7efcda3bc6cf2d39f3233ccffba5f280746df7ac
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "compiler/brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct anv_buffer;
60 struct anv_buffer_view;
61 struct anv_image_view;
62
63 struct gen_l3_config;
64
65 #include <vulkan/vulkan.h>
66 #include <vulkan/vulkan_intel.h>
67 #include <vulkan/vk_icd.h>
68
69 #include "anv_entrypoints.h"
70 #include "isl/isl.h"
71
72 #include "common/gen_debug.h"
73 #include "wsi_common.h"
74
75 /* Allowing different clear colors requires us to perform a depth resolve at
76 * the end of certain render passes. This is because while slow clears store
77 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
78 * See the PRMs for examples describing when additional resolves would be
79 * necessary. To enable fast clears without requiring extra resolves, we set
80 * the clear value to a globally-defined one. We could allow different values
81 * if the user doesn't expect coherent data during or after a render passes
82 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
83 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
84 * 1.0f seems to be the only value used. The only application that doesn't set
85 * this value does so through the usage of an seemingly uninitialized clear
86 * value.
87 */
88 #define ANV_HZ_FC_VAL 1.0f
89
90 #define MAX_VBS 31
91 #define MAX_SETS 8
92 #define MAX_RTS 8
93 #define MAX_VIEWPORTS 16
94 #define MAX_SCISSORS 16
95 #define MAX_PUSH_CONSTANTS_SIZE 128
96 #define MAX_DYNAMIC_BUFFERS 16
97 #define MAX_IMAGES 8
98 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
99
100 #define ANV_SVGS_VB_INDEX MAX_VBS
101 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
102
103 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
104
105 static inline uint32_t
106 align_down_npot_u32(uint32_t v, uint32_t a)
107 {
108 return v - (v % a);
109 }
110
111 static inline uint32_t
112 align_u32(uint32_t v, uint32_t a)
113 {
114 assert(a != 0 && a == (a & -a));
115 return (v + a - 1) & ~(a - 1);
116 }
117
118 static inline uint64_t
119 align_u64(uint64_t v, uint64_t a)
120 {
121 assert(a != 0 && a == (a & -a));
122 return (v + a - 1) & ~(a - 1);
123 }
124
125 static inline int32_t
126 align_i32(int32_t v, int32_t a)
127 {
128 assert(a != 0 && a == (a & -a));
129 return (v + a - 1) & ~(a - 1);
130 }
131
132 /** Alignment must be a power of 2. */
133 static inline bool
134 anv_is_aligned(uintmax_t n, uintmax_t a)
135 {
136 assert(a == (a & -a));
137 return (n & (a - 1)) == 0;
138 }
139
140 static inline uint32_t
141 anv_minify(uint32_t n, uint32_t levels)
142 {
143 if (unlikely(n == 0))
144 return 0;
145 else
146 return MAX2(n >> levels, 1);
147 }
148
149 static inline float
150 anv_clamp_f(float f, float min, float max)
151 {
152 assert(min < max);
153
154 if (f > max)
155 return max;
156 else if (f < min)
157 return min;
158 else
159 return f;
160 }
161
162 static inline bool
163 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
164 {
165 if (*inout_mask & clear_mask) {
166 *inout_mask &= ~clear_mask;
167 return true;
168 } else {
169 return false;
170 }
171 }
172
173 static inline union isl_color_value
174 vk_to_isl_color(VkClearColorValue color)
175 {
176 return (union isl_color_value) {
177 .u32 = {
178 color.uint32[0],
179 color.uint32[1],
180 color.uint32[2],
181 color.uint32[3],
182 },
183 };
184 }
185
186 #define for_each_bit(b, dword) \
187 for (uint32_t __dword = (dword); \
188 (b) = __builtin_ffs(__dword) - 1, __dword; \
189 __dword &= ~(1 << (b)))
190
191 #define typed_memcpy(dest, src, count) ({ \
192 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
193 memcpy((dest), (src), (count) * sizeof(*(src))); \
194 })
195
196 /* Whenever we generate an error, pass it through this function. Useful for
197 * debugging, where we can break on it. Only call at error site, not when
198 * propagating errors. Might be useful to plug in a stack trace here.
199 */
200
201 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
202
203 #ifdef DEBUG
204 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
205 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
206 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
207 #else
208 #define vk_error(error) error
209 #define vk_errorf(error, format, ...) error
210 #define anv_debug(format, ...)
211 #endif
212
213 /**
214 * Warn on ignored extension structs.
215 *
216 * The Vulkan spec requires us to ignore unsupported or unknown structs in
217 * a pNext chain. In debug mode, emitting warnings for ignored structs may
218 * help us discover structs that we should not have ignored.
219 *
220 *
221 * From the Vulkan 1.0.38 spec:
222 *
223 * Any component of the implementation (the loader, any enabled layers,
224 * and drivers) must skip over, without processing (other than reading the
225 * sType and pNext members) any chained structures with sType values not
226 * defined by extensions supported by that component.
227 */
228 #define anv_debug_ignored_stype(sType) \
229 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
230
231 void __anv_finishme(const char *file, int line, const char *format, ...)
232 anv_printflike(3, 4);
233 void __anv_perf_warn(const char *file, int line, const char *format, ...)
234 anv_printflike(3, 4);
235 void anv_loge(const char *format, ...) anv_printflike(1, 2);
236 void anv_loge_v(const char *format, va_list va);
237
238 /**
239 * Print a FINISHME message, including its source location.
240 */
241 #define anv_finishme(format, ...) \
242 do { \
243 static bool reported = false; \
244 if (!reported) { \
245 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
246 reported = true; \
247 } \
248 } while (0)
249
250 /**
251 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
252 */
253 #define anv_perf_warn(format, ...) \
254 do { \
255 static bool reported = false; \
256 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
257 __anv_perf_warn(__FILE__, __LINE__, format, ##__VA_ARGS__); \
258 reported = true; \
259 } \
260 } while (0)
261
262 /* A non-fatal assert. Useful for debugging. */
263 #ifdef DEBUG
264 #define anv_assert(x) ({ \
265 if (unlikely(!(x))) \
266 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
267 })
268 #else
269 #define anv_assert(x)
270 #endif
271
272 /* A multi-pointer allocator
273 *
274 * When copying data structures from the user (such as a render pass), it's
275 * common to need to allocate data for a bunch of different things. Instead
276 * of doing several allocations and having to handle all of the error checking
277 * that entails, it can be easier to do a single allocation. This struct
278 * helps facilitate that. The intended usage looks like this:
279 *
280 * ANV_MULTIALLOC(ma)
281 * anv_multialloc_add(&ma, &main_ptr, 1);
282 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
283 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
284 *
285 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
286 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
287 */
288 struct anv_multialloc {
289 size_t size;
290 size_t align;
291
292 uint32_t ptr_count;
293 void **ptrs[8];
294 };
295
296 #define ANV_MULTIALLOC_INIT \
297 ((struct anv_multialloc) { 0, })
298
299 #define ANV_MULTIALLOC(_name) \
300 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
301
302 __attribute__((always_inline))
303 static inline void
304 _anv_multialloc_add(struct anv_multialloc *ma,
305 void **ptr, size_t size, size_t align)
306 {
307 size_t offset = align_u64(ma->size, align);
308 ma->size = offset + size;
309 ma->align = MAX2(ma->align, align);
310
311 /* Store the offset in the pointer. */
312 *ptr = (void *)(uintptr_t)offset;
313
314 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
315 ma->ptrs[ma->ptr_count++] = ptr;
316 }
317
318 #define anv_multialloc_add(_ma, _ptr, _count) \
319 _anv_multialloc_add((_ma), (void **)(_ptr), \
320 (_count) * sizeof(**(_ptr)), __alignof__(**(_ptr)))
321
322 __attribute__((always_inline))
323 static inline void *
324 anv_multialloc_alloc(struct anv_multialloc *ma,
325 const VkAllocationCallbacks *alloc,
326 VkSystemAllocationScope scope)
327 {
328 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
329 if (!ptr)
330 return NULL;
331
332 /* Fill out each of the pointers with their final value.
333 *
334 * for (uint32_t i = 0; i < ma->ptr_count; i++)
335 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
336 *
337 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
338 * constant, GCC is incapable of figuring this out and unrolling the loop
339 * so we have to give it a little help.
340 */
341 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
342 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
343 if ((_i) < ma->ptr_count) \
344 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
345 _ANV_MULTIALLOC_UPDATE_POINTER(0);
346 _ANV_MULTIALLOC_UPDATE_POINTER(1);
347 _ANV_MULTIALLOC_UPDATE_POINTER(2);
348 _ANV_MULTIALLOC_UPDATE_POINTER(3);
349 _ANV_MULTIALLOC_UPDATE_POINTER(4);
350 _ANV_MULTIALLOC_UPDATE_POINTER(5);
351 _ANV_MULTIALLOC_UPDATE_POINTER(6);
352 _ANV_MULTIALLOC_UPDATE_POINTER(7);
353 #undef _ANV_MULTIALLOC_UPDATE_POINTER
354
355 return ptr;
356 }
357
358 __attribute__((always_inline))
359 static inline void *
360 anv_multialloc_alloc2(struct anv_multialloc *ma,
361 const VkAllocationCallbacks *parent_alloc,
362 const VkAllocationCallbacks *alloc,
363 VkSystemAllocationScope scope)
364 {
365 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
366 }
367
368 /**
369 * A dynamically growable, circular buffer. Elements are added at head and
370 * removed from tail. head and tail are free-running uint32_t indices and we
371 * only compute the modulo with size when accessing the array. This way,
372 * number of bytes in the queue is always head - tail, even in case of
373 * wraparound.
374 */
375
376 struct anv_bo {
377 uint32_t gem_handle;
378
379 /* Index into the current validation list. This is used by the
380 * validation list building alrogithm to track which buffers are already
381 * in the validation list so that we can ensure uniqueness.
382 */
383 uint32_t index;
384
385 /* Last known offset. This value is provided by the kernel when we
386 * execbuf and is used as the presumed offset for the next bunch of
387 * relocations.
388 */
389 uint64_t offset;
390
391 uint64_t size;
392 void *map;
393
394 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
395 uint32_t flags;
396 };
397
398 static inline void
399 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
400 {
401 bo->gem_handle = gem_handle;
402 bo->index = 0;
403 bo->offset = -1;
404 bo->size = size;
405 bo->map = NULL;
406 bo->flags = 0;
407 }
408
409 /* Represents a lock-free linked list of "free" things. This is used by
410 * both the block pool and the state pools. Unfortunately, in order to
411 * solve the ABA problem, we can't use a single uint32_t head.
412 */
413 union anv_free_list {
414 struct {
415 int32_t offset;
416
417 /* A simple count that is incremented every time the head changes. */
418 uint32_t count;
419 };
420 uint64_t u64;
421 };
422
423 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
424
425 struct anv_block_state {
426 union {
427 struct {
428 uint32_t next;
429 uint32_t end;
430 };
431 uint64_t u64;
432 };
433 };
434
435 struct anv_block_pool {
436 struct anv_device *device;
437
438 struct anv_bo bo;
439
440 /* The offset from the start of the bo to the "center" of the block
441 * pool. Pointers to allocated blocks are given by
442 * bo.map + center_bo_offset + offsets.
443 */
444 uint32_t center_bo_offset;
445
446 /* Current memory map of the block pool. This pointer may or may not
447 * point to the actual beginning of the block pool memory. If
448 * anv_block_pool_alloc_back has ever been called, then this pointer
449 * will point to the "center" position of the buffer and all offsets
450 * (negative or positive) given out by the block pool alloc functions
451 * will be valid relative to this pointer.
452 *
453 * In particular, map == bo.map + center_offset
454 */
455 void *map;
456 int fd;
457
458 /**
459 * Array of mmaps and gem handles owned by the block pool, reclaimed when
460 * the block pool is destroyed.
461 */
462 struct u_vector mmap_cleanups;
463
464 struct anv_block_state state;
465
466 struct anv_block_state back_state;
467 };
468
469 /* Block pools are backed by a fixed-size 1GB memfd */
470 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
471
472 /* The center of the block pool is also the middle of the memfd. This may
473 * change in the future if we decide differently for some reason.
474 */
475 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
476
477 static inline uint32_t
478 anv_block_pool_size(struct anv_block_pool *pool)
479 {
480 return pool->state.end + pool->back_state.end;
481 }
482
483 struct anv_state {
484 int32_t offset;
485 uint32_t alloc_size;
486 void *map;
487 };
488
489 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
490
491 struct anv_fixed_size_state_pool {
492 union anv_free_list free_list;
493 struct anv_block_state block;
494 };
495
496 #define ANV_MIN_STATE_SIZE_LOG2 6
497 #define ANV_MAX_STATE_SIZE_LOG2 20
498
499 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
500
501 struct anv_state_pool {
502 struct anv_block_pool block_pool;
503
504 /* The size of blocks which will be allocated from the block pool */
505 uint32_t block_size;
506
507 /** Free list for "back" allocations */
508 union anv_free_list back_alloc_free_list;
509
510 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
511 };
512
513 struct anv_state_stream_block;
514
515 struct anv_state_stream {
516 struct anv_state_pool *state_pool;
517
518 /* The size of blocks to allocate from the state pool */
519 uint32_t block_size;
520
521 /* Current block we're allocating from */
522 struct anv_state block;
523
524 /* Offset into the current block at which to allocate the next state */
525 uint32_t next;
526
527 /* List of all blocks allocated from this pool */
528 struct anv_state_stream_block *block_list;
529 };
530
531 #define CACHELINE_SIZE 64
532 #define CACHELINE_MASK 63
533
534 static inline void
535 anv_clflush_range(void *start, size_t size)
536 {
537 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
538 void *end = start + size;
539
540 while (p < end) {
541 __builtin_ia32_clflush(p);
542 p += CACHELINE_SIZE;
543 }
544 }
545
546 static inline void
547 anv_flush_range(void *start, size_t size)
548 {
549 __builtin_ia32_mfence();
550 anv_clflush_range(start, size);
551 }
552
553 static inline void
554 anv_invalidate_range(void *start, size_t size)
555 {
556 anv_clflush_range(start, size);
557 __builtin_ia32_mfence();
558 }
559
560 /* The block_pool functions exported for testing only. The block pool should
561 * only be used via a state pool (see below).
562 */
563 VkResult anv_block_pool_init(struct anv_block_pool *pool,
564 struct anv_device *device,
565 uint32_t initial_size);
566 void anv_block_pool_finish(struct anv_block_pool *pool);
567 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
568 uint32_t block_size);
569 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
570 uint32_t block_size);
571
572 VkResult anv_state_pool_init(struct anv_state_pool *pool,
573 struct anv_device *device,
574 uint32_t block_size);
575 void anv_state_pool_finish(struct anv_state_pool *pool);
576 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
577 uint32_t state_size, uint32_t alignment);
578 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
579 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
580 void anv_state_stream_init(struct anv_state_stream *stream,
581 struct anv_state_pool *state_pool,
582 uint32_t block_size);
583 void anv_state_stream_finish(struct anv_state_stream *stream);
584 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
585 uint32_t size, uint32_t alignment);
586
587 /**
588 * Implements a pool of re-usable BOs. The interface is identical to that
589 * of block_pool except that each block is its own BO.
590 */
591 struct anv_bo_pool {
592 struct anv_device *device;
593
594 void *free_list[16];
595 };
596
597 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
598 void anv_bo_pool_finish(struct anv_bo_pool *pool);
599 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
600 uint32_t size);
601 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
602
603 struct anv_scratch_bo {
604 bool exists;
605 struct anv_bo bo;
606 };
607
608 struct anv_scratch_pool {
609 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
610 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
611 };
612
613 void anv_scratch_pool_init(struct anv_device *device,
614 struct anv_scratch_pool *pool);
615 void anv_scratch_pool_finish(struct anv_device *device,
616 struct anv_scratch_pool *pool);
617 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
618 struct anv_scratch_pool *pool,
619 gl_shader_stage stage,
620 unsigned per_thread_scratch);
621
622 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
623 struct anv_bo_cache {
624 struct hash_table *bo_map;
625 pthread_mutex_t mutex;
626 };
627
628 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
629 void anv_bo_cache_finish(struct anv_bo_cache *cache);
630 VkResult anv_bo_cache_alloc(struct anv_device *device,
631 struct anv_bo_cache *cache,
632 uint64_t size, struct anv_bo **bo);
633 VkResult anv_bo_cache_import(struct anv_device *device,
634 struct anv_bo_cache *cache,
635 int fd, uint64_t size, struct anv_bo **bo);
636 VkResult anv_bo_cache_export(struct anv_device *device,
637 struct anv_bo_cache *cache,
638 struct anv_bo *bo_in, int *fd_out);
639 void anv_bo_cache_release(struct anv_device *device,
640 struct anv_bo_cache *cache,
641 struct anv_bo *bo);
642
643 struct anv_memory_type {
644 /* Standard bits passed on to the client */
645 VkMemoryPropertyFlags propertyFlags;
646 uint32_t heapIndex;
647
648 /* Driver-internal book-keeping */
649 VkBufferUsageFlags valid_buffer_usage;
650 };
651
652 struct anv_physical_device {
653 VK_LOADER_DATA _loader_data;
654
655 struct anv_instance * instance;
656 uint32_t chipset_id;
657 char path[20];
658 const char * name;
659 struct gen_device_info info;
660 /** Amount of "GPU memory" we want to advertise
661 *
662 * Clearly, this value is bogus since Intel is a UMA architecture. On
663 * gen7 platforms, we are limited by GTT size unless we want to implement
664 * fine-grained tracking and GTT splitting. On Broadwell and above we are
665 * practically unlimited. However, we will never report more than 3/4 of
666 * the total system ram to try and avoid running out of RAM.
667 */
668 bool supports_48bit_addresses;
669 struct brw_compiler * compiler;
670 struct isl_device isl_dev;
671 int cmd_parser_version;
672 bool has_exec_async;
673
674 uint32_t eu_total;
675 uint32_t subslice_total;
676
677 struct {
678 uint32_t type_count;
679 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
680 uint32_t heap_count;
681 VkMemoryHeap heaps[VK_MAX_MEMORY_HEAPS];
682 } memory;
683
684 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
685 uint8_t driver_uuid[VK_UUID_SIZE];
686 uint8_t device_uuid[VK_UUID_SIZE];
687
688 struct wsi_device wsi_device;
689 int local_fd;
690 };
691
692 struct anv_instance {
693 VK_LOADER_DATA _loader_data;
694
695 VkAllocationCallbacks alloc;
696
697 uint32_t apiVersion;
698 int physicalDeviceCount;
699 struct anv_physical_device physicalDevice;
700 };
701
702 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
703 void anv_finish_wsi(struct anv_physical_device *physical_device);
704
705 struct anv_queue {
706 VK_LOADER_DATA _loader_data;
707
708 struct anv_device * device;
709
710 struct anv_state_pool * pool;
711 };
712
713 struct anv_pipeline_cache {
714 struct anv_device * device;
715 pthread_mutex_t mutex;
716
717 struct hash_table * cache;
718 };
719
720 struct anv_pipeline_bind_map;
721
722 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
723 struct anv_device *device,
724 bool cache_enabled);
725 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
726
727 struct anv_shader_bin *
728 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
729 const void *key, uint32_t key_size);
730 struct anv_shader_bin *
731 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
732 const void *key_data, uint32_t key_size,
733 const void *kernel_data, uint32_t kernel_size,
734 const struct brw_stage_prog_data *prog_data,
735 uint32_t prog_data_size,
736 const struct anv_pipeline_bind_map *bind_map);
737
738 struct anv_device {
739 VK_LOADER_DATA _loader_data;
740
741 VkAllocationCallbacks alloc;
742
743 struct anv_instance * instance;
744 uint32_t chipset_id;
745 struct gen_device_info info;
746 struct isl_device isl_dev;
747 int context_id;
748 int fd;
749 bool can_chain_batches;
750 bool robust_buffer_access;
751
752 struct anv_bo_pool batch_bo_pool;
753
754 struct anv_bo_cache bo_cache;
755
756 struct anv_state_pool dynamic_state_pool;
757 struct anv_state_pool instruction_state_pool;
758 struct anv_state_pool surface_state_pool;
759
760 struct anv_bo workaround_bo;
761
762 struct anv_pipeline_cache blorp_shader_cache;
763 struct blorp_context blorp;
764
765 struct anv_state border_colors;
766
767 struct anv_queue queue;
768
769 struct anv_scratch_pool scratch_pool;
770
771 uint32_t default_mocs;
772
773 pthread_mutex_t mutex;
774 pthread_cond_t queue_submit;
775 bool lost;
776 };
777
778 static void inline
779 anv_state_flush(struct anv_device *device, struct anv_state state)
780 {
781 if (device->info.has_llc)
782 return;
783
784 anv_flush_range(state.map, state.alloc_size);
785 }
786
787 void anv_device_init_blorp(struct anv_device *device);
788 void anv_device_finish_blorp(struct anv_device *device);
789
790 VkResult anv_device_execbuf(struct anv_device *device,
791 struct drm_i915_gem_execbuffer2 *execbuf,
792 struct anv_bo **execbuf_bos);
793 VkResult anv_device_query_status(struct anv_device *device);
794 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
795 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
796 int64_t timeout);
797
798 void* anv_gem_mmap(struct anv_device *device,
799 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
800 void anv_gem_munmap(void *p, uint64_t size);
801 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
802 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
803 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
804 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
805 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
806 int anv_gem_execbuffer(struct anv_device *device,
807 struct drm_i915_gem_execbuffer2 *execbuf);
808 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
809 uint32_t stride, uint32_t tiling);
810 int anv_gem_create_context(struct anv_device *device);
811 int anv_gem_destroy_context(struct anv_device *device, int context);
812 int anv_gem_get_context_param(int fd, int context, uint32_t param,
813 uint64_t *value);
814 int anv_gem_get_param(int fd, uint32_t param);
815 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
816 int anv_gem_get_aperture(int fd, uint64_t *size);
817 bool anv_gem_supports_48b_addresses(int fd);
818 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
819 uint32_t *active, uint32_t *pending);
820 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
821 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
822 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
823 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
824 uint32_t read_domains, uint32_t write_domain);
825
826 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
827
828 struct anv_reloc_list {
829 uint32_t num_relocs;
830 uint32_t array_length;
831 struct drm_i915_gem_relocation_entry * relocs;
832 struct anv_bo ** reloc_bos;
833 };
834
835 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
836 const VkAllocationCallbacks *alloc);
837 void anv_reloc_list_finish(struct anv_reloc_list *list,
838 const VkAllocationCallbacks *alloc);
839
840 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
841 const VkAllocationCallbacks *alloc,
842 uint32_t offset, struct anv_bo *target_bo,
843 uint32_t delta);
844
845 struct anv_batch_bo {
846 /* Link in the anv_cmd_buffer.owned_batch_bos list */
847 struct list_head link;
848
849 struct anv_bo bo;
850
851 /* Bytes actually consumed in this batch BO */
852 uint32_t length;
853
854 struct anv_reloc_list relocs;
855 };
856
857 struct anv_batch {
858 const VkAllocationCallbacks * alloc;
859
860 void * start;
861 void * end;
862 void * next;
863
864 struct anv_reloc_list * relocs;
865
866 /* This callback is called (with the associated user data) in the event
867 * that the batch runs out of space.
868 */
869 VkResult (*extend_cb)(struct anv_batch *, void *);
870 void * user_data;
871
872 /**
873 * Current error status of the command buffer. Used to track inconsistent
874 * or incomplete command buffer states that are the consequence of run-time
875 * errors such as out of memory scenarios. We want to track this in the
876 * batch because the command buffer object is not visible to some parts
877 * of the driver.
878 */
879 VkResult status;
880 };
881
882 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
883 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
884 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
885 void *location, struct anv_bo *bo, uint32_t offset);
886 VkResult anv_device_submit_simple_batch(struct anv_device *device,
887 struct anv_batch *batch);
888
889 static inline VkResult
890 anv_batch_set_error(struct anv_batch *batch, VkResult error)
891 {
892 assert(error != VK_SUCCESS);
893 if (batch->status == VK_SUCCESS)
894 batch->status = error;
895 return batch->status;
896 }
897
898 static inline bool
899 anv_batch_has_error(struct anv_batch *batch)
900 {
901 return batch->status != VK_SUCCESS;
902 }
903
904 struct anv_address {
905 struct anv_bo *bo;
906 uint32_t offset;
907 };
908
909 static inline uint64_t
910 _anv_combine_address(struct anv_batch *batch, void *location,
911 const struct anv_address address, uint32_t delta)
912 {
913 if (address.bo == NULL) {
914 return address.offset + delta;
915 } else {
916 assert(batch->start <= location && location < batch->end);
917
918 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
919 }
920 }
921
922 #define __gen_address_type struct anv_address
923 #define __gen_user_data struct anv_batch
924 #define __gen_combine_address _anv_combine_address
925
926 /* Wrapper macros needed to work around preprocessor argument issues. In
927 * particular, arguments don't get pre-evaluated if they are concatenated.
928 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
929 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
930 * We can work around this easily enough with these helpers.
931 */
932 #define __anv_cmd_length(cmd) cmd ## _length
933 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
934 #define __anv_cmd_header(cmd) cmd ## _header
935 #define __anv_cmd_pack(cmd) cmd ## _pack
936 #define __anv_reg_num(reg) reg ## _num
937
938 #define anv_pack_struct(dst, struc, ...) do { \
939 struct struc __template = { \
940 __VA_ARGS__ \
941 }; \
942 __anv_cmd_pack(struc)(NULL, dst, &__template); \
943 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
944 } while (0)
945
946 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
947 void *__dst = anv_batch_emit_dwords(batch, n); \
948 if (__dst) { \
949 struct cmd __template = { \
950 __anv_cmd_header(cmd), \
951 .DWordLength = n - __anv_cmd_length_bias(cmd), \
952 __VA_ARGS__ \
953 }; \
954 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
955 } \
956 __dst; \
957 })
958
959 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
960 do { \
961 uint32_t *dw; \
962 \
963 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
964 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
965 if (!dw) \
966 break; \
967 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
968 dw[i] = (dwords0)[i] | (dwords1)[i]; \
969 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
970 } while (0)
971
972 #define anv_batch_emit(batch, cmd, name) \
973 for (struct cmd name = { __anv_cmd_header(cmd) }, \
974 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
975 __builtin_expect(_dst != NULL, 1); \
976 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
977 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
978 _dst = NULL; \
979 }))
980
981 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
982 .GraphicsDataTypeGFDT = 0, \
983 .LLCCacheabilityControlLLCCC = 0, \
984 .L3CacheabilityControlL3CC = 1, \
985 }
986
987 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
988 .LLCeLLCCacheabilityControlLLCCC = 0, \
989 .L3CacheabilityControlL3CC = 1, \
990 }
991
992 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
993 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
994 .TargetCache = L3DefertoPATforLLCeLLCselection, \
995 .AgeforQUADLRU = 0 \
996 }
997
998 /* Skylake: MOCS is now an index into an array of 62 different caching
999 * configurations programmed by the kernel.
1000 */
1001
1002 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
1003 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1004 .IndextoMOCSTables = 2 \
1005 }
1006
1007 #define GEN9_MOCS_PTE { \
1008 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1009 .IndextoMOCSTables = 1 \
1010 }
1011
1012 struct anv_device_memory {
1013 struct anv_bo * bo;
1014 struct anv_memory_type * type;
1015 VkDeviceSize map_size;
1016 void * map;
1017 };
1018
1019 /**
1020 * Header for Vertex URB Entry (VUE)
1021 */
1022 struct anv_vue_header {
1023 uint32_t Reserved;
1024 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1025 uint32_t ViewportIndex;
1026 float PointWidth;
1027 };
1028
1029 struct anv_descriptor_set_binding_layout {
1030 #ifndef NDEBUG
1031 /* The type of the descriptors in this binding */
1032 VkDescriptorType type;
1033 #endif
1034
1035 /* Number of array elements in this binding */
1036 uint16_t array_size;
1037
1038 /* Index into the flattend descriptor set */
1039 uint16_t descriptor_index;
1040
1041 /* Index into the dynamic state array for a dynamic buffer */
1042 int16_t dynamic_offset_index;
1043
1044 /* Index into the descriptor set buffer views */
1045 int16_t buffer_index;
1046
1047 struct {
1048 /* Index into the binding table for the associated surface */
1049 int16_t surface_index;
1050
1051 /* Index into the sampler table for the associated sampler */
1052 int16_t sampler_index;
1053
1054 /* Index into the image table for the associated image */
1055 int16_t image_index;
1056 } stage[MESA_SHADER_STAGES];
1057
1058 /* Immutable samplers (or NULL if no immutable samplers) */
1059 struct anv_sampler **immutable_samplers;
1060 };
1061
1062 struct anv_descriptor_set_layout {
1063 /* Number of bindings in this descriptor set */
1064 uint16_t binding_count;
1065
1066 /* Total size of the descriptor set with room for all array entries */
1067 uint16_t size;
1068
1069 /* Shader stages affected by this descriptor set */
1070 uint16_t shader_stages;
1071
1072 /* Number of buffers in this descriptor set */
1073 uint16_t buffer_count;
1074
1075 /* Number of dynamic offsets used by this descriptor set */
1076 uint16_t dynamic_offset_count;
1077
1078 /* Bindings in this descriptor set */
1079 struct anv_descriptor_set_binding_layout binding[0];
1080 };
1081
1082 struct anv_descriptor {
1083 VkDescriptorType type;
1084
1085 union {
1086 struct {
1087 struct anv_image_view *image_view;
1088 struct anv_sampler *sampler;
1089
1090 /* Used to determine whether or not we need the surface state to have
1091 * the auxiliary buffer enabled.
1092 */
1093 enum isl_aux_usage aux_usage;
1094 };
1095
1096 struct {
1097 struct anv_buffer *buffer;
1098 uint64_t offset;
1099 uint64_t range;
1100 };
1101
1102 struct anv_buffer_view *buffer_view;
1103 };
1104 };
1105
1106 struct anv_descriptor_set {
1107 const struct anv_descriptor_set_layout *layout;
1108 uint32_t size;
1109 uint32_t buffer_count;
1110 struct anv_buffer_view *buffer_views;
1111 struct anv_descriptor descriptors[0];
1112 };
1113
1114 struct anv_buffer_view {
1115 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1116 struct anv_bo *bo;
1117 uint32_t offset; /**< Offset into bo. */
1118 uint64_t range; /**< VkBufferViewCreateInfo::range */
1119
1120 struct anv_state surface_state;
1121 struct anv_state storage_surface_state;
1122 struct anv_state writeonly_storage_surface_state;
1123
1124 struct brw_image_param storage_image_param;
1125 };
1126
1127 struct anv_push_descriptor_set {
1128 struct anv_descriptor_set set;
1129
1130 /* Put this field right behind anv_descriptor_set so it fills up the
1131 * descriptors[0] field. */
1132 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1133
1134 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1135 };
1136
1137 struct anv_descriptor_pool {
1138 uint32_t size;
1139 uint32_t next;
1140 uint32_t free_list;
1141
1142 struct anv_state_stream surface_state_stream;
1143 void *surface_state_free_list;
1144
1145 char data[0];
1146 };
1147
1148 enum anv_descriptor_template_entry_type {
1149 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1150 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1151 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1152 };
1153
1154 struct anv_descriptor_template_entry {
1155 /* The type of descriptor in this entry */
1156 VkDescriptorType type;
1157
1158 /* Binding in the descriptor set */
1159 uint32_t binding;
1160
1161 /* Offset at which to write into the descriptor set binding */
1162 uint32_t array_element;
1163
1164 /* Number of elements to write into the descriptor set binding */
1165 uint32_t array_count;
1166
1167 /* Offset into the user provided data */
1168 size_t offset;
1169
1170 /* Stride between elements into the user provided data */
1171 size_t stride;
1172 };
1173
1174 struct anv_descriptor_update_template {
1175 /* The descriptor set this template corresponds to. This value is only
1176 * valid if the template was created with the templateType
1177 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1178 */
1179 uint8_t set;
1180
1181 /* Number of entries in this template */
1182 uint32_t entry_count;
1183
1184 /* Entries of the template */
1185 struct anv_descriptor_template_entry entries[0];
1186 };
1187
1188 size_t
1189 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1190
1191 void
1192 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1193 const struct gen_device_info * const devinfo,
1194 const VkDescriptorImageInfo * const info,
1195 VkDescriptorType type,
1196 uint32_t binding,
1197 uint32_t element);
1198
1199 void
1200 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1201 VkDescriptorType type,
1202 struct anv_buffer_view *buffer_view,
1203 uint32_t binding,
1204 uint32_t element);
1205
1206 void
1207 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1208 struct anv_device *device,
1209 struct anv_state_stream *alloc_stream,
1210 VkDescriptorType type,
1211 struct anv_buffer *buffer,
1212 uint32_t binding,
1213 uint32_t element,
1214 VkDeviceSize offset,
1215 VkDeviceSize range);
1216
1217 void
1218 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1219 struct anv_device *device,
1220 struct anv_state_stream *alloc_stream,
1221 const struct anv_descriptor_update_template *template,
1222 const void *data);
1223
1224 VkResult
1225 anv_descriptor_set_create(struct anv_device *device,
1226 struct anv_descriptor_pool *pool,
1227 const struct anv_descriptor_set_layout *layout,
1228 struct anv_descriptor_set **out_set);
1229
1230 void
1231 anv_descriptor_set_destroy(struct anv_device *device,
1232 struct anv_descriptor_pool *pool,
1233 struct anv_descriptor_set *set);
1234
1235 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1236
1237 struct anv_pipeline_binding {
1238 /* The descriptor set this surface corresponds to. The special value of
1239 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1240 * to a color attachment and not a regular descriptor.
1241 */
1242 uint8_t set;
1243
1244 /* Binding in the descriptor set */
1245 uint8_t binding;
1246
1247 /* Index in the binding */
1248 uint8_t index;
1249
1250 /* Input attachment index (relative to the subpass) */
1251 uint8_t input_attachment_index;
1252
1253 /* For a storage image, whether it is write-only */
1254 bool write_only;
1255 };
1256
1257 struct anv_pipeline_layout {
1258 struct {
1259 struct anv_descriptor_set_layout *layout;
1260 uint32_t dynamic_offset_start;
1261 } set[MAX_SETS];
1262
1263 uint32_t num_sets;
1264
1265 struct {
1266 bool has_dynamic_offsets;
1267 } stage[MESA_SHADER_STAGES];
1268
1269 unsigned char sha1[20];
1270 };
1271
1272 struct anv_buffer {
1273 struct anv_device * device;
1274 VkDeviceSize size;
1275
1276 VkBufferUsageFlags usage;
1277
1278 /* Set when bound */
1279 struct anv_bo * bo;
1280 VkDeviceSize offset;
1281 };
1282
1283 static inline uint64_t
1284 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1285 {
1286 assert(offset <= buffer->size);
1287 if (range == VK_WHOLE_SIZE) {
1288 return buffer->size - offset;
1289 } else {
1290 assert(range <= buffer->size);
1291 return range;
1292 }
1293 }
1294
1295 enum anv_cmd_dirty_bits {
1296 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1297 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1298 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1299 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1300 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1301 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1302 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1303 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1304 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1305 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1306 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1307 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1308 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1309 };
1310 typedef uint32_t anv_cmd_dirty_mask_t;
1311
1312 enum anv_pipe_bits {
1313 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1314 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1315 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1316 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1317 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1318 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1319 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1320 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1321 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1322 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1323 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1324
1325 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1326 * a flush has happened but not a CS stall. The next time we do any sort
1327 * of invalidation we need to insert a CS stall at that time. Otherwise,
1328 * we would have to CS stall on every flush which could be bad.
1329 */
1330 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1331 };
1332
1333 #define ANV_PIPE_FLUSH_BITS ( \
1334 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1335 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1336 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1337
1338 #define ANV_PIPE_STALL_BITS ( \
1339 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1340 ANV_PIPE_DEPTH_STALL_BIT | \
1341 ANV_PIPE_CS_STALL_BIT)
1342
1343 #define ANV_PIPE_INVALIDATE_BITS ( \
1344 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1345 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1346 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1347 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1348 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1349 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1350
1351 static inline enum anv_pipe_bits
1352 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1353 {
1354 enum anv_pipe_bits pipe_bits = 0;
1355
1356 unsigned b;
1357 for_each_bit(b, flags) {
1358 switch ((VkAccessFlagBits)(1 << b)) {
1359 case VK_ACCESS_SHADER_WRITE_BIT:
1360 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1361 break;
1362 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1363 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1364 break;
1365 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1366 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1367 break;
1368 case VK_ACCESS_TRANSFER_WRITE_BIT:
1369 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1370 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1371 break;
1372 default:
1373 break; /* Nothing to do */
1374 }
1375 }
1376
1377 return pipe_bits;
1378 }
1379
1380 static inline enum anv_pipe_bits
1381 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1382 {
1383 enum anv_pipe_bits pipe_bits = 0;
1384
1385 unsigned b;
1386 for_each_bit(b, flags) {
1387 switch ((VkAccessFlagBits)(1 << b)) {
1388 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1389 case VK_ACCESS_INDEX_READ_BIT:
1390 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1391 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1392 break;
1393 case VK_ACCESS_UNIFORM_READ_BIT:
1394 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1395 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1396 break;
1397 case VK_ACCESS_SHADER_READ_BIT:
1398 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1399 case VK_ACCESS_TRANSFER_READ_BIT:
1400 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1401 break;
1402 default:
1403 break; /* Nothing to do */
1404 }
1405 }
1406
1407 return pipe_bits;
1408 }
1409
1410 struct anv_vertex_binding {
1411 struct anv_buffer * buffer;
1412 VkDeviceSize offset;
1413 };
1414
1415 struct anv_push_constants {
1416 /* Current allocated size of this push constants data structure.
1417 * Because a decent chunk of it may not be used (images on SKL, for
1418 * instance), we won't actually allocate the entire structure up-front.
1419 */
1420 uint32_t size;
1421
1422 /* Push constant data provided by the client through vkPushConstants */
1423 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1424
1425 /* Our hardware only provides zero-based vertex and instance id so, in
1426 * order to satisfy the vulkan requirements, we may have to push one or
1427 * both of these into the shader.
1428 */
1429 uint32_t base_vertex;
1430 uint32_t base_instance;
1431
1432 /* Image data for image_load_store on pre-SKL */
1433 struct brw_image_param images[MAX_IMAGES];
1434 };
1435
1436 struct anv_dynamic_state {
1437 struct {
1438 uint32_t count;
1439 VkViewport viewports[MAX_VIEWPORTS];
1440 } viewport;
1441
1442 struct {
1443 uint32_t count;
1444 VkRect2D scissors[MAX_SCISSORS];
1445 } scissor;
1446
1447 float line_width;
1448
1449 struct {
1450 float bias;
1451 float clamp;
1452 float slope;
1453 } depth_bias;
1454
1455 float blend_constants[4];
1456
1457 struct {
1458 float min;
1459 float max;
1460 } depth_bounds;
1461
1462 struct {
1463 uint32_t front;
1464 uint32_t back;
1465 } stencil_compare_mask;
1466
1467 struct {
1468 uint32_t front;
1469 uint32_t back;
1470 } stencil_write_mask;
1471
1472 struct {
1473 uint32_t front;
1474 uint32_t back;
1475 } stencil_reference;
1476 };
1477
1478 extern const struct anv_dynamic_state default_dynamic_state;
1479
1480 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1481 const struct anv_dynamic_state *src,
1482 uint32_t copy_mask);
1483
1484 /**
1485 * Attachment state when recording a renderpass instance.
1486 *
1487 * The clear value is valid only if there exists a pending clear.
1488 */
1489 struct anv_attachment_state {
1490 enum isl_aux_usage aux_usage;
1491 enum isl_aux_usage input_aux_usage;
1492 struct anv_state color_rt_state;
1493 struct anv_state input_att_state;
1494
1495 VkImageLayout current_layout;
1496 VkImageAspectFlags pending_clear_aspects;
1497 bool fast_clear;
1498 VkClearValue clear_value;
1499 bool clear_color_is_zero_one;
1500 };
1501
1502 /** State required while building cmd buffer */
1503 struct anv_cmd_state {
1504 /* PIPELINE_SELECT.PipelineSelection */
1505 uint32_t current_pipeline;
1506 const struct gen_l3_config * current_l3_config;
1507 uint32_t vb_dirty;
1508 anv_cmd_dirty_mask_t dirty;
1509 anv_cmd_dirty_mask_t compute_dirty;
1510 enum anv_pipe_bits pending_pipe_bits;
1511 uint32_t num_workgroups_offset;
1512 struct anv_bo *num_workgroups_bo;
1513 VkShaderStageFlags descriptors_dirty;
1514 VkShaderStageFlags push_constants_dirty;
1515 uint32_t scratch_size;
1516 struct anv_pipeline * pipeline;
1517 struct anv_pipeline * compute_pipeline;
1518 struct anv_framebuffer * framebuffer;
1519 struct anv_render_pass * pass;
1520 struct anv_subpass * subpass;
1521 VkRect2D render_area;
1522 uint32_t restart_index;
1523 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1524 struct anv_descriptor_set * descriptors[MAX_SETS];
1525 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1526 VkShaderStageFlags push_constant_stages;
1527 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1528 struct anv_state binding_tables[MESA_SHADER_STAGES];
1529 struct anv_state samplers[MESA_SHADER_STAGES];
1530 struct anv_dynamic_state dynamic;
1531 bool need_query_wa;
1532
1533 struct anv_push_descriptor_set push_descriptor;
1534
1535 /**
1536 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1537 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1538 * and before invoking the secondary in ExecuteCommands.
1539 */
1540 bool pma_fix_enabled;
1541
1542 /**
1543 * Whether or not we know for certain that HiZ is enabled for the current
1544 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1545 * enabled or not, this will be false.
1546 */
1547 bool hiz_enabled;
1548
1549 /**
1550 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1551 * valid only when recording a render pass instance.
1552 */
1553 struct anv_attachment_state * attachments;
1554
1555 /**
1556 * Surface states for color render targets. These are stored in a single
1557 * flat array. For depth-stencil attachments, the surface state is simply
1558 * left blank.
1559 */
1560 struct anv_state render_pass_states;
1561
1562 /**
1563 * A null surface state of the right size to match the framebuffer. This
1564 * is one of the states in render_pass_states.
1565 */
1566 struct anv_state null_surface_state;
1567
1568 struct {
1569 struct anv_buffer * index_buffer;
1570 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1571 uint32_t index_offset;
1572 } gen7;
1573 };
1574
1575 struct anv_cmd_pool {
1576 VkAllocationCallbacks alloc;
1577 struct list_head cmd_buffers;
1578 };
1579
1580 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1581
1582 enum anv_cmd_buffer_exec_mode {
1583 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1584 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1585 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1586 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1587 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1588 };
1589
1590 struct anv_cmd_buffer {
1591 VK_LOADER_DATA _loader_data;
1592
1593 struct anv_device * device;
1594
1595 struct anv_cmd_pool * pool;
1596 struct list_head pool_link;
1597
1598 struct anv_batch batch;
1599
1600 /* Fields required for the actual chain of anv_batch_bo's.
1601 *
1602 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1603 */
1604 struct list_head batch_bos;
1605 enum anv_cmd_buffer_exec_mode exec_mode;
1606
1607 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1608 * referenced by this command buffer
1609 *
1610 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1611 */
1612 struct u_vector seen_bbos;
1613
1614 /* A vector of int32_t's for every block of binding tables.
1615 *
1616 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1617 */
1618 struct u_vector bt_block_states;
1619 uint32_t bt_next;
1620
1621 struct anv_reloc_list surface_relocs;
1622 /** Last seen surface state block pool center bo offset */
1623 uint32_t last_ss_pool_center;
1624
1625 /* Serial for tracking buffer completion */
1626 uint32_t serial;
1627
1628 /* Stream objects for storing temporary data */
1629 struct anv_state_stream surface_state_stream;
1630 struct anv_state_stream dynamic_state_stream;
1631
1632 VkCommandBufferUsageFlags usage_flags;
1633 VkCommandBufferLevel level;
1634
1635 struct anv_cmd_state state;
1636 };
1637
1638 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1639 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1640 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1641 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1642 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1643 struct anv_cmd_buffer *secondary);
1644 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1645 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1646 struct anv_cmd_buffer *cmd_buffer,
1647 const VkSemaphore *in_semaphores,
1648 uint32_t num_in_semaphores,
1649 const VkSemaphore *out_semaphores,
1650 uint32_t num_out_semaphores);
1651
1652 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1653
1654 VkResult
1655 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1656 gl_shader_stage stage, uint32_t size);
1657 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1658 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1659 (offsetof(struct anv_push_constants, field) + \
1660 sizeof(cmd_buffer->state.push_constants[0]->field)))
1661
1662 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1663 const void *data, uint32_t size, uint32_t alignment);
1664 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1665 uint32_t *a, uint32_t *b,
1666 uint32_t dwords, uint32_t alignment);
1667
1668 struct anv_address
1669 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1670 struct anv_state
1671 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1672 uint32_t entries, uint32_t *state_offset);
1673 struct anv_state
1674 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1675 struct anv_state
1676 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1677 uint32_t size, uint32_t alignment);
1678
1679 VkResult
1680 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1681
1682 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1683 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1684 bool depth_clamp_enable);
1685 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1686
1687 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1688 struct anv_render_pass *pass,
1689 struct anv_framebuffer *framebuffer,
1690 const VkClearValue *clear_values);
1691
1692 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1693
1694 struct anv_state
1695 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1696 gl_shader_stage stage);
1697 struct anv_state
1698 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1699
1700 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1701 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1702
1703 const struct anv_image_view *
1704 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1705
1706 VkResult
1707 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1708 uint32_t num_entries,
1709 uint32_t *state_offset,
1710 struct anv_state *bt_state);
1711
1712 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1713
1714 enum anv_fence_state {
1715 /** Indicates that this is a new (or newly reset fence) */
1716 ANV_FENCE_STATE_RESET,
1717
1718 /** Indicates that this fence has been submitted to the GPU but is still
1719 * (as far as we know) in use by the GPU.
1720 */
1721 ANV_FENCE_STATE_SUBMITTED,
1722
1723 ANV_FENCE_STATE_SIGNALED,
1724 };
1725
1726 struct anv_fence {
1727 struct anv_bo bo;
1728 struct drm_i915_gem_execbuffer2 execbuf;
1729 struct drm_i915_gem_exec_object2 exec2_objects[1];
1730 enum anv_fence_state state;
1731 };
1732
1733 struct anv_event {
1734 uint64_t semaphore;
1735 struct anv_state state;
1736 };
1737
1738 enum anv_semaphore_type {
1739 ANV_SEMAPHORE_TYPE_NONE = 0,
1740 ANV_SEMAPHORE_TYPE_DUMMY,
1741 ANV_SEMAPHORE_TYPE_BO,
1742 };
1743
1744 struct anv_semaphore_impl {
1745 enum anv_semaphore_type type;
1746
1747 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
1748 * This BO will be added to the object list on any execbuf2 calls for
1749 * which this semaphore is used as a wait or signal fence. When used as
1750 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
1751 */
1752 struct anv_bo *bo;
1753 };
1754
1755 struct anv_semaphore {
1756 /* Permanent semaphore state. Every semaphore has some form of permanent
1757 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
1758 * (for cross-process semaphores0 or it could just be a dummy for use
1759 * internally.
1760 */
1761 struct anv_semaphore_impl permanent;
1762
1763 /* Temporary semaphore state. A semaphore *may* have temporary state.
1764 * That state is added to the semaphore by an import operation and is reset
1765 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
1766 * semaphore with temporary state cannot be signaled because the semaphore
1767 * must already be signaled before the temporary state can be exported from
1768 * the semaphore in the other process and imported here.
1769 */
1770 struct anv_semaphore_impl temporary;
1771 };
1772
1773 struct anv_shader_module {
1774 unsigned char sha1[20];
1775 uint32_t size;
1776 char data[0];
1777 };
1778
1779 static inline gl_shader_stage
1780 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1781 {
1782 assert(__builtin_popcount(vk_stage) == 1);
1783 return ffs(vk_stage) - 1;
1784 }
1785
1786 static inline VkShaderStageFlagBits
1787 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1788 {
1789 return (1 << mesa_stage);
1790 }
1791
1792 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1793
1794 #define anv_foreach_stage(stage, stage_bits) \
1795 for (gl_shader_stage stage, \
1796 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1797 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1798 __tmp &= ~(1 << (stage)))
1799
1800 struct anv_pipeline_bind_map {
1801 uint32_t surface_count;
1802 uint32_t sampler_count;
1803 uint32_t image_count;
1804
1805 struct anv_pipeline_binding * surface_to_descriptor;
1806 struct anv_pipeline_binding * sampler_to_descriptor;
1807 };
1808
1809 struct anv_shader_bin_key {
1810 uint32_t size;
1811 uint8_t data[0];
1812 };
1813
1814 struct anv_shader_bin {
1815 uint32_t ref_cnt;
1816
1817 const struct anv_shader_bin_key *key;
1818
1819 struct anv_state kernel;
1820 uint32_t kernel_size;
1821
1822 const struct brw_stage_prog_data *prog_data;
1823 uint32_t prog_data_size;
1824
1825 struct anv_pipeline_bind_map bind_map;
1826
1827 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1828 };
1829
1830 struct anv_shader_bin *
1831 anv_shader_bin_create(struct anv_device *device,
1832 const void *key, uint32_t key_size,
1833 const void *kernel, uint32_t kernel_size,
1834 const struct brw_stage_prog_data *prog_data,
1835 uint32_t prog_data_size, const void *prog_data_param,
1836 const struct anv_pipeline_bind_map *bind_map);
1837
1838 void
1839 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1840
1841 static inline void
1842 anv_shader_bin_ref(struct anv_shader_bin *shader)
1843 {
1844 assert(shader && shader->ref_cnt >= 1);
1845 __sync_fetch_and_add(&shader->ref_cnt, 1);
1846 }
1847
1848 static inline void
1849 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1850 {
1851 assert(shader && shader->ref_cnt >= 1);
1852 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1853 anv_shader_bin_destroy(device, shader);
1854 }
1855
1856 struct anv_pipeline {
1857 struct anv_device * device;
1858 struct anv_batch batch;
1859 uint32_t batch_data[512];
1860 struct anv_reloc_list batch_relocs;
1861 uint32_t dynamic_state_mask;
1862 struct anv_dynamic_state dynamic_state;
1863
1864 struct anv_subpass * subpass;
1865 struct anv_pipeline_layout * layout;
1866
1867 bool needs_data_cache;
1868
1869 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1870
1871 struct {
1872 const struct gen_l3_config * l3_config;
1873 uint32_t total_size;
1874 } urb;
1875
1876 VkShaderStageFlags active_stages;
1877 struct anv_state blend_state;
1878
1879 uint32_t vb_used;
1880 uint32_t binding_stride[MAX_VBS];
1881 bool instancing_enable[MAX_VBS];
1882 bool primitive_restart;
1883 uint32_t topology;
1884
1885 uint32_t cs_right_mask;
1886
1887 bool writes_depth;
1888 bool depth_test_enable;
1889 bool writes_stencil;
1890 bool stencil_test_enable;
1891 bool depth_clamp_enable;
1892 bool sample_shading_enable;
1893 bool kill_pixel;
1894
1895 struct {
1896 uint32_t sf[7];
1897 uint32_t depth_stencil_state[3];
1898 } gen7;
1899
1900 struct {
1901 uint32_t sf[4];
1902 uint32_t raster[5];
1903 uint32_t wm_depth_stencil[3];
1904 } gen8;
1905
1906 struct {
1907 uint32_t wm_depth_stencil[4];
1908 } gen9;
1909
1910 uint32_t interface_descriptor_data[8];
1911 };
1912
1913 static inline bool
1914 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1915 gl_shader_stage stage)
1916 {
1917 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1918 }
1919
1920 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1921 static inline const struct brw_##prefix##_prog_data * \
1922 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1923 { \
1924 if (anv_pipeline_has_stage(pipeline, stage)) { \
1925 return (const struct brw_##prefix##_prog_data *) \
1926 pipeline->shaders[stage]->prog_data; \
1927 } else { \
1928 return NULL; \
1929 } \
1930 }
1931
1932 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1933 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1934 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1935 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1936 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1937 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1938
1939 static inline const struct brw_vue_prog_data *
1940 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1941 {
1942 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1943 return &get_gs_prog_data(pipeline)->base;
1944 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1945 return &get_tes_prog_data(pipeline)->base;
1946 else
1947 return &get_vs_prog_data(pipeline)->base;
1948 }
1949
1950 VkResult
1951 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1952 struct anv_pipeline_cache *cache,
1953 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1954 const VkAllocationCallbacks *alloc);
1955
1956 VkResult
1957 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1958 struct anv_pipeline_cache *cache,
1959 const VkComputePipelineCreateInfo *info,
1960 struct anv_shader_module *module,
1961 const char *entrypoint,
1962 const VkSpecializationInfo *spec_info);
1963
1964 struct anv_format {
1965 enum isl_format isl_format:16;
1966 struct isl_swizzle swizzle;
1967 };
1968
1969 struct anv_format
1970 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1971 VkImageAspectFlags aspect, VkImageTiling tiling);
1972
1973 static inline enum isl_format
1974 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1975 VkImageAspectFlags aspect, VkImageTiling tiling)
1976 {
1977 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1978 }
1979
1980 static inline struct isl_swizzle
1981 anv_swizzle_for_render(struct isl_swizzle swizzle)
1982 {
1983 /* Sometimes the swizzle will have alpha map to one. We do this to fake
1984 * RGB as RGBA for texturing
1985 */
1986 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
1987 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
1988
1989 /* But it doesn't matter what we render to that channel */
1990 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
1991
1992 return swizzle;
1993 }
1994
1995 void
1996 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1997
1998 /**
1999 * Subsurface of an anv_image.
2000 */
2001 struct anv_surface {
2002 /** Valid only if isl_surf::size > 0. */
2003 struct isl_surf isl;
2004
2005 /**
2006 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2007 */
2008 uint32_t offset;
2009 };
2010
2011 struct anv_image {
2012 VkImageType type;
2013 /* The original VkFormat provided by the client. This may not match any
2014 * of the actual surface formats.
2015 */
2016 VkFormat vk_format;
2017 VkImageAspectFlags aspects;
2018 VkExtent3D extent;
2019 uint32_t levels;
2020 uint32_t array_size;
2021 uint32_t samples; /**< VkImageCreateInfo::samples */
2022 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2023 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2024
2025 VkDeviceSize size;
2026 uint32_t alignment;
2027
2028 /* Set when bound */
2029 struct anv_bo *bo;
2030 VkDeviceSize offset;
2031
2032 /**
2033 * Image subsurfaces
2034 *
2035 * For each foo, anv_image::foo_surface is valid if and only if
2036 * anv_image::aspects has a foo aspect.
2037 *
2038 * The hardware requires that the depth buffer and stencil buffer be
2039 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2040 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2041 * allocate the depth and stencil buffers as separate surfaces in the same
2042 * bo.
2043 */
2044 union {
2045 struct anv_surface color_surface;
2046
2047 struct {
2048 struct anv_surface depth_surface;
2049 struct anv_surface stencil_surface;
2050 };
2051 };
2052
2053 /**
2054 * For color images, this is the aux usage for this image when not used as a
2055 * color attachment.
2056 *
2057 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
2058 * has a HiZ buffer.
2059 */
2060 enum isl_aux_usage aux_usage;
2061
2062 struct anv_surface aux_surface;
2063 };
2064
2065 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2066 static inline bool
2067 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2068 const VkImageAspectFlags aspect_mask,
2069 const uint32_t samples)
2070 {
2071 /* Validate the inputs. */
2072 assert(devinfo && aspect_mask && samples);
2073 return devinfo->gen >= 8 && (aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) &&
2074 samples == 1;
2075 }
2076
2077 void
2078 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
2079 const struct anv_image *image,
2080 enum blorp_hiz_op op);
2081
2082 void
2083 anv_image_ccs_clear(struct anv_cmd_buffer *cmd_buffer,
2084 const struct anv_image *image,
2085 const struct isl_view *view,
2086 const VkImageSubresourceRange *subresourceRange);
2087
2088 enum isl_aux_usage
2089 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2090 const struct anv_image *image,
2091 const VkImageAspectFlags aspects,
2092 const VkImageLayout layout);
2093
2094 /* This is defined as a macro so that it works for both
2095 * VkImageSubresourceRange and VkImageSubresourceLayers
2096 */
2097 #define anv_get_layerCount(_image, _range) \
2098 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2099 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2100
2101 static inline uint32_t
2102 anv_get_levelCount(const struct anv_image *image,
2103 const VkImageSubresourceRange *range)
2104 {
2105 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2106 image->levels - range->baseMipLevel : range->levelCount;
2107 }
2108
2109
2110 struct anv_image_view {
2111 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2112 struct anv_bo *bo;
2113 uint32_t offset; /**< Offset into bo. */
2114
2115 struct isl_view isl;
2116
2117 VkImageAspectFlags aspect_mask;
2118 VkFormat vk_format;
2119 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2120
2121 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
2122 struct anv_state sampler_surface_state;
2123
2124 /**
2125 * RENDER_SURFACE_STATE when using image as a sampler surface with the
2126 * auxiliary buffer disabled.
2127 */
2128 struct anv_state no_aux_sampler_surface_state;
2129
2130 /**
2131 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
2132 * for write-only and readable, using the real format for write-only and the
2133 * lowered format for readable.
2134 */
2135 struct anv_state storage_surface_state;
2136 struct anv_state writeonly_storage_surface_state;
2137
2138 struct brw_image_param storage_image_param;
2139 };
2140
2141 struct anv_image_create_info {
2142 const VkImageCreateInfo *vk_info;
2143
2144 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2145 isl_tiling_flags_t isl_tiling_flags;
2146
2147 uint32_t stride;
2148 };
2149
2150 VkResult anv_image_create(VkDevice _device,
2151 const struct anv_image_create_info *info,
2152 const VkAllocationCallbacks* alloc,
2153 VkImage *pImage);
2154
2155 const struct anv_surface *
2156 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2157 VkImageAspectFlags aspect_mask);
2158
2159 enum isl_format
2160 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2161
2162 static inline struct VkExtent3D
2163 anv_sanitize_image_extent(const VkImageType imageType,
2164 const struct VkExtent3D imageExtent)
2165 {
2166 switch (imageType) {
2167 case VK_IMAGE_TYPE_1D:
2168 return (VkExtent3D) { imageExtent.width, 1, 1 };
2169 case VK_IMAGE_TYPE_2D:
2170 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2171 case VK_IMAGE_TYPE_3D:
2172 return imageExtent;
2173 default:
2174 unreachable("invalid image type");
2175 }
2176 }
2177
2178 static inline struct VkOffset3D
2179 anv_sanitize_image_offset(const VkImageType imageType,
2180 const struct VkOffset3D imageOffset)
2181 {
2182 switch (imageType) {
2183 case VK_IMAGE_TYPE_1D:
2184 return (VkOffset3D) { imageOffset.x, 0, 0 };
2185 case VK_IMAGE_TYPE_2D:
2186 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2187 case VK_IMAGE_TYPE_3D:
2188 return imageOffset;
2189 default:
2190 unreachable("invalid image type");
2191 }
2192 }
2193
2194
2195 void anv_fill_buffer_surface_state(struct anv_device *device,
2196 struct anv_state state,
2197 enum isl_format format,
2198 uint32_t offset, uint32_t range,
2199 uint32_t stride);
2200
2201 void anv_image_view_fill_image_param(struct anv_device *device,
2202 struct anv_image_view *view,
2203 struct brw_image_param *param);
2204 void anv_buffer_view_fill_image_param(struct anv_device *device,
2205 struct anv_buffer_view *view,
2206 struct brw_image_param *param);
2207
2208 struct anv_sampler {
2209 uint32_t state[4];
2210 };
2211
2212 struct anv_framebuffer {
2213 uint32_t width;
2214 uint32_t height;
2215 uint32_t layers;
2216
2217 uint32_t attachment_count;
2218 struct anv_image_view * attachments[0];
2219 };
2220
2221 struct anv_subpass {
2222 uint32_t attachment_count;
2223
2224 /**
2225 * A pointer to all attachment references used in this subpass.
2226 * Only valid if ::attachment_count > 0.
2227 */
2228 VkAttachmentReference * attachments;
2229 uint32_t input_count;
2230 VkAttachmentReference * input_attachments;
2231 uint32_t color_count;
2232 VkAttachmentReference * color_attachments;
2233 VkAttachmentReference * resolve_attachments;
2234
2235 VkAttachmentReference depth_stencil_attachment;
2236
2237 uint32_t view_mask;
2238
2239 /** Subpass has a depth/stencil self-dependency */
2240 bool has_ds_self_dep;
2241
2242 /** Subpass has at least one resolve attachment */
2243 bool has_resolve;
2244 };
2245
2246 static inline unsigned
2247 anv_subpass_view_count(const struct anv_subpass *subpass)
2248 {
2249 return MAX2(1, _mesa_bitcount(subpass->view_mask));
2250 }
2251
2252 enum anv_subpass_usage {
2253 ANV_SUBPASS_USAGE_DRAW = (1 << 0),
2254 ANV_SUBPASS_USAGE_INPUT = (1 << 1),
2255 ANV_SUBPASS_USAGE_RESOLVE_SRC = (1 << 2),
2256 ANV_SUBPASS_USAGE_RESOLVE_DST = (1 << 3),
2257 };
2258
2259 struct anv_render_pass_attachment {
2260 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2261 * its members individually.
2262 */
2263 VkFormat format;
2264 uint32_t samples;
2265 VkImageUsageFlags usage;
2266 VkAttachmentLoadOp load_op;
2267 VkAttachmentStoreOp store_op;
2268 VkAttachmentLoadOp stencil_load_op;
2269 VkImageLayout initial_layout;
2270 VkImageLayout final_layout;
2271
2272 /* An array, indexed by subpass id, of how the attachment will be used. */
2273 enum anv_subpass_usage * subpass_usage;
2274
2275 /* The subpass id in which the attachment will be used last. */
2276 uint32_t last_subpass_idx;
2277 };
2278
2279 struct anv_render_pass {
2280 uint32_t attachment_count;
2281 uint32_t subpass_count;
2282 /* An array of subpass_count+1 flushes, one per subpass boundary */
2283 enum anv_pipe_bits * subpass_flushes;
2284 struct anv_render_pass_attachment * attachments;
2285 struct anv_subpass subpasses[0];
2286 };
2287
2288 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2289
2290 struct anv_query_pool {
2291 VkQueryType type;
2292 VkQueryPipelineStatisticFlags pipeline_statistics;
2293 /** Stride between slots, in bytes */
2294 uint32_t stride;
2295 /** Number of slots in this query pool */
2296 uint32_t slots;
2297 struct anv_bo bo;
2298 };
2299
2300 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2301 const char *name);
2302
2303 void anv_dump_image_to_ppm(struct anv_device *device,
2304 struct anv_image *image, unsigned miplevel,
2305 unsigned array_layer, VkImageAspectFlagBits aspect,
2306 const char *filename);
2307
2308 enum anv_dump_action {
2309 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2310 };
2311
2312 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2313 void anv_dump_finish(void);
2314
2315 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2316 struct anv_framebuffer *fb);
2317
2318 static inline uint32_t
2319 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2320 {
2321 /* This function must be called from within a subpass. */
2322 assert(cmd_state->pass && cmd_state->subpass);
2323
2324 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2325
2326 /* The id of this subpass shouldn't exceed the number of subpasses in this
2327 * render pass minus 1.
2328 */
2329 assert(subpass_id < cmd_state->pass->subpass_count);
2330 return subpass_id;
2331 }
2332
2333 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2334 \
2335 static inline struct __anv_type * \
2336 __anv_type ## _from_handle(__VkType _handle) \
2337 { \
2338 return (struct __anv_type *) _handle; \
2339 } \
2340 \
2341 static inline __VkType \
2342 __anv_type ## _to_handle(struct __anv_type *_obj) \
2343 { \
2344 return (__VkType) _obj; \
2345 }
2346
2347 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2348 \
2349 static inline struct __anv_type * \
2350 __anv_type ## _from_handle(__VkType _handle) \
2351 { \
2352 return (struct __anv_type *)(uintptr_t) _handle; \
2353 } \
2354 \
2355 static inline __VkType \
2356 __anv_type ## _to_handle(struct __anv_type *_obj) \
2357 { \
2358 return (__VkType)(uintptr_t) _obj; \
2359 }
2360
2361 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2362 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2363
2364 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2365 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2366 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2367 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2368 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2369
2370 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2371 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2372 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2373 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2374 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2375 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2376 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2377 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2378 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2379 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2380 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2381 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2382 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2383 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2384 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2385 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2386 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2387 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2388 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2389 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
2390 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2391
2392 /* Gen-specific function declarations */
2393 #ifdef genX
2394 # include "anv_genX.h"
2395 #else
2396 # define genX(x) gen7_##x
2397 # include "anv_genX.h"
2398 # undef genX
2399 # define genX(x) gen75_##x
2400 # include "anv_genX.h"
2401 # undef genX
2402 # define genX(x) gen8_##x
2403 # include "anv_genX.h"
2404 # undef genX
2405 # define genX(x) gen9_##x
2406 # include "anv_genX.h"
2407 # undef genX
2408 #endif
2409
2410 #endif /* ANV_PRIVATE_H */