anv/pass: Store the per-subpass view mask
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "compiler/brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct anv_buffer;
60 struct anv_buffer_view;
61 struct anv_image_view;
62
63 struct gen_l3_config;
64
65 #include <vulkan/vulkan.h>
66 #include <vulkan/vulkan_intel.h>
67 #include <vulkan/vk_icd.h>
68
69 #include "anv_entrypoints.h"
70 #include "isl/isl.h"
71
72 #include "common/gen_debug.h"
73 #include "wsi_common.h"
74
75 /* Allowing different clear colors requires us to perform a depth resolve at
76 * the end of certain render passes. This is because while slow clears store
77 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
78 * See the PRMs for examples describing when additional resolves would be
79 * necessary. To enable fast clears without requiring extra resolves, we set
80 * the clear value to a globally-defined one. We could allow different values
81 * if the user doesn't expect coherent data during or after a render passes
82 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
83 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
84 * 1.0f seems to be the only value used. The only application that doesn't set
85 * this value does so through the usage of an seemingly uninitialized clear
86 * value.
87 */
88 #define ANV_HZ_FC_VAL 1.0f
89
90 #define MAX_VBS 31
91 #define MAX_SETS 8
92 #define MAX_RTS 8
93 #define MAX_VIEWPORTS 16
94 #define MAX_SCISSORS 16
95 #define MAX_PUSH_CONSTANTS_SIZE 128
96 #define MAX_DYNAMIC_BUFFERS 16
97 #define MAX_IMAGES 8
98 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
99
100 #define ANV_SVGS_VB_INDEX MAX_VBS
101 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
102
103 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
104
105 static inline uint32_t
106 align_down_npot_u32(uint32_t v, uint32_t a)
107 {
108 return v - (v % a);
109 }
110
111 static inline uint32_t
112 align_u32(uint32_t v, uint32_t a)
113 {
114 assert(a != 0 && a == (a & -a));
115 return (v + a - 1) & ~(a - 1);
116 }
117
118 static inline uint64_t
119 align_u64(uint64_t v, uint64_t a)
120 {
121 assert(a != 0 && a == (a & -a));
122 return (v + a - 1) & ~(a - 1);
123 }
124
125 static inline int32_t
126 align_i32(int32_t v, int32_t a)
127 {
128 assert(a != 0 && a == (a & -a));
129 return (v + a - 1) & ~(a - 1);
130 }
131
132 /** Alignment must be a power of 2. */
133 static inline bool
134 anv_is_aligned(uintmax_t n, uintmax_t a)
135 {
136 assert(a == (a & -a));
137 return (n & (a - 1)) == 0;
138 }
139
140 static inline uint32_t
141 anv_minify(uint32_t n, uint32_t levels)
142 {
143 if (unlikely(n == 0))
144 return 0;
145 else
146 return MAX2(n >> levels, 1);
147 }
148
149 static inline float
150 anv_clamp_f(float f, float min, float max)
151 {
152 assert(min < max);
153
154 if (f > max)
155 return max;
156 else if (f < min)
157 return min;
158 else
159 return f;
160 }
161
162 static inline bool
163 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
164 {
165 if (*inout_mask & clear_mask) {
166 *inout_mask &= ~clear_mask;
167 return true;
168 } else {
169 return false;
170 }
171 }
172
173 static inline union isl_color_value
174 vk_to_isl_color(VkClearColorValue color)
175 {
176 return (union isl_color_value) {
177 .u32 = {
178 color.uint32[0],
179 color.uint32[1],
180 color.uint32[2],
181 color.uint32[3],
182 },
183 };
184 }
185
186 #define for_each_bit(b, dword) \
187 for (uint32_t __dword = (dword); \
188 (b) = __builtin_ffs(__dword) - 1, __dword; \
189 __dword &= ~(1 << (b)))
190
191 #define typed_memcpy(dest, src, count) ({ \
192 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
193 memcpy((dest), (src), (count) * sizeof(*(src))); \
194 })
195
196 /* Whenever we generate an error, pass it through this function. Useful for
197 * debugging, where we can break on it. Only call at error site, not when
198 * propagating errors. Might be useful to plug in a stack trace here.
199 */
200
201 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
202
203 #ifdef DEBUG
204 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
205 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
206 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
207 #else
208 #define vk_error(error) error
209 #define vk_errorf(error, format, ...) error
210 #define anv_debug(format, ...)
211 #endif
212
213 /**
214 * Warn on ignored extension structs.
215 *
216 * The Vulkan spec requires us to ignore unsupported or unknown structs in
217 * a pNext chain. In debug mode, emitting warnings for ignored structs may
218 * help us discover structs that we should not have ignored.
219 *
220 *
221 * From the Vulkan 1.0.38 spec:
222 *
223 * Any component of the implementation (the loader, any enabled layers,
224 * and drivers) must skip over, without processing (other than reading the
225 * sType and pNext members) any chained structures with sType values not
226 * defined by extensions supported by that component.
227 */
228 #define anv_debug_ignored_stype(sType) \
229 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
230
231 void __anv_finishme(const char *file, int line, const char *format, ...)
232 anv_printflike(3, 4);
233 void __anv_perf_warn(const char *file, int line, const char *format, ...)
234 anv_printflike(3, 4);
235 void anv_loge(const char *format, ...) anv_printflike(1, 2);
236 void anv_loge_v(const char *format, va_list va);
237
238 /**
239 * Print a FINISHME message, including its source location.
240 */
241 #define anv_finishme(format, ...) \
242 do { \
243 static bool reported = false; \
244 if (!reported) { \
245 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
246 reported = true; \
247 } \
248 } while (0)
249
250 /**
251 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
252 */
253 #define anv_perf_warn(format, ...) \
254 do { \
255 static bool reported = false; \
256 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
257 __anv_perf_warn(__FILE__, __LINE__, format, ##__VA_ARGS__); \
258 reported = true; \
259 } \
260 } while (0)
261
262 /* A non-fatal assert. Useful for debugging. */
263 #ifdef DEBUG
264 #define anv_assert(x) ({ \
265 if (unlikely(!(x))) \
266 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
267 })
268 #else
269 #define anv_assert(x)
270 #endif
271
272 /* A multi-pointer allocator
273 *
274 * When copying data structures from the user (such as a render pass), it's
275 * common to need to allocate data for a bunch of different things. Instead
276 * of doing several allocations and having to handle all of the error checking
277 * that entails, it can be easier to do a single allocation. This struct
278 * helps facilitate that. The intended usage looks like this:
279 *
280 * ANV_MULTIALLOC(ma)
281 * anv_multialloc_add(&ma, &main_ptr, 1);
282 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
283 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
284 *
285 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
286 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
287 */
288 struct anv_multialloc {
289 size_t size;
290 size_t align;
291
292 uint32_t ptr_count;
293 void **ptrs[8];
294 };
295
296 #define ANV_MULTIALLOC_INIT \
297 ((struct anv_multialloc) { 0, })
298
299 #define ANV_MULTIALLOC(_name) \
300 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
301
302 __attribute__((always_inline))
303 static inline void
304 _anv_multialloc_add(struct anv_multialloc *ma,
305 void **ptr, size_t size, size_t align)
306 {
307 size_t offset = align_u64(ma->size, align);
308 ma->size = offset + size;
309 ma->align = MAX2(ma->align, align);
310
311 /* Store the offset in the pointer. */
312 *ptr = (void *)(uintptr_t)offset;
313
314 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
315 ma->ptrs[ma->ptr_count++] = ptr;
316 }
317
318 #define anv_multialloc_add(_ma, _ptr, _count) \
319 _anv_multialloc_add((_ma), (void **)(_ptr), \
320 (_count) * sizeof(**(_ptr)), __alignof__(**(_ptr)))
321
322 __attribute__((always_inline))
323 static inline void *
324 anv_multialloc_alloc(struct anv_multialloc *ma,
325 const VkAllocationCallbacks *alloc,
326 VkSystemAllocationScope scope)
327 {
328 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
329 if (!ptr)
330 return NULL;
331
332 /* Fill out each of the pointers with their final value.
333 *
334 * for (uint32_t i = 0; i < ma->ptr_count; i++)
335 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
336 *
337 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
338 * constant, GCC is incapable of figuring this out and unrolling the loop
339 * so we have to give it a little help.
340 */
341 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
342 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
343 if ((_i) < ma->ptr_count) \
344 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
345 _ANV_MULTIALLOC_UPDATE_POINTER(0);
346 _ANV_MULTIALLOC_UPDATE_POINTER(1);
347 _ANV_MULTIALLOC_UPDATE_POINTER(2);
348 _ANV_MULTIALLOC_UPDATE_POINTER(3);
349 _ANV_MULTIALLOC_UPDATE_POINTER(4);
350 _ANV_MULTIALLOC_UPDATE_POINTER(5);
351 _ANV_MULTIALLOC_UPDATE_POINTER(6);
352 _ANV_MULTIALLOC_UPDATE_POINTER(7);
353 #undef _ANV_MULTIALLOC_UPDATE_POINTER
354
355 return ptr;
356 }
357
358 __attribute__((always_inline))
359 static inline void *
360 anv_multialloc_alloc2(struct anv_multialloc *ma,
361 const VkAllocationCallbacks *parent_alloc,
362 const VkAllocationCallbacks *alloc,
363 VkSystemAllocationScope scope)
364 {
365 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
366 }
367
368 /**
369 * A dynamically growable, circular buffer. Elements are added at head and
370 * removed from tail. head and tail are free-running uint32_t indices and we
371 * only compute the modulo with size when accessing the array. This way,
372 * number of bytes in the queue is always head - tail, even in case of
373 * wraparound.
374 */
375
376 struct anv_bo {
377 uint32_t gem_handle;
378
379 /* Index into the current validation list. This is used by the
380 * validation list building alrogithm to track which buffers are already
381 * in the validation list so that we can ensure uniqueness.
382 */
383 uint32_t index;
384
385 /* Last known offset. This value is provided by the kernel when we
386 * execbuf and is used as the presumed offset for the next bunch of
387 * relocations.
388 */
389 uint64_t offset;
390
391 uint64_t size;
392 void *map;
393
394 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
395 uint32_t flags;
396 };
397
398 static inline void
399 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
400 {
401 bo->gem_handle = gem_handle;
402 bo->index = 0;
403 bo->offset = -1;
404 bo->size = size;
405 bo->map = NULL;
406 bo->flags = 0;
407 }
408
409 /* Represents a lock-free linked list of "free" things. This is used by
410 * both the block pool and the state pools. Unfortunately, in order to
411 * solve the ABA problem, we can't use a single uint32_t head.
412 */
413 union anv_free_list {
414 struct {
415 int32_t offset;
416
417 /* A simple count that is incremented every time the head changes. */
418 uint32_t count;
419 };
420 uint64_t u64;
421 };
422
423 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
424
425 struct anv_block_state {
426 union {
427 struct {
428 uint32_t next;
429 uint32_t end;
430 };
431 uint64_t u64;
432 };
433 };
434
435 struct anv_block_pool {
436 struct anv_device *device;
437
438 struct anv_bo bo;
439
440 /* The offset from the start of the bo to the "center" of the block
441 * pool. Pointers to allocated blocks are given by
442 * bo.map + center_bo_offset + offsets.
443 */
444 uint32_t center_bo_offset;
445
446 /* Current memory map of the block pool. This pointer may or may not
447 * point to the actual beginning of the block pool memory. If
448 * anv_block_pool_alloc_back has ever been called, then this pointer
449 * will point to the "center" position of the buffer and all offsets
450 * (negative or positive) given out by the block pool alloc functions
451 * will be valid relative to this pointer.
452 *
453 * In particular, map == bo.map + center_offset
454 */
455 void *map;
456 int fd;
457
458 /**
459 * Array of mmaps and gem handles owned by the block pool, reclaimed when
460 * the block pool is destroyed.
461 */
462 struct u_vector mmap_cleanups;
463
464 uint32_t block_size;
465
466 union anv_free_list free_list;
467 struct anv_block_state state;
468
469 union anv_free_list back_free_list;
470 struct anv_block_state back_state;
471 };
472
473 /* Block pools are backed by a fixed-size 1GB memfd */
474 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
475
476 /* The center of the block pool is also the middle of the memfd. This may
477 * change in the future if we decide differently for some reason.
478 */
479 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
480
481 static inline uint32_t
482 anv_block_pool_size(struct anv_block_pool *pool)
483 {
484 return pool->state.end + pool->back_state.end;
485 }
486
487 struct anv_state {
488 int32_t offset;
489 uint32_t alloc_size;
490 void *map;
491 };
492
493 struct anv_fixed_size_state_pool {
494 size_t state_size;
495 union anv_free_list free_list;
496 struct anv_block_state block;
497 };
498
499 #define ANV_MIN_STATE_SIZE_LOG2 6
500 #define ANV_MAX_STATE_SIZE_LOG2 20
501
502 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
503
504 struct anv_state_pool {
505 struct anv_block_pool *block_pool;
506 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
507 };
508
509 struct anv_state_stream_block;
510
511 struct anv_state_stream {
512 struct anv_block_pool *block_pool;
513
514 /* The current working block */
515 struct anv_state_stream_block *block;
516
517 /* Offset at which the current block starts */
518 uint32_t start;
519 /* Offset at which to allocate the next state */
520 uint32_t next;
521 /* Offset at which the current block ends */
522 uint32_t end;
523 };
524
525 #define CACHELINE_SIZE 64
526 #define CACHELINE_MASK 63
527
528 static inline void
529 anv_clflush_range(void *start, size_t size)
530 {
531 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
532 void *end = start + size;
533
534 while (p < end) {
535 __builtin_ia32_clflush(p);
536 p += CACHELINE_SIZE;
537 }
538 }
539
540 static inline void
541 anv_flush_range(void *start, size_t size)
542 {
543 __builtin_ia32_mfence();
544 anv_clflush_range(start, size);
545 }
546
547 static inline void
548 anv_invalidate_range(void *start, size_t size)
549 {
550 anv_clflush_range(start, size);
551 __builtin_ia32_mfence();
552 }
553
554 VkResult anv_block_pool_init(struct anv_block_pool *pool,
555 struct anv_device *device, uint32_t block_size);
556 void anv_block_pool_finish(struct anv_block_pool *pool);
557 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
558 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
559 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
560 void anv_state_pool_init(struct anv_state_pool *pool,
561 struct anv_block_pool *block_pool);
562 void anv_state_pool_finish(struct anv_state_pool *pool);
563 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
564 size_t state_size, size_t alignment);
565 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
566 void anv_state_stream_init(struct anv_state_stream *stream,
567 struct anv_block_pool *block_pool);
568 void anv_state_stream_finish(struct anv_state_stream *stream);
569 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
570 uint32_t size, uint32_t alignment);
571
572 /**
573 * Implements a pool of re-usable BOs. The interface is identical to that
574 * of block_pool except that each block is its own BO.
575 */
576 struct anv_bo_pool {
577 struct anv_device *device;
578
579 void *free_list[16];
580 };
581
582 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
583 void anv_bo_pool_finish(struct anv_bo_pool *pool);
584 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
585 uint32_t size);
586 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
587
588 struct anv_scratch_bo {
589 bool exists;
590 struct anv_bo bo;
591 };
592
593 struct anv_scratch_pool {
594 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
595 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
596 };
597
598 void anv_scratch_pool_init(struct anv_device *device,
599 struct anv_scratch_pool *pool);
600 void anv_scratch_pool_finish(struct anv_device *device,
601 struct anv_scratch_pool *pool);
602 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
603 struct anv_scratch_pool *pool,
604 gl_shader_stage stage,
605 unsigned per_thread_scratch);
606
607 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
608 struct anv_bo_cache {
609 struct hash_table *bo_map;
610 pthread_mutex_t mutex;
611 };
612
613 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
614 void anv_bo_cache_finish(struct anv_bo_cache *cache);
615 VkResult anv_bo_cache_alloc(struct anv_device *device,
616 struct anv_bo_cache *cache,
617 uint64_t size, struct anv_bo **bo);
618 VkResult anv_bo_cache_import(struct anv_device *device,
619 struct anv_bo_cache *cache,
620 int fd, uint64_t size, struct anv_bo **bo);
621 VkResult anv_bo_cache_export(struct anv_device *device,
622 struct anv_bo_cache *cache,
623 struct anv_bo *bo_in, int *fd_out);
624 void anv_bo_cache_release(struct anv_device *device,
625 struct anv_bo_cache *cache,
626 struct anv_bo *bo);
627
628 struct anv_physical_device {
629 VK_LOADER_DATA _loader_data;
630
631 struct anv_instance * instance;
632 uint32_t chipset_id;
633 char path[20];
634 const char * name;
635 struct gen_device_info info;
636 /** Amount of "GPU memory" we want to advertise
637 *
638 * Clearly, this value is bogus since Intel is a UMA architecture. On
639 * gen7 platforms, we are limited by GTT size unless we want to implement
640 * fine-grained tracking and GTT splitting. On Broadwell and above we are
641 * practically unlimited. However, we will never report more than 3/4 of
642 * the total system ram to try and avoid running out of RAM.
643 */
644 uint64_t heap_size;
645 bool supports_48bit_addresses;
646 struct brw_compiler * compiler;
647 struct isl_device isl_dev;
648 int cmd_parser_version;
649 bool has_exec_async;
650
651 uint32_t eu_total;
652 uint32_t subslice_total;
653
654 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
655 uint8_t driver_uuid[VK_UUID_SIZE];
656 uint8_t device_uuid[VK_UUID_SIZE];
657
658 struct wsi_device wsi_device;
659 int local_fd;
660 };
661
662 struct anv_instance {
663 VK_LOADER_DATA _loader_data;
664
665 VkAllocationCallbacks alloc;
666
667 uint32_t apiVersion;
668 int physicalDeviceCount;
669 struct anv_physical_device physicalDevice;
670 };
671
672 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
673 void anv_finish_wsi(struct anv_physical_device *physical_device);
674
675 struct anv_queue {
676 VK_LOADER_DATA _loader_data;
677
678 struct anv_device * device;
679
680 struct anv_state_pool * pool;
681 };
682
683 struct anv_pipeline_cache {
684 struct anv_device * device;
685 pthread_mutex_t mutex;
686
687 struct hash_table * cache;
688 };
689
690 struct anv_pipeline_bind_map;
691
692 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
693 struct anv_device *device,
694 bool cache_enabled);
695 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
696
697 struct anv_shader_bin *
698 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
699 const void *key, uint32_t key_size);
700 struct anv_shader_bin *
701 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
702 const void *key_data, uint32_t key_size,
703 const void *kernel_data, uint32_t kernel_size,
704 const struct brw_stage_prog_data *prog_data,
705 uint32_t prog_data_size,
706 const struct anv_pipeline_bind_map *bind_map);
707
708 struct anv_device {
709 VK_LOADER_DATA _loader_data;
710
711 VkAllocationCallbacks alloc;
712
713 struct anv_instance * instance;
714 uint32_t chipset_id;
715 struct gen_device_info info;
716 struct isl_device isl_dev;
717 int context_id;
718 int fd;
719 bool can_chain_batches;
720 bool robust_buffer_access;
721
722 struct anv_bo_pool batch_bo_pool;
723
724 struct anv_bo_cache bo_cache;
725
726 struct anv_block_pool dynamic_state_block_pool;
727 struct anv_state_pool dynamic_state_pool;
728
729 struct anv_block_pool instruction_block_pool;
730 struct anv_state_pool instruction_state_pool;
731
732 struct anv_block_pool surface_state_block_pool;
733 struct anv_state_pool surface_state_pool;
734
735 struct anv_bo workaround_bo;
736
737 struct anv_pipeline_cache blorp_shader_cache;
738 struct blorp_context blorp;
739
740 struct anv_state border_colors;
741
742 struct anv_queue queue;
743
744 struct anv_scratch_pool scratch_pool;
745
746 uint32_t default_mocs;
747
748 pthread_mutex_t mutex;
749 pthread_cond_t queue_submit;
750 bool lost;
751 };
752
753 static void inline
754 anv_state_flush(struct anv_device *device, struct anv_state state)
755 {
756 if (device->info.has_llc)
757 return;
758
759 anv_flush_range(state.map, state.alloc_size);
760 }
761
762 void anv_device_init_blorp(struct anv_device *device);
763 void anv_device_finish_blorp(struct anv_device *device);
764
765 VkResult anv_device_execbuf(struct anv_device *device,
766 struct drm_i915_gem_execbuffer2 *execbuf,
767 struct anv_bo **execbuf_bos);
768 VkResult anv_device_query_status(struct anv_device *device);
769 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
770 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
771 int64_t timeout);
772
773 void* anv_gem_mmap(struct anv_device *device,
774 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
775 void anv_gem_munmap(void *p, uint64_t size);
776 uint32_t anv_gem_create(struct anv_device *device, size_t size);
777 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
778 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
779 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
780 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
781 int anv_gem_execbuffer(struct anv_device *device,
782 struct drm_i915_gem_execbuffer2 *execbuf);
783 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
784 uint32_t stride, uint32_t tiling);
785 int anv_gem_create_context(struct anv_device *device);
786 int anv_gem_destroy_context(struct anv_device *device, int context);
787 int anv_gem_get_context_param(int fd, int context, uint32_t param,
788 uint64_t *value);
789 int anv_gem_get_param(int fd, uint32_t param);
790 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
791 int anv_gem_get_aperture(int fd, uint64_t *size);
792 bool anv_gem_supports_48b_addresses(int fd);
793 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
794 uint32_t *active, uint32_t *pending);
795 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
796 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
797 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
798 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
799 uint32_t read_domains, uint32_t write_domain);
800
801 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
802
803 struct anv_reloc_list {
804 size_t num_relocs;
805 size_t array_length;
806 struct drm_i915_gem_relocation_entry * relocs;
807 struct anv_bo ** reloc_bos;
808 };
809
810 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
811 const VkAllocationCallbacks *alloc);
812 void anv_reloc_list_finish(struct anv_reloc_list *list,
813 const VkAllocationCallbacks *alloc);
814
815 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
816 const VkAllocationCallbacks *alloc,
817 uint32_t offset, struct anv_bo *target_bo,
818 uint32_t delta);
819
820 struct anv_batch_bo {
821 /* Link in the anv_cmd_buffer.owned_batch_bos list */
822 struct list_head link;
823
824 struct anv_bo bo;
825
826 /* Bytes actually consumed in this batch BO */
827 size_t length;
828
829 struct anv_reloc_list relocs;
830 };
831
832 struct anv_batch {
833 const VkAllocationCallbacks * alloc;
834
835 void * start;
836 void * end;
837 void * next;
838
839 struct anv_reloc_list * relocs;
840
841 /* This callback is called (with the associated user data) in the event
842 * that the batch runs out of space.
843 */
844 VkResult (*extend_cb)(struct anv_batch *, void *);
845 void * user_data;
846
847 /**
848 * Current error status of the command buffer. Used to track inconsistent
849 * or incomplete command buffer states that are the consequence of run-time
850 * errors such as out of memory scenarios. We want to track this in the
851 * batch because the command buffer object is not visible to some parts
852 * of the driver.
853 */
854 VkResult status;
855 };
856
857 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
858 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
859 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
860 void *location, struct anv_bo *bo, uint32_t offset);
861 VkResult anv_device_submit_simple_batch(struct anv_device *device,
862 struct anv_batch *batch);
863
864 static inline VkResult
865 anv_batch_set_error(struct anv_batch *batch, VkResult error)
866 {
867 assert(error != VK_SUCCESS);
868 if (batch->status == VK_SUCCESS)
869 batch->status = error;
870 return batch->status;
871 }
872
873 static inline bool
874 anv_batch_has_error(struct anv_batch *batch)
875 {
876 return batch->status != VK_SUCCESS;
877 }
878
879 struct anv_address {
880 struct anv_bo *bo;
881 uint32_t offset;
882 };
883
884 static inline uint64_t
885 _anv_combine_address(struct anv_batch *batch, void *location,
886 const struct anv_address address, uint32_t delta)
887 {
888 if (address.bo == NULL) {
889 return address.offset + delta;
890 } else {
891 assert(batch->start <= location && location < batch->end);
892
893 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
894 }
895 }
896
897 #define __gen_address_type struct anv_address
898 #define __gen_user_data struct anv_batch
899 #define __gen_combine_address _anv_combine_address
900
901 /* Wrapper macros needed to work around preprocessor argument issues. In
902 * particular, arguments don't get pre-evaluated if they are concatenated.
903 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
904 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
905 * We can work around this easily enough with these helpers.
906 */
907 #define __anv_cmd_length(cmd) cmd ## _length
908 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
909 #define __anv_cmd_header(cmd) cmd ## _header
910 #define __anv_cmd_pack(cmd) cmd ## _pack
911 #define __anv_reg_num(reg) reg ## _num
912
913 #define anv_pack_struct(dst, struc, ...) do { \
914 struct struc __template = { \
915 __VA_ARGS__ \
916 }; \
917 __anv_cmd_pack(struc)(NULL, dst, &__template); \
918 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
919 } while (0)
920
921 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
922 void *__dst = anv_batch_emit_dwords(batch, n); \
923 if (__dst) { \
924 struct cmd __template = { \
925 __anv_cmd_header(cmd), \
926 .DWordLength = n - __anv_cmd_length_bias(cmd), \
927 __VA_ARGS__ \
928 }; \
929 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
930 } \
931 __dst; \
932 })
933
934 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
935 do { \
936 uint32_t *dw; \
937 \
938 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
939 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
940 if (!dw) \
941 break; \
942 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
943 dw[i] = (dwords0)[i] | (dwords1)[i]; \
944 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
945 } while (0)
946
947 #define anv_batch_emit(batch, cmd, name) \
948 for (struct cmd name = { __anv_cmd_header(cmd) }, \
949 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
950 __builtin_expect(_dst != NULL, 1); \
951 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
952 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
953 _dst = NULL; \
954 }))
955
956 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
957 .GraphicsDataTypeGFDT = 0, \
958 .LLCCacheabilityControlLLCCC = 0, \
959 .L3CacheabilityControlL3CC = 1, \
960 }
961
962 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
963 .LLCeLLCCacheabilityControlLLCCC = 0, \
964 .L3CacheabilityControlL3CC = 1, \
965 }
966
967 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
968 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
969 .TargetCache = L3DefertoPATforLLCeLLCselection, \
970 .AgeforQUADLRU = 0 \
971 }
972
973 /* Skylake: MOCS is now an index into an array of 62 different caching
974 * configurations programmed by the kernel.
975 */
976
977 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
978 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
979 .IndextoMOCSTables = 2 \
980 }
981
982 #define GEN9_MOCS_PTE { \
983 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
984 .IndextoMOCSTables = 1 \
985 }
986
987 struct anv_device_memory {
988 struct anv_bo * bo;
989 uint32_t type_index;
990 VkDeviceSize map_size;
991 void * map;
992 };
993
994 /**
995 * Header for Vertex URB Entry (VUE)
996 */
997 struct anv_vue_header {
998 uint32_t Reserved;
999 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1000 uint32_t ViewportIndex;
1001 float PointWidth;
1002 };
1003
1004 struct anv_descriptor_set_binding_layout {
1005 #ifndef NDEBUG
1006 /* The type of the descriptors in this binding */
1007 VkDescriptorType type;
1008 #endif
1009
1010 /* Number of array elements in this binding */
1011 uint16_t array_size;
1012
1013 /* Index into the flattend descriptor set */
1014 uint16_t descriptor_index;
1015
1016 /* Index into the dynamic state array for a dynamic buffer */
1017 int16_t dynamic_offset_index;
1018
1019 /* Index into the descriptor set buffer views */
1020 int16_t buffer_index;
1021
1022 struct {
1023 /* Index into the binding table for the associated surface */
1024 int16_t surface_index;
1025
1026 /* Index into the sampler table for the associated sampler */
1027 int16_t sampler_index;
1028
1029 /* Index into the image table for the associated image */
1030 int16_t image_index;
1031 } stage[MESA_SHADER_STAGES];
1032
1033 /* Immutable samplers (or NULL if no immutable samplers) */
1034 struct anv_sampler **immutable_samplers;
1035 };
1036
1037 struct anv_descriptor_set_layout {
1038 /* Number of bindings in this descriptor set */
1039 uint16_t binding_count;
1040
1041 /* Total size of the descriptor set with room for all array entries */
1042 uint16_t size;
1043
1044 /* Shader stages affected by this descriptor set */
1045 uint16_t shader_stages;
1046
1047 /* Number of buffers in this descriptor set */
1048 uint16_t buffer_count;
1049
1050 /* Number of dynamic offsets used by this descriptor set */
1051 uint16_t dynamic_offset_count;
1052
1053 /* Bindings in this descriptor set */
1054 struct anv_descriptor_set_binding_layout binding[0];
1055 };
1056
1057 struct anv_descriptor {
1058 VkDescriptorType type;
1059
1060 union {
1061 struct {
1062 struct anv_image_view *image_view;
1063 struct anv_sampler *sampler;
1064
1065 /* Used to determine whether or not we need the surface state to have
1066 * the auxiliary buffer enabled.
1067 */
1068 enum isl_aux_usage aux_usage;
1069 };
1070
1071 struct {
1072 struct anv_buffer *buffer;
1073 uint64_t offset;
1074 uint64_t range;
1075 };
1076
1077 struct anv_buffer_view *buffer_view;
1078 };
1079 };
1080
1081 struct anv_descriptor_set {
1082 const struct anv_descriptor_set_layout *layout;
1083 uint32_t size;
1084 uint32_t buffer_count;
1085 struct anv_buffer_view *buffer_views;
1086 struct anv_descriptor descriptors[0];
1087 };
1088
1089 struct anv_buffer_view {
1090 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1091 struct anv_bo *bo;
1092 uint32_t offset; /**< Offset into bo. */
1093 uint64_t range; /**< VkBufferViewCreateInfo::range */
1094
1095 struct anv_state surface_state;
1096 struct anv_state storage_surface_state;
1097 struct anv_state writeonly_storage_surface_state;
1098
1099 struct brw_image_param storage_image_param;
1100 };
1101
1102 struct anv_push_descriptor_set {
1103 struct anv_descriptor_set set;
1104
1105 /* Put this field right behind anv_descriptor_set so it fills up the
1106 * descriptors[0] field. */
1107 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1108
1109 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1110 };
1111
1112 struct anv_descriptor_pool {
1113 uint32_t size;
1114 uint32_t next;
1115 uint32_t free_list;
1116
1117 struct anv_state_stream surface_state_stream;
1118 void *surface_state_free_list;
1119
1120 char data[0];
1121 };
1122
1123 enum anv_descriptor_template_entry_type {
1124 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1125 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1126 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1127 };
1128
1129 struct anv_descriptor_template_entry {
1130 /* The type of descriptor in this entry */
1131 VkDescriptorType type;
1132
1133 /* Binding in the descriptor set */
1134 uint32_t binding;
1135
1136 /* Offset at which to write into the descriptor set binding */
1137 uint32_t array_element;
1138
1139 /* Number of elements to write into the descriptor set binding */
1140 uint32_t array_count;
1141
1142 /* Offset into the user provided data */
1143 size_t offset;
1144
1145 /* Stride between elements into the user provided data */
1146 size_t stride;
1147 };
1148
1149 struct anv_descriptor_update_template {
1150 /* The descriptor set this template corresponds to. This value is only
1151 * valid if the template was created with the templateType
1152 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1153 */
1154 uint8_t set;
1155
1156 /* Number of entries in this template */
1157 uint32_t entry_count;
1158
1159 /* Entries of the template */
1160 struct anv_descriptor_template_entry entries[0];
1161 };
1162
1163 size_t
1164 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1165
1166 void
1167 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1168 const struct gen_device_info * const devinfo,
1169 const VkDescriptorImageInfo * const info,
1170 VkDescriptorType type,
1171 uint32_t binding,
1172 uint32_t element);
1173
1174 void
1175 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1176 VkDescriptorType type,
1177 struct anv_buffer_view *buffer_view,
1178 uint32_t binding,
1179 uint32_t element);
1180
1181 void
1182 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1183 struct anv_device *device,
1184 struct anv_state_stream *alloc_stream,
1185 VkDescriptorType type,
1186 struct anv_buffer *buffer,
1187 uint32_t binding,
1188 uint32_t element,
1189 VkDeviceSize offset,
1190 VkDeviceSize range);
1191
1192 void
1193 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1194 struct anv_device *device,
1195 struct anv_state_stream *alloc_stream,
1196 const struct anv_descriptor_update_template *template,
1197 const void *data);
1198
1199 VkResult
1200 anv_descriptor_set_create(struct anv_device *device,
1201 struct anv_descriptor_pool *pool,
1202 const struct anv_descriptor_set_layout *layout,
1203 struct anv_descriptor_set **out_set);
1204
1205 void
1206 anv_descriptor_set_destroy(struct anv_device *device,
1207 struct anv_descriptor_pool *pool,
1208 struct anv_descriptor_set *set);
1209
1210 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1211
1212 struct anv_pipeline_binding {
1213 /* The descriptor set this surface corresponds to. The special value of
1214 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1215 * to a color attachment and not a regular descriptor.
1216 */
1217 uint8_t set;
1218
1219 /* Binding in the descriptor set */
1220 uint8_t binding;
1221
1222 /* Index in the binding */
1223 uint8_t index;
1224
1225 /* Input attachment index (relative to the subpass) */
1226 uint8_t input_attachment_index;
1227
1228 /* For a storage image, whether it is write-only */
1229 bool write_only;
1230 };
1231
1232 struct anv_pipeline_layout {
1233 struct {
1234 struct anv_descriptor_set_layout *layout;
1235 uint32_t dynamic_offset_start;
1236 } set[MAX_SETS];
1237
1238 uint32_t num_sets;
1239
1240 struct {
1241 bool has_dynamic_offsets;
1242 } stage[MESA_SHADER_STAGES];
1243
1244 unsigned char sha1[20];
1245 };
1246
1247 struct anv_buffer {
1248 struct anv_device * device;
1249 VkDeviceSize size;
1250
1251 VkBufferUsageFlags usage;
1252
1253 /* Set when bound */
1254 struct anv_bo * bo;
1255 VkDeviceSize offset;
1256 };
1257
1258 static inline uint64_t
1259 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1260 {
1261 assert(offset <= buffer->size);
1262 if (range == VK_WHOLE_SIZE) {
1263 return buffer->size - offset;
1264 } else {
1265 assert(range <= buffer->size);
1266 return range;
1267 }
1268 }
1269
1270 enum anv_cmd_dirty_bits {
1271 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1272 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1273 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1274 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1275 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1276 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1277 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1278 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1279 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1280 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1281 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1282 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1283 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1284 };
1285 typedef uint32_t anv_cmd_dirty_mask_t;
1286
1287 enum anv_pipe_bits {
1288 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1289 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1290 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1291 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1292 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1293 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1294 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1295 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1296 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1297 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1298 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1299
1300 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1301 * a flush has happened but not a CS stall. The next time we do any sort
1302 * of invalidation we need to insert a CS stall at that time. Otherwise,
1303 * we would have to CS stall on every flush which could be bad.
1304 */
1305 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1306 };
1307
1308 #define ANV_PIPE_FLUSH_BITS ( \
1309 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1310 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1311 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1312
1313 #define ANV_PIPE_STALL_BITS ( \
1314 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1315 ANV_PIPE_DEPTH_STALL_BIT | \
1316 ANV_PIPE_CS_STALL_BIT)
1317
1318 #define ANV_PIPE_INVALIDATE_BITS ( \
1319 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1320 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1321 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1322 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1323 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1324 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1325
1326 static inline enum anv_pipe_bits
1327 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1328 {
1329 enum anv_pipe_bits pipe_bits = 0;
1330
1331 unsigned b;
1332 for_each_bit(b, flags) {
1333 switch ((VkAccessFlagBits)(1 << b)) {
1334 case VK_ACCESS_SHADER_WRITE_BIT:
1335 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1336 break;
1337 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1338 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1339 break;
1340 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1341 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1342 break;
1343 case VK_ACCESS_TRANSFER_WRITE_BIT:
1344 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1345 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1346 break;
1347 default:
1348 break; /* Nothing to do */
1349 }
1350 }
1351
1352 return pipe_bits;
1353 }
1354
1355 static inline enum anv_pipe_bits
1356 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1357 {
1358 enum anv_pipe_bits pipe_bits = 0;
1359
1360 unsigned b;
1361 for_each_bit(b, flags) {
1362 switch ((VkAccessFlagBits)(1 << b)) {
1363 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1364 case VK_ACCESS_INDEX_READ_BIT:
1365 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1366 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1367 break;
1368 case VK_ACCESS_UNIFORM_READ_BIT:
1369 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1370 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1371 break;
1372 case VK_ACCESS_SHADER_READ_BIT:
1373 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1374 case VK_ACCESS_TRANSFER_READ_BIT:
1375 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1376 break;
1377 default:
1378 break; /* Nothing to do */
1379 }
1380 }
1381
1382 return pipe_bits;
1383 }
1384
1385 struct anv_vertex_binding {
1386 struct anv_buffer * buffer;
1387 VkDeviceSize offset;
1388 };
1389
1390 struct anv_push_constants {
1391 /* Current allocated size of this push constants data structure.
1392 * Because a decent chunk of it may not be used (images on SKL, for
1393 * instance), we won't actually allocate the entire structure up-front.
1394 */
1395 uint32_t size;
1396
1397 /* Push constant data provided by the client through vkPushConstants */
1398 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1399
1400 /* Our hardware only provides zero-based vertex and instance id so, in
1401 * order to satisfy the vulkan requirements, we may have to push one or
1402 * both of these into the shader.
1403 */
1404 uint32_t base_vertex;
1405 uint32_t base_instance;
1406
1407 /* Image data for image_load_store on pre-SKL */
1408 struct brw_image_param images[MAX_IMAGES];
1409 };
1410
1411 struct anv_dynamic_state {
1412 struct {
1413 uint32_t count;
1414 VkViewport viewports[MAX_VIEWPORTS];
1415 } viewport;
1416
1417 struct {
1418 uint32_t count;
1419 VkRect2D scissors[MAX_SCISSORS];
1420 } scissor;
1421
1422 float line_width;
1423
1424 struct {
1425 float bias;
1426 float clamp;
1427 float slope;
1428 } depth_bias;
1429
1430 float blend_constants[4];
1431
1432 struct {
1433 float min;
1434 float max;
1435 } depth_bounds;
1436
1437 struct {
1438 uint32_t front;
1439 uint32_t back;
1440 } stencil_compare_mask;
1441
1442 struct {
1443 uint32_t front;
1444 uint32_t back;
1445 } stencil_write_mask;
1446
1447 struct {
1448 uint32_t front;
1449 uint32_t back;
1450 } stencil_reference;
1451 };
1452
1453 extern const struct anv_dynamic_state default_dynamic_state;
1454
1455 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1456 const struct anv_dynamic_state *src,
1457 uint32_t copy_mask);
1458
1459 /**
1460 * Attachment state when recording a renderpass instance.
1461 *
1462 * The clear value is valid only if there exists a pending clear.
1463 */
1464 struct anv_attachment_state {
1465 enum isl_aux_usage aux_usage;
1466 enum isl_aux_usage input_aux_usage;
1467 struct anv_state color_rt_state;
1468 struct anv_state input_att_state;
1469
1470 VkImageLayout current_layout;
1471 VkImageAspectFlags pending_clear_aspects;
1472 bool fast_clear;
1473 VkClearValue clear_value;
1474 bool clear_color_is_zero_one;
1475 };
1476
1477 /** State required while building cmd buffer */
1478 struct anv_cmd_state {
1479 /* PIPELINE_SELECT.PipelineSelection */
1480 uint32_t current_pipeline;
1481 const struct gen_l3_config * current_l3_config;
1482 uint32_t vb_dirty;
1483 anv_cmd_dirty_mask_t dirty;
1484 anv_cmd_dirty_mask_t compute_dirty;
1485 enum anv_pipe_bits pending_pipe_bits;
1486 uint32_t num_workgroups_offset;
1487 struct anv_bo *num_workgroups_bo;
1488 VkShaderStageFlags descriptors_dirty;
1489 VkShaderStageFlags push_constants_dirty;
1490 uint32_t scratch_size;
1491 struct anv_pipeline * pipeline;
1492 struct anv_pipeline * compute_pipeline;
1493 struct anv_framebuffer * framebuffer;
1494 struct anv_render_pass * pass;
1495 struct anv_subpass * subpass;
1496 VkRect2D render_area;
1497 uint32_t restart_index;
1498 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1499 struct anv_descriptor_set * descriptors[MAX_SETS];
1500 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1501 VkShaderStageFlags push_constant_stages;
1502 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1503 struct anv_state binding_tables[MESA_SHADER_STAGES];
1504 struct anv_state samplers[MESA_SHADER_STAGES];
1505 struct anv_dynamic_state dynamic;
1506 bool need_query_wa;
1507
1508 struct anv_push_descriptor_set push_descriptor;
1509
1510 /**
1511 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1512 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1513 * and before invoking the secondary in ExecuteCommands.
1514 */
1515 bool pma_fix_enabled;
1516
1517 /**
1518 * Whether or not we know for certain that HiZ is enabled for the current
1519 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1520 * enabled or not, this will be false.
1521 */
1522 bool hiz_enabled;
1523
1524 /**
1525 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1526 * valid only when recording a render pass instance.
1527 */
1528 struct anv_attachment_state * attachments;
1529
1530 /**
1531 * Surface states for color render targets. These are stored in a single
1532 * flat array. For depth-stencil attachments, the surface state is simply
1533 * left blank.
1534 */
1535 struct anv_state render_pass_states;
1536
1537 /**
1538 * A null surface state of the right size to match the framebuffer. This
1539 * is one of the states in render_pass_states.
1540 */
1541 struct anv_state null_surface_state;
1542
1543 struct {
1544 struct anv_buffer * index_buffer;
1545 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1546 uint32_t index_offset;
1547 } gen7;
1548 };
1549
1550 struct anv_cmd_pool {
1551 VkAllocationCallbacks alloc;
1552 struct list_head cmd_buffers;
1553 };
1554
1555 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1556
1557 enum anv_cmd_buffer_exec_mode {
1558 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1559 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1560 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1561 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1562 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1563 };
1564
1565 struct anv_cmd_buffer {
1566 VK_LOADER_DATA _loader_data;
1567
1568 struct anv_device * device;
1569
1570 struct anv_cmd_pool * pool;
1571 struct list_head pool_link;
1572
1573 struct anv_batch batch;
1574
1575 /* Fields required for the actual chain of anv_batch_bo's.
1576 *
1577 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1578 */
1579 struct list_head batch_bos;
1580 enum anv_cmd_buffer_exec_mode exec_mode;
1581
1582 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1583 * referenced by this command buffer
1584 *
1585 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1586 */
1587 struct u_vector seen_bbos;
1588
1589 /* A vector of int32_t's for every block of binding tables.
1590 *
1591 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1592 */
1593 struct u_vector bt_blocks;
1594 uint32_t bt_next;
1595
1596 struct anv_reloc_list surface_relocs;
1597 /** Last seen surface state block pool center bo offset */
1598 uint32_t last_ss_pool_center;
1599
1600 /* Serial for tracking buffer completion */
1601 uint32_t serial;
1602
1603 /* Stream objects for storing temporary data */
1604 struct anv_state_stream surface_state_stream;
1605 struct anv_state_stream dynamic_state_stream;
1606
1607 VkCommandBufferUsageFlags usage_flags;
1608 VkCommandBufferLevel level;
1609
1610 struct anv_cmd_state state;
1611 };
1612
1613 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1614 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1615 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1616 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1617 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1618 struct anv_cmd_buffer *secondary);
1619 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1620 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1621 struct anv_cmd_buffer *cmd_buffer);
1622
1623 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1624
1625 VkResult
1626 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1627 gl_shader_stage stage, uint32_t size);
1628 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1629 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1630 (offsetof(struct anv_push_constants, field) + \
1631 sizeof(cmd_buffer->state.push_constants[0]->field)))
1632
1633 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1634 const void *data, uint32_t size, uint32_t alignment);
1635 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1636 uint32_t *a, uint32_t *b,
1637 uint32_t dwords, uint32_t alignment);
1638
1639 struct anv_address
1640 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1641 struct anv_state
1642 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1643 uint32_t entries, uint32_t *state_offset);
1644 struct anv_state
1645 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1646 struct anv_state
1647 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1648 uint32_t size, uint32_t alignment);
1649
1650 VkResult
1651 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1652
1653 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1654 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1655 bool depth_clamp_enable);
1656 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1657
1658 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1659 struct anv_render_pass *pass,
1660 struct anv_framebuffer *framebuffer,
1661 const VkClearValue *clear_values);
1662
1663 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1664
1665 struct anv_state
1666 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1667 gl_shader_stage stage);
1668 struct anv_state
1669 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1670
1671 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1672 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1673
1674 const struct anv_image_view *
1675 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1676
1677 VkResult
1678 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1679 uint32_t num_entries,
1680 uint32_t *state_offset,
1681 struct anv_state *bt_state);
1682
1683 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1684
1685 enum anv_fence_state {
1686 /** Indicates that this is a new (or newly reset fence) */
1687 ANV_FENCE_STATE_RESET,
1688
1689 /** Indicates that this fence has been submitted to the GPU but is still
1690 * (as far as we know) in use by the GPU.
1691 */
1692 ANV_FENCE_STATE_SUBMITTED,
1693
1694 ANV_FENCE_STATE_SIGNALED,
1695 };
1696
1697 struct anv_fence {
1698 struct anv_bo bo;
1699 struct drm_i915_gem_execbuffer2 execbuf;
1700 struct drm_i915_gem_exec_object2 exec2_objects[1];
1701 enum anv_fence_state state;
1702 };
1703
1704 struct anv_event {
1705 uint64_t semaphore;
1706 struct anv_state state;
1707 };
1708
1709 struct anv_shader_module {
1710 unsigned char sha1[20];
1711 uint32_t size;
1712 char data[0];
1713 };
1714
1715 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1716 struct anv_shader_module *module,
1717 const char *entrypoint,
1718 const struct anv_pipeline_layout *pipeline_layout,
1719 const VkSpecializationInfo *spec_info);
1720
1721 static inline gl_shader_stage
1722 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1723 {
1724 assert(__builtin_popcount(vk_stage) == 1);
1725 return ffs(vk_stage) - 1;
1726 }
1727
1728 static inline VkShaderStageFlagBits
1729 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1730 {
1731 return (1 << mesa_stage);
1732 }
1733
1734 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1735
1736 #define anv_foreach_stage(stage, stage_bits) \
1737 for (gl_shader_stage stage, \
1738 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1739 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1740 __tmp &= ~(1 << (stage)))
1741
1742 struct anv_pipeline_bind_map {
1743 uint32_t surface_count;
1744 uint32_t sampler_count;
1745 uint32_t image_count;
1746
1747 struct anv_pipeline_binding * surface_to_descriptor;
1748 struct anv_pipeline_binding * sampler_to_descriptor;
1749 };
1750
1751 struct anv_shader_bin_key {
1752 uint32_t size;
1753 uint8_t data[0];
1754 };
1755
1756 struct anv_shader_bin {
1757 uint32_t ref_cnt;
1758
1759 const struct anv_shader_bin_key *key;
1760
1761 struct anv_state kernel;
1762 uint32_t kernel_size;
1763
1764 const struct brw_stage_prog_data *prog_data;
1765 uint32_t prog_data_size;
1766
1767 struct anv_pipeline_bind_map bind_map;
1768
1769 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1770 };
1771
1772 struct anv_shader_bin *
1773 anv_shader_bin_create(struct anv_device *device,
1774 const void *key, uint32_t key_size,
1775 const void *kernel, uint32_t kernel_size,
1776 const struct brw_stage_prog_data *prog_data,
1777 uint32_t prog_data_size, const void *prog_data_param,
1778 const struct anv_pipeline_bind_map *bind_map);
1779
1780 void
1781 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1782
1783 static inline void
1784 anv_shader_bin_ref(struct anv_shader_bin *shader)
1785 {
1786 assert(shader && shader->ref_cnt >= 1);
1787 __sync_fetch_and_add(&shader->ref_cnt, 1);
1788 }
1789
1790 static inline void
1791 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1792 {
1793 assert(shader && shader->ref_cnt >= 1);
1794 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1795 anv_shader_bin_destroy(device, shader);
1796 }
1797
1798 struct anv_pipeline {
1799 struct anv_device * device;
1800 struct anv_batch batch;
1801 uint32_t batch_data[512];
1802 struct anv_reloc_list batch_relocs;
1803 uint32_t dynamic_state_mask;
1804 struct anv_dynamic_state dynamic_state;
1805
1806 struct anv_pipeline_layout * layout;
1807
1808 bool needs_data_cache;
1809
1810 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1811
1812 struct {
1813 const struct gen_l3_config * l3_config;
1814 uint32_t total_size;
1815 } urb;
1816
1817 VkShaderStageFlags active_stages;
1818 struct anv_state blend_state;
1819
1820 uint32_t vb_used;
1821 uint32_t binding_stride[MAX_VBS];
1822 bool instancing_enable[MAX_VBS];
1823 bool primitive_restart;
1824 uint32_t topology;
1825
1826 uint32_t cs_right_mask;
1827
1828 bool writes_depth;
1829 bool depth_test_enable;
1830 bool writes_stencil;
1831 bool stencil_test_enable;
1832 bool depth_clamp_enable;
1833 bool sample_shading_enable;
1834 bool kill_pixel;
1835
1836 struct {
1837 uint32_t sf[7];
1838 uint32_t depth_stencil_state[3];
1839 } gen7;
1840
1841 struct {
1842 uint32_t sf[4];
1843 uint32_t raster[5];
1844 uint32_t wm_depth_stencil[3];
1845 } gen8;
1846
1847 struct {
1848 uint32_t wm_depth_stencil[4];
1849 } gen9;
1850
1851 uint32_t interface_descriptor_data[8];
1852 };
1853
1854 static inline bool
1855 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1856 gl_shader_stage stage)
1857 {
1858 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1859 }
1860
1861 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1862 static inline const struct brw_##prefix##_prog_data * \
1863 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1864 { \
1865 if (anv_pipeline_has_stage(pipeline, stage)) { \
1866 return (const struct brw_##prefix##_prog_data *) \
1867 pipeline->shaders[stage]->prog_data; \
1868 } else { \
1869 return NULL; \
1870 } \
1871 }
1872
1873 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1874 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1875 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1876 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1877 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1878 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1879
1880 static inline const struct brw_vue_prog_data *
1881 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1882 {
1883 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1884 return &get_gs_prog_data(pipeline)->base;
1885 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1886 return &get_tes_prog_data(pipeline)->base;
1887 else
1888 return &get_vs_prog_data(pipeline)->base;
1889 }
1890
1891 VkResult
1892 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1893 struct anv_pipeline_cache *cache,
1894 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1895 const VkAllocationCallbacks *alloc);
1896
1897 VkResult
1898 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1899 struct anv_pipeline_cache *cache,
1900 const VkComputePipelineCreateInfo *info,
1901 struct anv_shader_module *module,
1902 const char *entrypoint,
1903 const VkSpecializationInfo *spec_info);
1904
1905 struct anv_format {
1906 enum isl_format isl_format:16;
1907 struct isl_swizzle swizzle;
1908 };
1909
1910 struct anv_format
1911 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1912 VkImageAspectFlags aspect, VkImageTiling tiling);
1913
1914 static inline enum isl_format
1915 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1916 VkImageAspectFlags aspect, VkImageTiling tiling)
1917 {
1918 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1919 }
1920
1921 static inline struct isl_swizzle
1922 anv_swizzle_for_render(struct isl_swizzle swizzle)
1923 {
1924 /* Sometimes the swizzle will have alpha map to one. We do this to fake
1925 * RGB as RGBA for texturing
1926 */
1927 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
1928 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
1929
1930 /* But it doesn't matter what we render to that channel */
1931 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
1932
1933 return swizzle;
1934 }
1935
1936 void
1937 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1938
1939 /**
1940 * Subsurface of an anv_image.
1941 */
1942 struct anv_surface {
1943 /** Valid only if isl_surf::size > 0. */
1944 struct isl_surf isl;
1945
1946 /**
1947 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1948 */
1949 uint32_t offset;
1950 };
1951
1952 struct anv_image {
1953 VkImageType type;
1954 /* The original VkFormat provided by the client. This may not match any
1955 * of the actual surface formats.
1956 */
1957 VkFormat vk_format;
1958 VkImageAspectFlags aspects;
1959 VkExtent3D extent;
1960 uint32_t levels;
1961 uint32_t array_size;
1962 uint32_t samples; /**< VkImageCreateInfo::samples */
1963 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1964 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1965
1966 VkDeviceSize size;
1967 uint32_t alignment;
1968
1969 /* Set when bound */
1970 struct anv_bo *bo;
1971 VkDeviceSize offset;
1972
1973 /**
1974 * Image subsurfaces
1975 *
1976 * For each foo, anv_image::foo_surface is valid if and only if
1977 * anv_image::aspects has a foo aspect.
1978 *
1979 * The hardware requires that the depth buffer and stencil buffer be
1980 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1981 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1982 * allocate the depth and stencil buffers as separate surfaces in the same
1983 * bo.
1984 */
1985 union {
1986 struct anv_surface color_surface;
1987
1988 struct {
1989 struct anv_surface depth_surface;
1990 struct anv_surface stencil_surface;
1991 };
1992 };
1993
1994 /**
1995 * For color images, this is the aux usage for this image when not used as a
1996 * color attachment.
1997 *
1998 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
1999 * has a HiZ buffer.
2000 */
2001 enum isl_aux_usage aux_usage;
2002
2003 struct anv_surface aux_surface;
2004 };
2005
2006 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2007 static inline bool
2008 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2009 const VkImageAspectFlags aspect_mask,
2010 const uint32_t samples)
2011 {
2012 /* Validate the inputs. */
2013 assert(devinfo && aspect_mask && samples);
2014 return devinfo->gen >= 8 && (aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) &&
2015 samples == 1;
2016 }
2017
2018 void
2019 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
2020 const struct anv_image *image,
2021 enum blorp_hiz_op op);
2022
2023 enum isl_aux_usage
2024 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2025 const struct anv_image *image,
2026 const VkImageAspectFlags aspects,
2027 const VkImageLayout layout);
2028
2029 /* This is defined as a macro so that it works for both
2030 * VkImageSubresourceRange and VkImageSubresourceLayers
2031 */
2032 #define anv_get_layerCount(_image, _range) \
2033 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2034 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2035
2036 static inline uint32_t
2037 anv_get_levelCount(const struct anv_image *image,
2038 const VkImageSubresourceRange *range)
2039 {
2040 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2041 image->levels - range->baseMipLevel : range->levelCount;
2042 }
2043
2044
2045 struct anv_image_view {
2046 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2047 struct anv_bo *bo;
2048 uint32_t offset; /**< Offset into bo. */
2049
2050 struct isl_view isl;
2051
2052 VkImageAspectFlags aspect_mask;
2053 VkFormat vk_format;
2054 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2055
2056 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
2057 struct anv_state sampler_surface_state;
2058
2059 /**
2060 * RENDER_SURFACE_STATE when using image as a sampler surface with the
2061 * auxiliary buffer disabled.
2062 */
2063 struct anv_state no_aux_sampler_surface_state;
2064
2065 /**
2066 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
2067 * for write-only and readable, using the real format for write-only and the
2068 * lowered format for readable.
2069 */
2070 struct anv_state storage_surface_state;
2071 struct anv_state writeonly_storage_surface_state;
2072
2073 struct brw_image_param storage_image_param;
2074 };
2075
2076 struct anv_image_create_info {
2077 const VkImageCreateInfo *vk_info;
2078
2079 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2080 isl_tiling_flags_t isl_tiling_flags;
2081
2082 uint32_t stride;
2083 };
2084
2085 VkResult anv_image_create(VkDevice _device,
2086 const struct anv_image_create_info *info,
2087 const VkAllocationCallbacks* alloc,
2088 VkImage *pImage);
2089
2090 const struct anv_surface *
2091 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
2092 VkImageAspectFlags aspect_mask);
2093
2094 enum isl_format
2095 anv_isl_format_for_descriptor_type(VkDescriptorType type);
2096
2097 static inline struct VkExtent3D
2098 anv_sanitize_image_extent(const VkImageType imageType,
2099 const struct VkExtent3D imageExtent)
2100 {
2101 switch (imageType) {
2102 case VK_IMAGE_TYPE_1D:
2103 return (VkExtent3D) { imageExtent.width, 1, 1 };
2104 case VK_IMAGE_TYPE_2D:
2105 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
2106 case VK_IMAGE_TYPE_3D:
2107 return imageExtent;
2108 default:
2109 unreachable("invalid image type");
2110 }
2111 }
2112
2113 static inline struct VkOffset3D
2114 anv_sanitize_image_offset(const VkImageType imageType,
2115 const struct VkOffset3D imageOffset)
2116 {
2117 switch (imageType) {
2118 case VK_IMAGE_TYPE_1D:
2119 return (VkOffset3D) { imageOffset.x, 0, 0 };
2120 case VK_IMAGE_TYPE_2D:
2121 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
2122 case VK_IMAGE_TYPE_3D:
2123 return imageOffset;
2124 default:
2125 unreachable("invalid image type");
2126 }
2127 }
2128
2129
2130 void anv_fill_buffer_surface_state(struct anv_device *device,
2131 struct anv_state state,
2132 enum isl_format format,
2133 uint32_t offset, uint32_t range,
2134 uint32_t stride);
2135
2136 void anv_image_view_fill_image_param(struct anv_device *device,
2137 struct anv_image_view *view,
2138 struct brw_image_param *param);
2139 void anv_buffer_view_fill_image_param(struct anv_device *device,
2140 struct anv_buffer_view *view,
2141 struct brw_image_param *param);
2142
2143 struct anv_sampler {
2144 uint32_t state[4];
2145 };
2146
2147 struct anv_framebuffer {
2148 uint32_t width;
2149 uint32_t height;
2150 uint32_t layers;
2151
2152 uint32_t attachment_count;
2153 struct anv_image_view * attachments[0];
2154 };
2155
2156 struct anv_subpass {
2157 uint32_t attachment_count;
2158
2159 /**
2160 * A pointer to all attachment references used in this subpass.
2161 * Only valid if ::attachment_count > 0.
2162 */
2163 VkAttachmentReference * attachments;
2164 uint32_t input_count;
2165 VkAttachmentReference * input_attachments;
2166 uint32_t color_count;
2167 VkAttachmentReference * color_attachments;
2168 VkAttachmentReference * resolve_attachments;
2169
2170 VkAttachmentReference depth_stencil_attachment;
2171
2172 uint32_t view_mask;
2173
2174 /** Subpass has a depth/stencil self-dependency */
2175 bool has_ds_self_dep;
2176
2177 /** Subpass has at least one resolve attachment */
2178 bool has_resolve;
2179 };
2180
2181 enum anv_subpass_usage {
2182 ANV_SUBPASS_USAGE_DRAW = (1 << 0),
2183 ANV_SUBPASS_USAGE_INPUT = (1 << 1),
2184 ANV_SUBPASS_USAGE_RESOLVE_SRC = (1 << 2),
2185 ANV_SUBPASS_USAGE_RESOLVE_DST = (1 << 3),
2186 };
2187
2188 struct anv_render_pass_attachment {
2189 /* TODO: Consider using VkAttachmentDescription instead of storing each of
2190 * its members individually.
2191 */
2192 VkFormat format;
2193 uint32_t samples;
2194 VkImageUsageFlags usage;
2195 VkAttachmentLoadOp load_op;
2196 VkAttachmentStoreOp store_op;
2197 VkAttachmentLoadOp stencil_load_op;
2198 VkImageLayout initial_layout;
2199 VkImageLayout final_layout;
2200
2201 /* An array, indexed by subpass id, of how the attachment will be used. */
2202 enum anv_subpass_usage * subpass_usage;
2203
2204 /* The subpass id in which the attachment will be used last. */
2205 uint32_t last_subpass_idx;
2206 };
2207
2208 struct anv_render_pass {
2209 uint32_t attachment_count;
2210 uint32_t subpass_count;
2211 /* An array of subpass_count+1 flushes, one per subpass boundary */
2212 enum anv_pipe_bits * subpass_flushes;
2213 struct anv_render_pass_attachment * attachments;
2214 struct anv_subpass subpasses[0];
2215 };
2216
2217 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
2218
2219 struct anv_query_pool {
2220 VkQueryType type;
2221 VkQueryPipelineStatisticFlags pipeline_statistics;
2222 /** Stride between slots, in bytes */
2223 uint32_t stride;
2224 /** Number of slots in this query pool */
2225 uint32_t slots;
2226 struct anv_bo bo;
2227 };
2228
2229 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
2230 const char *name);
2231
2232 void anv_dump_image_to_ppm(struct anv_device *device,
2233 struct anv_image *image, unsigned miplevel,
2234 unsigned array_layer, VkImageAspectFlagBits aspect,
2235 const char *filename);
2236
2237 enum anv_dump_action {
2238 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
2239 };
2240
2241 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
2242 void anv_dump_finish(void);
2243
2244 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
2245 struct anv_framebuffer *fb);
2246
2247 static inline uint32_t
2248 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
2249 {
2250 /* This function must be called from within a subpass. */
2251 assert(cmd_state->pass && cmd_state->subpass);
2252
2253 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
2254
2255 /* The id of this subpass shouldn't exceed the number of subpasses in this
2256 * render pass minus 1.
2257 */
2258 assert(subpass_id < cmd_state->pass->subpass_count);
2259 return subpass_id;
2260 }
2261
2262 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
2263 \
2264 static inline struct __anv_type * \
2265 __anv_type ## _from_handle(__VkType _handle) \
2266 { \
2267 return (struct __anv_type *) _handle; \
2268 } \
2269 \
2270 static inline __VkType \
2271 __anv_type ## _to_handle(struct __anv_type *_obj) \
2272 { \
2273 return (__VkType) _obj; \
2274 }
2275
2276 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
2277 \
2278 static inline struct __anv_type * \
2279 __anv_type ## _from_handle(__VkType _handle) \
2280 { \
2281 return (struct __anv_type *)(uintptr_t) _handle; \
2282 } \
2283 \
2284 static inline __VkType \
2285 __anv_type ## _to_handle(struct __anv_type *_obj) \
2286 { \
2287 return (__VkType)(uintptr_t) _obj; \
2288 }
2289
2290 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
2291 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
2292
2293 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
2294 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
2295 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
2296 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
2297 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
2298
2299 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
2300 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
2301 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
2302 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
2303 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
2304 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
2305 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
2306 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
2307 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
2308 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
2309 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
2310 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
2311 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
2312 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
2313 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
2314 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
2315 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
2316 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
2317 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
2318 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
2319
2320 /* Gen-specific function declarations */
2321 #ifdef genX
2322 # include "anv_genX.h"
2323 #else
2324 # define genX(x) gen7_##x
2325 # include "anv_genX.h"
2326 # undef genX
2327 # define genX(x) gen75_##x
2328 # include "anv_genX.h"
2329 # undef genX
2330 # define genX(x) gen8_##x
2331 # include "anv_genX.h"
2332 # undef genX
2333 # define genX(x) gen9_##x
2334 # include "anv_genX.h"
2335 # undef genX
2336 #endif
2337
2338 #endif /* ANV_PRIVATE_H */