anv/gen11+: Disable object level preemption
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /* Driver-internal book-keeping */
1040 VkDeviceSize used;
1041 };
1042
1043 struct anv_physical_device {
1044 struct vk_object_base base;
1045
1046 /* Link in anv_instance::physical_devices */
1047 struct list_head link;
1048
1049 struct anv_instance * instance;
1050 bool no_hw;
1051 char path[20];
1052 const char * name;
1053 struct {
1054 uint16_t domain;
1055 uint8_t bus;
1056 uint8_t device;
1057 uint8_t function;
1058 } pci_info;
1059 struct gen_device_info info;
1060 /** Amount of "GPU memory" we want to advertise
1061 *
1062 * Clearly, this value is bogus since Intel is a UMA architecture. On
1063 * gen7 platforms, we are limited by GTT size unless we want to implement
1064 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1065 * practically unlimited. However, we will never report more than 3/4 of
1066 * the total system ram to try and avoid running out of RAM.
1067 */
1068 bool supports_48bit_addresses;
1069 struct brw_compiler * compiler;
1070 struct isl_device isl_dev;
1071 struct gen_perf_config * perf;
1072 int cmd_parser_version;
1073 bool has_softpin;
1074 bool has_exec_async;
1075 bool has_exec_capture;
1076 bool has_exec_fence;
1077 bool has_syncobj;
1078 bool has_syncobj_wait;
1079 bool has_context_priority;
1080 bool has_context_isolation;
1081 bool has_mem_available;
1082 bool has_mmap_offset;
1083 uint64_t gtt_size;
1084
1085 bool use_softpin;
1086 bool always_use_bindless;
1087
1088 /** True if we can access buffers using A64 messages */
1089 bool has_a64_buffer_access;
1090 /** True if we can use bindless access for images */
1091 bool has_bindless_images;
1092 /** True if we can use bindless access for samplers */
1093 bool has_bindless_samplers;
1094
1095 /** True if this device has implicit AUX
1096 *
1097 * If true, CCS is handled as an implicit attachment to the BO rather than
1098 * as an explicitly bound surface.
1099 */
1100 bool has_implicit_ccs;
1101
1102 bool always_flush_cache;
1103
1104 struct anv_device_extension_table supported_extensions;
1105
1106 uint32_t eu_total;
1107 uint32_t subslice_total;
1108
1109 struct {
1110 uint32_t type_count;
1111 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1112 uint32_t heap_count;
1113 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1114 } memory;
1115
1116 uint8_t driver_build_sha1[20];
1117 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1118 uint8_t driver_uuid[VK_UUID_SIZE];
1119 uint8_t device_uuid[VK_UUID_SIZE];
1120
1121 struct disk_cache * disk_cache;
1122
1123 struct wsi_device wsi_device;
1124 int local_fd;
1125 int master_fd;
1126 };
1127
1128 struct anv_app_info {
1129 const char* app_name;
1130 uint32_t app_version;
1131 const char* engine_name;
1132 uint32_t engine_version;
1133 uint32_t api_version;
1134 };
1135
1136 struct anv_instance {
1137 struct vk_object_base base;
1138
1139 VkAllocationCallbacks alloc;
1140
1141 struct anv_app_info app_info;
1142
1143 struct anv_instance_extension_table enabled_extensions;
1144 struct anv_instance_dispatch_table dispatch;
1145 struct anv_physical_device_dispatch_table physical_device_dispatch;
1146 struct anv_device_dispatch_table device_dispatch;
1147
1148 bool physical_devices_enumerated;
1149 struct list_head physical_devices;
1150
1151 bool pipeline_cache_enabled;
1152
1153 struct vk_debug_report_instance debug_report_callbacks;
1154
1155 struct driOptionCache dri_options;
1156 struct driOptionCache available_dri_options;
1157 };
1158
1159 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1160 void anv_finish_wsi(struct anv_physical_device *physical_device);
1161
1162 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1163 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1164 const char *name);
1165
1166 struct anv_queue_submit {
1167 struct anv_cmd_buffer * cmd_buffer;
1168
1169 uint32_t fence_count;
1170 uint32_t fence_array_length;
1171 struct drm_i915_gem_exec_fence * fences;
1172
1173 uint32_t temporary_semaphore_count;
1174 uint32_t temporary_semaphore_array_length;
1175 struct anv_semaphore_impl * temporary_semaphores;
1176
1177 /* Semaphores to be signaled with a SYNC_FD. */
1178 struct anv_semaphore ** sync_fd_semaphores;
1179 uint32_t sync_fd_semaphore_count;
1180 uint32_t sync_fd_semaphore_array_length;
1181
1182 /* Allocated only with non shareable timelines. */
1183 struct anv_timeline ** wait_timelines;
1184 uint32_t wait_timeline_count;
1185 uint32_t wait_timeline_array_length;
1186 uint64_t * wait_timeline_values;
1187
1188 struct anv_timeline ** signal_timelines;
1189 uint32_t signal_timeline_count;
1190 uint32_t signal_timeline_array_length;
1191 uint64_t * signal_timeline_values;
1192
1193 int in_fence;
1194 bool need_out_fence;
1195 int out_fence;
1196
1197 uint32_t fence_bo_count;
1198 uint32_t fence_bo_array_length;
1199 /* An array of struct anv_bo pointers with lower bit used as a flag to
1200 * signal we will wait on that BO (see anv_(un)pack_ptr).
1201 */
1202 uintptr_t * fence_bos;
1203
1204 int perf_query_pass;
1205
1206 const VkAllocationCallbacks * alloc;
1207 VkSystemAllocationScope alloc_scope;
1208
1209 struct anv_bo * simple_bo;
1210 uint32_t simple_bo_size;
1211
1212 struct list_head link;
1213 };
1214
1215 struct anv_queue {
1216 struct vk_object_base base;
1217
1218 struct anv_device * device;
1219
1220 /*
1221 * A list of struct anv_queue_submit to be submitted to i915.
1222 */
1223 struct list_head queued_submits;
1224
1225 VkDeviceQueueCreateFlags flags;
1226 };
1227
1228 struct anv_pipeline_cache {
1229 struct vk_object_base base;
1230 struct anv_device * device;
1231 pthread_mutex_t mutex;
1232
1233 struct hash_table * nir_cache;
1234
1235 struct hash_table * cache;
1236 };
1237
1238 struct nir_xfb_info;
1239 struct anv_pipeline_bind_map;
1240
1241 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1242 struct anv_device *device,
1243 bool cache_enabled);
1244 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1245
1246 struct anv_shader_bin *
1247 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1248 const void *key, uint32_t key_size);
1249 struct anv_shader_bin *
1250 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1251 gl_shader_stage stage,
1252 const void *key_data, uint32_t key_size,
1253 const void *kernel_data, uint32_t kernel_size,
1254 const void *constant_data,
1255 uint32_t constant_data_size,
1256 const struct brw_stage_prog_data *prog_data,
1257 uint32_t prog_data_size,
1258 const struct brw_compile_stats *stats,
1259 uint32_t num_stats,
1260 const struct nir_xfb_info *xfb_info,
1261 const struct anv_pipeline_bind_map *bind_map);
1262
1263 struct anv_shader_bin *
1264 anv_device_search_for_kernel(struct anv_device *device,
1265 struct anv_pipeline_cache *cache,
1266 const void *key_data, uint32_t key_size,
1267 bool *user_cache_bit);
1268
1269 struct anv_shader_bin *
1270 anv_device_upload_kernel(struct anv_device *device,
1271 struct anv_pipeline_cache *cache,
1272 gl_shader_stage stage,
1273 const void *key_data, uint32_t key_size,
1274 const void *kernel_data, uint32_t kernel_size,
1275 const void *constant_data,
1276 uint32_t constant_data_size,
1277 const struct brw_stage_prog_data *prog_data,
1278 uint32_t prog_data_size,
1279 const struct brw_compile_stats *stats,
1280 uint32_t num_stats,
1281 const struct nir_xfb_info *xfb_info,
1282 const struct anv_pipeline_bind_map *bind_map);
1283
1284 struct nir_shader;
1285 struct nir_shader_compiler_options;
1286
1287 struct nir_shader *
1288 anv_device_search_for_nir(struct anv_device *device,
1289 struct anv_pipeline_cache *cache,
1290 const struct nir_shader_compiler_options *nir_options,
1291 unsigned char sha1_key[20],
1292 void *mem_ctx);
1293
1294 void
1295 anv_device_upload_nir(struct anv_device *device,
1296 struct anv_pipeline_cache *cache,
1297 const struct nir_shader *nir,
1298 unsigned char sha1_key[20]);
1299
1300 struct anv_address {
1301 struct anv_bo *bo;
1302 uint32_t offset;
1303 };
1304
1305 struct anv_device {
1306 struct vk_device vk;
1307
1308 struct anv_physical_device * physical;
1309 bool no_hw;
1310 struct gen_device_info info;
1311 struct isl_device isl_dev;
1312 int context_id;
1313 int fd;
1314 bool can_chain_batches;
1315 bool robust_buffer_access;
1316 struct anv_device_extension_table enabled_extensions;
1317 struct anv_device_dispatch_table dispatch;
1318
1319 pthread_mutex_t vma_mutex;
1320 struct util_vma_heap vma_lo;
1321 struct util_vma_heap vma_cva;
1322 struct util_vma_heap vma_hi;
1323
1324 /** List of all anv_device_memory objects */
1325 struct list_head memory_objects;
1326
1327 struct anv_bo_pool batch_bo_pool;
1328
1329 struct anv_bo_cache bo_cache;
1330
1331 struct anv_state_pool dynamic_state_pool;
1332 struct anv_state_pool instruction_state_pool;
1333 struct anv_state_pool binding_table_pool;
1334 struct anv_state_pool surface_state_pool;
1335
1336 struct anv_state_reserved_pool custom_border_colors;
1337
1338 /** BO used for various workarounds
1339 *
1340 * There are a number of workarounds on our hardware which require writing
1341 * data somewhere and it doesn't really matter where. For that, we use
1342 * this BO and just write to the first dword or so.
1343 *
1344 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1345 * For that, we use the high bytes (>= 1024) of the workaround BO.
1346 */
1347 struct anv_bo * workaround_bo;
1348 struct anv_address workaround_address;
1349
1350 struct anv_bo * trivial_batch_bo;
1351 struct anv_bo * hiz_clear_bo;
1352 struct anv_state null_surface_state;
1353
1354 struct anv_pipeline_cache default_pipeline_cache;
1355 struct blorp_context blorp;
1356
1357 struct anv_state border_colors;
1358
1359 struct anv_state slice_hash;
1360
1361 struct anv_queue queue;
1362
1363 struct anv_scratch_pool scratch_pool;
1364
1365 pthread_mutex_t mutex;
1366 pthread_cond_t queue_submit;
1367 int _lost;
1368
1369 struct gen_batch_decode_ctx decoder_ctx;
1370 /*
1371 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1372 * the cmd_buffer's list.
1373 */
1374 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1375
1376 int perf_fd; /* -1 if no opened */
1377 uint64_t perf_metric; /* 0 if unset */
1378
1379 struct gen_aux_map_context *aux_map_ctx;
1380 };
1381
1382 static inline struct anv_instance *
1383 anv_device_instance_or_null(const struct anv_device *device)
1384 {
1385 return device ? device->physical->instance : NULL;
1386 }
1387
1388 static inline struct anv_state_pool *
1389 anv_binding_table_pool(struct anv_device *device)
1390 {
1391 if (device->physical->use_softpin)
1392 return &device->binding_table_pool;
1393 else
1394 return &device->surface_state_pool;
1395 }
1396
1397 static inline struct anv_state
1398 anv_binding_table_pool_alloc(struct anv_device *device) {
1399 if (device->physical->use_softpin)
1400 return anv_state_pool_alloc(&device->binding_table_pool,
1401 device->binding_table_pool.block_size, 0);
1402 else
1403 return anv_state_pool_alloc_back(&device->surface_state_pool);
1404 }
1405
1406 static inline void
1407 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1408 anv_state_pool_free(anv_binding_table_pool(device), state);
1409 }
1410
1411 static inline uint32_t
1412 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1413 {
1414 if (bo->is_external)
1415 return device->isl_dev.mocs.external;
1416 else
1417 return device->isl_dev.mocs.internal;
1418 }
1419
1420 void anv_device_init_blorp(struct anv_device *device);
1421 void anv_device_finish_blorp(struct anv_device *device);
1422
1423 void _anv_device_set_all_queue_lost(struct anv_device *device);
1424 VkResult _anv_device_set_lost(struct anv_device *device,
1425 const char *file, int line,
1426 const char *msg, ...)
1427 anv_printflike(4, 5);
1428 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1429 const char *file, int line,
1430 const char *msg, ...)
1431 anv_printflike(4, 5);
1432 #define anv_device_set_lost(dev, ...) \
1433 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1434 #define anv_queue_set_lost(queue, ...) \
1435 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1436
1437 static inline bool
1438 anv_device_is_lost(struct anv_device *device)
1439 {
1440 return unlikely(p_atomic_read(&device->_lost));
1441 }
1442
1443 VkResult anv_device_query_status(struct anv_device *device);
1444
1445
1446 enum anv_bo_alloc_flags {
1447 /** Specifies that the BO must have a 32-bit address
1448 *
1449 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1450 */
1451 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1452
1453 /** Specifies that the BO may be shared externally */
1454 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1455
1456 /** Specifies that the BO should be mapped */
1457 ANV_BO_ALLOC_MAPPED = (1 << 2),
1458
1459 /** Specifies that the BO should be snooped so we get coherency */
1460 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1461
1462 /** Specifies that the BO should be captured in error states */
1463 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1464
1465 /** Specifies that the BO will have an address assigned by the caller
1466 *
1467 * Such BOs do not exist in any VMA heap.
1468 */
1469 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1470
1471 /** Enables implicit synchronization on the BO
1472 *
1473 * This is the opposite of EXEC_OBJECT_ASYNC.
1474 */
1475 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1476
1477 /** Enables implicit synchronization on the BO
1478 *
1479 * This is equivalent to EXEC_OBJECT_WRITE.
1480 */
1481 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1482
1483 /** Has an address which is visible to the client */
1484 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1485
1486 /** This buffer has implicit CCS data attached to it */
1487 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1488 };
1489
1490 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1491 enum anv_bo_alloc_flags alloc_flags,
1492 uint64_t explicit_address,
1493 struct anv_bo **bo);
1494 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1495 void *host_ptr, uint32_t size,
1496 enum anv_bo_alloc_flags alloc_flags,
1497 uint64_t client_address,
1498 struct anv_bo **bo_out);
1499 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1500 enum anv_bo_alloc_flags alloc_flags,
1501 uint64_t client_address,
1502 struct anv_bo **bo);
1503 VkResult anv_device_export_bo(struct anv_device *device,
1504 struct anv_bo *bo, int *fd_out);
1505 void anv_device_release_bo(struct anv_device *device,
1506 struct anv_bo *bo);
1507
1508 static inline struct anv_bo *
1509 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1510 {
1511 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1512 }
1513
1514 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1515 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1516 int64_t timeout);
1517
1518 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1519 void anv_queue_finish(struct anv_queue *queue);
1520
1521 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1522 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1523 struct anv_batch *batch);
1524
1525 uint64_t anv_gettime_ns(void);
1526 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1527
1528 void* anv_gem_mmap(struct anv_device *device,
1529 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1530 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1531 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1532 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1533 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1534 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1535 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1536 int anv_gem_execbuffer(struct anv_device *device,
1537 struct drm_i915_gem_execbuffer2 *execbuf);
1538 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1539 uint32_t stride, uint32_t tiling);
1540 int anv_gem_create_context(struct anv_device *device);
1541 bool anv_gem_has_context_priority(int fd);
1542 int anv_gem_destroy_context(struct anv_device *device, int context);
1543 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1544 uint64_t value);
1545 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1546 uint64_t *value);
1547 int anv_gem_get_param(int fd, uint32_t param);
1548 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1549 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1550 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1551 uint32_t *active, uint32_t *pending);
1552 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1553 int anv_gem_reg_read(struct anv_device *device,
1554 uint32_t offset, uint64_t *result);
1555 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1556 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1557 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1558 uint32_t read_domains, uint32_t write_domain);
1559 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1560 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1561 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1562 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1563 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1564 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1565 uint32_t handle);
1566 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1567 uint32_t handle, int fd);
1568 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1569 bool anv_gem_supports_syncobj_wait(int fd);
1570 int anv_gem_syncobj_wait(struct anv_device *device,
1571 uint32_t *handles, uint32_t num_handles,
1572 int64_t abs_timeout_ns, bool wait_all);
1573
1574 uint64_t anv_vma_alloc(struct anv_device *device,
1575 uint64_t size, uint64_t align,
1576 enum anv_bo_alloc_flags alloc_flags,
1577 uint64_t client_address);
1578 void anv_vma_free(struct anv_device *device,
1579 uint64_t address, uint64_t size);
1580
1581 struct anv_reloc_list {
1582 uint32_t num_relocs;
1583 uint32_t array_length;
1584 struct drm_i915_gem_relocation_entry * relocs;
1585 struct anv_bo ** reloc_bos;
1586 uint32_t dep_words;
1587 BITSET_WORD * deps;
1588 };
1589
1590 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1591 const VkAllocationCallbacks *alloc);
1592 void anv_reloc_list_finish(struct anv_reloc_list *list,
1593 const VkAllocationCallbacks *alloc);
1594
1595 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1596 const VkAllocationCallbacks *alloc,
1597 uint32_t offset, struct anv_bo *target_bo,
1598 uint32_t delta, uint64_t *address_u64_out);
1599
1600 struct anv_batch_bo {
1601 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1602 struct list_head link;
1603
1604 struct anv_bo * bo;
1605
1606 /* Bytes actually consumed in this batch BO */
1607 uint32_t length;
1608
1609 struct anv_reloc_list relocs;
1610 };
1611
1612 struct anv_batch {
1613 const VkAllocationCallbacks * alloc;
1614
1615 struct anv_address start_addr;
1616
1617 void * start;
1618 void * end;
1619 void * next;
1620
1621 struct anv_reloc_list * relocs;
1622
1623 /* This callback is called (with the associated user data) in the event
1624 * that the batch runs out of space.
1625 */
1626 VkResult (*extend_cb)(struct anv_batch *, void *);
1627 void * user_data;
1628
1629 /**
1630 * Current error status of the command buffer. Used to track inconsistent
1631 * or incomplete command buffer states that are the consequence of run-time
1632 * errors such as out of memory scenarios. We want to track this in the
1633 * batch because the command buffer object is not visible to some parts
1634 * of the driver.
1635 */
1636 VkResult status;
1637 };
1638
1639 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1640 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1641 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1642 void *location, struct anv_bo *bo, uint32_t offset);
1643 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1644
1645 static inline VkResult
1646 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1647 {
1648 assert(error != VK_SUCCESS);
1649 if (batch->status == VK_SUCCESS)
1650 batch->status = error;
1651 return batch->status;
1652 }
1653
1654 static inline bool
1655 anv_batch_has_error(struct anv_batch *batch)
1656 {
1657 return batch->status != VK_SUCCESS;
1658 }
1659
1660 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1661
1662 static inline bool
1663 anv_address_is_null(struct anv_address addr)
1664 {
1665 return addr.bo == NULL && addr.offset == 0;
1666 }
1667
1668 static inline uint64_t
1669 anv_address_physical(struct anv_address addr)
1670 {
1671 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1672 return gen_canonical_address(addr.bo->offset + addr.offset);
1673 else
1674 return gen_canonical_address(addr.offset);
1675 }
1676
1677 static inline struct anv_address
1678 anv_address_add(struct anv_address addr, uint64_t offset)
1679 {
1680 addr.offset += offset;
1681 return addr;
1682 }
1683
1684 static inline void
1685 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1686 {
1687 unsigned reloc_size = 0;
1688 if (device->info.gen >= 8) {
1689 reloc_size = sizeof(uint64_t);
1690 *(uint64_t *)p = gen_canonical_address(v);
1691 } else {
1692 reloc_size = sizeof(uint32_t);
1693 *(uint32_t *)p = v;
1694 }
1695
1696 if (flush && !device->info.has_llc)
1697 gen_flush_range(p, reloc_size);
1698 }
1699
1700 static inline uint64_t
1701 _anv_combine_address(struct anv_batch *batch, void *location,
1702 const struct anv_address address, uint32_t delta)
1703 {
1704 if (address.bo == NULL) {
1705 return address.offset + delta;
1706 } else {
1707 assert(batch->start <= location && location < batch->end);
1708
1709 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1710 }
1711 }
1712
1713 #define __gen_address_type struct anv_address
1714 #define __gen_user_data struct anv_batch
1715 #define __gen_combine_address _anv_combine_address
1716
1717 /* Wrapper macros needed to work around preprocessor argument issues. In
1718 * particular, arguments don't get pre-evaluated if they are concatenated.
1719 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1720 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1721 * We can work around this easily enough with these helpers.
1722 */
1723 #define __anv_cmd_length(cmd) cmd ## _length
1724 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1725 #define __anv_cmd_header(cmd) cmd ## _header
1726 #define __anv_cmd_pack(cmd) cmd ## _pack
1727 #define __anv_reg_num(reg) reg ## _num
1728
1729 #define anv_pack_struct(dst, struc, ...) do { \
1730 struct struc __template = { \
1731 __VA_ARGS__ \
1732 }; \
1733 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1734 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1735 } while (0)
1736
1737 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1738 void *__dst = anv_batch_emit_dwords(batch, n); \
1739 if (__dst) { \
1740 struct cmd __template = { \
1741 __anv_cmd_header(cmd), \
1742 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1743 __VA_ARGS__ \
1744 }; \
1745 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1746 } \
1747 __dst; \
1748 })
1749
1750 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1751 do { \
1752 uint32_t *dw; \
1753 \
1754 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1755 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1756 if (!dw) \
1757 break; \
1758 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1759 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1760 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1761 } while (0)
1762
1763 #define anv_batch_emit(batch, cmd, name) \
1764 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1765 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1766 __builtin_expect(_dst != NULL, 1); \
1767 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1768 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1769 _dst = NULL; \
1770 }))
1771
1772 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1773 /* #define __gen_get_batch_address anv_batch_address */
1774 /* #define __gen_address_value anv_address_physical */
1775 /* #define __gen_address_offset anv_address_add */
1776
1777 struct anv_device_memory {
1778 struct vk_object_base base;
1779
1780 struct list_head link;
1781
1782 struct anv_bo * bo;
1783 struct anv_memory_type * type;
1784 VkDeviceSize map_size;
1785 void * map;
1786
1787 /* If set, we are holding reference to AHardwareBuffer
1788 * which we must release when memory is freed.
1789 */
1790 struct AHardwareBuffer * ahw;
1791
1792 /* If set, this memory comes from a host pointer. */
1793 void * host_ptr;
1794 };
1795
1796 /**
1797 * Header for Vertex URB Entry (VUE)
1798 */
1799 struct anv_vue_header {
1800 uint32_t Reserved;
1801 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1802 uint32_t ViewportIndex;
1803 float PointWidth;
1804 };
1805
1806 /** Struct representing a sampled image descriptor
1807 *
1808 * This descriptor layout is used for sampled images, bare sampler, and
1809 * combined image/sampler descriptors.
1810 */
1811 struct anv_sampled_image_descriptor {
1812 /** Bindless image handle
1813 *
1814 * This is expected to already be shifted such that the 20-bit
1815 * SURFACE_STATE table index is in the top 20 bits.
1816 */
1817 uint32_t image;
1818
1819 /** Bindless sampler handle
1820 *
1821 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1822 * to the dynamic state base address.
1823 */
1824 uint32_t sampler;
1825 };
1826
1827 struct anv_texture_swizzle_descriptor {
1828 /** Texture swizzle
1829 *
1830 * See also nir_intrinsic_channel_select_intel
1831 */
1832 uint8_t swizzle[4];
1833
1834 /** Unused padding to ensure the struct is a multiple of 64 bits */
1835 uint32_t _pad;
1836 };
1837
1838 /** Struct representing a storage image descriptor */
1839 struct anv_storage_image_descriptor {
1840 /** Bindless image handles
1841 *
1842 * These are expected to already be shifted such that the 20-bit
1843 * SURFACE_STATE table index is in the top 20 bits.
1844 */
1845 uint32_t read_write;
1846 uint32_t write_only;
1847 };
1848
1849 /** Struct representing a address/range descriptor
1850 *
1851 * The fields of this struct correspond directly to the data layout of
1852 * nir_address_format_64bit_bounded_global addresses. The last field is the
1853 * offset in the NIR address so it must be zero so that when you load the
1854 * descriptor you get a pointer to the start of the range.
1855 */
1856 struct anv_address_range_descriptor {
1857 uint64_t address;
1858 uint32_t range;
1859 uint32_t zero;
1860 };
1861
1862 enum anv_descriptor_data {
1863 /** The descriptor contains a BTI reference to a surface state */
1864 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1865 /** The descriptor contains a BTI reference to a sampler state */
1866 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1867 /** The descriptor contains an actual buffer view */
1868 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1869 /** The descriptor contains auxiliary image layout data */
1870 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1871 /** The descriptor contains auxiliary image layout data */
1872 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1873 /** anv_address_range_descriptor with a buffer address and range */
1874 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1875 /** Bindless surface handle */
1876 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1877 /** Storage image handles */
1878 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1879 /** Storage image handles */
1880 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1881 };
1882
1883 struct anv_descriptor_set_binding_layout {
1884 #ifndef NDEBUG
1885 /* The type of the descriptors in this binding */
1886 VkDescriptorType type;
1887 #endif
1888
1889 /* Flags provided when this binding was created */
1890 VkDescriptorBindingFlagsEXT flags;
1891
1892 /* Bitfield representing the type of data this descriptor contains */
1893 enum anv_descriptor_data data;
1894
1895 /* Maximum number of YCbCr texture/sampler planes */
1896 uint8_t max_plane_count;
1897
1898 /* Number of array elements in this binding (or size in bytes for inline
1899 * uniform data)
1900 */
1901 uint16_t array_size;
1902
1903 /* Index into the flattend descriptor set */
1904 uint16_t descriptor_index;
1905
1906 /* Index into the dynamic state array for a dynamic buffer */
1907 int16_t dynamic_offset_index;
1908
1909 /* Index into the descriptor set buffer views */
1910 int16_t buffer_view_index;
1911
1912 /* Offset into the descriptor buffer where this descriptor lives */
1913 uint32_t descriptor_offset;
1914
1915 /* Immutable samplers (or NULL if no immutable samplers) */
1916 struct anv_sampler **immutable_samplers;
1917 };
1918
1919 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1920
1921 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1922 VkDescriptorType type);
1923
1924 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1925 const struct anv_descriptor_set_binding_layout *binding,
1926 bool sampler);
1927
1928 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1929 const struct anv_descriptor_set_binding_layout *binding,
1930 bool sampler);
1931
1932 struct anv_descriptor_set_layout {
1933 struct vk_object_base base;
1934
1935 /* Descriptor set layouts can be destroyed at almost any time */
1936 uint32_t ref_cnt;
1937
1938 /* Number of bindings in this descriptor set */
1939 uint16_t binding_count;
1940
1941 /* Total size of the descriptor set with room for all array entries */
1942 uint16_t size;
1943
1944 /* Shader stages affected by this descriptor set */
1945 uint16_t shader_stages;
1946
1947 /* Number of buffer views in this descriptor set */
1948 uint16_t buffer_view_count;
1949
1950 /* Number of dynamic offsets used by this descriptor set */
1951 uint16_t dynamic_offset_count;
1952
1953 /* For each shader stage, which offsets apply to that stage */
1954 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1955
1956 /* Size of the descriptor buffer for this descriptor set */
1957 uint32_t descriptor_buffer_size;
1958
1959 /* Bindings in this descriptor set */
1960 struct anv_descriptor_set_binding_layout binding[0];
1961 };
1962
1963 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1964 struct anv_descriptor_set_layout *layout);
1965
1966 static inline void
1967 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1968 {
1969 assert(layout && layout->ref_cnt >= 1);
1970 p_atomic_inc(&layout->ref_cnt);
1971 }
1972
1973 static inline void
1974 anv_descriptor_set_layout_unref(struct anv_device *device,
1975 struct anv_descriptor_set_layout *layout)
1976 {
1977 assert(layout && layout->ref_cnt >= 1);
1978 if (p_atomic_dec_zero(&layout->ref_cnt))
1979 anv_descriptor_set_layout_destroy(device, layout);
1980 }
1981
1982 struct anv_descriptor {
1983 VkDescriptorType type;
1984
1985 union {
1986 struct {
1987 VkImageLayout layout;
1988 struct anv_image_view *image_view;
1989 struct anv_sampler *sampler;
1990 };
1991
1992 struct {
1993 struct anv_buffer *buffer;
1994 uint64_t offset;
1995 uint64_t range;
1996 };
1997
1998 struct anv_buffer_view *buffer_view;
1999 };
2000 };
2001
2002 struct anv_descriptor_set {
2003 struct vk_object_base base;
2004
2005 struct anv_descriptor_pool *pool;
2006 struct anv_descriptor_set_layout *layout;
2007 uint32_t size;
2008
2009 /* State relative to anv_descriptor_pool::bo */
2010 struct anv_state desc_mem;
2011 /* Surface state for the descriptor buffer */
2012 struct anv_state desc_surface_state;
2013
2014 uint32_t buffer_view_count;
2015 struct anv_buffer_view *buffer_views;
2016
2017 /* Link to descriptor pool's desc_sets list . */
2018 struct list_head pool_link;
2019
2020 struct anv_descriptor descriptors[0];
2021 };
2022
2023 struct anv_buffer_view {
2024 struct vk_object_base base;
2025
2026 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2027 uint64_t range; /**< VkBufferViewCreateInfo::range */
2028
2029 struct anv_address address;
2030
2031 struct anv_state surface_state;
2032 struct anv_state storage_surface_state;
2033 struct anv_state writeonly_storage_surface_state;
2034
2035 struct brw_image_param storage_image_param;
2036 };
2037
2038 struct anv_push_descriptor_set {
2039 struct anv_descriptor_set set;
2040
2041 /* Put this field right behind anv_descriptor_set so it fills up the
2042 * descriptors[0] field. */
2043 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2044
2045 /** True if the descriptor set buffer has been referenced by a draw or
2046 * dispatch command.
2047 */
2048 bool set_used_on_gpu;
2049
2050 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2051 };
2052
2053 struct anv_descriptor_pool {
2054 struct vk_object_base base;
2055
2056 uint32_t size;
2057 uint32_t next;
2058 uint32_t free_list;
2059
2060 struct anv_bo *bo;
2061 struct util_vma_heap bo_heap;
2062
2063 struct anv_state_stream surface_state_stream;
2064 void *surface_state_free_list;
2065
2066 struct list_head desc_sets;
2067
2068 char data[0];
2069 };
2070
2071 enum anv_descriptor_template_entry_type {
2072 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2073 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2074 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2075 };
2076
2077 struct anv_descriptor_template_entry {
2078 /* The type of descriptor in this entry */
2079 VkDescriptorType type;
2080
2081 /* Binding in the descriptor set */
2082 uint32_t binding;
2083
2084 /* Offset at which to write into the descriptor set binding */
2085 uint32_t array_element;
2086
2087 /* Number of elements to write into the descriptor set binding */
2088 uint32_t array_count;
2089
2090 /* Offset into the user provided data */
2091 size_t offset;
2092
2093 /* Stride between elements into the user provided data */
2094 size_t stride;
2095 };
2096
2097 struct anv_descriptor_update_template {
2098 struct vk_object_base base;
2099
2100 VkPipelineBindPoint bind_point;
2101
2102 /* The descriptor set this template corresponds to. This value is only
2103 * valid if the template was created with the templateType
2104 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2105 */
2106 uint8_t set;
2107
2108 /* Number of entries in this template */
2109 uint32_t entry_count;
2110
2111 /* Entries of the template */
2112 struct anv_descriptor_template_entry entries[0];
2113 };
2114
2115 size_t
2116 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2117
2118 void
2119 anv_descriptor_set_write_image_view(struct anv_device *device,
2120 struct anv_descriptor_set *set,
2121 const VkDescriptorImageInfo * const info,
2122 VkDescriptorType type,
2123 uint32_t binding,
2124 uint32_t element);
2125
2126 void
2127 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2128 struct anv_descriptor_set *set,
2129 VkDescriptorType type,
2130 struct anv_buffer_view *buffer_view,
2131 uint32_t binding,
2132 uint32_t element);
2133
2134 void
2135 anv_descriptor_set_write_buffer(struct anv_device *device,
2136 struct anv_descriptor_set *set,
2137 struct anv_state_stream *alloc_stream,
2138 VkDescriptorType type,
2139 struct anv_buffer *buffer,
2140 uint32_t binding,
2141 uint32_t element,
2142 VkDeviceSize offset,
2143 VkDeviceSize range);
2144 void
2145 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2146 struct anv_descriptor_set *set,
2147 uint32_t binding,
2148 const void *data,
2149 size_t offset,
2150 size_t size);
2151
2152 void
2153 anv_descriptor_set_write_template(struct anv_device *device,
2154 struct anv_descriptor_set *set,
2155 struct anv_state_stream *alloc_stream,
2156 const struct anv_descriptor_update_template *template,
2157 const void *data);
2158
2159 VkResult
2160 anv_descriptor_set_create(struct anv_device *device,
2161 struct anv_descriptor_pool *pool,
2162 struct anv_descriptor_set_layout *layout,
2163 struct anv_descriptor_set **out_set);
2164
2165 void
2166 anv_descriptor_set_destroy(struct anv_device *device,
2167 struct anv_descriptor_pool *pool,
2168 struct anv_descriptor_set *set);
2169
2170 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2171 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2172 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2173 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2174 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2175 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2176
2177 struct anv_pipeline_binding {
2178 /** Index in the descriptor set
2179 *
2180 * This is a flattened index; the descriptor set layout is already taken
2181 * into account.
2182 */
2183 uint32_t index;
2184
2185 /** The descriptor set this surface corresponds to.
2186 *
2187 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2188 * binding is not a normal descriptor set but something else.
2189 */
2190 uint8_t set;
2191
2192 union {
2193 /** Plane in the binding index for images */
2194 uint8_t plane;
2195
2196 /** Input attachment index (relative to the subpass) */
2197 uint8_t input_attachment_index;
2198
2199 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2200 uint8_t dynamic_offset_index;
2201 };
2202
2203 /** For a storage image, whether it is write-only */
2204 uint8_t write_only;
2205
2206 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2207 * assuming POD zero-initialization.
2208 */
2209 uint8_t pad;
2210 };
2211
2212 struct anv_push_range {
2213 /** Index in the descriptor set */
2214 uint32_t index;
2215
2216 /** Descriptor set index */
2217 uint8_t set;
2218
2219 /** Dynamic offset index (for dynamic UBOs) */
2220 uint8_t dynamic_offset_index;
2221
2222 /** Start offset in units of 32B */
2223 uint8_t start;
2224
2225 /** Range in units of 32B */
2226 uint8_t length;
2227 };
2228
2229 struct anv_pipeline_layout {
2230 struct vk_object_base base;
2231
2232 struct {
2233 struct anv_descriptor_set_layout *layout;
2234 uint32_t dynamic_offset_start;
2235 } set[MAX_SETS];
2236
2237 uint32_t num_sets;
2238
2239 unsigned char sha1[20];
2240 };
2241
2242 struct anv_buffer {
2243 struct vk_object_base base;
2244
2245 struct anv_device * device;
2246 VkDeviceSize size;
2247
2248 VkBufferUsageFlags usage;
2249
2250 /* Set when bound */
2251 struct anv_address address;
2252 };
2253
2254 static inline uint64_t
2255 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2256 {
2257 assert(offset <= buffer->size);
2258 if (range == VK_WHOLE_SIZE) {
2259 return buffer->size - offset;
2260 } else {
2261 assert(range + offset >= range);
2262 assert(range + offset <= buffer->size);
2263 return range;
2264 }
2265 }
2266
2267 enum anv_cmd_dirty_bits {
2268 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2269 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2270 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2271 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2272 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2273 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2274 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2275 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2276 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2277 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2278 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2279 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2280 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2281 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2282 };
2283 typedef uint32_t anv_cmd_dirty_mask_t;
2284
2285 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2286 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2287 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2288 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2289 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2290 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2291 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2292 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2293 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2294 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2295 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2296
2297 static inline enum anv_cmd_dirty_bits
2298 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2299 {
2300 switch (vk_state) {
2301 case VK_DYNAMIC_STATE_VIEWPORT:
2302 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2303 case VK_DYNAMIC_STATE_SCISSOR:
2304 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2305 case VK_DYNAMIC_STATE_LINE_WIDTH:
2306 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2307 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2308 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2309 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2310 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2311 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2312 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2313 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2314 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2315 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2316 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2317 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2318 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2319 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2320 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2321 default:
2322 assert(!"Unsupported dynamic state");
2323 return 0;
2324 }
2325 }
2326
2327
2328 enum anv_pipe_bits {
2329 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2330 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2331 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2332 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2333 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2334 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2335 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2336 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2337 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2338 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2339 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2340 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2341 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2342
2343 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2344 * a flush has happened but not a CS stall. The next time we do any sort
2345 * of invalidation we need to insert a CS stall at that time. Otherwise,
2346 * we would have to CS stall on every flush which could be bad.
2347 */
2348 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2349
2350 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2351 * target operations related to transfer commands with VkBuffer as
2352 * destination are ongoing. Some operations like copies on the command
2353 * streamer might need to be aware of this to trigger the appropriate stall
2354 * before they can proceed with the copy.
2355 */
2356 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2357
2358 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2359 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2360 * done by writing the AUX-TT register.
2361 */
2362 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2363
2364 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2365 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2366 * implement a workaround for Gen9.
2367 */
2368 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2369 };
2370
2371 #define ANV_PIPE_FLUSH_BITS ( \
2372 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2373 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2374 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2375 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2376
2377 #define ANV_PIPE_STALL_BITS ( \
2378 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2379 ANV_PIPE_DEPTH_STALL_BIT | \
2380 ANV_PIPE_CS_STALL_BIT)
2381
2382 #define ANV_PIPE_INVALIDATE_BITS ( \
2383 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2384 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2385 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2386 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2387 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2388 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2389 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2390
2391 static inline enum anv_pipe_bits
2392 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2393 {
2394 enum anv_pipe_bits pipe_bits = 0;
2395
2396 unsigned b;
2397 for_each_bit(b, flags) {
2398 switch ((VkAccessFlagBits)(1 << b)) {
2399 case VK_ACCESS_SHADER_WRITE_BIT:
2400 /* We're transitioning a buffer that was previously used as write
2401 * destination through the data port. To make its content available
2402 * to future operations, flush the data cache.
2403 */
2404 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2405 break;
2406 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2407 /* We're transitioning a buffer that was previously used as render
2408 * target. To make its content available to future operations, flush
2409 * the render target cache.
2410 */
2411 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2412 break;
2413 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2414 /* We're transitioning a buffer that was previously used as depth
2415 * buffer. To make its content available to future operations, flush
2416 * the depth cache.
2417 */
2418 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2419 break;
2420 case VK_ACCESS_TRANSFER_WRITE_BIT:
2421 /* We're transitioning a buffer that was previously used as a
2422 * transfer write destination. Generic write operations include color
2423 * & depth operations as well as buffer operations like :
2424 * - vkCmdClearColorImage()
2425 * - vkCmdClearDepthStencilImage()
2426 * - vkCmdBlitImage()
2427 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2428 *
2429 * Most of these operations are implemented using Blorp which writes
2430 * through the render target, so flush that cache to make it visible
2431 * to future operations. And for depth related operations we also
2432 * need to flush the depth cache.
2433 */
2434 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2435 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2436 break;
2437 case VK_ACCESS_MEMORY_WRITE_BIT:
2438 /* We're transitioning a buffer for generic write operations. Flush
2439 * all the caches.
2440 */
2441 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2442 break;
2443 default:
2444 break; /* Nothing to do */
2445 }
2446 }
2447
2448 return pipe_bits;
2449 }
2450
2451 static inline enum anv_pipe_bits
2452 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2453 {
2454 enum anv_pipe_bits pipe_bits = 0;
2455
2456 unsigned b;
2457 for_each_bit(b, flags) {
2458 switch ((VkAccessFlagBits)(1 << b)) {
2459 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2460 /* Indirect draw commands take a buffer as input that we're going to
2461 * read from the command streamer to load some of the HW registers
2462 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2463 * command streamer stall so that all the cache flushes have
2464 * completed before the command streamer loads from memory.
2465 */
2466 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2467 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2468 * through a vertex buffer, so invalidate that cache.
2469 */
2470 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2471 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2472 * UBO from the buffer, so we need to invalidate constant cache.
2473 */
2474 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2475 break;
2476 case VK_ACCESS_INDEX_READ_BIT:
2477 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2478 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2479 * commands, so we invalidate the VF cache to make sure there is no
2480 * stale data when we start rendering.
2481 */
2482 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2483 break;
2484 case VK_ACCESS_UNIFORM_READ_BIT:
2485 /* We transitioning a buffer to be used as uniform data. Because
2486 * uniform is accessed through the data port & sampler, we need to
2487 * invalidate the texture cache (sampler) & constant cache (data
2488 * port) to avoid stale data.
2489 */
2490 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2491 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2492 break;
2493 case VK_ACCESS_SHADER_READ_BIT:
2494 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2495 case VK_ACCESS_TRANSFER_READ_BIT:
2496 /* Transitioning a buffer to be read through the sampler, so
2497 * invalidate the texture cache, we don't want any stale data.
2498 */
2499 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2500 break;
2501 case VK_ACCESS_MEMORY_READ_BIT:
2502 /* Transitioning a buffer for generic read, invalidate all the
2503 * caches.
2504 */
2505 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2506 break;
2507 case VK_ACCESS_MEMORY_WRITE_BIT:
2508 /* Generic write, make sure all previously written things land in
2509 * memory.
2510 */
2511 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2512 break;
2513 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2514 /* Transitioning a buffer for conditional rendering. We'll load the
2515 * content of this buffer into HW registers using the command
2516 * streamer, so we need to stall the command streamer to make sure
2517 * any in-flight flush operations have completed.
2518 */
2519 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2520 break;
2521 default:
2522 break; /* Nothing to do */
2523 }
2524 }
2525
2526 return pipe_bits;
2527 }
2528
2529 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2530 VK_IMAGE_ASPECT_COLOR_BIT | \
2531 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2532 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2533 VK_IMAGE_ASPECT_PLANE_2_BIT)
2534 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2535 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2536 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2537 VK_IMAGE_ASPECT_PLANE_2_BIT)
2538
2539 struct anv_vertex_binding {
2540 struct anv_buffer * buffer;
2541 VkDeviceSize offset;
2542 };
2543
2544 struct anv_xfb_binding {
2545 struct anv_buffer * buffer;
2546 VkDeviceSize offset;
2547 VkDeviceSize size;
2548 };
2549
2550 struct anv_push_constants {
2551 /** Push constant data provided by the client through vkPushConstants */
2552 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2553
2554 /** Dynamic offsets for dynamic UBOs and SSBOs */
2555 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2556
2557 uint64_t push_reg_mask;
2558
2559 /** Pad out to a multiple of 32 bytes */
2560 uint32_t pad[2];
2561
2562 struct {
2563 /** Base workgroup ID
2564 *
2565 * Used for vkCmdDispatchBase.
2566 */
2567 uint32_t base_work_group_id[3];
2568
2569 /** Subgroup ID
2570 *
2571 * This is never set by software but is implicitly filled out when
2572 * uploading the push constants for compute shaders.
2573 */
2574 uint32_t subgroup_id;
2575 } cs;
2576 };
2577
2578 struct anv_dynamic_state {
2579 struct {
2580 uint32_t count;
2581 VkViewport viewports[MAX_VIEWPORTS];
2582 } viewport;
2583
2584 struct {
2585 uint32_t count;
2586 VkRect2D scissors[MAX_SCISSORS];
2587 } scissor;
2588
2589 float line_width;
2590
2591 struct {
2592 float bias;
2593 float clamp;
2594 float slope;
2595 } depth_bias;
2596
2597 float blend_constants[4];
2598
2599 struct {
2600 float min;
2601 float max;
2602 } depth_bounds;
2603
2604 struct {
2605 uint32_t front;
2606 uint32_t back;
2607 } stencil_compare_mask;
2608
2609 struct {
2610 uint32_t front;
2611 uint32_t back;
2612 } stencil_write_mask;
2613
2614 struct {
2615 uint32_t front;
2616 uint32_t back;
2617 } stencil_reference;
2618
2619 struct {
2620 uint32_t factor;
2621 uint16_t pattern;
2622 } line_stipple;
2623 };
2624
2625 extern const struct anv_dynamic_state default_dynamic_state;
2626
2627 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2628 const struct anv_dynamic_state *src,
2629 uint32_t copy_mask);
2630
2631 struct anv_surface_state {
2632 struct anv_state state;
2633 /** Address of the surface referred to by this state
2634 *
2635 * This address is relative to the start of the BO.
2636 */
2637 struct anv_address address;
2638 /* Address of the aux surface, if any
2639 *
2640 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2641 *
2642 * With the exception of gen8, the bottom 12 bits of this address' offset
2643 * include extra aux information.
2644 */
2645 struct anv_address aux_address;
2646 /* Address of the clear color, if any
2647 *
2648 * This address is relative to the start of the BO.
2649 */
2650 struct anv_address clear_address;
2651 };
2652
2653 /**
2654 * Attachment state when recording a renderpass instance.
2655 *
2656 * The clear value is valid only if there exists a pending clear.
2657 */
2658 struct anv_attachment_state {
2659 enum isl_aux_usage aux_usage;
2660 struct anv_surface_state color;
2661 struct anv_surface_state input;
2662
2663 VkImageLayout current_layout;
2664 VkImageLayout current_stencil_layout;
2665 VkImageAspectFlags pending_clear_aspects;
2666 VkImageAspectFlags pending_load_aspects;
2667 bool fast_clear;
2668 VkClearValue clear_value;
2669
2670 /* When multiview is active, attachments with a renderpass clear
2671 * operation have their respective layers cleared on the first
2672 * subpass that uses them, and only in that subpass. We keep track
2673 * of this using a bitfield to indicate which layers of an attachment
2674 * have not been cleared yet when multiview is active.
2675 */
2676 uint32_t pending_clear_views;
2677 struct anv_image_view * image_view;
2678 };
2679
2680 /** State tracking for vertex buffer flushes
2681 *
2682 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2683 * addresses. If you happen to have two vertex buffers which get placed
2684 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2685 * collisions. In order to solve this problem, we track vertex address ranges
2686 * which are live in the cache and invalidate the cache if one ever exceeds 32
2687 * bits.
2688 */
2689 struct anv_vb_cache_range {
2690 /* Virtual address at which the live vertex buffer cache range starts for
2691 * this vertex buffer index.
2692 */
2693 uint64_t start;
2694
2695 /* Virtual address of the byte after where vertex buffer cache range ends.
2696 * This is exclusive such that end - start is the size of the range.
2697 */
2698 uint64_t end;
2699 };
2700
2701 /** State tracking for particular pipeline bind point
2702 *
2703 * This struct is the base struct for anv_cmd_graphics_state and
2704 * anv_cmd_compute_state. These are used to track state which is bound to a
2705 * particular type of pipeline. Generic state that applies per-stage such as
2706 * binding table offsets and push constants is tracked generically with a
2707 * per-stage array in anv_cmd_state.
2708 */
2709 struct anv_cmd_pipeline_state {
2710 struct anv_descriptor_set *descriptors[MAX_SETS];
2711 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2712 };
2713
2714 /** State tracking for graphics pipeline
2715 *
2716 * This has anv_cmd_pipeline_state as a base struct to track things which get
2717 * bound to a graphics pipeline. Along with general pipeline bind point state
2718 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2719 * state which is graphics-specific.
2720 */
2721 struct anv_cmd_graphics_state {
2722 struct anv_cmd_pipeline_state base;
2723
2724 struct anv_graphics_pipeline *pipeline;
2725
2726 anv_cmd_dirty_mask_t dirty;
2727 uint32_t vb_dirty;
2728
2729 struct anv_vb_cache_range ib_bound_range;
2730 struct anv_vb_cache_range ib_dirty_range;
2731 struct anv_vb_cache_range vb_bound_ranges[33];
2732 struct anv_vb_cache_range vb_dirty_ranges[33];
2733
2734 struct anv_dynamic_state dynamic;
2735
2736 struct {
2737 struct anv_buffer *index_buffer;
2738 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2739 uint32_t index_offset;
2740 } gen7;
2741 };
2742
2743 /** State tracking for compute pipeline
2744 *
2745 * This has anv_cmd_pipeline_state as a base struct to track things which get
2746 * bound to a compute pipeline. Along with general pipeline bind point state
2747 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2748 * state which is compute-specific.
2749 */
2750 struct anv_cmd_compute_state {
2751 struct anv_cmd_pipeline_state base;
2752
2753 struct anv_compute_pipeline *pipeline;
2754
2755 bool pipeline_dirty;
2756
2757 struct anv_address num_workgroups;
2758 };
2759
2760 /** State required while building cmd buffer */
2761 struct anv_cmd_state {
2762 /* PIPELINE_SELECT.PipelineSelection */
2763 uint32_t current_pipeline;
2764 const struct gen_l3_config * current_l3_config;
2765 uint32_t last_aux_map_state;
2766
2767 struct anv_cmd_graphics_state gfx;
2768 struct anv_cmd_compute_state compute;
2769
2770 enum anv_pipe_bits pending_pipe_bits;
2771 VkShaderStageFlags descriptors_dirty;
2772 VkShaderStageFlags push_constants_dirty;
2773
2774 struct anv_framebuffer * framebuffer;
2775 struct anv_render_pass * pass;
2776 struct anv_subpass * subpass;
2777 VkRect2D render_area;
2778 uint32_t restart_index;
2779 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2780 bool xfb_enabled;
2781 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2782 VkShaderStageFlags push_constant_stages;
2783 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2784 struct anv_state binding_tables[MESA_SHADER_STAGES];
2785 struct anv_state samplers[MESA_SHADER_STAGES];
2786
2787 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2788 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2789 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2790
2791 /**
2792 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2793 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2794 * and before invoking the secondary in ExecuteCommands.
2795 */
2796 bool pma_fix_enabled;
2797
2798 /**
2799 * Whether or not we know for certain that HiZ is enabled for the current
2800 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2801 * enabled or not, this will be false.
2802 */
2803 bool hiz_enabled;
2804
2805 bool conditional_render_enabled;
2806
2807 /**
2808 * Last rendering scale argument provided to
2809 * genX(cmd_buffer_emit_hashing_mode)().
2810 */
2811 unsigned current_hash_scale;
2812
2813 /**
2814 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2815 * valid only when recording a render pass instance.
2816 */
2817 struct anv_attachment_state * attachments;
2818
2819 /**
2820 * Surface states for color render targets. These are stored in a single
2821 * flat array. For depth-stencil attachments, the surface state is simply
2822 * left blank.
2823 */
2824 struct anv_state attachment_states;
2825
2826 /**
2827 * A null surface state of the right size to match the framebuffer. This
2828 * is one of the states in attachment_states.
2829 */
2830 struct anv_state null_surface_state;
2831 };
2832
2833 struct anv_cmd_pool {
2834 struct vk_object_base base;
2835 VkAllocationCallbacks alloc;
2836 struct list_head cmd_buffers;
2837 };
2838
2839 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2840
2841 enum anv_cmd_buffer_exec_mode {
2842 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2843 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2844 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2845 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2846 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2847 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2848 };
2849
2850 struct anv_cmd_buffer {
2851 struct vk_object_base base;
2852
2853 struct anv_device * device;
2854
2855 struct anv_cmd_pool * pool;
2856 struct list_head pool_link;
2857
2858 struct anv_batch batch;
2859
2860 /* Fields required for the actual chain of anv_batch_bo's.
2861 *
2862 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2863 */
2864 struct list_head batch_bos;
2865 enum anv_cmd_buffer_exec_mode exec_mode;
2866
2867 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2868 * referenced by this command buffer
2869 *
2870 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2871 */
2872 struct u_vector seen_bbos;
2873
2874 /* A vector of int32_t's for every block of binding tables.
2875 *
2876 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2877 */
2878 struct u_vector bt_block_states;
2879 struct anv_state bt_next;
2880
2881 struct anv_reloc_list surface_relocs;
2882 /** Last seen surface state block pool center bo offset */
2883 uint32_t last_ss_pool_center;
2884
2885 /* Serial for tracking buffer completion */
2886 uint32_t serial;
2887
2888 /* Stream objects for storing temporary data */
2889 struct anv_state_stream surface_state_stream;
2890 struct anv_state_stream dynamic_state_stream;
2891
2892 VkCommandBufferUsageFlags usage_flags;
2893 VkCommandBufferLevel level;
2894
2895 struct anv_query_pool *perf_query_pool;
2896
2897 struct anv_cmd_state state;
2898
2899 struct anv_address return_addr;
2900
2901 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2902 uint64_t intel_perf_marker;
2903 };
2904
2905 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2906 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2907 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2908 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2909 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2910 struct anv_cmd_buffer *secondary);
2911 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2912 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2913 struct anv_cmd_buffer *cmd_buffer,
2914 const VkSemaphore *in_semaphores,
2915 const uint64_t *in_wait_values,
2916 uint32_t num_in_semaphores,
2917 const VkSemaphore *out_semaphores,
2918 const uint64_t *out_signal_values,
2919 uint32_t num_out_semaphores,
2920 VkFence fence,
2921 int perf_query_pass);
2922
2923 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2924
2925 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2926 const void *data, uint32_t size, uint32_t alignment);
2927 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2928 uint32_t *a, uint32_t *b,
2929 uint32_t dwords, uint32_t alignment);
2930
2931 struct anv_address
2932 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2933 struct anv_state
2934 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2935 uint32_t entries, uint32_t *state_offset);
2936 struct anv_state
2937 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2938 struct anv_state
2939 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2940 uint32_t size, uint32_t alignment);
2941
2942 VkResult
2943 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2944
2945 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2946 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2947 bool depth_clamp_enable);
2948 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2949
2950 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2951 struct anv_render_pass *pass,
2952 struct anv_framebuffer *framebuffer,
2953 const VkClearValue *clear_values);
2954
2955 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2956
2957 struct anv_state
2958 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2959 gl_shader_stage stage);
2960 struct anv_state
2961 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2962
2963 const struct anv_image_view *
2964 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2965
2966 VkResult
2967 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2968 uint32_t num_entries,
2969 uint32_t *state_offset,
2970 struct anv_state *bt_state);
2971
2972 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2973
2974 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2975
2976 enum anv_fence_type {
2977 ANV_FENCE_TYPE_NONE = 0,
2978 ANV_FENCE_TYPE_BO,
2979 ANV_FENCE_TYPE_WSI_BO,
2980 ANV_FENCE_TYPE_SYNCOBJ,
2981 ANV_FENCE_TYPE_WSI,
2982 };
2983
2984 enum anv_bo_fence_state {
2985 /** Indicates that this is a new (or newly reset fence) */
2986 ANV_BO_FENCE_STATE_RESET,
2987
2988 /** Indicates that this fence has been submitted to the GPU but is still
2989 * (as far as we know) in use by the GPU.
2990 */
2991 ANV_BO_FENCE_STATE_SUBMITTED,
2992
2993 ANV_BO_FENCE_STATE_SIGNALED,
2994 };
2995
2996 struct anv_fence_impl {
2997 enum anv_fence_type type;
2998
2999 union {
3000 /** Fence implementation for BO fences
3001 *
3002 * These fences use a BO and a set of CPU-tracked state flags. The BO
3003 * is added to the object list of the last execbuf call in a QueueSubmit
3004 * and is marked EXEC_WRITE. The state flags track when the BO has been
3005 * submitted to the kernel. We need to do this because Vulkan lets you
3006 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3007 * will say it's idle in this case.
3008 */
3009 struct {
3010 struct anv_bo *bo;
3011 enum anv_bo_fence_state state;
3012 } bo;
3013
3014 /** DRM syncobj handle for syncobj-based fences */
3015 uint32_t syncobj;
3016
3017 /** WSI fence */
3018 struct wsi_fence *fence_wsi;
3019 };
3020 };
3021
3022 struct anv_fence {
3023 struct vk_object_base base;
3024
3025 /* Permanent fence state. Every fence has some form of permanent state
3026 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3027 * cross-process fences) or it could just be a dummy for use internally.
3028 */
3029 struct anv_fence_impl permanent;
3030
3031 /* Temporary fence state. A fence *may* have temporary state. That state
3032 * is added to the fence by an import operation and is reset back to
3033 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3034 * state cannot be signaled because the fence must already be signaled
3035 * before the temporary state can be exported from the fence in the other
3036 * process and imported here.
3037 */
3038 struct anv_fence_impl temporary;
3039 };
3040
3041 void anv_fence_reset_temporary(struct anv_device *device,
3042 struct anv_fence *fence);
3043
3044 struct anv_event {
3045 struct vk_object_base base;
3046 uint64_t semaphore;
3047 struct anv_state state;
3048 };
3049
3050 enum anv_semaphore_type {
3051 ANV_SEMAPHORE_TYPE_NONE = 0,
3052 ANV_SEMAPHORE_TYPE_DUMMY,
3053 ANV_SEMAPHORE_TYPE_BO,
3054 ANV_SEMAPHORE_TYPE_WSI_BO,
3055 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3056 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3057 ANV_SEMAPHORE_TYPE_TIMELINE,
3058 };
3059
3060 struct anv_timeline_point {
3061 struct list_head link;
3062
3063 uint64_t serial;
3064
3065 /* Number of waiter on this point, when > 0 the point should not be garbage
3066 * collected.
3067 */
3068 int waiting;
3069
3070 /* BO used for synchronization. */
3071 struct anv_bo *bo;
3072 };
3073
3074 struct anv_timeline {
3075 pthread_mutex_t mutex;
3076 pthread_cond_t cond;
3077
3078 uint64_t highest_past;
3079 uint64_t highest_pending;
3080
3081 struct list_head points;
3082 struct list_head free_points;
3083 };
3084
3085 struct anv_semaphore_impl {
3086 enum anv_semaphore_type type;
3087
3088 union {
3089 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3090 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3091 * object list on any execbuf2 calls for which this semaphore is used as
3092 * a wait or signal fence. When used as a signal fence or when type ==
3093 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3094 */
3095 struct anv_bo *bo;
3096
3097 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3098 * If the semaphore is in the unsignaled state due to either just being
3099 * created or because it has been used for a wait, fd will be -1.
3100 */
3101 int fd;
3102
3103 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3104 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3105 * import so we don't need to bother with a userspace cache.
3106 */
3107 uint32_t syncobj;
3108
3109 /* Non shareable timeline semaphore
3110 *
3111 * Used when kernel don't have support for timeline semaphores.
3112 */
3113 struct anv_timeline timeline;
3114 };
3115 };
3116
3117 struct anv_semaphore {
3118 struct vk_object_base base;
3119
3120 uint32_t refcount;
3121
3122 /* Permanent semaphore state. Every semaphore has some form of permanent
3123 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3124 * (for cross-process semaphores0 or it could just be a dummy for use
3125 * internally.
3126 */
3127 struct anv_semaphore_impl permanent;
3128
3129 /* Temporary semaphore state. A semaphore *may* have temporary state.
3130 * That state is added to the semaphore by an import operation and is reset
3131 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3132 * semaphore with temporary state cannot be signaled because the semaphore
3133 * must already be signaled before the temporary state can be exported from
3134 * the semaphore in the other process and imported here.
3135 */
3136 struct anv_semaphore_impl temporary;
3137 };
3138
3139 void anv_semaphore_reset_temporary(struct anv_device *device,
3140 struct anv_semaphore *semaphore);
3141
3142 struct anv_shader_module {
3143 struct vk_object_base base;
3144
3145 unsigned char sha1[20];
3146 uint32_t size;
3147 char data[0];
3148 };
3149
3150 static inline gl_shader_stage
3151 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3152 {
3153 assert(__builtin_popcount(vk_stage) == 1);
3154 return ffs(vk_stage) - 1;
3155 }
3156
3157 static inline VkShaderStageFlagBits
3158 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3159 {
3160 return (1 << mesa_stage);
3161 }
3162
3163 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3164
3165 #define anv_foreach_stage(stage, stage_bits) \
3166 for (gl_shader_stage stage, \
3167 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3168 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3169 __tmp &= ~(1 << (stage)))
3170
3171 struct anv_pipeline_bind_map {
3172 unsigned char surface_sha1[20];
3173 unsigned char sampler_sha1[20];
3174 unsigned char push_sha1[20];
3175
3176 uint32_t surface_count;
3177 uint32_t sampler_count;
3178
3179 struct anv_pipeline_binding * surface_to_descriptor;
3180 struct anv_pipeline_binding * sampler_to_descriptor;
3181
3182 struct anv_push_range push_ranges[4];
3183 };
3184
3185 struct anv_shader_bin_key {
3186 uint32_t size;
3187 uint8_t data[0];
3188 };
3189
3190 struct anv_shader_bin {
3191 uint32_t ref_cnt;
3192
3193 gl_shader_stage stage;
3194
3195 const struct anv_shader_bin_key *key;
3196
3197 struct anv_state kernel;
3198 uint32_t kernel_size;
3199
3200 struct anv_state constant_data;
3201 uint32_t constant_data_size;
3202
3203 const struct brw_stage_prog_data *prog_data;
3204 uint32_t prog_data_size;
3205
3206 struct brw_compile_stats stats[3];
3207 uint32_t num_stats;
3208
3209 struct nir_xfb_info *xfb_info;
3210
3211 struct anv_pipeline_bind_map bind_map;
3212 };
3213
3214 struct anv_shader_bin *
3215 anv_shader_bin_create(struct anv_device *device,
3216 gl_shader_stage stage,
3217 const void *key, uint32_t key_size,
3218 const void *kernel, uint32_t kernel_size,
3219 const void *constant_data, uint32_t constant_data_size,
3220 const struct brw_stage_prog_data *prog_data,
3221 uint32_t prog_data_size,
3222 const struct brw_compile_stats *stats, uint32_t num_stats,
3223 const struct nir_xfb_info *xfb_info,
3224 const struct anv_pipeline_bind_map *bind_map);
3225
3226 void
3227 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3228
3229 static inline void
3230 anv_shader_bin_ref(struct anv_shader_bin *shader)
3231 {
3232 assert(shader && shader->ref_cnt >= 1);
3233 p_atomic_inc(&shader->ref_cnt);
3234 }
3235
3236 static inline void
3237 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3238 {
3239 assert(shader && shader->ref_cnt >= 1);
3240 if (p_atomic_dec_zero(&shader->ref_cnt))
3241 anv_shader_bin_destroy(device, shader);
3242 }
3243
3244 struct anv_pipeline_executable {
3245 gl_shader_stage stage;
3246
3247 struct brw_compile_stats stats;
3248
3249 char *nir;
3250 char *disasm;
3251 };
3252
3253 enum anv_pipeline_type {
3254 ANV_PIPELINE_GRAPHICS,
3255 ANV_PIPELINE_COMPUTE,
3256 };
3257
3258 struct anv_pipeline {
3259 struct vk_object_base base;
3260
3261 struct anv_device * device;
3262
3263 struct anv_batch batch;
3264 struct anv_reloc_list batch_relocs;
3265
3266 void * mem_ctx;
3267
3268 enum anv_pipeline_type type;
3269 VkPipelineCreateFlags flags;
3270
3271 struct util_dynarray executables;
3272
3273 const struct gen_l3_config * l3_config;
3274 };
3275
3276 struct anv_graphics_pipeline {
3277 struct anv_pipeline base;
3278
3279 uint32_t batch_data[512];
3280
3281 anv_cmd_dirty_mask_t dynamic_state_mask;
3282 struct anv_dynamic_state dynamic_state;
3283
3284 uint32_t topology;
3285
3286 struct anv_subpass * subpass;
3287
3288 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3289
3290 VkShaderStageFlags active_stages;
3291
3292 bool primitive_restart;
3293 bool writes_depth;
3294 bool depth_test_enable;
3295 bool writes_stencil;
3296 bool stencil_test_enable;
3297 bool depth_clamp_enable;
3298 bool depth_clip_enable;
3299 bool sample_shading_enable;
3300 bool kill_pixel;
3301 bool depth_bounds_test_enable;
3302
3303 /* When primitive replication is used, subpass->view_mask will describe what
3304 * views to replicate.
3305 */
3306 bool use_primitive_replication;
3307
3308 struct anv_state blend_state;
3309
3310 uint32_t vb_used;
3311 struct anv_pipeline_vertex_binding {
3312 uint32_t stride;
3313 bool instanced;
3314 uint32_t instance_divisor;
3315 } vb[MAX_VBS];
3316
3317 struct {
3318 uint32_t sf[7];
3319 uint32_t depth_stencil_state[3];
3320 } gen7;
3321
3322 struct {
3323 uint32_t sf[4];
3324 uint32_t raster[5];
3325 uint32_t wm_depth_stencil[3];
3326 } gen8;
3327
3328 struct {
3329 uint32_t wm_depth_stencil[4];
3330 } gen9;
3331 };
3332
3333 struct anv_compute_pipeline {
3334 struct anv_pipeline base;
3335
3336 struct anv_shader_bin * cs;
3337 uint32_t cs_right_mask;
3338 uint32_t batch_data[9];
3339 uint32_t interface_descriptor_data[8];
3340 };
3341
3342 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3343 static inline struct anv_##pipe_type##_pipeline * \
3344 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3345 { \
3346 assert(pipeline->type == pipe_enum); \
3347 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3348 }
3349
3350 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3351 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3352
3353 static inline bool
3354 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3355 gl_shader_stage stage)
3356 {
3357 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3358 }
3359
3360 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3361 static inline const struct brw_##prefix##_prog_data * \
3362 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3363 { \
3364 if (anv_pipeline_has_stage(pipeline, stage)) { \
3365 return (const struct brw_##prefix##_prog_data *) \
3366 pipeline->shaders[stage]->prog_data; \
3367 } else { \
3368 return NULL; \
3369 } \
3370 }
3371
3372 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3373 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3374 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3375 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3376 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3377
3378 static inline const struct brw_cs_prog_data *
3379 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3380 {
3381 assert(pipeline->cs);
3382 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3383 }
3384
3385 static inline const struct brw_vue_prog_data *
3386 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3387 {
3388 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3389 return &get_gs_prog_data(pipeline)->base;
3390 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3391 return &get_tes_prog_data(pipeline)->base;
3392 else
3393 return &get_vs_prog_data(pipeline)->base;
3394 }
3395
3396 VkResult
3397 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3398 struct anv_pipeline_cache *cache,
3399 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3400 const VkAllocationCallbacks *alloc);
3401
3402 VkResult
3403 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3404 struct anv_pipeline_cache *cache,
3405 const VkComputePipelineCreateInfo *info,
3406 const struct anv_shader_module *module,
3407 const char *entrypoint,
3408 const VkSpecializationInfo *spec_info);
3409
3410 uint32_t
3411 anv_cs_workgroup_size(const struct anv_compute_pipeline *pipeline);
3412
3413 uint32_t
3414 anv_cs_threads(const struct anv_compute_pipeline *pipeline);
3415
3416 struct anv_format_plane {
3417 enum isl_format isl_format:16;
3418 struct isl_swizzle swizzle;
3419
3420 /* Whether this plane contains chroma channels */
3421 bool has_chroma;
3422
3423 /* For downscaling of YUV planes */
3424 uint8_t denominator_scales[2];
3425
3426 /* How to map sampled ycbcr planes to a single 4 component element. */
3427 struct isl_swizzle ycbcr_swizzle;
3428
3429 /* What aspect is associated to this plane */
3430 VkImageAspectFlags aspect;
3431 };
3432
3433
3434 struct anv_format {
3435 struct anv_format_plane planes[3];
3436 VkFormat vk_format;
3437 uint8_t n_planes;
3438 bool can_ycbcr;
3439 };
3440
3441 /**
3442 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3443 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3444 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3445 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3446 */
3447 static inline uint32_t
3448 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3449 VkImageAspectFlags aspect_mask)
3450 {
3451 switch (aspect_mask) {
3452 case VK_IMAGE_ASPECT_COLOR_BIT:
3453 case VK_IMAGE_ASPECT_DEPTH_BIT:
3454 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3455 return 0;
3456 case VK_IMAGE_ASPECT_STENCIL_BIT:
3457 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3458 return 0;
3459 /* Fall-through */
3460 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3461 return 1;
3462 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3463 return 2;
3464 default:
3465 /* Purposefully assert with depth/stencil aspects. */
3466 unreachable("invalid image aspect");
3467 }
3468 }
3469
3470 static inline VkImageAspectFlags
3471 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3472 uint32_t plane)
3473 {
3474 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3475 if (util_bitcount(image_aspects) > 1)
3476 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3477 return VK_IMAGE_ASPECT_COLOR_BIT;
3478 }
3479 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3480 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3481 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3482 return VK_IMAGE_ASPECT_STENCIL_BIT;
3483 }
3484
3485 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3486 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3487
3488 const struct anv_format *
3489 anv_get_format(VkFormat format);
3490
3491 static inline uint32_t
3492 anv_get_format_planes(VkFormat vk_format)
3493 {
3494 const struct anv_format *format = anv_get_format(vk_format);
3495
3496 return format != NULL ? format->n_planes : 0;
3497 }
3498
3499 struct anv_format_plane
3500 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3501 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3502
3503 static inline enum isl_format
3504 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3505 VkImageAspectFlags aspect, VkImageTiling tiling)
3506 {
3507 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3508 }
3509
3510 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3511 VkImageCreateFlags create_flags,
3512 VkFormat vk_format,
3513 VkImageTiling vk_tiling,
3514 const VkImageFormatListCreateInfoKHR *fmt_list);
3515
3516 static inline struct isl_swizzle
3517 anv_swizzle_for_render(struct isl_swizzle swizzle)
3518 {
3519 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3520 * RGB as RGBA for texturing
3521 */
3522 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3523 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3524
3525 /* But it doesn't matter what we render to that channel */
3526 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3527
3528 return swizzle;
3529 }
3530
3531 void
3532 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3533
3534 /**
3535 * Subsurface of an anv_image.
3536 */
3537 struct anv_surface {
3538 /** Valid only if isl_surf::size_B > 0. */
3539 struct isl_surf isl;
3540
3541 /**
3542 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3543 */
3544 uint32_t offset;
3545 };
3546
3547 struct anv_image {
3548 struct vk_object_base base;
3549
3550 VkImageType type; /**< VkImageCreateInfo::imageType */
3551 /* The original VkFormat provided by the client. This may not match any
3552 * of the actual surface formats.
3553 */
3554 VkFormat vk_format;
3555 const struct anv_format *format;
3556
3557 VkImageAspectFlags aspects;
3558 VkExtent3D extent;
3559 uint32_t levels;
3560 uint32_t array_size;
3561 uint32_t samples; /**< VkImageCreateInfo::samples */
3562 uint32_t n_planes;
3563 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3564 VkImageUsageFlags stencil_usage;
3565 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3566 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3567
3568 /** True if this is needs to be bound to an appropriately tiled BO.
3569 *
3570 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3571 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3572 * we require a dedicated allocation so that we can know to allocate a
3573 * tiled buffer.
3574 */
3575 bool needs_set_tiling;
3576
3577 /**
3578 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3579 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3580 */
3581 uint64_t drm_format_mod;
3582
3583 VkDeviceSize size;
3584 uint32_t alignment;
3585
3586 /* Whether the image is made of several underlying buffer objects rather a
3587 * single one with different offsets.
3588 */
3589 bool disjoint;
3590
3591 /* Image was created with external format. */
3592 bool external_format;
3593
3594 /**
3595 * Image subsurfaces
3596 *
3597 * For each foo, anv_image::planes[x].surface is valid if and only if
3598 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3599 * to figure the number associated with a given aspect.
3600 *
3601 * The hardware requires that the depth buffer and stencil buffer be
3602 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3603 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3604 * allocate the depth and stencil buffers as separate surfaces in the same
3605 * bo.
3606 *
3607 * Memory layout :
3608 *
3609 * -----------------------
3610 * | surface0 | /|\
3611 * ----------------------- |
3612 * | shadow surface0 | |
3613 * ----------------------- | Plane 0
3614 * | aux surface0 | |
3615 * ----------------------- |
3616 * | fast clear colors0 | \|/
3617 * -----------------------
3618 * | surface1 | /|\
3619 * ----------------------- |
3620 * | shadow surface1 | |
3621 * ----------------------- | Plane 1
3622 * | aux surface1 | |
3623 * ----------------------- |
3624 * | fast clear colors1 | \|/
3625 * -----------------------
3626 * | ... |
3627 * | |
3628 * -----------------------
3629 */
3630 struct {
3631 /**
3632 * Offset of the entire plane (whenever the image is disjoint this is
3633 * set to 0).
3634 */
3635 uint32_t offset;
3636
3637 VkDeviceSize size;
3638 uint32_t alignment;
3639
3640 struct anv_surface surface;
3641
3642 /**
3643 * A surface which shadows the main surface and may have different
3644 * tiling. This is used for sampling using a tiling that isn't supported
3645 * for other operations.
3646 */
3647 struct anv_surface shadow_surface;
3648
3649 /**
3650 * The base aux usage for this image. For color images, this can be
3651 * either CCS_E or CCS_D depending on whether or not we can reliably
3652 * leave CCS on all the time.
3653 */
3654 enum isl_aux_usage aux_usage;
3655
3656 struct anv_surface aux_surface;
3657
3658 /**
3659 * Offset of the fast clear state (used to compute the
3660 * fast_clear_state_offset of the following planes).
3661 */
3662 uint32_t fast_clear_state_offset;
3663
3664 /**
3665 * BO associated with this plane, set when bound.
3666 */
3667 struct anv_address address;
3668
3669 /**
3670 * When destroying the image, also free the bo.
3671 * */
3672 bool bo_is_owned;
3673 } planes[3];
3674 };
3675
3676 /* The ordering of this enum is important */
3677 enum anv_fast_clear_type {
3678 /** Image does not have/support any fast-clear blocks */
3679 ANV_FAST_CLEAR_NONE = 0,
3680 /** Image has/supports fast-clear but only to the default value */
3681 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3682 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3683 ANV_FAST_CLEAR_ANY = 2,
3684 };
3685
3686 /* Returns the number of auxiliary buffer levels attached to an image. */
3687 static inline uint8_t
3688 anv_image_aux_levels(const struct anv_image * const image,
3689 VkImageAspectFlagBits aspect)
3690 {
3691 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3692 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3693 return 0;
3694
3695 /* The Gen12 CCS aux surface is represented with only one level. */
3696 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3697 image->planes[plane].surface.isl.levels :
3698 image->planes[plane].aux_surface.isl.levels;
3699 }
3700
3701 /* Returns the number of auxiliary buffer layers attached to an image. */
3702 static inline uint32_t
3703 anv_image_aux_layers(const struct anv_image * const image,
3704 VkImageAspectFlagBits aspect,
3705 const uint8_t miplevel)
3706 {
3707 assert(image);
3708
3709 /* The miplevel must exist in the main buffer. */
3710 assert(miplevel < image->levels);
3711
3712 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3713 /* There are no layers with auxiliary data because the miplevel has no
3714 * auxiliary data.
3715 */
3716 return 0;
3717 } else {
3718 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3719
3720 /* The Gen12 CCS aux surface is represented with only one layer. */
3721 const struct isl_extent4d *aux_logical_level0_px =
3722 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3723 &image->planes[plane].surface.isl.logical_level0_px :
3724 &image->planes[plane].aux_surface.isl.logical_level0_px;
3725
3726 return MAX2(aux_logical_level0_px->array_len,
3727 aux_logical_level0_px->depth >> miplevel);
3728 }
3729 }
3730
3731 static inline struct anv_address
3732 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3733 const struct anv_image *image,
3734 VkImageAspectFlagBits aspect)
3735 {
3736 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3737
3738 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3739 return anv_address_add(image->planes[plane].address,
3740 image->planes[plane].fast_clear_state_offset);
3741 }
3742
3743 static inline struct anv_address
3744 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3745 const struct anv_image *image,
3746 VkImageAspectFlagBits aspect)
3747 {
3748 struct anv_address addr =
3749 anv_image_get_clear_color_addr(device, image, aspect);
3750
3751 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3752 device->isl_dev.ss.clear_color_state_size :
3753 device->isl_dev.ss.clear_value_size;
3754 return anv_address_add(addr, clear_color_state_size);
3755 }
3756
3757 static inline struct anv_address
3758 anv_image_get_compression_state_addr(const struct anv_device *device,
3759 const struct anv_image *image,
3760 VkImageAspectFlagBits aspect,
3761 uint32_t level, uint32_t array_layer)
3762 {
3763 assert(level < anv_image_aux_levels(image, aspect));
3764 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3765 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3766 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3767
3768 struct anv_address addr =
3769 anv_image_get_fast_clear_type_addr(device, image, aspect);
3770 addr.offset += 4; /* Go past the fast clear type */
3771
3772 if (image->type == VK_IMAGE_TYPE_3D) {
3773 for (uint32_t l = 0; l < level; l++)
3774 addr.offset += anv_minify(image->extent.depth, l) * 4;
3775 } else {
3776 addr.offset += level * image->array_size * 4;
3777 }
3778 addr.offset += array_layer * 4;
3779
3780 assert(addr.offset <
3781 image->planes[plane].address.offset + image->planes[plane].size);
3782 return addr;
3783 }
3784
3785 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3786 static inline bool
3787 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3788 const struct anv_image *image)
3789 {
3790 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3791 return false;
3792
3793 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3794 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3795 * say:
3796 *
3797 * "If this field is set to AUX_HIZ, Number of Multisamples must
3798 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3799 */
3800 if (image->type == VK_IMAGE_TYPE_3D)
3801 return false;
3802
3803 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3804 * struct. There's documentation which suggests that this feature actually
3805 * reduces performance on BDW, but it has only been observed to help so
3806 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3807 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3808 */
3809 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3810 return false;
3811
3812 return image->samples == 1;
3813 }
3814
3815 static inline bool
3816 anv_image_plane_uses_aux_map(const struct anv_device *device,
3817 const struct anv_image *image,
3818 uint32_t plane)
3819 {
3820 return device->info.has_aux_map &&
3821 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3822 }
3823
3824 void
3825 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3826 const struct anv_image *image,
3827 VkImageAspectFlagBits aspect,
3828 enum isl_aux_usage aux_usage,
3829 uint32_t level,
3830 uint32_t base_layer,
3831 uint32_t layer_count);
3832
3833 void
3834 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3835 const struct anv_image *image,
3836 VkImageAspectFlagBits aspect,
3837 enum isl_aux_usage aux_usage,
3838 enum isl_format format, struct isl_swizzle swizzle,
3839 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3840 VkRect2D area, union isl_color_value clear_color);
3841 void
3842 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3843 const struct anv_image *image,
3844 VkImageAspectFlags aspects,
3845 enum isl_aux_usage depth_aux_usage,
3846 uint32_t level,
3847 uint32_t base_layer, uint32_t layer_count,
3848 VkRect2D area,
3849 float depth_value, uint8_t stencil_value);
3850 void
3851 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3852 const struct anv_image *src_image,
3853 enum isl_aux_usage src_aux_usage,
3854 uint32_t src_level, uint32_t src_base_layer,
3855 const struct anv_image *dst_image,
3856 enum isl_aux_usage dst_aux_usage,
3857 uint32_t dst_level, uint32_t dst_base_layer,
3858 VkImageAspectFlagBits aspect,
3859 uint32_t src_x, uint32_t src_y,
3860 uint32_t dst_x, uint32_t dst_y,
3861 uint32_t width, uint32_t height,
3862 uint32_t layer_count,
3863 enum blorp_filter filter);
3864 void
3865 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3866 const struct anv_image *image,
3867 VkImageAspectFlagBits aspect, uint32_t level,
3868 uint32_t base_layer, uint32_t layer_count,
3869 enum isl_aux_op hiz_op);
3870 void
3871 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3872 const struct anv_image *image,
3873 VkImageAspectFlags aspects,
3874 uint32_t level,
3875 uint32_t base_layer, uint32_t layer_count,
3876 VkRect2D area, uint8_t stencil_value);
3877 void
3878 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3879 const struct anv_image *image,
3880 enum isl_format format, struct isl_swizzle swizzle,
3881 VkImageAspectFlagBits aspect,
3882 uint32_t base_layer, uint32_t layer_count,
3883 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3884 bool predicate);
3885 void
3886 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3887 const struct anv_image *image,
3888 enum isl_format format, struct isl_swizzle swizzle,
3889 VkImageAspectFlagBits aspect, uint32_t level,
3890 uint32_t base_layer, uint32_t layer_count,
3891 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3892 bool predicate);
3893
3894 void
3895 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3896 const struct anv_image *image,
3897 VkImageAspectFlagBits aspect,
3898 uint32_t base_level, uint32_t level_count,
3899 uint32_t base_layer, uint32_t layer_count);
3900
3901 enum isl_aux_state
3902 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3903 const struct anv_image *image,
3904 const VkImageAspectFlagBits aspect,
3905 const VkImageLayout layout);
3906
3907 enum isl_aux_usage
3908 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3909 const struct anv_image *image,
3910 const VkImageAspectFlagBits aspect,
3911 const VkImageUsageFlagBits usage,
3912 const VkImageLayout layout);
3913
3914 enum anv_fast_clear_type
3915 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3916 const struct anv_image * const image,
3917 const VkImageAspectFlagBits aspect,
3918 const VkImageLayout layout);
3919
3920 /* This is defined as a macro so that it works for both
3921 * VkImageSubresourceRange and VkImageSubresourceLayers
3922 */
3923 #define anv_get_layerCount(_image, _range) \
3924 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3925 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3926
3927 static inline uint32_t
3928 anv_get_levelCount(const struct anv_image *image,
3929 const VkImageSubresourceRange *range)
3930 {
3931 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3932 image->levels - range->baseMipLevel : range->levelCount;
3933 }
3934
3935 static inline VkImageAspectFlags
3936 anv_image_expand_aspects(const struct anv_image *image,
3937 VkImageAspectFlags aspects)
3938 {
3939 /* If the underlying image has color plane aspects and
3940 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3941 * the underlying image. */
3942 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3943 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3944 return image->aspects;
3945
3946 return aspects;
3947 }
3948
3949 static inline bool
3950 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3951 VkImageAspectFlags aspects2)
3952 {
3953 if (aspects1 == aspects2)
3954 return true;
3955
3956 /* Only 1 color aspects are compatibles. */
3957 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3958 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3959 util_bitcount(aspects1) == util_bitcount(aspects2))
3960 return true;
3961
3962 return false;
3963 }
3964
3965 struct anv_image_view {
3966 struct vk_object_base base;
3967
3968 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3969
3970 VkImageAspectFlags aspect_mask;
3971 VkFormat vk_format;
3972 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3973
3974 unsigned n_planes;
3975 struct {
3976 uint32_t image_plane;
3977
3978 struct isl_view isl;
3979
3980 /**
3981 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3982 * image layout of SHADER_READ_ONLY_OPTIMAL or
3983 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3984 */
3985 struct anv_surface_state optimal_sampler_surface_state;
3986
3987 /**
3988 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3989 * image layout of GENERAL.
3990 */
3991 struct anv_surface_state general_sampler_surface_state;
3992
3993 /**
3994 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3995 * states for write-only and readable, using the real format for
3996 * write-only and the lowered format for readable.
3997 */
3998 struct anv_surface_state storage_surface_state;
3999 struct anv_surface_state writeonly_storage_surface_state;
4000
4001 struct brw_image_param storage_image_param;
4002 } planes[3];
4003 };
4004
4005 enum anv_image_view_state_flags {
4006 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4007 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4008 };
4009
4010 void anv_image_fill_surface_state(struct anv_device *device,
4011 const struct anv_image *image,
4012 VkImageAspectFlagBits aspect,
4013 const struct isl_view *view,
4014 isl_surf_usage_flags_t view_usage,
4015 enum isl_aux_usage aux_usage,
4016 const union isl_color_value *clear_color,
4017 enum anv_image_view_state_flags flags,
4018 struct anv_surface_state *state_inout,
4019 struct brw_image_param *image_param_out);
4020
4021 struct anv_image_create_info {
4022 const VkImageCreateInfo *vk_info;
4023
4024 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4025 isl_tiling_flags_t isl_tiling_flags;
4026
4027 /** These flags will be added to any derived from VkImageCreateInfo. */
4028 isl_surf_usage_flags_t isl_extra_usage_flags;
4029
4030 uint32_t stride;
4031 bool external_format;
4032 };
4033
4034 VkResult anv_image_create(VkDevice _device,
4035 const struct anv_image_create_info *info,
4036 const VkAllocationCallbacks* alloc,
4037 VkImage *pImage);
4038
4039 enum isl_format
4040 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4041
4042 static inline VkExtent3D
4043 anv_sanitize_image_extent(const VkImageType imageType,
4044 const VkExtent3D imageExtent)
4045 {
4046 switch (imageType) {
4047 case VK_IMAGE_TYPE_1D:
4048 return (VkExtent3D) { imageExtent.width, 1, 1 };
4049 case VK_IMAGE_TYPE_2D:
4050 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4051 case VK_IMAGE_TYPE_3D:
4052 return imageExtent;
4053 default:
4054 unreachable("invalid image type");
4055 }
4056 }
4057
4058 static inline VkOffset3D
4059 anv_sanitize_image_offset(const VkImageType imageType,
4060 const VkOffset3D imageOffset)
4061 {
4062 switch (imageType) {
4063 case VK_IMAGE_TYPE_1D:
4064 return (VkOffset3D) { imageOffset.x, 0, 0 };
4065 case VK_IMAGE_TYPE_2D:
4066 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4067 case VK_IMAGE_TYPE_3D:
4068 return imageOffset;
4069 default:
4070 unreachable("invalid image type");
4071 }
4072 }
4073
4074 VkFormatFeatureFlags
4075 anv_get_image_format_features(const struct gen_device_info *devinfo,
4076 VkFormat vk_format,
4077 const struct anv_format *anv_format,
4078 VkImageTiling vk_tiling);
4079
4080 void anv_fill_buffer_surface_state(struct anv_device *device,
4081 struct anv_state state,
4082 enum isl_format format,
4083 struct anv_address address,
4084 uint32_t range, uint32_t stride);
4085
4086 static inline void
4087 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4088 const struct anv_attachment_state *att_state,
4089 const struct anv_image_view *iview)
4090 {
4091 const struct isl_format_layout *view_fmtl =
4092 isl_format_get_layout(iview->planes[0].isl.format);
4093
4094 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4095 if (view_fmtl->channels.c.bits) \
4096 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4097
4098 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4099 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4100 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4101 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4102
4103 #undef COPY_CLEAR_COLOR_CHANNEL
4104 }
4105
4106
4107 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4108 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4109 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4110 * color as a separate entry /after/ the float color. The layout of this entry
4111 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4112 *
4113 * Since we don't know the format/bpp, we can't make any of the border colors
4114 * containing '1' work for all formats, as it would be in the wrong place for
4115 * some of them. We opt to make 32-bit integers work as this seems like the
4116 * most common option. Fortunately, transparent black works regardless, as
4117 * all zeroes is the same in every bit-size.
4118 */
4119 struct hsw_border_color {
4120 float float32[4];
4121 uint32_t _pad0[12];
4122 uint32_t uint32[4];
4123 uint32_t _pad1[108];
4124 };
4125
4126 struct gen8_border_color {
4127 union {
4128 float float32[4];
4129 uint32_t uint32[4];
4130 };
4131 /* Pad out to 64 bytes */
4132 uint32_t _pad[12];
4133 };
4134
4135 struct anv_ycbcr_conversion {
4136 struct vk_object_base base;
4137
4138 const struct anv_format * format;
4139 VkSamplerYcbcrModelConversion ycbcr_model;
4140 VkSamplerYcbcrRange ycbcr_range;
4141 VkComponentSwizzle mapping[4];
4142 VkChromaLocation chroma_offsets[2];
4143 VkFilter chroma_filter;
4144 bool chroma_reconstruction;
4145 };
4146
4147 struct anv_sampler {
4148 struct vk_object_base base;
4149
4150 uint32_t state[3][4];
4151 uint32_t n_planes;
4152 struct anv_ycbcr_conversion *conversion;
4153
4154 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4155 * and with a 32-byte stride for use as bindless samplers.
4156 */
4157 struct anv_state bindless_state;
4158
4159 struct anv_state custom_border_color;
4160 };
4161
4162 struct anv_framebuffer {
4163 struct vk_object_base base;
4164
4165 uint32_t width;
4166 uint32_t height;
4167 uint32_t layers;
4168
4169 uint32_t attachment_count;
4170 struct anv_image_view * attachments[0];
4171 };
4172
4173 struct anv_subpass_attachment {
4174 VkImageUsageFlagBits usage;
4175 uint32_t attachment;
4176 VkImageLayout layout;
4177
4178 /* Used only with attachment containing stencil data. */
4179 VkImageLayout stencil_layout;
4180 };
4181
4182 struct anv_subpass {
4183 uint32_t attachment_count;
4184
4185 /**
4186 * A pointer to all attachment references used in this subpass.
4187 * Only valid if ::attachment_count > 0.
4188 */
4189 struct anv_subpass_attachment * attachments;
4190 uint32_t input_count;
4191 struct anv_subpass_attachment * input_attachments;
4192 uint32_t color_count;
4193 struct anv_subpass_attachment * color_attachments;
4194 struct anv_subpass_attachment * resolve_attachments;
4195
4196 struct anv_subpass_attachment * depth_stencil_attachment;
4197 struct anv_subpass_attachment * ds_resolve_attachment;
4198 VkResolveModeFlagBitsKHR depth_resolve_mode;
4199 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4200
4201 uint32_t view_mask;
4202
4203 /** Subpass has a depth/stencil self-dependency */
4204 bool has_ds_self_dep;
4205
4206 /** Subpass has at least one color resolve attachment */
4207 bool has_color_resolve;
4208 };
4209
4210 static inline unsigned
4211 anv_subpass_view_count(const struct anv_subpass *subpass)
4212 {
4213 return MAX2(1, util_bitcount(subpass->view_mask));
4214 }
4215
4216 struct anv_render_pass_attachment {
4217 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4218 * its members individually.
4219 */
4220 VkFormat format;
4221 uint32_t samples;
4222 VkImageUsageFlags usage;
4223 VkAttachmentLoadOp load_op;
4224 VkAttachmentStoreOp store_op;
4225 VkAttachmentLoadOp stencil_load_op;
4226 VkImageLayout initial_layout;
4227 VkImageLayout final_layout;
4228 VkImageLayout first_subpass_layout;
4229
4230 VkImageLayout stencil_initial_layout;
4231 VkImageLayout stencil_final_layout;
4232
4233 /* The subpass id in which the attachment will be used last. */
4234 uint32_t last_subpass_idx;
4235 };
4236
4237 struct anv_render_pass {
4238 struct vk_object_base base;
4239
4240 uint32_t attachment_count;
4241 uint32_t subpass_count;
4242 /* An array of subpass_count+1 flushes, one per subpass boundary */
4243 enum anv_pipe_bits * subpass_flushes;
4244 struct anv_render_pass_attachment * attachments;
4245 struct anv_subpass subpasses[0];
4246 };
4247
4248 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4249
4250 #define OA_SNAPSHOT_SIZE (256)
4251 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4252
4253 struct anv_query_pool {
4254 struct vk_object_base base;
4255
4256 VkQueryType type;
4257 VkQueryPipelineStatisticFlags pipeline_statistics;
4258 /** Stride between slots, in bytes */
4259 uint32_t stride;
4260 /** Number of slots in this query pool */
4261 uint32_t slots;
4262 struct anv_bo * bo;
4263
4264 /* Perf queries : */
4265 struct anv_bo reset_bo;
4266 uint32_t n_counters;
4267 struct gen_perf_counter_pass *counter_pass;
4268 uint32_t n_passes;
4269 struct gen_perf_query_info **pass_query;
4270 };
4271
4272 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4273 uint32_t pass)
4274 {
4275 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4276 }
4277
4278 int anv_get_instance_entrypoint_index(const char *name);
4279 int anv_get_device_entrypoint_index(const char *name);
4280 int anv_get_physical_device_entrypoint_index(const char *name);
4281
4282 const char *anv_get_instance_entry_name(int index);
4283 const char *anv_get_physical_device_entry_name(int index);
4284 const char *anv_get_device_entry_name(int index);
4285
4286 bool
4287 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4288 const struct anv_instance_extension_table *instance);
4289 bool
4290 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4291 const struct anv_instance_extension_table *instance);
4292 bool
4293 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4294 const struct anv_instance_extension_table *instance,
4295 const struct anv_device_extension_table *device);
4296
4297 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4298 const char *name);
4299
4300 void anv_dump_image_to_ppm(struct anv_device *device,
4301 struct anv_image *image, unsigned miplevel,
4302 unsigned array_layer, VkImageAspectFlagBits aspect,
4303 const char *filename);
4304
4305 enum anv_dump_action {
4306 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4307 };
4308
4309 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4310 void anv_dump_finish(void);
4311
4312 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4313
4314 static inline uint32_t
4315 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4316 {
4317 /* This function must be called from within a subpass. */
4318 assert(cmd_state->pass && cmd_state->subpass);
4319
4320 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4321
4322 /* The id of this subpass shouldn't exceed the number of subpasses in this
4323 * render pass minus 1.
4324 */
4325 assert(subpass_id < cmd_state->pass->subpass_count);
4326 return subpass_id;
4327 }
4328
4329 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4330 void anv_device_perf_init(struct anv_device *device);
4331 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4332 struct anv_query_pool *pool, uint32_t pass,
4333 const struct gen_perf_query_result *accumulated_results,
4334 union VkPerformanceCounterResultKHR *results);
4335
4336 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4337 VK_FROM_HANDLE(__anv_type, __name, __handle)
4338
4339 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4340 VK_OBJECT_TYPE_COMMAND_BUFFER)
4341 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4342 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4343 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4344 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4345 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4346
4347 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4348 VK_OBJECT_TYPE_COMMAND_POOL)
4349 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4350 VK_OBJECT_TYPE_BUFFER)
4351 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4352 VK_OBJECT_TYPE_BUFFER_VIEW)
4353 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4354 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4355 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4356 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4357 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4358 VkDescriptorSetLayout,
4359 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4360 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4361 VkDescriptorUpdateTemplate,
4362 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4363 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4364 VK_OBJECT_TYPE_DEVICE_MEMORY)
4365 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4366 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4367 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4368 VK_OBJECT_TYPE_FRAMEBUFFER)
4369 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4370 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4371 VK_OBJECT_TYPE_IMAGE_VIEW);
4372 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4373 VK_OBJECT_TYPE_PIPELINE_CACHE)
4374 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4375 VK_OBJECT_TYPE_PIPELINE)
4376 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4377 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4378 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4379 VK_OBJECT_TYPE_QUERY_POOL)
4380 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4381 VK_OBJECT_TYPE_RENDER_PASS)
4382 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4383 VK_OBJECT_TYPE_SAMPLER)
4384 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4385 VK_OBJECT_TYPE_SEMAPHORE)
4386 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4387 VK_OBJECT_TYPE_SHADER_MODULE)
4388 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4389 VkSamplerYcbcrConversion,
4390 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4391
4392 /* Gen-specific function declarations */
4393 #ifdef genX
4394 # include "anv_genX.h"
4395 #else
4396 # define genX(x) gen7_##x
4397 # include "anv_genX.h"
4398 # undef genX
4399 # define genX(x) gen75_##x
4400 # include "anv_genX.h"
4401 # undef genX
4402 # define genX(x) gen8_##x
4403 # include "anv_genX.h"
4404 # undef genX
4405 # define genX(x) gen9_##x
4406 # include "anv_genX.h"
4407 # undef genX
4408 # define genX(x) gen10_##x
4409 # include "anv_genX.h"
4410 # undef genX
4411 # define genX(x) gen11_##x
4412 # include "anv_genX.h"
4413 # undef genX
4414 # define genX(x) gen12_##x
4415 # include "anv_genX.h"
4416 # undef genX
4417 #endif
4418
4419 #endif /* ANV_PRIVATE_H */