these into the shader.
1020 */
1021 uint32_t base_vertex;
1022 uint32_t base_instance;
1023
1024 /* Offsets and ranges for dynamically bound buffers */
1025 struct {
1026 uint32_t offset;
1027 uint32_t range;
1028 } dynamic[MAX_DYNAMIC_BUFFERS];
1029
1030 /* Image data for image_load_store on pre-SKL */
1031 struct brw_image_param images[MAX_IMAGES];
1032 };
1033
1034 struct anv_dynamic_state {
1035 struct {
1036 uint32_t count;
1037 VkViewport viewports[MAX_VIEWPORTS];
1038 } viewport;
1039
1040 struct {
1041 uint32_t count;
1042 VkRect2D scissors[MAX_SCISSORS];
1043 } scissor;
1044
1045 float line_width;
1046
1047 struct {
1048 float bias;
1049 float clamp;
1050 float slope;
1051 } depth_bias;
1052
1053 float blend_constants[4];
1054
1055 struct {
1056 float min;
1057 float max;
1058 } depth_bounds;
1059
1060 struct {
1061 uint32_t front;
1062 uint32_t back;
1063 } stencil_compare_mask;
1064
1065 struct {
1066 uint32_t front;
1067 uint32_t back;
1068 } stencil_write_mask;
1069
1070 struct {
1071 uint32_t front;
1072 uint32_t back;
1073 } stencil_reference;
1074 };
1075
1076 extern const struct anv_dynamic_state default_dynamic_state;
1077
1078 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1079 const struct anv_dynamic_state *src,
1080 uint32_t copy_mask);
1081
1082 /**
1083 * Attachment state when recording a renderpass instance.
1084 *
1085 * The clear value is valid only if there exists a pending clear.
1086 */
1087 struct anv_attachment_state {
1088 VkImageAspectFlags pending_clear_aspects;
1089 VkClearValue clear_value;
1090 };
1091
1092 /** State required while building cmd buffer */
1093 struct anv_cmd_state {
1094 /* PIPELINE_SELECT.PipelineSelection */
1095 uint32_t current_pipeline;
1096 const struct gen_l3_config * current_l3_config;
1097 uint32_t vb_dirty;
1098 anv_cmd_dirty_mask_t dirty;
1099 anv_cmd_dirty_mask_t compute_dirty;
1100 enum anv_pipe_bits pending_pipe_bits;
1101 uint32_t num_workgroups_offset;
1102 struct anv_bo *num_workgroups_bo;
1103 VkShaderStageFlags descriptors_dirty;
1104 VkShaderStageFlags push_constants_dirty;
1105 uint32_t scratch_size;
1106 struct anv_pipeline * pipeline;
1107 struct anv_pipeline * compute_pipeline;
1108 struct anv_framebuffer * framebuffer;
1109 struct anv_render_pass * pass;
1110 struct anv_subpass * subpass;
1111 VkRect2D render_area;
1112 uint32_t restart_index;
1113 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1114 struct anv_descriptor_set * descriptors[MAX_SETS];
1115 VkShaderStageFlags push_constant_stages;
1116 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1117 struct anv_state binding_tables[MESA_SHADER_STAGES];
1118 struct anv_state samplers[MESA_SHADER_STAGES];
1119 struct anv_dynamic_state dynamic;
1120 bool need_query_wa;
1121
1122 /**
1123 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1124 * valid only when recording a render pass instance.
1125 */
1126 struct anv_attachment_state * attachments;
1127
1128 struct {
1129 struct anv_buffer * index_buffer;
1130 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1131 uint32_t index_offset;
1132 } gen7;
1133 };
1134
1135 struct anv_cmd_pool {
1136 VkAllocationCallbacks alloc;
1137 struct list_head cmd_buffers;
1138 };
1139
1140 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1141
1142 enum anv_cmd_buffer_exec_mode {
1143 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1144 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1145 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1146 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1147 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1148 };
1149
1150 struct anv_cmd_buffer {
1151 VK_LOADER_DATA _loader_data;
1152
1153 struct anv_device * device;
1154
1155 struct anv_cmd_pool * pool;
1156 struct list_head pool_link;
1157
1158 struct anv_batch batch;
1159
1160 /* Fields required for the actual chain of anv_batch_bo's.
1161 *
1162 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1163 */
1164 struct list_head batch_bos;
1165 enum anv_cmd_buffer_exec_mode exec_mode;
1166
1167 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1168 * referenced by this command buffer
1169 *
1170 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1171 */
1172 struct u_vector seen_bbos;
1173
1174 /* A vector of int32_t's for every block of binding tables.
1175 *
1176 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1177 */
1178 struct u_vector bt_blocks;
1179 uint32_t bt_next;
1180 struct anv_reloc_list surface_relocs;
1181
1182 /* Information needed for execbuf
1183 *
1184 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1185 */
1186 struct {
1187 struct drm_i915_gem_execbuffer2 execbuf;
1188
1189 struct drm_i915_gem_exec_object2 * objects;
1190 uint32_t bo_count;
1191 struct anv_bo ** bos;
1192
1193 /* Allocated length of the 'objects' and 'bos' arrays */
1194 uint32_t array_length;
1195 } execbuf2;
1196
1197 /* Serial for tracking buffer completion */
1198 uint32_t serial;
1199
1200 /* Stream objects for storing temporary data */
1201 struct anv_state_stream surface_state_stream;
1202 struct anv_state_stream dynamic_state_stream;
1203
1204 VkCommandBufferUsageFlags usage_flags;
1205 VkCommandBufferLevel level;
1206
1207 struct anv_cmd_state state;
1208 };
1209
1210 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1211 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1212 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1213 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1214 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1215 struct anv_cmd_buffer *secondary);
1216 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1217 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1218 struct anv_cmd_buffer *cmd_buffer);
1219
1220 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1221
1222 VkResult
1223 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1224 gl_shader_stage stage, uint32_t size);
1225 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1226 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1227 (offsetof(struct anv_push_constants, field) + \
1228 sizeof(cmd_buffer->state.push_constants[0]->field)))
1229
1230 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1231 const void *data, uint32_t size, uint32_t alignment);
1232 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1233 uint32_t *a, uint32_t *b,
1234 uint32_t dwords, uint32_t alignment);
1235
1236 struct anv_address
1237 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1238 struct anv_state
1239 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1240 uint32_t entries, uint32_t *state_offset);
1241 struct anv_state
1242 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1243 struct anv_state
1244 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1245 uint32_t size, uint32_t alignment);
1246
1247 VkResult
1248 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1249
1250 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1251 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1252 bool depth_clamp_enable);
1253 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1254
1255 void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1256 const VkRenderPassBeginInfo *info);
1257
1258 struct anv_state
1259 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1260 gl_shader_stage stage);
1261 struct anv_state
1262 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1263
1264 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1265 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1266
1267 const struct anv_image_view *
1268 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1269
1270 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1271
1272 struct anv_fence {
1273 struct anv_bo bo;
1274 struct drm_i915_gem_execbuffer2 execbuf;
1275 struct drm_i915_gem_exec_object2 exec2_objects[1];
1276 bool ready;
1277 };
1278
1279 struct anv_event {
1280 uint64_t semaphore;
1281 struct anv_state state;
1282 };
1283
1284 struct anv_shader_module {
1285 unsigned char sha1[20];
1286 uint32_t size;
1287 char data[0];
1288 };
1289
1290 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1291 struct anv_shader_module *module,
1292 const char *entrypoint,
1293 const struct anv_pipeline_layout *pipeline_layout,
1294 const VkSpecializationInfo *spec_info);
1295
1296 static inline gl_shader_stage
1297 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1298 {
1299 assert(__builtin_popcount(vk_stage) == 1);
1300 return ffs(vk_stage) - 1;
1301 }
1302
1303 static inline VkShaderStageFlagBits
1304 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1305 {
1306 return (1 << mesa_stage);
1307 }
1308
1309 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1310
1311 #define anv_foreach_stage(stage, stage_bits) \
1312 for (gl_shader_stage stage, \
1313 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1314 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1315 __tmp &= ~(1 << (stage)))
1316
1317 struct anv_pipeline_bind_map {
1318 uint32_t surface_count;
1319 uint32_t sampler_count;
1320 uint32_t image_count;
1321
1322 struct anv_pipeline_binding * surface_to_descriptor;
1323 struct anv_pipeline_binding * sampler_to_descriptor;
1324 };
1325
1326 struct anv_shader_bin_key {
1327 uint32_t size;
1328 uint8_t data[0];
1329 };
1330
1331 struct anv_shader_bin {
1332 uint32_t ref_cnt;
1333
1334 const struct anv_shader_bin_key *key;
1335
1336 struct anv_state kernel;
1337 uint32_t kernel_size;
1338
1339 const struct brw_stage_prog_data *prog_data;
1340 uint32_t prog_data_size;
1341
1342 struct anv_pipeline_bind_map bind_map;
1343
1344 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1345 };
1346
1347 struct anv_shader_bin *
1348 anv_shader_bin_create(struct anv_device *device,
1349 const void *key, uint32_t key_size,
1350 const void *kernel, uint32_t kernel_size,
1351 const struct brw_stage_prog_data *prog_data,
1352 uint32_t prog_data_size, const void *prog_data_param,
1353 const struct anv_pipeline_bind_map *bind_map);
1354
1355 void
1356 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1357
1358 static inline void
1359 anv_shader_bin_ref(struct anv_shader_bin *shader)
1360 {
1361 assert(shader->ref_cnt >= 1);
1362 __sync_fetch_and_add(&shader->ref_cnt, 1);
1363 }
1364
1365 static inline void
1366 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1367 {
1368 assert(shader->ref_cnt >= 1);
1369 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1370 anv_shader_bin_destroy(device, shader);
1371 }
1372
1373 struct anv_pipeline {
1374 struct anv_device * device;
1375 struct anv_batch batch;
1376 uint32_t batch_data[512];
1377 struct anv_reloc_list batch_relocs;
1378 uint32_t dynamic_state_mask;
1379 struct anv_dynamic_state dynamic_state;
1380
1381 struct anv_pipeline_layout * layout;
1382
1383 bool needs_data_cache;
1384
1385 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1386
1387 struct {
1388 const struct gen_l3_config * l3_config;
1389 uint32_t total_size;
1390 } urb;
1391
1392 VkShaderStageFlags active_stages;
1393 struct anv_state blend_state;
1394 uint32_t vs_simd8;
1395 uint32_t vs_vec4;
1396 uint32_t ps_ksp0;
1397 uint32_t gs_kernel;
1398 uint32_t cs_simd;
1399
1400 uint32_t vb_used;
1401 uint32_t binding_stride[MAX_VBS];
1402 bool instancing_enable[MAX_VBS];
1403 bool primitive_restart;
1404 uint32_t topology;
1405
1406 uint32_t cs_right_mask;
1407
1408 bool depth_clamp_enable;
1409
1410 struct {
1411 uint32_t sf[7];
1412 uint32_t depth_stencil_state[3];
1413 } gen7;
1414
1415 struct {
1416 uint32_t sf[4];
1417 uint32_t raster[5];
1418 uint32_t wm_depth_stencil[3];
1419 } gen8;
1420
1421 struct {
1422 uint32_t wm_depth_stencil[4];
1423 } gen9;
1424 };
1425
1426 static inline bool
1427 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1428 gl_shader_stage stage)
1429 {
1430 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1431 }
1432
1433 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1434 static inline const struct brw_##prefix##_prog_data * \
1435 get_##prefix##_prog_data(struct anv_pipeline *pipeline) \
1436 { \
1437 if (anv_pipeline_has_stage(pipeline, stage)) { \
1438 return (const struct brw_##prefix##_prog_data *) \
1439 pipeline->shaders[stage]->prog_data; \
1440 } else { \
1441 return NULL; \
1442 } \
1443 }
1444
1445 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1446 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1447 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1448 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1449
1450 VkResult
1451 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1452 struct anv_pipeline_cache *cache,
1453 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1454 const VkAllocationCallbacks *alloc);
1455
1456 VkResult
1457 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1458 struct anv_pipeline_cache *cache,
1459 const VkComputePipelineCreateInfo *info,
1460 struct anv_shader_module *module,
1461 const char *entrypoint,
1462 const VkSpecializationInfo *spec_info);
1463
1464 struct anv_format {
1465 enum isl_format isl_format:16;
1466 struct isl_swizzle swizzle;
1467 };
1468
1469 struct anv_format
1470 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1471 VkImageAspectFlags aspect, VkImageTiling tiling);
1472
1473 static inline enum isl_format
1474 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1475 VkImageAspectFlags aspect, VkImageTiling tiling)
1476 {
1477 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1478 }
1479
1480 void
1481 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1482
1483 /**
1484 * Subsurface of an anv_image.
1485 */
1486 struct anv_surface {
1487 /** Valid only if isl_surf::size > 0. */
1488 struct isl_surf isl;
1489
1490 /**
1491 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1492 */
1493 uint32_t offset;
1494 };
1495
1496 struct anv_image {
1497 VkImageType type;
1498 /* The original VkFormat provided by the client. This may not match any
1499 * of the actual surface formats.
1500 */
1501 VkFormat vk_format;
1502 VkImageAspectFlags aspects;
1503 VkExtent3D extent;
1504 uint32_t levels;
1505 uint32_t array_size;
1506 uint32_t samples; /**< VkImageCreateInfo::samples */
1507 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1508 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1509
1510 VkDeviceSize size;
1511 uint32_t alignment;
1512
1513 /* Set when bound */
1514 struct anv_bo *bo;
1515 VkDeviceSize offset;
1516
1517 /**
1518 * Image subsurfaces
1519 *
1520 * For each foo, anv_image::foo_surface is valid if and only if
1521 * anv_image::aspects has a foo aspect.
1522 *
1523 * The hardware requires that the depth buffer and stencil buffer be
1524 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1525 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1526 * allocate the depth and stencil buffers as separate surfaces in the same
1527 * bo.
1528 */
1529 union {
1530 struct anv_surface color_surface;
1531
1532 struct {
1533 struct anv_surface depth_surface;
1534 struct anv_surface hiz_surface;
1535 struct anv_surface stencil_surface;
1536 };
1537 };
1538 };
1539
1540 static inline uint32_t
1541 anv_get_layerCount(const struct anv_image *image,
1542 const VkImageSubresourceRange *range)
1543 {
1544 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1545 image->array_size - range->baseArrayLayer : range->layerCount;
1546 }
1547
1548 static inline uint32_t
1549 anv_get_levelCount(const struct anv_image *image,
1550 const VkImageSubresourceRange *range)
1551 {
1552 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1553 image->levels - range->baseMipLevel : range->levelCount;
1554 }
1555
1556
1557 struct anv_image_view {
1558 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1559 struct anv_bo *bo;
1560 uint32_t offset; /**< Offset into bo. */
1561
1562 struct isl_view isl;
1563
1564 VkImageAspectFlags aspect_mask;
1565 VkFormat vk_format;
1566 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1567
1568 /** RENDER_SURFACE_STATE when using image as a color render target. */
1569 struct anv_state color_rt_surface_state;
1570
1571 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1572 struct anv_state sampler_surface_state;
1573
1574 /** RENDER_SURFACE_STATE when using image as a storage image. */
1575 struct anv_state storage_surface_state;
1576
1577 struct brw_image_param storage_image_param;
1578 };
1579
1580 struct anv_image_create_info {
1581 const VkImageCreateInfo *vk_info;
1582
1583 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
1584 isl_tiling_flags_t isl_tiling_flags;
1585
1586 uint32_t stride;
1587 };
1588
1589 VkResult anv_image_create(VkDevice _device,
1590 const struct anv_image_create_info *info,
1591 const VkAllocationCallbacks* alloc,
1592 VkImage *pImage);
1593
1594 const struct anv_surface *
1595 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1596 VkImageAspectFlags aspect_mask);
1597
1598 static inline bool
1599 anv_image_has_hiz(const struct anv_image *image)
1600 {
1601 /* We must check the aspect because anv_image::hiz_surface belongs to
1602 * a union.
1603 */
1604 return (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
1605 image->hiz_surface.isl.size > 0;
1606 }
1607
1608 struct anv_buffer_view {
1609 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1610 struct anv_bo *bo;
1611 uint32_t offset; /**< Offset into bo. */
1612 uint64_t range; /**< VkBufferViewCreateInfo::range */
1613
1614 struct anv_state surface_state;
1615 struct anv_state storage_surface_state;
1616
1617 struct brw_image_param storage_image_param;
1618 };
1619
1620 enum isl_format
1621 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1622
1623 static inline struct VkExtent3D
1624 anv_sanitize_image_extent(const VkImageType imageType,
1625 const struct VkExtent3D imageExtent)
1626 {
1627 switch (imageType) {
1628 case VK_IMAGE_TYPE_1D:
1629 return (VkExtent3D) { imageExtent.width, 1, 1 };
1630 case VK_IMAGE_TYPE_2D:
1631 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1632 case VK_IMAGE_TYPE_3D:
1633 return imageExtent;
1634 default:
1635 unreachable("invalid image type");
1636 }
1637 }
1638
1639 static inline struct VkOffset3D
1640 anv_sanitize_image_offset(const VkImageType imageType,
1641 const struct VkOffset3D imageOffset)
1642 {
1643 switch (imageType) {
1644 case VK_IMAGE_TYPE_1D:
1645 return (VkOffset3D) { imageOffset.x, 0, 0 };
1646 case VK_IMAGE_TYPE_2D:
1647 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1648 case VK_IMAGE_TYPE_3D:
1649 return imageOffset;
1650 default:
1651 unreachable("invalid image type");
1652 }
1653 }
1654
1655
1656 void anv_fill_buffer_surface_state(struct anv_device *device,
1657 struct anv_state state,
1658 enum isl_format format,
1659 uint32_t offset, uint32_t range,
1660 uint32_t stride);
1661
1662 void anv_image_view_fill_image_param(struct anv_device *device,
1663 struct anv_image_view *view,
1664 struct brw_image_param *param);
1665 void anv_buffer_view_fill_image_param(struct anv_device *device,
1666 struct anv_buffer_view *view,
1667 struct brw_image_param *param);
1668
1669 struct anv_sampler {
1670 uint32_t state[4];
1671 };
1672
1673 struct anv_framebuffer {
1674 uint32_t width;
1675 uint32_t height;
1676 uint32_t layers;
1677
1678 uint32_t attachment_count;
1679 struct anv_image_view * attachments[0];
1680 };
1681
1682 struct anv_subpass {
1683 uint32_t input_count;
1684 uint32_t * input_attachments;
1685 uint32_t color_count;
1686 uint32_t * color_attachments;
1687 uint32_t * resolve_attachments;
1688 uint32_t depth_stencil_attachment;
1689
1690 /** Subpass has at least one resolve attachment */
1691 bool has_resolve;
1692 };
1693
1694 struct anv_render_pass_attachment {
1695 VkFormat format;
1696 uint32_t samples;
1697 VkAttachmentLoadOp load_op;
1698 VkAttachmentStoreOp store_op;
1699 VkAttachmentLoadOp stencil_load_op;
1700 };
1701
1702 struct anv_render_pass {
1703 uint32_t attachment_count;
1704 uint32_t subpass_count;
1705 uint32_t * subpass_attachments;
1706 struct anv_render_pass_attachment * attachments;
1707 struct anv_subpass subpasses[0];
1708 };
1709
1710 struct anv_query_pool_slot {
1711 uint64_t begin;
1712 uint64_t end;
1713 uint64_t available;
1714 };
1715
1716 struct anv_query_pool {
1717 VkQueryType type;
1718 uint32_t slots;
1719 struct anv_bo bo;
1720 };
1721
1722 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
1723 const char *name);
1724
1725 void anv_dump_image_to_ppm(struct anv_device *device,
1726 struct anv_image *image, unsigned miplevel,
1727 unsigned array_layer, VkImageAspectFlagBits aspect,
1728 const char *filename);
1729
1730 enum anv_dump_action {
1731 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
1732 };
1733
1734 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
1735 void anv_dump_finish(void);
1736
1737 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
1738 struct anv_framebuffer *fb);
1739
1740 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1741 \
1742 static inline struct __anv_type * \
1743 __anv_type ## _from_handle(__VkType _handle) \
1744 { \
1745 return (struct __anv_type *) _handle; \
1746 } \
1747 \
1748 static inline __VkType \
1749 __anv_type ## _to_handle(struct __anv_type *_obj) \
1750 { \
1751 return (__VkType) _obj; \
1752 }
1753
1754 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1755 \
1756 static inline struct __anv_type * \
1757 __anv_type ## _from_handle(__VkType _handle) \
1758 { \
1759 return (struct __anv_type *)(uintptr_t) _handle; \
1760 } \
1761 \
1762 static inline __VkType \
1763 __anv_type ## _to_handle(struct __anv_type *_obj) \
1764 { \
1765 return (__VkType)(uintptr_t) _obj; \
1766 }
1767
1768 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1769 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1770
1771 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1772 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1773 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1774 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1775 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1776
1777 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1778 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1779 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1780 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1781 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1782 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1783 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1784 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1785 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1786 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1787 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1788 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1789 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1790 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1791 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1792 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1793 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1794 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1795 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1796
1797 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1798 \
1799 static inline const __VkType * \
1800 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1801 { \
1802 return (const __VkType *) __anv_obj; \
1803 }
1804
1805 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1806 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1807
1808 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1809 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1810 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1811
1812 /* Gen-specific function declarations */
1813 #ifdef genX
1814 # include "anv_genX.h"
1815 #else
1816 # define genX(x) gen7_##x
1817 # include "anv_genX.h"
1818 # undef genX
1819 # define genX(x) gen75_##x
1820 # include "anv_genX.h"
1821 # undef genX
1822 # define genX(x) gen8_##x
1823 # include "anv_genX.h"
1824 # undef genX
1825 # define genX(x) gen9_##x
1826 # include "anv_genX.h"
1827 # undef genX
1828 #endif
1829
1830 #ifdef __cplusplus
1831 }
1832 #endif
1833
1834 #endif /* ANV_PRIVATE_H */