878bbaa7678d66c4b448e6ca03727f65badd565d
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <stdint.h>
32 #include <i915_drm.h>
33
34 #ifdef HAVE_VALGRIND
35 #include <valgrind.h>
36 #include <memcheck.h>
37 #define VG(x) x
38 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
39 #else
40 #define VG(x)
41 #endif
42
43 #include "brw_device_info.h"
44 #include "brw_compiler.h"
45 #include "util/macros.h"
46 #include "util/list.h"
47
48 /* Pre-declarations needed for WSI entrypoints */
49 struct wl_surface;
50 struct wl_display;
51 typedef struct xcb_connection_t xcb_connection_t;
52 typedef uint32_t xcb_visualid_t;
53 typedef uint32_t xcb_window_t;
54
55 struct anv_l3_config;
56
57 #include <vulkan/vulkan.h>
58 #include <vulkan/vulkan_intel.h>
59 #include <vulkan/vk_icd.h>
60
61 #include "anv_entrypoints.h"
62 #include "brw_context.h"
63 #include "isl/isl.h"
64
65 #ifdef __cplusplus
66 extern "C" {
67 #endif
68
69 #define MAX_VBS 32
70 #define MAX_SETS 8
71 #define MAX_RTS 8
72 #define MAX_VIEWPORTS 16
73 #define MAX_SCISSORS 16
74 #define MAX_PUSH_CONSTANTS_SIZE 128
75 #define MAX_DYNAMIC_BUFFERS 16
76 #define MAX_IMAGES 8
77 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
78
79 #define anv_noreturn __attribute__((__noreturn__))
80 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
81
82 #define MIN(a, b) ((a) < (b) ? (a) : (b))
83 #define MAX(a, b) ((a) > (b) ? (a) : (b))
84
85 static inline uint32_t
86 align_down_npot_u32(uint32_t v, uint32_t a)
87 {
88 return v - (v % a);
89 }
90
91 static inline uint32_t
92 align_u32(uint32_t v, uint32_t a)
93 {
94 assert(a != 0 && a == (a & -a));
95 return (v + a - 1) & ~(a - 1);
96 }
97
98 static inline uint64_t
99 align_u64(uint64_t v, uint64_t a)
100 {
101 assert(a != 0 && a == (a & -a));
102 return (v + a - 1) & ~(a - 1);
103 }
104
105 static inline int32_t
106 align_i32(int32_t v, int32_t a)
107 {
108 assert(a != 0 && a == (a & -a));
109 return (v + a - 1) & ~(a - 1);
110 }
111
112 /** Alignment must be a power of 2. */
113 static inline bool
114 anv_is_aligned(uintmax_t n, uintmax_t a)
115 {
116 assert(a == (a & -a));
117 return (n & (a - 1)) == 0;
118 }
119
120 static inline uint32_t
121 anv_minify(uint32_t n, uint32_t levels)
122 {
123 if (unlikely(n == 0))
124 return 0;
125 else
126 return MAX(n >> levels, 1);
127 }
128
129 static inline float
130 anv_clamp_f(float f, float min, float max)
131 {
132 assert(min < max);
133
134 if (f > max)
135 return max;
136 else if (f < min)
137 return min;
138 else
139 return f;
140 }
141
142 static inline bool
143 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
144 {
145 if (*inout_mask & clear_mask) {
146 *inout_mask &= ~clear_mask;
147 return true;
148 } else {
149 return false;
150 }
151 }
152
153 #define for_each_bit(b, dword) \
154 for (uint32_t __dword = (dword); \
155 (b) = __builtin_ffs(__dword) - 1, __dword; \
156 __dword &= ~(1 << (b)))
157
158 #define typed_memcpy(dest, src, count) ({ \
159 static_assert(sizeof(*src) == sizeof(*dest), ""); \
160 memcpy((dest), (src), (count) * sizeof(*(src))); \
161 })
162
163 #define zero(x) (memset(&(x), 0, sizeof(x)))
164
165 /* Define no kernel as 1, since that's an illegal offset for a kernel */
166 #define NO_KERNEL 1
167
168 struct anv_common {
169 VkStructureType sType;
170 const void* pNext;
171 };
172
173 /* Whenever we generate an error, pass it through this function. Useful for
174 * debugging, where we can break on it. Only call at error site, not when
175 * propagating errors. Might be useful to plug in a stack trace here.
176 */
177
178 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
179
180 #ifdef DEBUG
181 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
182 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
183 #else
184 #define vk_error(error) error
185 #define vk_errorf(error, format, ...) error
186 #endif
187
188 void __anv_finishme(const char *file, int line, const char *format, ...)
189 anv_printflike(3, 4);
190 void anv_loge(const char *format, ...) anv_printflike(1, 2);
191 void anv_loge_v(const char *format, va_list va);
192
193 /**
194 * Print a FINISHME message, including its source location.
195 */
196 #define anv_finishme(format, ...) \
197 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
198
199 /* A non-fatal assert. Useful for debugging. */
200 #ifdef DEBUG
201 #define anv_assert(x) ({ \
202 if (unlikely(!(x))) \
203 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
204 })
205 #else
206 #define anv_assert(x)
207 #endif
208
209 /**
210 * If a block of code is annotated with anv_validate, then the block runs only
211 * in debug builds.
212 */
213 #ifdef DEBUG
214 #define anv_validate if (1)
215 #else
216 #define anv_validate if (0)
217 #endif
218
219 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
220 void anv_abortfv(const char *format, va_list va) anv_noreturn;
221
222 #define stub_return(v) \
223 do { \
224 anv_finishme("stub %s", __func__); \
225 return (v); \
226 } while (0)
227
228 #define stub() \
229 do { \
230 anv_finishme("stub %s", __func__); \
231 return; \
232 } while (0)
233
234 /**
235 * A dynamically growable, circular buffer. Elements are added at head and
236 * removed from tail. head and tail are free-running uint32_t indices and we
237 * only compute the modulo with size when accessing the array. This way,
238 * number of bytes in the queue is always head - tail, even in case of
239 * wraparound.
240 */
241
242 struct anv_vector {
243 uint32_t head;
244 uint32_t tail;
245 uint32_t element_size;
246 uint32_t size;
247 void *data;
248 };
249
250 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
251 void *anv_vector_add(struct anv_vector *queue);
252 void *anv_vector_remove(struct anv_vector *queue);
253
254 static inline int
255 anv_vector_length(struct anv_vector *queue)
256 {
257 return (queue->head - queue->tail) / queue->element_size;
258 }
259
260 static inline void *
261 anv_vector_head(struct anv_vector *vector)
262 {
263 assert(vector->tail < vector->head);
264 return (void *)((char *)vector->data +
265 ((vector->head - vector->element_size) &
266 (vector->size - 1)));
267 }
268
269 static inline void *
270 anv_vector_tail(struct anv_vector *vector)
271 {
272 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
273 }
274
275 static inline void
276 anv_vector_finish(struct anv_vector *queue)
277 {
278 free(queue->data);
279 }
280
281 #define anv_vector_foreach(elem, queue) \
282 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
283 for (uint32_t __anv_vector_offset = (queue)->tail; \
284 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
285 __anv_vector_offset += (queue)->element_size)
286
287 struct anv_bo {
288 uint32_t gem_handle;
289
290 /* Index into the current validation list. This is used by the
291 * validation list building alrogithm to track which buffers are already
292 * in the validation list so that we can ensure uniqueness.
293 */
294 uint32_t index;
295
296 /* Last known offset. This value is provided by the kernel when we
297 * execbuf and is used as the presumed offset for the next bunch of
298 * relocations.
299 */
300 uint64_t offset;
301
302 uint64_t size;
303 void *map;
304
305 /* We need to set the WRITE flag on winsys bos so GEM will know we're
306 * writing to them and synchronize uses on other rings (eg if the display
307 * server uses the blitter ring).
308 */
309 bool is_winsys_bo;
310 };
311
312 /* Represents a lock-free linked list of "free" things. This is used by
313 * both the block pool and the state pools. Unfortunately, in order to
314 * solve the ABA problem, we can't use a single uint32_t head.
315 */
316 union anv_free_list {
317 struct {
318 int32_t offset;
319
320 /* A simple count that is incremented every time the head changes. */
321 uint32_t count;
322 };
323 uint64_t u64;
324 };
325
326 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
327
328 struct anv_block_state {
329 union {
330 struct {
331 uint32_t next;
332 uint32_t end;
333 };
334 uint64_t u64;
335 };
336 };
337
338 struct anv_block_pool {
339 struct anv_device *device;
340
341 struct anv_bo bo;
342
343 /* The offset from the start of the bo to the "center" of the block
344 * pool. Pointers to allocated blocks are given by
345 * bo.map + center_bo_offset + offsets.
346 */
347 uint32_t center_bo_offset;
348
349 /* Current memory map of the block pool. This pointer may or may not
350 * point to the actual beginning of the block pool memory. If
351 * anv_block_pool_alloc_back has ever been called, then this pointer
352 * will point to the "center" position of the buffer and all offsets
353 * (negative or positive) given out by the block pool alloc functions
354 * will be valid relative to this pointer.
355 *
356 * In particular, map == bo.map + center_offset
357 */
358 void *map;
359 int fd;
360
361 /**
362 * Array of mmaps and gem handles owned by the block pool, reclaimed when
363 * the block pool is destroyed.
364 */
365 struct anv_vector mmap_cleanups;
366
367 uint32_t block_size;
368
369 union anv_free_list free_list;
370 struct anv_block_state state;
371
372 union anv_free_list back_free_list;
373 struct anv_block_state back_state;
374 };
375
376 /* Block pools are backed by a fixed-size 2GB memfd */
377 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
378
379 /* The center of the block pool is also the middle of the memfd. This may
380 * change in the future if we decide differently for some reason.
381 */
382 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
383
384 static inline uint32_t
385 anv_block_pool_size(struct anv_block_pool *pool)
386 {
387 return pool->state.end + pool->back_state.end;
388 }
389
390 struct anv_state {
391 int32_t offset;
392 uint32_t alloc_size;
393 void *map;
394 };
395
396 struct anv_fixed_size_state_pool {
397 size_t state_size;
398 union anv_free_list free_list;
399 struct anv_block_state block;
400 };
401
402 #define ANV_MIN_STATE_SIZE_LOG2 6
403 #define ANV_MAX_STATE_SIZE_LOG2 10
404
405 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
406
407 struct anv_state_pool {
408 struct anv_block_pool *block_pool;
409 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
410 };
411
412 struct anv_state_stream_block;
413
414 struct anv_state_stream {
415 struct anv_block_pool *block_pool;
416
417 /* The current working block */
418 struct anv_state_stream_block *block;
419
420 /* Offset at which the current block starts */
421 uint32_t start;
422 /* Offset at which to allocate the next state */
423 uint32_t next;
424 /* Offset at which the current block ends */
425 uint32_t end;
426 };
427
428 #define CACHELINE_SIZE 64
429 #define CACHELINE_MASK 63
430
431 static inline void
432 anv_clflush_range(void *start, size_t size)
433 {
434 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
435 void *end = start + size;
436
437 __builtin_ia32_mfence();
438 while (p < end) {
439 __builtin_ia32_clflush(p);
440 p += CACHELINE_SIZE;
441 }
442 }
443
444 static void inline
445 anv_state_clflush(struct anv_state state)
446 {
447 anv_clflush_range(state.map, state.alloc_size);
448 }
449
450 void anv_block_pool_init(struct anv_block_pool *pool,
451 struct anv_device *device, uint32_t block_size);
452 void anv_block_pool_finish(struct anv_block_pool *pool);
453 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
454 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
455 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
456 void anv_state_pool_init(struct anv_state_pool *pool,
457 struct anv_block_pool *block_pool);
458 void anv_state_pool_finish(struct anv_state_pool *pool);
459 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
460 size_t state_size, size_t alignment);
461 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
462 void anv_state_stream_init(struct anv_state_stream *stream,
463 struct anv_block_pool *block_pool);
464 void anv_state_stream_finish(struct anv_state_stream *stream);
465 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
466 uint32_t size, uint32_t alignment);
467
468 /**
469 * Implements a pool of re-usable BOs. The interface is identical to that
470 * of block_pool except that each block is its own BO.
471 */
472 struct anv_bo_pool {
473 struct anv_device *device;
474
475 void *free_list[16];
476 };
477
478 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
479 void anv_bo_pool_finish(struct anv_bo_pool *pool);
480 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
481 uint32_t size);
482 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
483
484 struct anv_scratch_pool {
485 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
486 struct anv_bo bos[16][MESA_SHADER_STAGES];
487 };
488
489 void anv_scratch_pool_init(struct anv_device *device,
490 struct anv_scratch_pool *pool);
491 void anv_scratch_pool_finish(struct anv_device *device,
492 struct anv_scratch_pool *pool);
493 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
494 struct anv_scratch_pool *pool,
495 gl_shader_stage stage,
496 unsigned per_thread_scratch);
497
498 void *anv_resolve_entrypoint(uint32_t index);
499
500 extern struct anv_dispatch_table dtable;
501
502 #define ANV_CALL(func) ({ \
503 if (dtable.func == NULL) { \
504 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
505 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
506 } \
507 dtable.func; \
508 })
509
510 static inline void *
511 anv_alloc(const VkAllocationCallbacks *alloc,
512 size_t size, size_t align,
513 VkSystemAllocationScope scope)
514 {
515 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
516 }
517
518 static inline void *
519 anv_realloc(const VkAllocationCallbacks *alloc,
520 void *ptr, size_t size, size_t align,
521 VkSystemAllocationScope scope)
522 {
523 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
524 }
525
526 static inline void
527 anv_free(const VkAllocationCallbacks *alloc, void *data)
528 {
529 alloc->pfnFree(alloc->pUserData, data);
530 }
531
532 static inline void *
533 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
534 const VkAllocationCallbacks *alloc,
535 size_t size, size_t align,
536 VkSystemAllocationScope scope)
537 {
538 if (alloc)
539 return anv_alloc(alloc, size, align, scope);
540 else
541 return anv_alloc(parent_alloc, size, align, scope);
542 }
543
544 static inline void
545 anv_free2(const VkAllocationCallbacks *parent_alloc,
546 const VkAllocationCallbacks *alloc,
547 void *data)
548 {
549 if (alloc)
550 anv_free(alloc, data);
551 else
552 anv_free(parent_alloc, data);
553 }
554
555 struct anv_wsi_interaface;
556
557 #define VK_ICD_WSI_PLATFORM_MAX 5
558
559 struct anv_physical_device {
560 VK_LOADER_DATA _loader_data;
561
562 struct anv_instance * instance;
563 uint32_t chipset_id;
564 char path[20];
565 const char * name;
566 const struct brw_device_info * info;
567 uint64_t aperture_size;
568 struct brw_compiler * compiler;
569 struct isl_device isl_dev;
570 int cmd_parser_version;
571
572 struct anv_wsi_interface * wsi[VK_ICD_WSI_PLATFORM_MAX];
573 };
574
575 struct anv_instance {
576 VK_LOADER_DATA _loader_data;
577
578 VkAllocationCallbacks alloc;
579
580 uint32_t apiVersion;
581 int physicalDeviceCount;
582 struct anv_physical_device physicalDevice;
583 };
584
585 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
586 void anv_finish_wsi(struct anv_physical_device *physical_device);
587
588 struct anv_meta_state {
589 VkAllocationCallbacks alloc;
590
591 /**
592 * Use array element `i` for images with `2^i` samples.
593 */
594 struct {
595 /**
596 * Pipeline N is used to clear color attachment N of the current
597 * subpass.
598 *
599 * HACK: We use one pipeline per color attachment to work around the
600 * compiler's inability to dynamically set the render target index of
601 * the render target write message.
602 */
603 struct anv_pipeline *color_pipelines[MAX_RTS];
604
605 struct anv_pipeline *depth_only_pipeline;
606 struct anv_pipeline *stencil_only_pipeline;
607 struct anv_pipeline *depthstencil_pipeline;
608 } clear[1 + MAX_SAMPLES_LOG2];
609
610 struct {
611 VkRenderPass render_pass;
612
613 /** Pipeline that blits from a 1D image. */
614 VkPipeline pipeline_1d_src;
615
616 /** Pipeline that blits from a 2D image. */
617 VkPipeline pipeline_2d_src;
618
619 /** Pipeline that blits from a 3D image. */
620 VkPipeline pipeline_3d_src;
621
622 VkPipelineLayout pipeline_layout;
623 VkDescriptorSetLayout ds_layout;
624 } blit;
625
626 struct {
627 VkRenderPass render_pass;
628
629 VkPipelineLayout img_p_layout;
630 VkDescriptorSetLayout img_ds_layout;
631 VkPipelineLayout buf_p_layout;
632 VkDescriptorSetLayout buf_ds_layout;
633
634 /* Pipelines indexed by source and destination type. See the
635 * blit2d_src_type and blit2d_dst_type enums in anv_meta_blit2d.c to
636 * see what these mean.
637 */
638 VkPipeline pipelines[2][3];
639 } blit2d;
640
641 struct {
642 /** Pipeline [i] resolves an image with 2^(i+1) samples. */
643 VkPipeline pipelines[MAX_SAMPLES_LOG2];
644
645 VkRenderPass pass;
646 VkPipelineLayout pipeline_layout;
647 VkDescriptorSetLayout ds_layout;
648 } resolve;
649 };
650
651 struct anv_queue {
652 VK_LOADER_DATA _loader_data;
653
654 struct anv_device * device;
655
656 struct anv_state_pool * pool;
657 };
658
659 struct anv_pipeline_cache {
660 struct anv_device * device;
661 struct anv_state_stream program_stream;
662 pthread_mutex_t mutex;
663
664 uint32_t total_size;
665 uint32_t table_size;
666 uint32_t kernel_count;
667 uint32_t * hash_table;
668 };
669
670 struct anv_pipeline_bind_map;
671
672 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
673 struct anv_device *device);
674 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
675 uint32_t anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
676 const unsigned char *sha1,
677 const struct brw_stage_prog_data **prog_data,
678 struct anv_pipeline_bind_map *map);
679 uint32_t anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
680 const unsigned char *sha1,
681 const void *kernel,
682 size_t kernel_size,
683 const struct brw_stage_prog_data **prog_data,
684 size_t prog_data_size,
685 struct anv_pipeline_bind_map *map);
686
687 struct anv_device {
688 VK_LOADER_DATA _loader_data;
689
690 VkAllocationCallbacks alloc;
691
692 struct anv_instance * instance;
693 uint32_t chipset_id;
694 struct brw_device_info info;
695 struct isl_device isl_dev;
696 int context_id;
697 int fd;
698 bool can_chain_batches;
699 bool robust_buffer_access;
700
701 struct anv_bo_pool batch_bo_pool;
702
703 struct anv_block_pool dynamic_state_block_pool;
704 struct anv_state_pool dynamic_state_pool;
705
706 struct anv_block_pool instruction_block_pool;
707 struct anv_state_pool instruction_state_pool;
708 struct anv_pipeline_cache default_pipeline_cache;
709
710 struct anv_block_pool surface_state_block_pool;
711 struct anv_state_pool surface_state_pool;
712
713 struct anv_bo workaround_bo;
714
715 struct anv_meta_state meta_state;
716
717 struct anv_state border_colors;
718
719 struct anv_queue queue;
720
721 struct anv_scratch_pool scratch_pool;
722
723 uint32_t default_mocs;
724
725 pthread_mutex_t mutex;
726 };
727
728 void anv_device_get_cache_uuid(void *uuid);
729
730
731 void* anv_gem_mmap(struct anv_device *device,
732 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
733 void anv_gem_munmap(void *p, uint64_t size);
734 uint32_t anv_gem_create(struct anv_device *device, size_t size);
735 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
736 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
737 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
738 int anv_gem_execbuffer(struct anv_device *device,
739 struct drm_i915_gem_execbuffer2 *execbuf);
740 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
741 uint32_t stride, uint32_t tiling);
742 int anv_gem_create_context(struct anv_device *device);
743 int anv_gem_destroy_context(struct anv_device *device, int context);
744 int anv_gem_get_param(int fd, uint32_t param);
745 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
746 int anv_gem_get_aperture(int fd, uint64_t *size);
747 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
748 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
749 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
750 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
751 uint32_t read_domains, uint32_t write_domain);
752
753 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
754
755 struct anv_reloc_list {
756 size_t num_relocs;
757 size_t array_length;
758 struct drm_i915_gem_relocation_entry * relocs;
759 struct anv_bo ** reloc_bos;
760 };
761
762 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
763 const VkAllocationCallbacks *alloc);
764 void anv_reloc_list_finish(struct anv_reloc_list *list,
765 const VkAllocationCallbacks *alloc);
766
767 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
768 const VkAllocationCallbacks *alloc,
769 uint32_t offset, struct anv_bo *target_bo,
770 uint32_t delta);
771
772 struct anv_batch_bo {
773 /* Link in the anv_cmd_buffer.owned_batch_bos list */
774 struct list_head link;
775
776 struct anv_bo bo;
777
778 /* Bytes actually consumed in this batch BO */
779 size_t length;
780
781 /* Last seen surface state block pool bo offset */
782 uint32_t last_ss_pool_bo_offset;
783
784 struct anv_reloc_list relocs;
785 };
786
787 struct anv_batch {
788 const VkAllocationCallbacks * alloc;
789
790 void * start;
791 void * end;
792 void * next;
793
794 struct anv_reloc_list * relocs;
795
796 /* This callback is called (with the associated user data) in the event
797 * that the batch runs out of space.
798 */
799 VkResult (*extend_cb)(struct anv_batch *, void *);
800 void * user_data;
801 };
802
803 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
804 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
805 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
806 void *location, struct anv_bo *bo, uint32_t offset);
807 VkResult anv_device_submit_simple_batch(struct anv_device *device,
808 struct anv_batch *batch);
809
810 struct anv_address {
811 struct anv_bo *bo;
812 uint32_t offset;
813 };
814
815 #define __gen_address_type struct anv_address
816 #define __gen_user_data struct anv_batch
817
818 static inline uint64_t
819 __gen_combine_address(struct anv_batch *batch, void *location,
820 const struct anv_address address, uint32_t delta)
821 {
822 if (address.bo == NULL) {
823 return address.offset + delta;
824 } else {
825 assert(batch->start <= location && location < batch->end);
826
827 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
828 }
829 }
830
831 /* Wrapper macros needed to work around preprocessor argument issues. In
832 * particular, arguments don't get pre-evaluated if they are concatenated.
833 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
834 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
835 * We can work around this easily enough with these helpers.
836 */
837 #define __anv_cmd_length(cmd) cmd ## _length
838 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
839 #define __anv_cmd_header(cmd) cmd ## _header
840 #define __anv_cmd_pack(cmd) cmd ## _pack
841 #define __anv_reg_num(reg) reg ## _num
842
843 #define anv_pack_struct(dst, struc, ...) do { \
844 struct struc __template = { \
845 __VA_ARGS__ \
846 }; \
847 __anv_cmd_pack(struc)(NULL, dst, &__template); \
848 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
849 } while (0)
850
851 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
852 void *__dst = anv_batch_emit_dwords(batch, n); \
853 struct cmd __template = { \
854 __anv_cmd_header(cmd), \
855 .DWordLength = n - __anv_cmd_length_bias(cmd), \
856 __VA_ARGS__ \
857 }; \
858 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
859 __dst; \
860 })
861
862 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
863 do { \
864 uint32_t *dw; \
865 \
866 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
867 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
868 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
869 dw[i] = (dwords0)[i] | (dwords1)[i]; \
870 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
871 } while (0)
872
873 #define anv_batch_emit(batch, cmd, name) \
874 for (struct cmd name = { __anv_cmd_header(cmd) }, \
875 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
876 __builtin_expect(_dst != NULL, 1); \
877 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
878 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
879 _dst = NULL; \
880 }))
881
882 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
883 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
884 struct anv_state __state = \
885 anv_state_pool_alloc((pool), __size, align); \
886 struct cmd __template = { \
887 __VA_ARGS__ \
888 }; \
889 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
890 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
891 if (!(pool)->block_pool->device->info.has_llc) \
892 anv_state_clflush(__state); \
893 __state; \
894 })
895
896 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
897 .GraphicsDataTypeGFDT = 0, \
898 .LLCCacheabilityControlLLCCC = 0, \
899 .L3CacheabilityControlL3CC = 1, \
900 }
901
902 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
903 .LLCeLLCCacheabilityControlLLCCC = 0, \
904 .L3CacheabilityControlL3CC = 1, \
905 }
906
907 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
908 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
909 .TargetCache = L3DefertoPATforLLCeLLCselection, \
910 .AgeforQUADLRU = 0 \
911 }
912
913 /* Skylake: MOCS is now an index into an array of 62 different caching
914 * configurations programmed by the kernel.
915 */
916
917 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
918 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
919 .IndextoMOCSTables = 2 \
920 }
921
922 #define GEN9_MOCS_PTE { \
923 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
924 .IndextoMOCSTables = 1 \
925 }
926
927 struct anv_device_memory {
928 struct anv_bo bo;
929 uint32_t type_index;
930 VkDeviceSize map_size;
931 void * map;
932 };
933
934 /**
935 * Header for Vertex URB Entry (VUE)
936 */
937 struct anv_vue_header {
938 uint32_t Reserved;
939 uint32_t RTAIndex; /* RenderTargetArrayIndex */
940 uint32_t ViewportIndex;
941 float PointWidth;
942 };
943
944 struct anv_descriptor_set_binding_layout {
945 #ifndef NDEBUG
946 /* The type of the descriptors in this binding */
947 VkDescriptorType type;
948 #endif
949
950 /* Number of array elements in this binding */
951 uint16_t array_size;
952
953 /* Index into the flattend descriptor set */
954 uint16_t descriptor_index;
955
956 /* Index into the dynamic state array for a dynamic buffer */
957 int16_t dynamic_offset_index;
958
959 /* Index into the descriptor set buffer views */
960 int16_t buffer_index;
961
962 struct {
963 /* Index into the binding table for the associated surface */
964 int16_t surface_index;
965
966 /* Index into the sampler table for the associated sampler */
967 int16_t sampler_index;
968
969 /* Index into the image table for the associated image */
970 int16_t image_index;
971 } stage[MESA_SHADER_STAGES];
972
973 /* Immutable samplers (or NULL if no immutable samplers) */
974 struct anv_sampler **immutable_samplers;
975 };
976
977 struct anv_descriptor_set_layout {
978 /* Number of bindings in this descriptor set */
979 uint16_t binding_count;
980
981 /* Total size of the descriptor set with room for all array entries */
982 uint16_t size;
983
984 /* Shader stages affected by this descriptor set */
985 uint16_t shader_stages;
986
987 /* Number of buffers in this descriptor set */
988 uint16_t buffer_count;
989
990 /* Number of dynamic offsets used by this descriptor set */
991 uint16_t dynamic_offset_count;
992
993 /* Bindings in this descriptor set */
994 struct anv_descriptor_set_binding_layout binding[0];
995 };
996
997 struct anv_descriptor {
998 VkDescriptorType type;
999
1000 union {
1001 struct {
1002 struct anv_image_view *image_view;
1003 struct anv_sampler *sampler;
1004 };
1005
1006 struct anv_buffer_view *buffer_view;
1007 };
1008 };
1009
1010 struct anv_descriptor_set {
1011 const struct anv_descriptor_set_layout *layout;
1012 uint32_t size;
1013 uint32_t buffer_count;
1014 struct anv_buffer_view *buffer_views;
1015 struct anv_descriptor descriptors[0];
1016 };
1017
1018 struct anv_descriptor_pool {
1019 uint32_t size;
1020 uint32_t next;
1021 uint32_t free_list;
1022
1023 struct anv_state_stream surface_state_stream;
1024 void *surface_state_free_list;
1025
1026 char data[0];
1027 };
1028
1029 VkResult
1030 anv_descriptor_set_create(struct anv_device *device,
1031 struct anv_descriptor_pool *pool,
1032 const struct anv_descriptor_set_layout *layout,
1033 struct anv_descriptor_set **out_set);
1034
1035 void
1036 anv_descriptor_set_destroy(struct anv_device *device,
1037 struct anv_descriptor_pool *pool,
1038 struct anv_descriptor_set *set);
1039
1040 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1041
1042 struct anv_pipeline_binding {
1043 /* The descriptor set this surface corresponds to. The special value of
1044 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1045 * to a color attachment and not a regular descriptor.
1046 */
1047 uint8_t set;
1048
1049 /* Binding in the descriptor set */
1050 uint8_t binding;
1051
1052 /* Index in the binding */
1053 uint8_t index;
1054 };
1055
1056 struct anv_pipeline_layout {
1057 struct {
1058 struct anv_descriptor_set_layout *layout;
1059 uint32_t dynamic_offset_start;
1060 } set[MAX_SETS];
1061
1062 uint32_t num_sets;
1063
1064 struct {
1065 bool has_dynamic_offsets;
1066 } stage[MESA_SHADER_STAGES];
1067
1068 unsigned char sha1[20];
1069 };
1070
1071 struct anv_buffer {
1072 struct anv_device * device;
1073 VkDeviceSize size;
1074
1075 VkBufferUsageFlags usage;
1076
1077 /* Set when bound */
1078 struct anv_bo * bo;
1079 VkDeviceSize offset;
1080 };
1081
1082 enum anv_cmd_dirty_bits {
1083 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1084 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1085 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1086 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1087 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1088 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1089 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1090 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1091 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1092 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1093 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1094 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1095 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1096 };
1097 typedef uint32_t anv_cmd_dirty_mask_t;
1098
1099 enum anv_pipe_bits {
1100 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1101 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1102 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1103 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1104 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1105 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1106 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1107 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1108 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1109 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1110 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1111
1112 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1113 * a flush has happened but not a CS stall. The next time we do any sort
1114 * of invalidation we need to insert a CS stall at that time. Otherwise,
1115 * we would have to CS stall on every flush which could be bad.
1116 */
1117 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1118 };
1119
1120 #define ANV_PIPE_FLUSH_BITS ( \
1121 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1122 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1123 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1124
1125 #define ANV_PIPE_STALL_BITS ( \
1126 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1127 ANV_PIPE_DEPTH_STALL_BIT | \
1128 ANV_PIPE_CS_STALL_BIT)
1129
1130 #define ANV_PIPE_INVALIDATE_BITS ( \
1131 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1132 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1133 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1134 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1135 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1136 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1137
1138 struct anv_vertex_binding {
1139 struct anv_buffer * buffer;
1140 VkDeviceSize offset;
1141 };
1142
1143 struct anv_push_constants {
1144 /* Current allocated size of this push constants data structure.
1145 * Because a decent chunk of it may not be used (images on SKL, for
1146 * instance), we won't actually allocate the entire structure up-front.
1147 */
1148 uint32_t size;
1149
1150 /* Push constant data provided by the client through vkPushConstants */
1151 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1152
1153 /* Our hardware only provides zero-based vertex and instance id so, in
1154 * order to satisfy the vulkan requirements, we may have to push one or
1155 * both of these into the shader.
1156 */
1157 uint32_t base_vertex;
1158 uint32_t base_instance;
1159
1160 /* Offsets and ranges for dynamically bound buffers */
1161 struct {
1162 uint32_t offset;
1163 uint32_t range;
1164 } dynamic[MAX_DYNAMIC_BUFFERS];
1165
1166 /* Image data for image_load_store on pre-SKL */
1167 struct brw_image_param images[MAX_IMAGES];
1168 };
1169
1170 struct anv_dynamic_state {
1171 struct {
1172 uint32_t count;
1173 VkViewport viewports[MAX_VIEWPORTS];
1174 } viewport;
1175
1176 struct {
1177 uint32_t count;
1178 VkRect2D scissors[MAX_SCISSORS];
1179 } scissor;
1180
1181 float line_width;
1182
1183 struct {
1184 float bias;
1185 float clamp;
1186 float slope;
1187 } depth_bias;
1188
1189 float blend_constants[4];
1190
1191 struct {
1192 float min;
1193 float max;
1194 } depth_bounds;
1195
1196 struct {
1197 uint32_t front;
1198 uint32_t back;
1199 } stencil_compare_mask;
1200
1201 struct {
1202 uint32_t front;
1203 uint32_t back;
1204 } stencil_write_mask;
1205
1206 struct {
1207 uint32_t front;
1208 uint32_t back;
1209 } stencil_reference;
1210 };
1211
1212 extern const struct anv_dynamic_state default_dynamic_state;
1213
1214 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1215 const struct anv_dynamic_state *src,
1216 uint32_t copy_mask);
1217
1218 /**
1219 * Attachment state when recording a renderpass instance.
1220 *
1221 * The clear value is valid only if there exists a pending clear.
1222 */
1223 struct anv_attachment_state {
1224 VkImageAspectFlags pending_clear_aspects;
1225 VkClearValue clear_value;
1226 };
1227
1228 /** State required while building cmd buffer */
1229 struct anv_cmd_state {
1230 /* PIPELINE_SELECT.PipelineSelection */
1231 uint32_t current_pipeline;
1232 const struct anv_l3_config * current_l3_config;
1233 uint32_t vb_dirty;
1234 anv_cmd_dirty_mask_t dirty;
1235 anv_cmd_dirty_mask_t compute_dirty;
1236 enum anv_pipe_bits pending_pipe_bits;
1237 uint32_t num_workgroups_offset;
1238 struct anv_bo *num_workgroups_bo;
1239 VkShaderStageFlags descriptors_dirty;
1240 VkShaderStageFlags push_constants_dirty;
1241 uint32_t scratch_size;
1242 struct anv_pipeline * pipeline;
1243 struct anv_pipeline * compute_pipeline;
1244 struct anv_framebuffer * framebuffer;
1245 struct anv_render_pass * pass;
1246 struct anv_subpass * subpass;
1247 VkRect2D render_area;
1248 uint32_t restart_index;
1249 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1250 struct anv_descriptor_set * descriptors[MAX_SETS];
1251 VkShaderStageFlags push_constant_stages;
1252 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1253 struct anv_state binding_tables[MESA_SHADER_STAGES];
1254 struct anv_state samplers[MESA_SHADER_STAGES];
1255 struct anv_dynamic_state dynamic;
1256 bool need_query_wa;
1257
1258 /**
1259 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1260 * valid only when recording a render pass instance.
1261 */
1262 struct anv_attachment_state * attachments;
1263
1264 struct {
1265 struct anv_buffer * index_buffer;
1266 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1267 uint32_t index_offset;
1268 } gen7;
1269 };
1270
1271 struct anv_cmd_pool {
1272 VkAllocationCallbacks alloc;
1273 struct list_head cmd_buffers;
1274 };
1275
1276 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1277
1278 enum anv_cmd_buffer_exec_mode {
1279 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1280 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1281 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1282 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1283 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1284 };
1285
1286 struct anv_cmd_buffer {
1287 VK_LOADER_DATA _loader_data;
1288
1289 struct anv_device * device;
1290
1291 struct anv_cmd_pool * pool;
1292 struct list_head pool_link;
1293
1294 struct anv_batch batch;
1295
1296 /* Fields required for the actual chain of anv_batch_bo's.
1297 *
1298 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1299 */
1300 struct list_head batch_bos;
1301 enum anv_cmd_buffer_exec_mode exec_mode;
1302
1303 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1304 * referenced by this command buffer
1305 *
1306 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1307 */
1308 struct anv_vector seen_bbos;
1309
1310 /* A vector of int32_t's for every block of binding tables.
1311 *
1312 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1313 */
1314 struct anv_vector bt_blocks;
1315 uint32_t bt_next;
1316 struct anv_reloc_list surface_relocs;
1317
1318 /* Information needed for execbuf
1319 *
1320 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1321 */
1322 struct {
1323 struct drm_i915_gem_execbuffer2 execbuf;
1324
1325 struct drm_i915_gem_exec_object2 * objects;
1326 uint32_t bo_count;
1327 struct anv_bo ** bos;
1328
1329 /* Allocated length of the 'objects' and 'bos' arrays */
1330 uint32_t array_length;
1331
1332 bool need_reloc;
1333 } execbuf2;
1334
1335 /* Serial for tracking buffer completion */
1336 uint32_t serial;
1337
1338 /* Stream objects for storing temporary data */
1339 struct anv_state_stream surface_state_stream;
1340 struct anv_state_stream dynamic_state_stream;
1341
1342 VkCommandBufferUsageFlags usage_flags;
1343 VkCommandBufferLevel level;
1344
1345 struct anv_cmd_state state;
1346 };
1347
1348 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1349 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1350 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1351 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1352 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1353 struct anv_cmd_buffer *secondary);
1354 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1355
1356 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1357 unsigned stage, struct anv_state *bt_state);
1358 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1359 unsigned stage, struct anv_state *state);
1360 uint32_t anv_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1361
1362 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1363 const void *data, uint32_t size, uint32_t alignment);
1364 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1365 uint32_t *a, uint32_t *b,
1366 uint32_t dwords, uint32_t alignment);
1367
1368 struct anv_address
1369 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1370 struct anv_state
1371 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1372 uint32_t entries, uint32_t *state_offset);
1373 struct anv_state
1374 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1375 struct anv_state
1376 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1377 uint32_t size, uint32_t alignment);
1378
1379 VkResult
1380 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1381
1382 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1383 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1384 bool depth_clamp_enable);
1385 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1386
1387 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1388
1389 void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1390 const VkRenderPassBeginInfo *info);
1391
1392 void anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
1393 struct anv_subpass *subpass);
1394
1395 struct anv_state
1396 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1397 gl_shader_stage stage);
1398 struct anv_state
1399 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1400
1401 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1402 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1403
1404 const struct anv_image_view *
1405 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1406
1407 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1408
1409 struct anv_fence {
1410 struct anv_bo bo;
1411 struct drm_i915_gem_execbuffer2 execbuf;
1412 struct drm_i915_gem_exec_object2 exec2_objects[1];
1413 bool ready;
1414 };
1415
1416 struct anv_event {
1417 uint64_t semaphore;
1418 struct anv_state state;
1419 };
1420
1421 struct nir_shader;
1422
1423 struct anv_shader_module {
1424 struct nir_shader * nir;
1425
1426 unsigned char sha1[20];
1427 uint32_t size;
1428 char data[0];
1429 };
1430
1431 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1432 struct anv_shader_module *module,
1433 const char *entrypoint,
1434 const struct anv_pipeline_layout *pipeline_layout,
1435 const VkSpecializationInfo *spec_info);
1436
1437 static inline gl_shader_stage
1438 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1439 {
1440 assert(__builtin_popcount(vk_stage) == 1);
1441 return ffs(vk_stage) - 1;
1442 }
1443
1444 static inline VkShaderStageFlagBits
1445 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1446 {
1447 return (1 << mesa_stage);
1448 }
1449
1450 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1451
1452 #define anv_foreach_stage(stage, stage_bits) \
1453 for (gl_shader_stage stage, \
1454 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1455 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1456 __tmp &= ~(1 << (stage)))
1457
1458 struct anv_pipeline_bind_map {
1459 uint32_t surface_count;
1460 uint32_t sampler_count;
1461 uint32_t image_count;
1462
1463 struct anv_pipeline_binding * surface_to_descriptor;
1464 struct anv_pipeline_binding * sampler_to_descriptor;
1465 };
1466
1467 struct anv_shader_bin {
1468 uint32_t ref_cnt;
1469
1470 struct anv_state kernel;
1471 uint32_t kernel_size;
1472
1473 struct anv_pipeline_bind_map bind_map;
1474
1475 uint32_t prog_data_size;
1476
1477 /* Prog data follows, then the key, both aligned to 8-bytes */
1478 };
1479
1480 struct anv_shader_bin *
1481 anv_shader_bin_create(struct anv_device *device,
1482 const void *key, uint32_t key_size,
1483 const void *kernel, uint32_t kernel_size,
1484 const void *prog_data, uint32_t prog_data_size,
1485 const struct anv_pipeline_bind_map *bind_map);
1486
1487 void
1488 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1489
1490 static inline void
1491 anv_shader_bin_ref(struct anv_shader_bin *shader)
1492 {
1493 assert(shader->ref_cnt >= 1);
1494 __sync_fetch_and_add(&shader->ref_cnt, 1);
1495 }
1496
1497 static inline void
1498 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1499 {
1500 assert(shader->ref_cnt >= 1);
1501 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1502 anv_shader_bin_destroy(device, shader);
1503 }
1504
1505 static inline const struct brw_stage_prog_data *
1506 anv_shader_bin_get_prog_data(const struct anv_shader_bin *shader)
1507 {
1508 const void *data = shader;
1509 data += align_u32(sizeof(struct anv_shader_bin), 8);
1510 return data;
1511 }
1512
1513 struct anv_pipeline {
1514 struct anv_device * device;
1515 struct anv_batch batch;
1516 uint32_t batch_data[512];
1517 struct anv_reloc_list batch_relocs;
1518 uint32_t dynamic_state_mask;
1519 struct anv_dynamic_state dynamic_state;
1520
1521 struct anv_pipeline_layout * layout;
1522 struct anv_pipeline_bind_map bindings[MESA_SHADER_STAGES];
1523
1524 bool use_repclear;
1525 bool needs_data_cache;
1526
1527 const struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
1528 struct {
1529 uint32_t start[MESA_SHADER_GEOMETRY + 1];
1530 uint32_t size[MESA_SHADER_GEOMETRY + 1];
1531 uint32_t entries[MESA_SHADER_GEOMETRY + 1];
1532 const struct anv_l3_config * l3_config;
1533 uint32_t total_size;
1534 } urb;
1535
1536 VkShaderStageFlags active_stages;
1537 struct anv_state blend_state;
1538 uint32_t vs_simd8;
1539 uint32_t vs_vec4;
1540 uint32_t ps_ksp0;
1541 uint32_t gs_kernel;
1542 uint32_t cs_simd;
1543
1544 uint32_t vb_used;
1545 uint32_t binding_stride[MAX_VBS];
1546 bool instancing_enable[MAX_VBS];
1547 bool primitive_restart;
1548 uint32_t topology;
1549
1550 uint32_t cs_right_mask;
1551
1552 bool depth_clamp_enable;
1553
1554 struct {
1555 uint32_t sf[7];
1556 uint32_t depth_stencil_state[3];
1557 } gen7;
1558
1559 struct {
1560 uint32_t sf[4];
1561 uint32_t raster[5];
1562 uint32_t wm_depth_stencil[3];
1563 } gen8;
1564
1565 struct {
1566 uint32_t wm_depth_stencil[4];
1567 } gen9;
1568 };
1569
1570 static inline bool
1571 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1572 gl_shader_stage stage)
1573 {
1574 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1575 }
1576
1577 static inline const struct brw_vs_prog_data *
1578 get_vs_prog_data(struct anv_pipeline *pipeline)
1579 {
1580 return (const struct brw_vs_prog_data *) pipeline->prog_data[MESA_SHADER_VERTEX];
1581 }
1582
1583 static inline const struct brw_gs_prog_data *
1584 get_gs_prog_data(struct anv_pipeline *pipeline)
1585 {
1586 return (const struct brw_gs_prog_data *) pipeline->prog_data[MESA_SHADER_GEOMETRY];
1587 }
1588
1589 static inline const struct brw_wm_prog_data *
1590 get_wm_prog_data(struct anv_pipeline *pipeline)
1591 {
1592 return (const struct brw_wm_prog_data *) pipeline->prog_data[MESA_SHADER_FRAGMENT];
1593 }
1594
1595 static inline const struct brw_cs_prog_data *
1596 get_cs_prog_data(struct anv_pipeline *pipeline)
1597 {
1598 return (const struct brw_cs_prog_data *) pipeline->prog_data[MESA_SHADER_COMPUTE];
1599 }
1600
1601 struct anv_graphics_pipeline_create_info {
1602 /**
1603 * If non-negative, overrides the color attachment count of the pipeline's
1604 * subpass.
1605 */
1606 int8_t color_attachment_count;
1607
1608 bool use_repclear;
1609 bool disable_vs;
1610 bool use_rectlist;
1611 };
1612
1613 VkResult
1614 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1615 struct anv_pipeline_cache *cache,
1616 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1617 const struct anv_graphics_pipeline_create_info *extra,
1618 const VkAllocationCallbacks *alloc);
1619
1620 VkResult
1621 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1622 struct anv_pipeline_cache *cache,
1623 const VkComputePipelineCreateInfo *info,
1624 struct anv_shader_module *module,
1625 const char *entrypoint,
1626 const VkSpecializationInfo *spec_info);
1627
1628 VkResult
1629 anv_graphics_pipeline_create(VkDevice device,
1630 VkPipelineCache cache,
1631 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1632 const struct anv_graphics_pipeline_create_info *extra,
1633 const VkAllocationCallbacks *alloc,
1634 VkPipeline *pPipeline);
1635
1636 struct anv_format_swizzle {
1637 enum isl_channel_select r:4;
1638 enum isl_channel_select g:4;
1639 enum isl_channel_select b:4;
1640 enum isl_channel_select a:4;
1641 };
1642
1643 struct anv_format {
1644 enum isl_format isl_format:16;
1645 struct anv_format_swizzle swizzle;
1646 };
1647
1648 struct anv_format
1649 anv_get_format(const struct brw_device_info *devinfo, VkFormat format,
1650 VkImageAspectFlags aspect, VkImageTiling tiling);
1651
1652 static inline enum isl_format
1653 anv_get_isl_format(const struct brw_device_info *devinfo, VkFormat vk_format,
1654 VkImageAspectFlags aspect, VkImageTiling tiling)
1655 {
1656 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1657 }
1658
1659 void
1660 anv_compute_urb_partition(struct anv_pipeline *pipeline);
1661
1662 void
1663 anv_setup_pipeline_l3_config(struct anv_pipeline *pipeline);
1664
1665 /**
1666 * Subsurface of an anv_image.
1667 */
1668 struct anv_surface {
1669 struct isl_surf isl;
1670
1671 /**
1672 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1673 */
1674 uint32_t offset;
1675 };
1676
1677 struct anv_image {
1678 VkImageType type;
1679 /* The original VkFormat provided by the client. This may not match any
1680 * of the actual surface formats.
1681 */
1682 VkFormat vk_format;
1683 VkImageAspectFlags aspects;
1684 VkExtent3D extent;
1685 uint32_t levels;
1686 uint32_t array_size;
1687 uint32_t samples; /**< VkImageCreateInfo::samples */
1688 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1689 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1690
1691 VkDeviceSize size;
1692 uint32_t alignment;
1693
1694 /* Set when bound */
1695 struct anv_bo *bo;
1696 VkDeviceSize offset;
1697
1698 /**
1699 * Image subsurfaces
1700 *
1701 * For each foo, anv_image::foo_surface is valid if and only if
1702 * anv_image::aspects has a foo aspect.
1703 *
1704 * The hardware requires that the depth buffer and stencil buffer be
1705 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1706 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1707 * allocate the depth and stencil buffers as separate surfaces in the same
1708 * bo.
1709 */
1710 union {
1711 struct anv_surface color_surface;
1712
1713 struct {
1714 struct anv_surface depth_surface;
1715 struct anv_surface stencil_surface;
1716 };
1717 };
1718 };
1719
1720 static inline uint32_t
1721 anv_get_layerCount(const struct anv_image *image,
1722 const VkImageSubresourceRange *range)
1723 {
1724 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1725 image->array_size - range->baseArrayLayer : range->layerCount;
1726 }
1727
1728 static inline uint32_t
1729 anv_get_levelCount(const struct anv_image *image,
1730 const VkImageSubresourceRange *range)
1731 {
1732 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1733 image->levels - range->baseMipLevel : range->levelCount;
1734 }
1735
1736
1737 struct anv_image_view {
1738 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1739 struct anv_bo *bo;
1740 uint32_t offset; /**< Offset into bo. */
1741
1742 VkImageAspectFlags aspect_mask;
1743 VkFormat vk_format;
1744 uint32_t base_layer;
1745 uint32_t base_mip;
1746 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1747
1748 /** RENDER_SURFACE_STATE when using image as a color render target. */
1749 struct anv_state color_rt_surface_state;
1750
1751 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1752 struct anv_state sampler_surface_state;
1753
1754 /** RENDER_SURFACE_STATE when using image as a storage image. */
1755 struct anv_state storage_surface_state;
1756
1757 struct brw_image_param storage_image_param;
1758 };
1759
1760 struct anv_image_create_info {
1761 const VkImageCreateInfo *vk_info;
1762
1763 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
1764 isl_tiling_flags_t isl_tiling_flags;
1765
1766 uint32_t stride;
1767 };
1768
1769 VkResult anv_image_create(VkDevice _device,
1770 const struct anv_image_create_info *info,
1771 const VkAllocationCallbacks* alloc,
1772 VkImage *pImage);
1773
1774 struct anv_surface *
1775 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1776 VkImageAspectFlags aspect_mask);
1777
1778 void anv_image_view_init(struct anv_image_view *view,
1779 struct anv_device *device,
1780 const VkImageViewCreateInfo* pCreateInfo,
1781 struct anv_cmd_buffer *cmd_buffer,
1782 VkImageUsageFlags usage_mask);
1783
1784 struct anv_buffer_view {
1785 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1786 struct anv_bo *bo;
1787 uint32_t offset; /**< Offset into bo. */
1788 uint64_t range; /**< VkBufferViewCreateInfo::range */
1789
1790 struct anv_state surface_state;
1791 struct anv_state storage_surface_state;
1792
1793 struct brw_image_param storage_image_param;
1794 };
1795
1796 void anv_buffer_view_init(struct anv_buffer_view *view,
1797 struct anv_device *device,
1798 const VkBufferViewCreateInfo* pCreateInfo,
1799 struct anv_cmd_buffer *cmd_buffer);
1800
1801 enum isl_format
1802 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1803
1804 static inline struct VkExtent3D
1805 anv_sanitize_image_extent(const VkImageType imageType,
1806 const struct VkExtent3D imageExtent)
1807 {
1808 switch (imageType) {
1809 case VK_IMAGE_TYPE_1D:
1810 return (VkExtent3D) { imageExtent.width, 1, 1 };
1811 case VK_IMAGE_TYPE_2D:
1812 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1813 case VK_IMAGE_TYPE_3D:
1814 return imageExtent;
1815 default:
1816 unreachable("invalid image type");
1817 }
1818 }
1819
1820 static inline struct VkOffset3D
1821 anv_sanitize_image_offset(const VkImageType imageType,
1822 const struct VkOffset3D imageOffset)
1823 {
1824 switch (imageType) {
1825 case VK_IMAGE_TYPE_1D:
1826 return (VkOffset3D) { imageOffset.x, 0, 0 };
1827 case VK_IMAGE_TYPE_2D:
1828 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1829 case VK_IMAGE_TYPE_3D:
1830 return imageOffset;
1831 default:
1832 unreachable("invalid image type");
1833 }
1834 }
1835
1836
1837 void anv_fill_buffer_surface_state(struct anv_device *device,
1838 struct anv_state state,
1839 enum isl_format format,
1840 uint32_t offset, uint32_t range,
1841 uint32_t stride);
1842
1843 void anv_image_view_fill_image_param(struct anv_device *device,
1844 struct anv_image_view *view,
1845 struct brw_image_param *param);
1846 void anv_buffer_view_fill_image_param(struct anv_device *device,
1847 struct anv_buffer_view *view,
1848 struct brw_image_param *param);
1849
1850 struct anv_sampler {
1851 uint32_t state[4];
1852 };
1853
1854 struct anv_framebuffer {
1855 uint32_t width;
1856 uint32_t height;
1857 uint32_t layers;
1858
1859 uint32_t attachment_count;
1860 struct anv_image_view * attachments[0];
1861 };
1862
1863 struct anv_subpass {
1864 uint32_t input_count;
1865 uint32_t * input_attachments;
1866 uint32_t color_count;
1867 uint32_t * color_attachments;
1868 uint32_t * resolve_attachments;
1869 uint32_t depth_stencil_attachment;
1870
1871 /** Subpass has at least one resolve attachment */
1872 bool has_resolve;
1873 };
1874
1875 struct anv_render_pass_attachment {
1876 VkFormat format;
1877 uint32_t samples;
1878 VkAttachmentLoadOp load_op;
1879 VkAttachmentStoreOp store_op;
1880 VkAttachmentLoadOp stencil_load_op;
1881 };
1882
1883 struct anv_render_pass {
1884 uint32_t attachment_count;
1885 uint32_t subpass_count;
1886 uint32_t * subpass_attachments;
1887 struct anv_render_pass_attachment * attachments;
1888 struct anv_subpass subpasses[0];
1889 };
1890
1891 extern struct anv_render_pass anv_meta_dummy_renderpass;
1892
1893 struct anv_query_pool_slot {
1894 uint64_t begin;
1895 uint64_t end;
1896 uint64_t available;
1897 };
1898
1899 struct anv_query_pool {
1900 VkQueryType type;
1901 uint32_t slots;
1902 struct anv_bo bo;
1903 };
1904
1905 VkResult anv_device_init_meta(struct anv_device *device);
1906 void anv_device_finish_meta(struct anv_device *device);
1907
1908 void *anv_lookup_entrypoint(const char *name);
1909
1910 void anv_dump_image_to_ppm(struct anv_device *device,
1911 struct anv_image *image, unsigned miplevel,
1912 unsigned array_layer, VkImageAspectFlagBits aspect,
1913 const char *filename);
1914
1915 enum anv_dump_action {
1916 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
1917 };
1918
1919 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
1920 void anv_dump_finish(void);
1921
1922 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
1923 struct anv_framebuffer *fb);
1924
1925 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1926 \
1927 static inline struct __anv_type * \
1928 __anv_type ## _from_handle(__VkType _handle) \
1929 { \
1930 return (struct __anv_type *) _handle; \
1931 } \
1932 \
1933 static inline __VkType \
1934 __anv_type ## _to_handle(struct __anv_type *_obj) \
1935 { \
1936 return (__VkType) _obj; \
1937 }
1938
1939 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1940 \
1941 static inline struct __anv_type * \
1942 __anv_type ## _from_handle(__VkType _handle) \
1943 { \
1944 return (struct __anv_type *)(uintptr_t) _handle; \
1945 } \
1946 \
1947 static inline __VkType \
1948 __anv_type ## _to_handle(struct __anv_type *_obj) \
1949 { \
1950 return (__VkType)(uintptr_t) _obj; \
1951 }
1952
1953 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1954 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1955
1956 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1957 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1958 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1959 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1960 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1961
1962 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1963 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1964 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1965 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1966 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1967 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1968 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1969 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1970 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1971 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1972 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1973 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1974 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1975 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1976 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1977 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1978 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1979 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1980 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1981
1982 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1983 \
1984 static inline const __VkType * \
1985 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1986 { \
1987 return (const __VkType *) __anv_obj; \
1988 }
1989
1990 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1991 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1992
1993 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1994 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1995 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1996
1997 /* Gen-specific function declarations */
1998 #ifdef genX
1999 # include "anv_genX.h"
2000 #else
2001 # define genX(x) gen7_##x
2002 # include "anv_genX.h"
2003 # undef genX
2004 # define genX(x) gen75_##x
2005 # include "anv_genX.h"
2006 # undef genX
2007 # define genX(x) gen8_##x
2008 # include "anv_genX.h"
2009 # undef genX
2010 # define genX(x) gen9_##x
2011 # include "anv_genX.h"
2012 # undef genX
2013 #endif
2014
2015 #ifdef __cplusplus
2016 }
2017 #endif