c997d79e0b6d726a0699cb4e8def9734c1fc7a7a
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "vk_alloc.h"
61 #include "vk_debug_report.h"
62
63 /* Pre-declarations needed for WSI entrypoints */
64 struct wl_surface;
65 struct wl_display;
66 typedef struct xcb_connection_t xcb_connection_t;
67 typedef uint32_t xcb_visualid_t;
68 typedef uint32_t xcb_window_t;
69
70 struct anv_buffer;
71 struct anv_buffer_view;
72 struct anv_image_view;
73 struct anv_instance;
74
75 struct gen_l3_config;
76
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79 #include <vulkan/vk_icd.h>
80
81 #include "anv_android.h"
82 #include "anv_entrypoints.h"
83 #include "anv_extensions.h"
84 #include "isl/isl.h"
85
86 #include "common/gen_debug.h"
87 #include "common/intel_log.h"
88 #include "wsi_common.h"
89
90 /* anv Virtual Memory Layout
91 * =========================
92 *
93 * When the anv driver is determining the virtual graphics addresses of memory
94 * objects itself using the softpin mechanism, the following memory ranges
95 * will be used.
96 *
97 * Three special considerations to notice:
98 *
99 * (1) the dynamic state pool is located within the same 4 GiB as the low
100 * heap. This is to work around a VF cache issue described in a comment in
101 * anv_physical_device_init_heaps.
102 *
103 * (2) the binding table pool is located at lower addresses than the surface
104 * state pool, within a 4 GiB range. This allows surface state base addresses
105 * to cover both binding tables (16 bit offsets) and surface states (32 bit
106 * offsets).
107 *
108 * (3) the last 4 GiB of the address space is withheld from the high
109 * heap. Various hardware units will read past the end of an object for
110 * various reasons. This healthy margin prevents reads from wrapping around
111 * 48-bit addresses.
112 */
113 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
114 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
115 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
116 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
117 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
118 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
119 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
120 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
121 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
122 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
123 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
124 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
125
126 #define LOW_HEAP_SIZE \
127 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
128 #define HIGH_HEAP_SIZE \
129 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
130 #define DYNAMIC_STATE_POOL_SIZE \
131 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
132 #define BINDING_TABLE_POOL_SIZE \
133 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
134 #define SURFACE_STATE_POOL_SIZE \
135 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
136 #define INSTRUCTION_STATE_POOL_SIZE \
137 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
138
139 /* Allowing different clear colors requires us to perform a depth resolve at
140 * the end of certain render passes. This is because while slow clears store
141 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
142 * See the PRMs for examples describing when additional resolves would be
143 * necessary. To enable fast clears without requiring extra resolves, we set
144 * the clear value to a globally-defined one. We could allow different values
145 * if the user doesn't expect coherent data during or after a render passes
146 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
147 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
148 * 1.0f seems to be the only value used. The only application that doesn't set
149 * this value does so through the usage of an seemingly uninitialized clear
150 * value.
151 */
152 #define ANV_HZ_FC_VAL 1.0f
153
154 #define MAX_VBS 28
155 #define MAX_XFB_BUFFERS 4
156 #define MAX_XFB_STREAMS 4
157 #define MAX_SETS 8
158 #define MAX_RTS 8
159 #define MAX_VIEWPORTS 16
160 #define MAX_SCISSORS 16
161 #define MAX_PUSH_CONSTANTS_SIZE 128
162 #define MAX_DYNAMIC_BUFFERS 16
163 #define MAX_IMAGES 64
164 #define MAX_GEN8_IMAGES 8
165 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
166
167 /* The kernel relocation API has a limitation of a 32-bit delta value
168 * applied to the address before it is written which, in spite of it being
169 * unsigned, is treated as signed . Because of the way that this maps to
170 * the Vulkan API, we cannot handle an offset into a buffer that does not
171 * fit into a signed 32 bits. The only mechanism we have for dealing with
172 * this at the moment is to limit all VkDeviceMemory objects to a maximum
173 * of 2GB each. The Vulkan spec allows us to do this:
174 *
175 * "Some platforms may have a limit on the maximum size of a single
176 * allocation. For example, certain systems may fail to create
177 * allocations with a size greater than or equal to 4GB. Such a limit is
178 * implementation-dependent, and if such a failure occurs then the error
179 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
180 *
181 * We don't use vk_error here because it's not an error so much as an
182 * indication to the application that the allocation is too large.
183 */
184 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
185
186 #define ANV_SVGS_VB_INDEX MAX_VBS
187 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
188
189 /* We reserve this MI ALU register for the purpose of handling predication.
190 * Other code which uses the MI ALU should leave it alone.
191 */
192 #define ANV_PREDICATE_RESULT_REG MI_ALU_REG15
193
194 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
195
196 static inline uint32_t
197 align_down_npot_u32(uint32_t v, uint32_t a)
198 {
199 return v - (v % a);
200 }
201
202 static inline uint32_t
203 align_u32(uint32_t v, uint32_t a)
204 {
205 assert(a != 0 && a == (a & -a));
206 return (v + a - 1) & ~(a - 1);
207 }
208
209 static inline uint64_t
210 align_u64(uint64_t v, uint64_t a)
211 {
212 assert(a != 0 && a == (a & -a));
213 return (v + a - 1) & ~(a - 1);
214 }
215
216 static inline int32_t
217 align_i32(int32_t v, int32_t a)
218 {
219 assert(a != 0 && a == (a & -a));
220 return (v + a - 1) & ~(a - 1);
221 }
222
223 /** Alignment must be a power of 2. */
224 static inline bool
225 anv_is_aligned(uintmax_t n, uintmax_t a)
226 {
227 assert(a == (a & -a));
228 return (n & (a - 1)) == 0;
229 }
230
231 static inline uint32_t
232 anv_minify(uint32_t n, uint32_t levels)
233 {
234 if (unlikely(n == 0))
235 return 0;
236 else
237 return MAX2(n >> levels, 1);
238 }
239
240 static inline float
241 anv_clamp_f(float f, float min, float max)
242 {
243 assert(min < max);
244
245 if (f > max)
246 return max;
247 else if (f < min)
248 return min;
249 else
250 return f;
251 }
252
253 static inline bool
254 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
255 {
256 if (*inout_mask & clear_mask) {
257 *inout_mask &= ~clear_mask;
258 return true;
259 } else {
260 return false;
261 }
262 }
263
264 static inline union isl_color_value
265 vk_to_isl_color(VkClearColorValue color)
266 {
267 return (union isl_color_value) {
268 .u32 = {
269 color.uint32[0],
270 color.uint32[1],
271 color.uint32[2],
272 color.uint32[3],
273 },
274 };
275 }
276
277 #define for_each_bit(b, dword) \
278 for (uint32_t __dword = (dword); \
279 (b) = __builtin_ffs(__dword) - 1, __dword; \
280 __dword &= ~(1 << (b)))
281
282 #define typed_memcpy(dest, src, count) ({ \
283 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
284 memcpy((dest), (src), (count) * sizeof(*(src))); \
285 })
286
287 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
288 * to be added here in order to utilize mapping in debug/error/perf macros.
289 */
290 #define REPORT_OBJECT_TYPE(o) \
291 __builtin_choose_expr ( \
292 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
293 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
294 __builtin_choose_expr ( \
295 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
296 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
297 __builtin_choose_expr ( \
298 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
299 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
300 __builtin_choose_expr ( \
301 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
302 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
303 __builtin_choose_expr ( \
304 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
305 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
306 __builtin_choose_expr ( \
307 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
308 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
309 __builtin_choose_expr ( \
310 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
311 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
312 __builtin_choose_expr ( \
313 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
314 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
315 __builtin_choose_expr ( \
316 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
317 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
318 __builtin_choose_expr ( \
319 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
320 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
321 __builtin_choose_expr ( \
322 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
323 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
324 __builtin_choose_expr ( \
325 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
326 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
327 __builtin_choose_expr ( \
328 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
329 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
330 __builtin_choose_expr ( \
331 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
332 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
333 __builtin_choose_expr ( \
334 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
335 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
336 __builtin_choose_expr ( \
337 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
338 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
339 __builtin_choose_expr ( \
340 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
341 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
342 __builtin_choose_expr ( \
343 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
344 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
345 __builtin_choose_expr ( \
346 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
347 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
348 __builtin_choose_expr ( \
349 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
350 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
351 __builtin_choose_expr ( \
352 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
353 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
354 __builtin_choose_expr ( \
355 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
356 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
357 __builtin_choose_expr ( \
358 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
359 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
360 __builtin_choose_expr ( \
361 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
362 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
363 __builtin_choose_expr ( \
364 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
365 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
366 __builtin_choose_expr ( \
367 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
368 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
369 __builtin_choose_expr ( \
370 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
371 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
372 __builtin_choose_expr ( \
373 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
374 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
375 __builtin_choose_expr ( \
376 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
377 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
378 __builtin_choose_expr ( \
379 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
380 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
381 __builtin_choose_expr ( \
382 __builtin_types_compatible_p (__typeof (o), void*), \
383 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
384 /* The void expression results in a compile-time error \
385 when assigning the result to something. */ \
386 (void)0)))))))))))))))))))))))))))))))
387
388 /* Whenever we generate an error, pass it through this function. Useful for
389 * debugging, where we can break on it. Only call at error site, not when
390 * propagating errors. Might be useful to plug in a stack trace here.
391 */
392
393 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
394 VkDebugReportObjectTypeEXT type, VkResult error,
395 const char *file, int line, const char *format,
396 va_list args);
397
398 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
399 VkDebugReportObjectTypeEXT type, VkResult error,
400 const char *file, int line, const char *format, ...);
401
402 #ifdef DEBUG
403 #define vk_error(error) __vk_errorf(NULL, NULL,\
404 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
405 error, __FILE__, __LINE__, NULL)
406 #define vk_errorv(instance, obj, error, format, args)\
407 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
408 __FILE__, __LINE__, format, args)
409 #define vk_errorf(instance, obj, error, format, ...)\
410 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
411 __FILE__, __LINE__, format, ## __VA_ARGS__)
412 #else
413 #define vk_error(error) error
414 #define vk_errorf(instance, obj, error, format, ...) error
415 #endif
416
417 /**
418 * Warn on ignored extension structs.
419 *
420 * The Vulkan spec requires us to ignore unsupported or unknown structs in
421 * a pNext chain. In debug mode, emitting warnings for ignored structs may
422 * help us discover structs that we should not have ignored.
423 *
424 *
425 * From the Vulkan 1.0.38 spec:
426 *
427 * Any component of the implementation (the loader, any enabled layers,
428 * and drivers) must skip over, without processing (other than reading the
429 * sType and pNext members) any chained structures with sType values not
430 * defined by extensions supported by that component.
431 */
432 #define anv_debug_ignored_stype(sType) \
433 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
434
435 void __anv_perf_warn(struct anv_instance *instance, const void *object,
436 VkDebugReportObjectTypeEXT type, const char *file,
437 int line, const char *format, ...)
438 anv_printflike(6, 7);
439 void anv_loge(const char *format, ...) anv_printflike(1, 2);
440 void anv_loge_v(const char *format, va_list va);
441
442 /**
443 * Print a FINISHME message, including its source location.
444 */
445 #define anv_finishme(format, ...) \
446 do { \
447 static bool reported = false; \
448 if (!reported) { \
449 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
450 ##__VA_ARGS__); \
451 reported = true; \
452 } \
453 } while (0)
454
455 /**
456 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
457 */
458 #define anv_perf_warn(instance, obj, format, ...) \
459 do { \
460 static bool reported = false; \
461 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
462 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
463 format, ##__VA_ARGS__); \
464 reported = true; \
465 } \
466 } while (0)
467
468 /* A non-fatal assert. Useful for debugging. */
469 #ifdef DEBUG
470 #define anv_assert(x) ({ \
471 if (unlikely(!(x))) \
472 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
473 })
474 #else
475 #define anv_assert(x)
476 #endif
477
478 /* A multi-pointer allocator
479 *
480 * When copying data structures from the user (such as a render pass), it's
481 * common to need to allocate data for a bunch of different things. Instead
482 * of doing several allocations and having to handle all of the error checking
483 * that entails, it can be easier to do a single allocation. This struct
484 * helps facilitate that. The intended usage looks like this:
485 *
486 * ANV_MULTIALLOC(ma)
487 * anv_multialloc_add(&ma, &main_ptr, 1);
488 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
489 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
490 *
491 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
492 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
493 */
494 struct anv_multialloc {
495 size_t size;
496 size_t align;
497
498 uint32_t ptr_count;
499 void **ptrs[8];
500 };
501
502 #define ANV_MULTIALLOC_INIT \
503 ((struct anv_multialloc) { 0, })
504
505 #define ANV_MULTIALLOC(_name) \
506 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
507
508 __attribute__((always_inline))
509 static inline void
510 _anv_multialloc_add(struct anv_multialloc *ma,
511 void **ptr, size_t size, size_t align)
512 {
513 size_t offset = align_u64(ma->size, align);
514 ma->size = offset + size;
515 ma->align = MAX2(ma->align, align);
516
517 /* Store the offset in the pointer. */
518 *ptr = (void *)(uintptr_t)offset;
519
520 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
521 ma->ptrs[ma->ptr_count++] = ptr;
522 }
523
524 #define anv_multialloc_add_size(_ma, _ptr, _size) \
525 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
526
527 #define anv_multialloc_add(_ma, _ptr, _count) \
528 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
529
530 __attribute__((always_inline))
531 static inline void *
532 anv_multialloc_alloc(struct anv_multialloc *ma,
533 const VkAllocationCallbacks *alloc,
534 VkSystemAllocationScope scope)
535 {
536 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
537 if (!ptr)
538 return NULL;
539
540 /* Fill out each of the pointers with their final value.
541 *
542 * for (uint32_t i = 0; i < ma->ptr_count; i++)
543 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
544 *
545 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
546 * constant, GCC is incapable of figuring this out and unrolling the loop
547 * so we have to give it a little help.
548 */
549 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
550 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
551 if ((_i) < ma->ptr_count) \
552 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
553 _ANV_MULTIALLOC_UPDATE_POINTER(0);
554 _ANV_MULTIALLOC_UPDATE_POINTER(1);
555 _ANV_MULTIALLOC_UPDATE_POINTER(2);
556 _ANV_MULTIALLOC_UPDATE_POINTER(3);
557 _ANV_MULTIALLOC_UPDATE_POINTER(4);
558 _ANV_MULTIALLOC_UPDATE_POINTER(5);
559 _ANV_MULTIALLOC_UPDATE_POINTER(6);
560 _ANV_MULTIALLOC_UPDATE_POINTER(7);
561 #undef _ANV_MULTIALLOC_UPDATE_POINTER
562
563 return ptr;
564 }
565
566 __attribute__((always_inline))
567 static inline void *
568 anv_multialloc_alloc2(struct anv_multialloc *ma,
569 const VkAllocationCallbacks *parent_alloc,
570 const VkAllocationCallbacks *alloc,
571 VkSystemAllocationScope scope)
572 {
573 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
574 }
575
576 /* Extra ANV-defined BO flags which won't be passed to the kernel */
577 #define ANV_BO_EXTERNAL (1ull << 31)
578 #define ANV_BO_FLAG_MASK (1ull << 31)
579
580 struct anv_bo {
581 uint32_t gem_handle;
582
583 /* Index into the current validation list. This is used by the
584 * validation list building alrogithm to track which buffers are already
585 * in the validation list so that we can ensure uniqueness.
586 */
587 uint32_t index;
588
589 /* Last known offset. This value is provided by the kernel when we
590 * execbuf and is used as the presumed offset for the next bunch of
591 * relocations.
592 */
593 uint64_t offset;
594
595 uint64_t size;
596 void *map;
597
598 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
599 uint32_t flags;
600 };
601
602 static inline void
603 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
604 {
605 bo->gem_handle = gem_handle;
606 bo->index = 0;
607 bo->offset = -1;
608 bo->size = size;
609 bo->map = NULL;
610 bo->flags = 0;
611 }
612
613 /* Represents a lock-free linked list of "free" things. This is used by
614 * both the block pool and the state pools. Unfortunately, in order to
615 * solve the ABA problem, we can't use a single uint32_t head.
616 */
617 union anv_free_list {
618 struct {
619 uint32_t offset;
620
621 /* A simple count that is incremented every time the head changes. */
622 uint32_t count;
623 };
624 uint64_t u64;
625 };
626
627 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
628
629 struct anv_block_state {
630 union {
631 struct {
632 uint32_t next;
633 uint32_t end;
634 };
635 uint64_t u64;
636 };
637 };
638
639 #define anv_block_pool_foreach_bo(bo, pool) \
640 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
641
642 #define ANV_MAX_BLOCK_POOL_BOS 20
643
644 struct anv_block_pool {
645 struct anv_device *device;
646
647 uint64_t bo_flags;
648
649 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
650 struct anv_bo *bo;
651 uint32_t nbos;
652
653 uint64_t size;
654
655 /* The address where the start of the pool is pinned. The various bos that
656 * are created as the pool grows will have addresses in the range
657 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
658 */
659 uint64_t start_address;
660
661 /* The offset from the start of the bo to the "center" of the block
662 * pool. Pointers to allocated blocks are given by
663 * bo.map + center_bo_offset + offsets.
664 */
665 uint32_t center_bo_offset;
666
667 /* Current memory map of the block pool. This pointer may or may not
668 * point to the actual beginning of the block pool memory. If
669 * anv_block_pool_alloc_back has ever been called, then this pointer
670 * will point to the "center" position of the buffer and all offsets
671 * (negative or positive) given out by the block pool alloc functions
672 * will be valid relative to this pointer.
673 *
674 * In particular, map == bo.map + center_offset
675 *
676 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
677 * since it will handle the softpin case as well, where this points to NULL.
678 */
679 void *map;
680 int fd;
681
682 /**
683 * Array of mmaps and gem handles owned by the block pool, reclaimed when
684 * the block pool is destroyed.
685 */
686 struct u_vector mmap_cleanups;
687
688 struct anv_block_state state;
689
690 struct anv_block_state back_state;
691 };
692
693 /* Block pools are backed by a fixed-size 1GB memfd */
694 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
695
696 /* The center of the block pool is also the middle of the memfd. This may
697 * change in the future if we decide differently for some reason.
698 */
699 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
700
701 static inline uint32_t
702 anv_block_pool_size(struct anv_block_pool *pool)
703 {
704 return pool->state.end + pool->back_state.end;
705 }
706
707 struct anv_state {
708 int32_t offset;
709 uint32_t alloc_size;
710 void *map;
711 uint32_t idx;
712 };
713
714 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
715
716 struct anv_fixed_size_state_pool {
717 union anv_free_list free_list;
718 struct anv_block_state block;
719 };
720
721 #define ANV_MIN_STATE_SIZE_LOG2 6
722 #define ANV_MAX_STATE_SIZE_LOG2 20
723
724 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
725
726 struct anv_free_entry {
727 uint32_t next;
728 struct anv_state state;
729 };
730
731 struct anv_state_table {
732 struct anv_device *device;
733 int fd;
734 struct anv_free_entry *map;
735 uint32_t size;
736 struct anv_block_state state;
737 struct u_vector mmap_cleanups;
738 };
739
740 struct anv_state_pool {
741 struct anv_block_pool block_pool;
742
743 struct anv_state_table table;
744
745 /* The size of blocks which will be allocated from the block pool */
746 uint32_t block_size;
747
748 /** Free list for "back" allocations */
749 union anv_free_list back_alloc_free_list;
750
751 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
752 };
753
754 struct anv_state_stream_block;
755
756 struct anv_state_stream {
757 struct anv_state_pool *state_pool;
758
759 /* The size of blocks to allocate from the state pool */
760 uint32_t block_size;
761
762 /* Current block we're allocating from */
763 struct anv_state block;
764
765 /* Offset into the current block at which to allocate the next state */
766 uint32_t next;
767
768 /* List of all blocks allocated from this pool */
769 struct anv_state_stream_block *block_list;
770 };
771
772 /* The block_pool functions exported for testing only. The block pool should
773 * only be used via a state pool (see below).
774 */
775 VkResult anv_block_pool_init(struct anv_block_pool *pool,
776 struct anv_device *device,
777 uint64_t start_address,
778 uint32_t initial_size,
779 uint64_t bo_flags);
780 void anv_block_pool_finish(struct anv_block_pool *pool);
781 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
782 uint32_t block_size, uint32_t *padding);
783 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
784 uint32_t block_size);
785 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
786
787 VkResult anv_state_pool_init(struct anv_state_pool *pool,
788 struct anv_device *device,
789 uint64_t start_address,
790 uint32_t block_size,
791 uint64_t bo_flags);
792 void anv_state_pool_finish(struct anv_state_pool *pool);
793 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
794 uint32_t state_size, uint32_t alignment);
795 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
796 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
797 void anv_state_stream_init(struct anv_state_stream *stream,
798 struct anv_state_pool *state_pool,
799 uint32_t block_size);
800 void anv_state_stream_finish(struct anv_state_stream *stream);
801 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
802 uint32_t size, uint32_t alignment);
803
804 VkResult anv_state_table_init(struct anv_state_table *table,
805 struct anv_device *device,
806 uint32_t initial_entries);
807 void anv_state_table_finish(struct anv_state_table *table);
808 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
809 uint32_t count);
810 void anv_free_list_push(union anv_free_list *list,
811 struct anv_state_table *table,
812 uint32_t idx, uint32_t count);
813 struct anv_state* anv_free_list_pop(union anv_free_list *list,
814 struct anv_state_table *table);
815
816
817 static inline struct anv_state *
818 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
819 {
820 return &table->map[idx].state;
821 }
822 /**
823 * Implements a pool of re-usable BOs. The interface is identical to that
824 * of block_pool except that each block is its own BO.
825 */
826 struct anv_bo_pool {
827 struct anv_device *device;
828
829 uint64_t bo_flags;
830
831 void *free_list[16];
832 };
833
834 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
835 uint64_t bo_flags);
836 void anv_bo_pool_finish(struct anv_bo_pool *pool);
837 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
838 uint32_t size);
839 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
840
841 struct anv_scratch_bo {
842 bool exists;
843 struct anv_bo bo;
844 };
845
846 struct anv_scratch_pool {
847 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
848 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
849 };
850
851 void anv_scratch_pool_init(struct anv_device *device,
852 struct anv_scratch_pool *pool);
853 void anv_scratch_pool_finish(struct anv_device *device,
854 struct anv_scratch_pool *pool);
855 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
856 struct anv_scratch_pool *pool,
857 gl_shader_stage stage,
858 unsigned per_thread_scratch);
859
860 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
861 struct anv_bo_cache {
862 struct hash_table *bo_map;
863 pthread_mutex_t mutex;
864 };
865
866 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
867 void anv_bo_cache_finish(struct anv_bo_cache *cache);
868 VkResult anv_bo_cache_alloc(struct anv_device *device,
869 struct anv_bo_cache *cache,
870 uint64_t size, uint64_t bo_flags,
871 struct anv_bo **bo);
872 VkResult anv_bo_cache_import(struct anv_device *device,
873 struct anv_bo_cache *cache,
874 int fd, uint64_t bo_flags,
875 struct anv_bo **bo);
876 VkResult anv_bo_cache_export(struct anv_device *device,
877 struct anv_bo_cache *cache,
878 struct anv_bo *bo_in, int *fd_out);
879 void anv_bo_cache_release(struct anv_device *device,
880 struct anv_bo_cache *cache,
881 struct anv_bo *bo);
882
883 struct anv_memory_type {
884 /* Standard bits passed on to the client */
885 VkMemoryPropertyFlags propertyFlags;
886 uint32_t heapIndex;
887
888 /* Driver-internal book-keeping */
889 VkBufferUsageFlags valid_buffer_usage;
890 };
891
892 struct anv_memory_heap {
893 /* Standard bits passed on to the client */
894 VkDeviceSize size;
895 VkMemoryHeapFlags flags;
896
897 /* Driver-internal book-keeping */
898 bool supports_48bit_addresses;
899 };
900
901 struct anv_physical_device {
902 VK_LOADER_DATA _loader_data;
903
904 struct anv_instance * instance;
905 uint32_t chipset_id;
906 bool no_hw;
907 char path[20];
908 const char * name;
909 struct {
910 uint16_t domain;
911 uint8_t bus;
912 uint8_t device;
913 uint8_t function;
914 } pci_info;
915 struct gen_device_info info;
916 /** Amount of "GPU memory" we want to advertise
917 *
918 * Clearly, this value is bogus since Intel is a UMA architecture. On
919 * gen7 platforms, we are limited by GTT size unless we want to implement
920 * fine-grained tracking and GTT splitting. On Broadwell and above we are
921 * practically unlimited. However, we will never report more than 3/4 of
922 * the total system ram to try and avoid running out of RAM.
923 */
924 bool supports_48bit_addresses;
925 struct brw_compiler * compiler;
926 struct isl_device isl_dev;
927 int cmd_parser_version;
928 bool has_exec_async;
929 bool has_exec_capture;
930 bool has_exec_fence;
931 bool has_syncobj;
932 bool has_syncobj_wait;
933 bool has_context_priority;
934 bool use_softpin;
935 bool has_context_isolation;
936
937 struct anv_device_extension_table supported_extensions;
938
939 uint32_t eu_total;
940 uint32_t subslice_total;
941
942 struct {
943 uint32_t type_count;
944 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
945 uint32_t heap_count;
946 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
947 } memory;
948
949 uint8_t driver_build_sha1[20];
950 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
951 uint8_t driver_uuid[VK_UUID_SIZE];
952 uint8_t device_uuid[VK_UUID_SIZE];
953
954 struct disk_cache * disk_cache;
955
956 struct wsi_device wsi_device;
957 int local_fd;
958 int master_fd;
959 };
960
961 struct anv_app_info {
962 const char* app_name;
963 uint32_t app_version;
964 const char* engine_name;
965 uint32_t engine_version;
966 uint32_t api_version;
967 };
968
969 struct anv_instance {
970 VK_LOADER_DATA _loader_data;
971
972 VkAllocationCallbacks alloc;
973
974 struct anv_app_info app_info;
975
976 struct anv_instance_extension_table enabled_extensions;
977 struct anv_instance_dispatch_table dispatch;
978 struct anv_device_dispatch_table device_dispatch;
979
980 int physicalDeviceCount;
981 struct anv_physical_device physicalDevice;
982
983 bool pipeline_cache_enabled;
984
985 struct vk_debug_report_instance debug_report_callbacks;
986 };
987
988 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
989 void anv_finish_wsi(struct anv_physical_device *physical_device);
990
991 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
992 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
993 const char *name);
994
995 struct anv_queue {
996 VK_LOADER_DATA _loader_data;
997
998 struct anv_device * device;
999
1000 VkDeviceQueueCreateFlags flags;
1001 };
1002
1003 struct anv_pipeline_cache {
1004 struct anv_device * device;
1005 pthread_mutex_t mutex;
1006
1007 struct hash_table * nir_cache;
1008
1009 struct hash_table * cache;
1010 };
1011
1012 struct nir_xfb_info;
1013 struct anv_pipeline_bind_map;
1014
1015 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1016 struct anv_device *device,
1017 bool cache_enabled);
1018 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1019
1020 struct anv_shader_bin *
1021 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1022 const void *key, uint32_t key_size);
1023 struct anv_shader_bin *
1024 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1025 const void *key_data, uint32_t key_size,
1026 const void *kernel_data, uint32_t kernel_size,
1027 const void *constant_data,
1028 uint32_t constant_data_size,
1029 const struct brw_stage_prog_data *prog_data,
1030 uint32_t prog_data_size,
1031 const struct nir_xfb_info *xfb_info,
1032 const struct anv_pipeline_bind_map *bind_map);
1033
1034 struct anv_shader_bin *
1035 anv_device_search_for_kernel(struct anv_device *device,
1036 struct anv_pipeline_cache *cache,
1037 const void *key_data, uint32_t key_size);
1038
1039 struct anv_shader_bin *
1040 anv_device_upload_kernel(struct anv_device *device,
1041 struct anv_pipeline_cache *cache,
1042 const void *key_data, uint32_t key_size,
1043 const void *kernel_data, uint32_t kernel_size,
1044 const void *constant_data,
1045 uint32_t constant_data_size,
1046 const struct brw_stage_prog_data *prog_data,
1047 uint32_t prog_data_size,
1048 const struct nir_xfb_info *xfb_info,
1049 const struct anv_pipeline_bind_map *bind_map);
1050
1051 struct nir_shader;
1052 struct nir_shader_compiler_options;
1053
1054 struct nir_shader *
1055 anv_device_search_for_nir(struct anv_device *device,
1056 struct anv_pipeline_cache *cache,
1057 const struct nir_shader_compiler_options *nir_options,
1058 unsigned char sha1_key[20],
1059 void *mem_ctx);
1060
1061 void
1062 anv_device_upload_nir(struct anv_device *device,
1063 struct anv_pipeline_cache *cache,
1064 const struct nir_shader *nir,
1065 unsigned char sha1_key[20]);
1066
1067 struct anv_device {
1068 VK_LOADER_DATA _loader_data;
1069
1070 VkAllocationCallbacks alloc;
1071
1072 struct anv_instance * instance;
1073 uint32_t chipset_id;
1074 bool no_hw;
1075 struct gen_device_info info;
1076 struct isl_device isl_dev;
1077 int context_id;
1078 int fd;
1079 bool can_chain_batches;
1080 bool robust_buffer_access;
1081 struct anv_device_extension_table enabled_extensions;
1082 struct anv_device_dispatch_table dispatch;
1083
1084 pthread_mutex_t vma_mutex;
1085 struct util_vma_heap vma_lo;
1086 struct util_vma_heap vma_hi;
1087 uint64_t vma_lo_available;
1088 uint64_t vma_hi_available;
1089
1090 struct anv_bo_pool batch_bo_pool;
1091
1092 struct anv_bo_cache bo_cache;
1093
1094 struct anv_state_pool dynamic_state_pool;
1095 struct anv_state_pool instruction_state_pool;
1096 struct anv_state_pool binding_table_pool;
1097 struct anv_state_pool surface_state_pool;
1098
1099 struct anv_bo workaround_bo;
1100 struct anv_bo trivial_batch_bo;
1101 struct anv_bo hiz_clear_bo;
1102
1103 /* Set of pointers to anv_buffer objects for all pinned buffers. Pinned
1104 * buffers are always resident because they could be used at any time via
1105 * VK_EXT_buffer_device_address.
1106 */
1107 struct set * pinned_buffers;
1108
1109 struct anv_pipeline_cache default_pipeline_cache;
1110 struct blorp_context blorp;
1111
1112 struct anv_state border_colors;
1113
1114 struct anv_queue queue;
1115
1116 struct anv_scratch_pool scratch_pool;
1117
1118 uint32_t default_mocs;
1119 uint32_t external_mocs;
1120
1121 pthread_mutex_t mutex;
1122 pthread_cond_t queue_submit;
1123 bool _lost;
1124
1125 struct gen_batch_decode_ctx decoder_ctx;
1126 /*
1127 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1128 * the cmd_buffer's list.
1129 */
1130 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1131 };
1132
1133 static inline struct anv_state_pool *
1134 anv_binding_table_pool(struct anv_device *device)
1135 {
1136 if (device->instance->physicalDevice.use_softpin)
1137 return &device->binding_table_pool;
1138 else
1139 return &device->surface_state_pool;
1140 }
1141
1142 static inline struct anv_state
1143 anv_binding_table_pool_alloc(struct anv_device *device) {
1144 if (device->instance->physicalDevice.use_softpin)
1145 return anv_state_pool_alloc(&device->binding_table_pool,
1146 device->binding_table_pool.block_size, 0);
1147 else
1148 return anv_state_pool_alloc_back(&device->surface_state_pool);
1149 }
1150
1151 static inline void
1152 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1153 anv_state_pool_free(anv_binding_table_pool(device), state);
1154 }
1155
1156 static inline uint32_t
1157 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1158 {
1159 if (bo->flags & ANV_BO_EXTERNAL)
1160 return device->external_mocs;
1161 else
1162 return device->default_mocs;
1163 }
1164
1165 void anv_device_init_blorp(struct anv_device *device);
1166 void anv_device_finish_blorp(struct anv_device *device);
1167
1168 VkResult _anv_device_set_lost(struct anv_device *device,
1169 const char *file, int line,
1170 const char *msg, ...);
1171 #define anv_device_set_lost(dev, ...) \
1172 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1173
1174 static inline bool
1175 anv_device_is_lost(struct anv_device *device)
1176 {
1177 return unlikely(device->_lost);
1178 }
1179
1180 VkResult anv_device_execbuf(struct anv_device *device,
1181 struct drm_i915_gem_execbuffer2 *execbuf,
1182 struct anv_bo **execbuf_bos);
1183 VkResult anv_device_query_status(struct anv_device *device);
1184 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1185 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1186 int64_t timeout);
1187
1188 void* anv_gem_mmap(struct anv_device *device,
1189 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1190 void anv_gem_munmap(void *p, uint64_t size);
1191 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1192 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1193 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1194 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1195 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1196 int anv_gem_execbuffer(struct anv_device *device,
1197 struct drm_i915_gem_execbuffer2 *execbuf);
1198 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1199 uint32_t stride, uint32_t tiling);
1200 int anv_gem_create_context(struct anv_device *device);
1201 bool anv_gem_has_context_priority(int fd);
1202 int anv_gem_destroy_context(struct anv_device *device, int context);
1203 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1204 uint64_t value);
1205 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1206 uint64_t *value);
1207 int anv_gem_get_param(int fd, uint32_t param);
1208 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1209 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1210 int anv_gem_get_aperture(int fd, uint64_t *size);
1211 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1212 uint32_t *active, uint32_t *pending);
1213 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1214 int anv_gem_reg_read(struct anv_device *device,
1215 uint32_t offset, uint64_t *result);
1216 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1217 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1218 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1219 uint32_t read_domains, uint32_t write_domain);
1220 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1221 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1222 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1223 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1224 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1225 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1226 uint32_t handle);
1227 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1228 uint32_t handle, int fd);
1229 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1230 bool anv_gem_supports_syncobj_wait(int fd);
1231 int anv_gem_syncobj_wait(struct anv_device *device,
1232 uint32_t *handles, uint32_t num_handles,
1233 int64_t abs_timeout_ns, bool wait_all);
1234
1235 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1236 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1237
1238 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1239
1240 struct anv_reloc_list {
1241 uint32_t num_relocs;
1242 uint32_t array_length;
1243 struct drm_i915_gem_relocation_entry * relocs;
1244 struct anv_bo ** reloc_bos;
1245 struct set * deps;
1246 };
1247
1248 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1249 const VkAllocationCallbacks *alloc);
1250 void anv_reloc_list_finish(struct anv_reloc_list *list,
1251 const VkAllocationCallbacks *alloc);
1252
1253 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1254 const VkAllocationCallbacks *alloc,
1255 uint32_t offset, struct anv_bo *target_bo,
1256 uint32_t delta);
1257
1258 struct anv_batch_bo {
1259 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1260 struct list_head link;
1261
1262 struct anv_bo bo;
1263
1264 /* Bytes actually consumed in this batch BO */
1265 uint32_t length;
1266
1267 struct anv_reloc_list relocs;
1268 };
1269
1270 struct anv_batch {
1271 const VkAllocationCallbacks * alloc;
1272
1273 void * start;
1274 void * end;
1275 void * next;
1276
1277 struct anv_reloc_list * relocs;
1278
1279 /* This callback is called (with the associated user data) in the event
1280 * that the batch runs out of space.
1281 */
1282 VkResult (*extend_cb)(struct anv_batch *, void *);
1283 void * user_data;
1284
1285 /**
1286 * Current error status of the command buffer. Used to track inconsistent
1287 * or incomplete command buffer states that are the consequence of run-time
1288 * errors such as out of memory scenarios. We want to track this in the
1289 * batch because the command buffer object is not visible to some parts
1290 * of the driver.
1291 */
1292 VkResult status;
1293 };
1294
1295 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1296 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1297 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1298 void *location, struct anv_bo *bo, uint32_t offset);
1299 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1300 struct anv_batch *batch);
1301
1302 static inline VkResult
1303 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1304 {
1305 assert(error != VK_SUCCESS);
1306 if (batch->status == VK_SUCCESS)
1307 batch->status = error;
1308 return batch->status;
1309 }
1310
1311 static inline bool
1312 anv_batch_has_error(struct anv_batch *batch)
1313 {
1314 return batch->status != VK_SUCCESS;
1315 }
1316
1317 struct anv_address {
1318 struct anv_bo *bo;
1319 uint32_t offset;
1320 };
1321
1322 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1323
1324 static inline bool
1325 anv_address_is_null(struct anv_address addr)
1326 {
1327 return addr.bo == NULL && addr.offset == 0;
1328 }
1329
1330 static inline uint64_t
1331 anv_address_physical(struct anv_address addr)
1332 {
1333 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1334 return gen_canonical_address(addr.bo->offset + addr.offset);
1335 else
1336 return gen_canonical_address(addr.offset);
1337 }
1338
1339 static inline struct anv_address
1340 anv_address_add(struct anv_address addr, uint64_t offset)
1341 {
1342 addr.offset += offset;
1343 return addr;
1344 }
1345
1346 static inline void
1347 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1348 {
1349 unsigned reloc_size = 0;
1350 if (device->info.gen >= 8) {
1351 reloc_size = sizeof(uint64_t);
1352 *(uint64_t *)p = gen_canonical_address(v);
1353 } else {
1354 reloc_size = sizeof(uint32_t);
1355 *(uint32_t *)p = v;
1356 }
1357
1358 if (flush && !device->info.has_llc)
1359 gen_flush_range(p, reloc_size);
1360 }
1361
1362 static inline uint64_t
1363 _anv_combine_address(struct anv_batch *batch, void *location,
1364 const struct anv_address address, uint32_t delta)
1365 {
1366 if (address.bo == NULL) {
1367 return address.offset + delta;
1368 } else {
1369 assert(batch->start <= location && location < batch->end);
1370
1371 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1372 }
1373 }
1374
1375 #define __gen_address_type struct anv_address
1376 #define __gen_user_data struct anv_batch
1377 #define __gen_combine_address _anv_combine_address
1378
1379 /* Wrapper macros needed to work around preprocessor argument issues. In
1380 * particular, arguments don't get pre-evaluated if they are concatenated.
1381 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1382 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1383 * We can work around this easily enough with these helpers.
1384 */
1385 #define __anv_cmd_length(cmd) cmd ## _length
1386 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1387 #define __anv_cmd_header(cmd) cmd ## _header
1388 #define __anv_cmd_pack(cmd) cmd ## _pack
1389 #define __anv_reg_num(reg) reg ## _num
1390
1391 #define anv_pack_struct(dst, struc, ...) do { \
1392 struct struc __template = { \
1393 __VA_ARGS__ \
1394 }; \
1395 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1396 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1397 } while (0)
1398
1399 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1400 void *__dst = anv_batch_emit_dwords(batch, n); \
1401 if (__dst) { \
1402 struct cmd __template = { \
1403 __anv_cmd_header(cmd), \
1404 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1405 __VA_ARGS__ \
1406 }; \
1407 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1408 } \
1409 __dst; \
1410 })
1411
1412 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1413 do { \
1414 uint32_t *dw; \
1415 \
1416 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1417 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1418 if (!dw) \
1419 break; \
1420 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1421 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1422 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1423 } while (0)
1424
1425 #define anv_batch_emit(batch, cmd, name) \
1426 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1427 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1428 __builtin_expect(_dst != NULL, 1); \
1429 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1430 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1431 _dst = NULL; \
1432 }))
1433
1434 /* MEMORY_OBJECT_CONTROL_STATE:
1435 * .GraphicsDataTypeGFDT = 0,
1436 * .LLCCacheabilityControlLLCCC = 0,
1437 * .L3CacheabilityControlL3CC = 1,
1438 */
1439 #define GEN7_MOCS 1
1440
1441 /* MEMORY_OBJECT_CONTROL_STATE:
1442 * .LLCeLLCCacheabilityControlLLCCC = 0,
1443 * .L3CacheabilityControlL3CC = 1,
1444 */
1445 #define GEN75_MOCS 1
1446
1447 /* MEMORY_OBJECT_CONTROL_STATE:
1448 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1449 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1450 * .AgeforQUADLRU = 0
1451 */
1452 #define GEN8_MOCS 0x78
1453
1454 /* MEMORY_OBJECT_CONTROL_STATE:
1455 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1456 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1457 * .AgeforQUADLRU = 0
1458 */
1459 #define GEN8_EXTERNAL_MOCS 0x18
1460
1461 /* Skylake: MOCS is now an index into an array of 62 different caching
1462 * configurations programmed by the kernel.
1463 */
1464
1465 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1466 #define GEN9_MOCS (2 << 1)
1467
1468 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1469 #define GEN9_EXTERNAL_MOCS (1 << 1)
1470
1471 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1472 #define GEN10_MOCS GEN9_MOCS
1473 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1474
1475 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1476 #define GEN11_MOCS GEN9_MOCS
1477 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1478
1479 struct anv_device_memory {
1480 struct anv_bo * bo;
1481 struct anv_memory_type * type;
1482 VkDeviceSize map_size;
1483 void * map;
1484
1485 /* If set, we are holding reference to AHardwareBuffer
1486 * which we must release when memory is freed.
1487 */
1488 struct AHardwareBuffer * ahw;
1489 };
1490
1491 /**
1492 * Header for Vertex URB Entry (VUE)
1493 */
1494 struct anv_vue_header {
1495 uint32_t Reserved;
1496 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1497 uint32_t ViewportIndex;
1498 float PointWidth;
1499 };
1500
1501 struct anv_descriptor_set_binding_layout {
1502 #ifndef NDEBUG
1503 /* The type of the descriptors in this binding */
1504 VkDescriptorType type;
1505 #endif
1506
1507 /* Number of array elements in this binding */
1508 uint16_t array_size;
1509
1510 /* Index into the flattend descriptor set */
1511 uint16_t descriptor_index;
1512
1513 /* Index into the dynamic state array for a dynamic buffer */
1514 int16_t dynamic_offset_index;
1515
1516 /* Index into the descriptor set buffer views */
1517 int16_t buffer_index;
1518
1519 struct {
1520 /* Index into the binding table for the associated surface */
1521 int16_t surface_index;
1522
1523 /* Index into the sampler table for the associated sampler */
1524 int16_t sampler_index;
1525
1526 /* Index into the image table for the associated image */
1527 int16_t image_index;
1528 } stage[MESA_SHADER_STAGES];
1529
1530 /* Immutable samplers (or NULL if no immutable samplers) */
1531 struct anv_sampler **immutable_samplers;
1532 };
1533
1534 struct anv_descriptor_set_layout {
1535 /* Descriptor set layouts can be destroyed at almost any time */
1536 uint32_t ref_cnt;
1537
1538 /* Number of bindings in this descriptor set */
1539 uint16_t binding_count;
1540
1541 /* Total size of the descriptor set with room for all array entries */
1542 uint16_t size;
1543
1544 /* Shader stages affected by this descriptor set */
1545 uint16_t shader_stages;
1546
1547 /* Number of buffers in this descriptor set */
1548 uint16_t buffer_count;
1549
1550 /* Number of dynamic offsets used by this descriptor set */
1551 uint16_t dynamic_offset_count;
1552
1553 /* Bindings in this descriptor set */
1554 struct anv_descriptor_set_binding_layout binding[0];
1555 };
1556
1557 static inline void
1558 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1559 {
1560 assert(layout && layout->ref_cnt >= 1);
1561 p_atomic_inc(&layout->ref_cnt);
1562 }
1563
1564 static inline void
1565 anv_descriptor_set_layout_unref(struct anv_device *device,
1566 struct anv_descriptor_set_layout *layout)
1567 {
1568 assert(layout && layout->ref_cnt >= 1);
1569 if (p_atomic_dec_zero(&layout->ref_cnt))
1570 vk_free(&device->alloc, layout);
1571 }
1572
1573 struct anv_descriptor {
1574 VkDescriptorType type;
1575
1576 union {
1577 struct {
1578 VkImageLayout layout;
1579 struct anv_image_view *image_view;
1580 struct anv_sampler *sampler;
1581 };
1582
1583 struct {
1584 struct anv_buffer *buffer;
1585 uint64_t offset;
1586 uint64_t range;
1587 };
1588
1589 struct anv_buffer_view *buffer_view;
1590 };
1591 };
1592
1593 struct anv_descriptor_set {
1594 struct anv_descriptor_set_layout *layout;
1595 uint32_t size;
1596 uint32_t buffer_count;
1597 struct anv_buffer_view *buffer_views;
1598 struct anv_descriptor descriptors[0];
1599 };
1600
1601 struct anv_buffer_view {
1602 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1603 uint64_t range; /**< VkBufferViewCreateInfo::range */
1604
1605 struct anv_address address;
1606
1607 struct anv_state surface_state;
1608 struct anv_state storage_surface_state;
1609 struct anv_state writeonly_storage_surface_state;
1610
1611 struct brw_image_param storage_image_param;
1612 };
1613
1614 struct anv_push_descriptor_set {
1615 struct anv_descriptor_set set;
1616
1617 /* Put this field right behind anv_descriptor_set so it fills up the
1618 * descriptors[0] field. */
1619 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1620 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1621 };
1622
1623 struct anv_descriptor_pool {
1624 uint32_t size;
1625 uint32_t next;
1626 uint32_t free_list;
1627
1628 struct anv_state_stream surface_state_stream;
1629 void *surface_state_free_list;
1630
1631 char data[0];
1632 };
1633
1634 enum anv_descriptor_template_entry_type {
1635 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1636 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1637 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1638 };
1639
1640 struct anv_descriptor_template_entry {
1641 /* The type of descriptor in this entry */
1642 VkDescriptorType type;
1643
1644 /* Binding in the descriptor set */
1645 uint32_t binding;
1646
1647 /* Offset at which to write into the descriptor set binding */
1648 uint32_t array_element;
1649
1650 /* Number of elements to write into the descriptor set binding */
1651 uint32_t array_count;
1652
1653 /* Offset into the user provided data */
1654 size_t offset;
1655
1656 /* Stride between elements into the user provided data */
1657 size_t stride;
1658 };
1659
1660 struct anv_descriptor_update_template {
1661 VkPipelineBindPoint bind_point;
1662
1663 /* The descriptor set this template corresponds to. This value is only
1664 * valid if the template was created with the templateType
1665 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1666 */
1667 uint8_t set;
1668
1669 /* Number of entries in this template */
1670 uint32_t entry_count;
1671
1672 /* Entries of the template */
1673 struct anv_descriptor_template_entry entries[0];
1674 };
1675
1676 size_t
1677 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1678
1679 void
1680 anv_descriptor_set_write_image_view(struct anv_device *device,
1681 struct anv_descriptor_set *set,
1682 const VkDescriptorImageInfo * const info,
1683 VkDescriptorType type,
1684 uint32_t binding,
1685 uint32_t element);
1686
1687 void
1688 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1689 struct anv_descriptor_set *set,
1690 VkDescriptorType type,
1691 struct anv_buffer_view *buffer_view,
1692 uint32_t binding,
1693 uint32_t element);
1694
1695 void
1696 anv_descriptor_set_write_buffer(struct anv_device *device,
1697 struct anv_descriptor_set *set,
1698 struct anv_state_stream *alloc_stream,
1699 VkDescriptorType type,
1700 struct anv_buffer *buffer,
1701 uint32_t binding,
1702 uint32_t element,
1703 VkDeviceSize offset,
1704 VkDeviceSize range);
1705
1706 void
1707 anv_descriptor_set_write_template(struct anv_device *device,
1708 struct anv_descriptor_set *set,
1709 struct anv_state_stream *alloc_stream,
1710 const struct anv_descriptor_update_template *template,
1711 const void *data);
1712
1713 VkResult
1714 anv_descriptor_set_create(struct anv_device *device,
1715 struct anv_descriptor_pool *pool,
1716 struct anv_descriptor_set_layout *layout,
1717 struct anv_descriptor_set **out_set);
1718
1719 void
1720 anv_descriptor_set_destroy(struct anv_device *device,
1721 struct anv_descriptor_pool *pool,
1722 struct anv_descriptor_set *set);
1723
1724 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1725 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1726 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1727
1728 struct anv_pipeline_binding {
1729 /* The descriptor set this surface corresponds to. The special value of
1730 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1731 * to a color attachment and not a regular descriptor.
1732 */
1733 uint8_t set;
1734
1735 /* Binding in the descriptor set */
1736 uint32_t binding;
1737
1738 /* Index in the binding */
1739 uint32_t index;
1740
1741 /* Plane in the binding index */
1742 uint8_t plane;
1743
1744 /* Input attachment index (relative to the subpass) */
1745 uint8_t input_attachment_index;
1746
1747 /* For a storage image, whether it is write-only */
1748 bool write_only;
1749 };
1750
1751 struct anv_pipeline_layout {
1752 struct {
1753 struct anv_descriptor_set_layout *layout;
1754 uint32_t dynamic_offset_start;
1755 } set[MAX_SETS];
1756
1757 uint32_t num_sets;
1758
1759 struct {
1760 bool has_dynamic_offsets;
1761 } stage[MESA_SHADER_STAGES];
1762
1763 unsigned char sha1[20];
1764 };
1765
1766 struct anv_buffer {
1767 struct anv_device * device;
1768 VkDeviceSize size;
1769
1770 VkBufferUsageFlags usage;
1771
1772 /* Set when bound */
1773 struct anv_address address;
1774 };
1775
1776 static inline uint64_t
1777 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1778 {
1779 assert(offset <= buffer->size);
1780 if (range == VK_WHOLE_SIZE) {
1781 return buffer->size - offset;
1782 } else {
1783 assert(range + offset >= range);
1784 assert(range + offset <= buffer->size);
1785 return range;
1786 }
1787 }
1788
1789 enum anv_cmd_dirty_bits {
1790 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1791 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1792 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1793 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1794 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1795 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1796 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1797 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1798 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1799 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1800 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1801 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1802 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1803 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1804 };
1805 typedef uint32_t anv_cmd_dirty_mask_t;
1806
1807 enum anv_pipe_bits {
1808 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1809 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1810 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1811 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1812 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1813 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1814 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1815 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1816 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1817 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1818 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1819
1820 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1821 * a flush has happened but not a CS stall. The next time we do any sort
1822 * of invalidation we need to insert a CS stall at that time. Otherwise,
1823 * we would have to CS stall on every flush which could be bad.
1824 */
1825 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1826
1827 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1828 * target operations related to transfer commands with VkBuffer as
1829 * destination are ongoing. Some operations like copies on the command
1830 * streamer might need to be aware of this to trigger the appropriate stall
1831 * before they can proceed with the copy.
1832 */
1833 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
1834 };
1835
1836 #define ANV_PIPE_FLUSH_BITS ( \
1837 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1838 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1839 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1840
1841 #define ANV_PIPE_STALL_BITS ( \
1842 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1843 ANV_PIPE_DEPTH_STALL_BIT | \
1844 ANV_PIPE_CS_STALL_BIT)
1845
1846 #define ANV_PIPE_INVALIDATE_BITS ( \
1847 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1848 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1849 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1850 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1851 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1852 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1853
1854 static inline enum anv_pipe_bits
1855 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1856 {
1857 enum anv_pipe_bits pipe_bits = 0;
1858
1859 unsigned b;
1860 for_each_bit(b, flags) {
1861 switch ((VkAccessFlagBits)(1 << b)) {
1862 case VK_ACCESS_SHADER_WRITE_BIT:
1863 /* We're transitioning a buffer that was previously used as write
1864 * destination through the data port. To make its content available
1865 * to future operations, flush the data cache.
1866 */
1867 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1868 break;
1869 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1870 /* We're transitioning a buffer that was previously used as render
1871 * target. To make its content available to future operations, flush
1872 * the render target cache.
1873 */
1874 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1875 break;
1876 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1877 /* We're transitioning a buffer that was previously used as depth
1878 * buffer. To make its content available to future operations, flush
1879 * the depth cache.
1880 */
1881 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1882 break;
1883 case VK_ACCESS_TRANSFER_WRITE_BIT:
1884 /* We're transitioning a buffer that was previously used as a
1885 * transfer write destination. Generic write operations include color
1886 * & depth operations as well as buffer operations like :
1887 * - vkCmdClearColorImage()
1888 * - vkCmdClearDepthStencilImage()
1889 * - vkCmdBlitImage()
1890 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
1891 *
1892 * Most of these operations are implemented using Blorp which writes
1893 * through the render target, so flush that cache to make it visible
1894 * to future operations. And for depth related operations we also
1895 * need to flush the depth cache.
1896 */
1897 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1898 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1899 break;
1900 case VK_ACCESS_MEMORY_WRITE_BIT:
1901 /* We're transitioning a buffer for generic write operations. Flush
1902 * all the caches.
1903 */
1904 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1905 break;
1906 default:
1907 break; /* Nothing to do */
1908 }
1909 }
1910
1911 return pipe_bits;
1912 }
1913
1914 static inline enum anv_pipe_bits
1915 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1916 {
1917 enum anv_pipe_bits pipe_bits = 0;
1918
1919 unsigned b;
1920 for_each_bit(b, flags) {
1921 switch ((VkAccessFlagBits)(1 << b)) {
1922 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1923 /* Indirect draw commands take a buffer as input that we're going to
1924 * read from the command streamer to load some of the HW registers
1925 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
1926 * command streamer stall so that all the cache flushes have
1927 * completed before the command streamer loads from memory.
1928 */
1929 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1930 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
1931 * through a vertex buffer, so invalidate that cache.
1932 */
1933 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1934 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
1935 * UBO from the buffer, so we need to invalidate constant cache.
1936 */
1937 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1938 break;
1939 case VK_ACCESS_INDEX_READ_BIT:
1940 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1941 /* We transitioning a buffer to be used for as input for vkCmdDraw*
1942 * commands, so we invalidate the VF cache to make sure there is no
1943 * stale data when we start rendering.
1944 */
1945 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1946 break;
1947 case VK_ACCESS_UNIFORM_READ_BIT:
1948 /* We transitioning a buffer to be used as uniform data. Because
1949 * uniform is accessed through the data port & sampler, we need to
1950 * invalidate the texture cache (sampler) & constant cache (data
1951 * port) to avoid stale data.
1952 */
1953 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1954 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1955 break;
1956 case VK_ACCESS_SHADER_READ_BIT:
1957 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1958 case VK_ACCESS_TRANSFER_READ_BIT:
1959 /* Transitioning a buffer to be read through the sampler, so
1960 * invalidate the texture cache, we don't want any stale data.
1961 */
1962 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1963 break;
1964 case VK_ACCESS_MEMORY_READ_BIT:
1965 /* Transitioning a buffer for generic read, invalidate all the
1966 * caches.
1967 */
1968 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
1969 break;
1970 case VK_ACCESS_MEMORY_WRITE_BIT:
1971 /* Generic write, make sure all previously written things land in
1972 * memory.
1973 */
1974 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1975 break;
1976 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
1977 /* Transitioning a buffer for conditional rendering. We'll load the
1978 * content of this buffer into HW registers using the command
1979 * streamer, so we need to stall the command streamer to make sure
1980 * any in-flight flush operations have completed.
1981 */
1982 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1983 break;
1984 default:
1985 break; /* Nothing to do */
1986 }
1987 }
1988
1989 return pipe_bits;
1990 }
1991
1992 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1993 VK_IMAGE_ASPECT_COLOR_BIT | \
1994 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1995 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1996 VK_IMAGE_ASPECT_PLANE_2_BIT)
1997 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1998 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1999 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2000 VK_IMAGE_ASPECT_PLANE_2_BIT)
2001
2002 struct anv_vertex_binding {
2003 struct anv_buffer * buffer;
2004 VkDeviceSize offset;
2005 };
2006
2007 struct anv_xfb_binding {
2008 struct anv_buffer * buffer;
2009 VkDeviceSize offset;
2010 VkDeviceSize size;
2011 };
2012
2013 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2014 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2015
2016 struct anv_push_constants {
2017 /* Current allocated size of this push constants data structure.
2018 * Because a decent chunk of it may not be used (images on SKL, for
2019 * instance), we won't actually allocate the entire structure up-front.
2020 */
2021 uint32_t size;
2022
2023 /* Push constant data provided by the client through vkPushConstants */
2024 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2025
2026 /* Used for vkCmdDispatchBase */
2027 uint32_t base_work_group_id[3];
2028
2029 /* Image data for image_load_store on pre-SKL */
2030 struct brw_image_param images[MAX_GEN8_IMAGES];
2031 };
2032
2033 struct anv_dynamic_state {
2034 struct {
2035 uint32_t count;
2036 VkViewport viewports[MAX_VIEWPORTS];
2037 } viewport;
2038
2039 struct {
2040 uint32_t count;
2041 VkRect2D scissors[MAX_SCISSORS];
2042 } scissor;
2043
2044 float line_width;
2045
2046 struct {
2047 float bias;
2048 float clamp;
2049 float slope;
2050 } depth_bias;
2051
2052 float blend_constants[4];
2053
2054 struct {
2055 float min;
2056 float max;
2057 } depth_bounds;
2058
2059 struct {
2060 uint32_t front;
2061 uint32_t back;
2062 } stencil_compare_mask;
2063
2064 struct {
2065 uint32_t front;
2066 uint32_t back;
2067 } stencil_write_mask;
2068
2069 struct {
2070 uint32_t front;
2071 uint32_t back;
2072 } stencil_reference;
2073 };
2074
2075 extern const struct anv_dynamic_state default_dynamic_state;
2076
2077 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2078 const struct anv_dynamic_state *src,
2079 uint32_t copy_mask);
2080
2081 struct anv_surface_state {
2082 struct anv_state state;
2083 /** Address of the surface referred to by this state
2084 *
2085 * This address is relative to the start of the BO.
2086 */
2087 struct anv_address address;
2088 /* Address of the aux surface, if any
2089 *
2090 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2091 *
2092 * With the exception of gen8, the bottom 12 bits of this address' offset
2093 * include extra aux information.
2094 */
2095 struct anv_address aux_address;
2096 /* Address of the clear color, if any
2097 *
2098 * This address is relative to the start of the BO.
2099 */
2100 struct anv_address clear_address;
2101 };
2102
2103 /**
2104 * Attachment state when recording a renderpass instance.
2105 *
2106 * The clear value is valid only if there exists a pending clear.
2107 */
2108 struct anv_attachment_state {
2109 enum isl_aux_usage aux_usage;
2110 enum isl_aux_usage input_aux_usage;
2111 struct anv_surface_state color;
2112 struct anv_surface_state input;
2113
2114 VkImageLayout current_layout;
2115 VkImageAspectFlags pending_clear_aspects;
2116 VkImageAspectFlags pending_load_aspects;
2117 bool fast_clear;
2118 VkClearValue clear_value;
2119 bool clear_color_is_zero_one;
2120 bool clear_color_is_zero;
2121
2122 /* When multiview is active, attachments with a renderpass clear
2123 * operation have their respective layers cleared on the first
2124 * subpass that uses them, and only in that subpass. We keep track
2125 * of this using a bitfield to indicate which layers of an attachment
2126 * have not been cleared yet when multiview is active.
2127 */
2128 uint32_t pending_clear_views;
2129 };
2130
2131 /** State tracking for particular pipeline bind point
2132 *
2133 * This struct is the base struct for anv_cmd_graphics_state and
2134 * anv_cmd_compute_state. These are used to track state which is bound to a
2135 * particular type of pipeline. Generic state that applies per-stage such as
2136 * binding table offsets and push constants is tracked generically with a
2137 * per-stage array in anv_cmd_state.
2138 */
2139 struct anv_cmd_pipeline_state {
2140 struct anv_pipeline *pipeline;
2141 struct anv_pipeline_layout *layout;
2142
2143 struct anv_descriptor_set *descriptors[MAX_SETS];
2144 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2145
2146 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2147 };
2148
2149 /** State tracking for graphics pipeline
2150 *
2151 * This has anv_cmd_pipeline_state as a base struct to track things which get
2152 * bound to a graphics pipeline. Along with general pipeline bind point state
2153 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2154 * state which is graphics-specific.
2155 */
2156 struct anv_cmd_graphics_state {
2157 struct anv_cmd_pipeline_state base;
2158
2159 anv_cmd_dirty_mask_t dirty;
2160 uint32_t vb_dirty;
2161
2162 struct anv_dynamic_state dynamic;
2163
2164 struct {
2165 struct anv_buffer *index_buffer;
2166 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2167 uint32_t index_offset;
2168 } gen7;
2169 };
2170
2171 /** State tracking for compute pipeline
2172 *
2173 * This has anv_cmd_pipeline_state as a base struct to track things which get
2174 * bound to a compute pipeline. Along with general pipeline bind point state
2175 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2176 * state which is compute-specific.
2177 */
2178 struct anv_cmd_compute_state {
2179 struct anv_cmd_pipeline_state base;
2180
2181 bool pipeline_dirty;
2182
2183 struct anv_address num_workgroups;
2184 };
2185
2186 /** State required while building cmd buffer */
2187 struct anv_cmd_state {
2188 /* PIPELINE_SELECT.PipelineSelection */
2189 uint32_t current_pipeline;
2190 const struct gen_l3_config * current_l3_config;
2191
2192 struct anv_cmd_graphics_state gfx;
2193 struct anv_cmd_compute_state compute;
2194
2195 enum anv_pipe_bits pending_pipe_bits;
2196 VkShaderStageFlags descriptors_dirty;
2197 VkShaderStageFlags push_constants_dirty;
2198
2199 struct anv_framebuffer * framebuffer;
2200 struct anv_render_pass * pass;
2201 struct anv_subpass * subpass;
2202 VkRect2D render_area;
2203 uint32_t restart_index;
2204 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2205 bool xfb_enabled;
2206 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2207 VkShaderStageFlags push_constant_stages;
2208 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
2209 struct anv_state binding_tables[MESA_SHADER_STAGES];
2210 struct anv_state samplers[MESA_SHADER_STAGES];
2211
2212 /**
2213 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2214 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2215 * and before invoking the secondary in ExecuteCommands.
2216 */
2217 bool pma_fix_enabled;
2218
2219 /**
2220 * Whether or not we know for certain that HiZ is enabled for the current
2221 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2222 * enabled or not, this will be false.
2223 */
2224 bool hiz_enabled;
2225
2226 bool conditional_render_enabled;
2227
2228 /**
2229 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2230 * valid only when recording a render pass instance.
2231 */
2232 struct anv_attachment_state * attachments;
2233
2234 /**
2235 * Surface states for color render targets. These are stored in a single
2236 * flat array. For depth-stencil attachments, the surface state is simply
2237 * left blank.
2238 */
2239 struct anv_state render_pass_states;
2240
2241 /**
2242 * A null surface state of the right size to match the framebuffer. This
2243 * is one of the states in render_pass_states.
2244 */
2245 struct anv_state null_surface_state;
2246 };
2247
2248 struct anv_cmd_pool {
2249 VkAllocationCallbacks alloc;
2250 struct list_head cmd_buffers;
2251 };
2252
2253 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2254
2255 enum anv_cmd_buffer_exec_mode {
2256 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2257 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2258 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2259 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2260 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2261 };
2262
2263 struct anv_cmd_buffer {
2264 VK_LOADER_DATA _loader_data;
2265
2266 struct anv_device * device;
2267
2268 struct anv_cmd_pool * pool;
2269 struct list_head pool_link;
2270
2271 struct anv_batch batch;
2272
2273 /* Fields required for the actual chain of anv_batch_bo's.
2274 *
2275 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2276 */
2277 struct list_head batch_bos;
2278 enum anv_cmd_buffer_exec_mode exec_mode;
2279
2280 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2281 * referenced by this command buffer
2282 *
2283 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2284 */
2285 struct u_vector seen_bbos;
2286
2287 /* A vector of int32_t's for every block of binding tables.
2288 *
2289 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2290 */
2291 struct u_vector bt_block_states;
2292 uint32_t bt_next;
2293
2294 struct anv_reloc_list surface_relocs;
2295 /** Last seen surface state block pool center bo offset */
2296 uint32_t last_ss_pool_center;
2297
2298 /* Serial for tracking buffer completion */
2299 uint32_t serial;
2300
2301 /* Stream objects for storing temporary data */
2302 struct anv_state_stream surface_state_stream;
2303 struct anv_state_stream dynamic_state_stream;
2304
2305 VkCommandBufferUsageFlags usage_flags;
2306 VkCommandBufferLevel level;
2307
2308 struct anv_cmd_state state;
2309 };
2310
2311 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2312 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2313 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2314 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2315 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2316 struct anv_cmd_buffer *secondary);
2317 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2318 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2319 struct anv_cmd_buffer *cmd_buffer,
2320 const VkSemaphore *in_semaphores,
2321 uint32_t num_in_semaphores,
2322 const VkSemaphore *out_semaphores,
2323 uint32_t num_out_semaphores,
2324 VkFence fence);
2325
2326 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2327
2328 VkResult
2329 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2330 gl_shader_stage stage, uint32_t size);
2331 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2332 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2333 (offsetof(struct anv_push_constants, field) + \
2334 sizeof(cmd_buffer->state.push_constants[0]->field)))
2335
2336 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2337 const void *data, uint32_t size, uint32_t alignment);
2338 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2339 uint32_t *a, uint32_t *b,
2340 uint32_t dwords, uint32_t alignment);
2341
2342 struct anv_address
2343 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2344 struct anv_state
2345 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2346 uint32_t entries, uint32_t *state_offset);
2347 struct anv_state
2348 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2349 struct anv_state
2350 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2351 uint32_t size, uint32_t alignment);
2352
2353 VkResult
2354 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2355
2356 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2357 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2358 bool depth_clamp_enable);
2359 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2360
2361 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2362 struct anv_render_pass *pass,
2363 struct anv_framebuffer *framebuffer,
2364 const VkClearValue *clear_values);
2365
2366 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2367
2368 struct anv_state
2369 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2370 gl_shader_stage stage);
2371 struct anv_state
2372 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2373
2374 const struct anv_image_view *
2375 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2376
2377 VkResult
2378 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2379 uint32_t num_entries,
2380 uint32_t *state_offset,
2381 struct anv_state *bt_state);
2382
2383 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2384
2385 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2386
2387 enum anv_fence_type {
2388 ANV_FENCE_TYPE_NONE = 0,
2389 ANV_FENCE_TYPE_BO,
2390 ANV_FENCE_TYPE_SYNCOBJ,
2391 ANV_FENCE_TYPE_WSI,
2392 };
2393
2394 enum anv_bo_fence_state {
2395 /** Indicates that this is a new (or newly reset fence) */
2396 ANV_BO_FENCE_STATE_RESET,
2397
2398 /** Indicates that this fence has been submitted to the GPU but is still
2399 * (as far as we know) in use by the GPU.
2400 */
2401 ANV_BO_FENCE_STATE_SUBMITTED,
2402
2403 ANV_BO_FENCE_STATE_SIGNALED,
2404 };
2405
2406 struct anv_fence_impl {
2407 enum anv_fence_type type;
2408
2409 union {
2410 /** Fence implementation for BO fences
2411 *
2412 * These fences use a BO and a set of CPU-tracked state flags. The BO
2413 * is added to the object list of the last execbuf call in a QueueSubmit
2414 * and is marked EXEC_WRITE. The state flags track when the BO has been
2415 * submitted to the kernel. We need to do this because Vulkan lets you
2416 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2417 * will say it's idle in this case.
2418 */
2419 struct {
2420 struct anv_bo bo;
2421 enum anv_bo_fence_state state;
2422 } bo;
2423
2424 /** DRM syncobj handle for syncobj-based fences */
2425 uint32_t syncobj;
2426
2427 /** WSI fence */
2428 struct wsi_fence *fence_wsi;
2429 };
2430 };
2431
2432 struct anv_fence {
2433 /* Permanent fence state. Every fence has some form of permanent state
2434 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2435 * cross-process fences) or it could just be a dummy for use internally.
2436 */
2437 struct anv_fence_impl permanent;
2438
2439 /* Temporary fence state. A fence *may* have temporary state. That state
2440 * is added to the fence by an import operation and is reset back to
2441 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2442 * state cannot be signaled because the fence must already be signaled
2443 * before the temporary state can be exported from the fence in the other
2444 * process and imported here.
2445 */
2446 struct anv_fence_impl temporary;
2447 };
2448
2449 struct anv_event {
2450 uint64_t semaphore;
2451 struct anv_state state;
2452 };
2453
2454 enum anv_semaphore_type {
2455 ANV_SEMAPHORE_TYPE_NONE = 0,
2456 ANV_SEMAPHORE_TYPE_DUMMY,
2457 ANV_SEMAPHORE_TYPE_BO,
2458 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2459 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2460 };
2461
2462 struct anv_semaphore_impl {
2463 enum anv_semaphore_type type;
2464
2465 union {
2466 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2467 * This BO will be added to the object list on any execbuf2 calls for
2468 * which this semaphore is used as a wait or signal fence. When used as
2469 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2470 */
2471 struct anv_bo *bo;
2472
2473 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2474 * If the semaphore is in the unsignaled state due to either just being
2475 * created or because it has been used for a wait, fd will be -1.
2476 */
2477 int fd;
2478
2479 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2480 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2481 * import so we don't need to bother with a userspace cache.
2482 */
2483 uint32_t syncobj;
2484 };
2485 };
2486
2487 struct anv_semaphore {
2488 /* Permanent semaphore state. Every semaphore has some form of permanent
2489 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2490 * (for cross-process semaphores0 or it could just be a dummy for use
2491 * internally.
2492 */
2493 struct anv_semaphore_impl permanent;
2494
2495 /* Temporary semaphore state. A semaphore *may* have temporary state.
2496 * That state is added to the semaphore by an import operation and is reset
2497 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2498 * semaphore with temporary state cannot be signaled because the semaphore
2499 * must already be signaled before the temporary state can be exported from
2500 * the semaphore in the other process and imported here.
2501 */
2502 struct anv_semaphore_impl temporary;
2503 };
2504
2505 void anv_semaphore_reset_temporary(struct anv_device *device,
2506 struct anv_semaphore *semaphore);
2507
2508 struct anv_shader_module {
2509 unsigned char sha1[20];
2510 uint32_t size;
2511 char data[0];
2512 };
2513
2514 static inline gl_shader_stage
2515 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2516 {
2517 assert(__builtin_popcount(vk_stage) == 1);
2518 return ffs(vk_stage) - 1;
2519 }
2520
2521 static inline VkShaderStageFlagBits
2522 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2523 {
2524 return (1 << mesa_stage);
2525 }
2526
2527 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2528
2529 #define anv_foreach_stage(stage, stage_bits) \
2530 for (gl_shader_stage stage, \
2531 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2532 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2533 __tmp &= ~(1 << (stage)))
2534
2535 struct anv_pipeline_bind_map {
2536 uint32_t surface_count;
2537 uint32_t sampler_count;
2538 uint32_t image_count;
2539
2540 struct anv_pipeline_binding * surface_to_descriptor;
2541 struct anv_pipeline_binding * sampler_to_descriptor;
2542 };
2543
2544 struct anv_shader_bin_key {
2545 uint32_t size;
2546 uint8_t data[0];
2547 };
2548
2549 struct anv_shader_bin {
2550 uint32_t ref_cnt;
2551
2552 const struct anv_shader_bin_key *key;
2553
2554 struct anv_state kernel;
2555 uint32_t kernel_size;
2556
2557 struct anv_state constant_data;
2558 uint32_t constant_data_size;
2559
2560 const struct brw_stage_prog_data *prog_data;
2561 uint32_t prog_data_size;
2562
2563 struct nir_xfb_info *xfb_info;
2564
2565 struct anv_pipeline_bind_map bind_map;
2566 };
2567
2568 struct anv_shader_bin *
2569 anv_shader_bin_create(struct anv_device *device,
2570 const void *key, uint32_t key_size,
2571 const void *kernel, uint32_t kernel_size,
2572 const void *constant_data, uint32_t constant_data_size,
2573 const struct brw_stage_prog_data *prog_data,
2574 uint32_t prog_data_size, const void *prog_data_param,
2575 const struct nir_xfb_info *xfb_info,
2576 const struct anv_pipeline_bind_map *bind_map);
2577
2578 void
2579 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2580
2581 static inline void
2582 anv_shader_bin_ref(struct anv_shader_bin *shader)
2583 {
2584 assert(shader && shader->ref_cnt >= 1);
2585 p_atomic_inc(&shader->ref_cnt);
2586 }
2587
2588 static inline void
2589 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2590 {
2591 assert(shader && shader->ref_cnt >= 1);
2592 if (p_atomic_dec_zero(&shader->ref_cnt))
2593 anv_shader_bin_destroy(device, shader);
2594 }
2595
2596 struct anv_pipeline {
2597 struct anv_device * device;
2598 struct anv_batch batch;
2599 uint32_t batch_data[512];
2600 struct anv_reloc_list batch_relocs;
2601 uint32_t dynamic_state_mask;
2602 struct anv_dynamic_state dynamic_state;
2603
2604 struct anv_subpass * subpass;
2605
2606 bool needs_data_cache;
2607
2608 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2609
2610 struct {
2611 const struct gen_l3_config * l3_config;
2612 uint32_t total_size;
2613 } urb;
2614
2615 VkShaderStageFlags active_stages;
2616 struct anv_state blend_state;
2617
2618 uint32_t vb_used;
2619 struct anv_pipeline_vertex_binding {
2620 uint32_t stride;
2621 bool instanced;
2622 uint32_t instance_divisor;
2623 } vb[MAX_VBS];
2624
2625 uint8_t xfb_used;
2626
2627 bool primitive_restart;
2628 uint32_t topology;
2629
2630 uint32_t cs_right_mask;
2631
2632 bool writes_depth;
2633 bool depth_test_enable;
2634 bool writes_stencil;
2635 bool stencil_test_enable;
2636 bool depth_clamp_enable;
2637 bool depth_clip_enable;
2638 bool sample_shading_enable;
2639 bool kill_pixel;
2640
2641 struct {
2642 uint32_t sf[7];
2643 uint32_t depth_stencil_state[3];
2644 } gen7;
2645
2646 struct {
2647 uint32_t sf[4];
2648 uint32_t raster[5];
2649 uint32_t wm_depth_stencil[3];
2650 } gen8;
2651
2652 struct {
2653 uint32_t wm_depth_stencil[4];
2654 } gen9;
2655
2656 uint32_t interface_descriptor_data[8];
2657 };
2658
2659 static inline bool
2660 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2661 gl_shader_stage stage)
2662 {
2663 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2664 }
2665
2666 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2667 static inline const struct brw_##prefix##_prog_data * \
2668 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2669 { \
2670 if (anv_pipeline_has_stage(pipeline, stage)) { \
2671 return (const struct brw_##prefix##_prog_data *) \
2672 pipeline->shaders[stage]->prog_data; \
2673 } else { \
2674 return NULL; \
2675 } \
2676 }
2677
2678 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2679 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2680 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2681 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2682 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2683 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2684
2685 static inline const struct brw_vue_prog_data *
2686 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2687 {
2688 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2689 return &get_gs_prog_data(pipeline)->base;
2690 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2691 return &get_tes_prog_data(pipeline)->base;
2692 else
2693 return &get_vs_prog_data(pipeline)->base;
2694 }
2695
2696 VkResult
2697 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2698 struct anv_pipeline_cache *cache,
2699 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2700 const VkAllocationCallbacks *alloc);
2701
2702 VkResult
2703 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2704 struct anv_pipeline_cache *cache,
2705 const VkComputePipelineCreateInfo *info,
2706 const struct anv_shader_module *module,
2707 const char *entrypoint,
2708 const VkSpecializationInfo *spec_info);
2709
2710 struct anv_format_plane {
2711 enum isl_format isl_format:16;
2712 struct isl_swizzle swizzle;
2713
2714 /* Whether this plane contains chroma channels */
2715 bool has_chroma;
2716
2717 /* For downscaling of YUV planes */
2718 uint8_t denominator_scales[2];
2719
2720 /* How to map sampled ycbcr planes to a single 4 component element. */
2721 struct isl_swizzle ycbcr_swizzle;
2722
2723 /* What aspect is associated to this plane */
2724 VkImageAspectFlags aspect;
2725 };
2726
2727
2728 struct anv_format {
2729 struct anv_format_plane planes[3];
2730 VkFormat vk_format;
2731 uint8_t n_planes;
2732 bool can_ycbcr;
2733 };
2734
2735 static inline uint32_t
2736 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2737 VkImageAspectFlags aspect_mask)
2738 {
2739 switch (aspect_mask) {
2740 case VK_IMAGE_ASPECT_COLOR_BIT:
2741 case VK_IMAGE_ASPECT_DEPTH_BIT:
2742 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2743 return 0;
2744 case VK_IMAGE_ASPECT_STENCIL_BIT:
2745 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2746 return 0;
2747 /* Fall-through */
2748 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2749 return 1;
2750 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2751 return 2;
2752 default:
2753 /* Purposefully assert with depth/stencil aspects. */
2754 unreachable("invalid image aspect");
2755 }
2756 }
2757
2758 static inline VkImageAspectFlags
2759 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2760 uint32_t plane)
2761 {
2762 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2763 if (util_bitcount(image_aspects) > 1)
2764 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2765 return VK_IMAGE_ASPECT_COLOR_BIT;
2766 }
2767 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2768 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2769 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2770 return VK_IMAGE_ASPECT_STENCIL_BIT;
2771 }
2772
2773 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2774 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2775
2776 const struct anv_format *
2777 anv_get_format(VkFormat format);
2778
2779 static inline uint32_t
2780 anv_get_format_planes(VkFormat vk_format)
2781 {
2782 const struct anv_format *format = anv_get_format(vk_format);
2783
2784 return format != NULL ? format->n_planes : 0;
2785 }
2786
2787 struct anv_format_plane
2788 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2789 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2790
2791 static inline enum isl_format
2792 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2793 VkImageAspectFlags aspect, VkImageTiling tiling)
2794 {
2795 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2796 }
2797
2798 static inline struct isl_swizzle
2799 anv_swizzle_for_render(struct isl_swizzle swizzle)
2800 {
2801 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2802 * RGB as RGBA for texturing
2803 */
2804 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2805 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2806
2807 /* But it doesn't matter what we render to that channel */
2808 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2809
2810 return swizzle;
2811 }
2812
2813 void
2814 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2815
2816 /**
2817 * Subsurface of an anv_image.
2818 */
2819 struct anv_surface {
2820 /** Valid only if isl_surf::size_B > 0. */
2821 struct isl_surf isl;
2822
2823 /**
2824 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2825 */
2826 uint32_t offset;
2827 };
2828
2829 struct anv_image {
2830 VkImageType type;
2831 /* The original VkFormat provided by the client. This may not match any
2832 * of the actual surface formats.
2833 */
2834 VkFormat vk_format;
2835 const struct anv_format *format;
2836
2837 VkImageAspectFlags aspects;
2838 VkExtent3D extent;
2839 uint32_t levels;
2840 uint32_t array_size;
2841 uint32_t samples; /**< VkImageCreateInfo::samples */
2842 uint32_t n_planes;
2843 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2844 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2845 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2846
2847 /** True if this is needs to be bound to an appropriately tiled BO.
2848 *
2849 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2850 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2851 * we require a dedicated allocation so that we can know to allocate a
2852 * tiled buffer.
2853 */
2854 bool needs_set_tiling;
2855
2856 /**
2857 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2858 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2859 */
2860 uint64_t drm_format_mod;
2861
2862 VkDeviceSize size;
2863 uint32_t alignment;
2864
2865 /* Whether the image is made of several underlying buffer objects rather a
2866 * single one with different offsets.
2867 */
2868 bool disjoint;
2869
2870 /* All the formats that can be used when creating views of this image
2871 * are CCS_E compatible.
2872 */
2873 bool ccs_e_compatible;
2874
2875 /* Image was created with external format. */
2876 bool external_format;
2877
2878 /**
2879 * Image subsurfaces
2880 *
2881 * For each foo, anv_image::planes[x].surface is valid if and only if
2882 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2883 * to figure the number associated with a given aspect.
2884 *
2885 * The hardware requires that the depth buffer and stencil buffer be
2886 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2887 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2888 * allocate the depth and stencil buffers as separate surfaces in the same
2889 * bo.
2890 *
2891 * Memory layout :
2892 *
2893 * -----------------------
2894 * | surface0 | /|\
2895 * ----------------------- |
2896 * | shadow surface0 | |
2897 * ----------------------- | Plane 0
2898 * | aux surface0 | |
2899 * ----------------------- |
2900 * | fast clear colors0 | \|/
2901 * -----------------------
2902 * | surface1 | /|\
2903 * ----------------------- |
2904 * | shadow surface1 | |
2905 * ----------------------- | Plane 1
2906 * | aux surface1 | |
2907 * ----------------------- |
2908 * | fast clear colors1 | \|/
2909 * -----------------------
2910 * | ... |
2911 * | |
2912 * -----------------------
2913 */
2914 struct {
2915 /**
2916 * Offset of the entire plane (whenever the image is disjoint this is
2917 * set to 0).
2918 */
2919 uint32_t offset;
2920
2921 VkDeviceSize size;
2922 uint32_t alignment;
2923
2924 struct anv_surface surface;
2925
2926 /**
2927 * A surface which shadows the main surface and may have different
2928 * tiling. This is used for sampling using a tiling that isn't supported
2929 * for other operations.
2930 */
2931 struct anv_surface shadow_surface;
2932
2933 /**
2934 * For color images, this is the aux usage for this image when not used
2935 * as a color attachment.
2936 *
2937 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2938 * image has a HiZ buffer.
2939 */
2940 enum isl_aux_usage aux_usage;
2941
2942 struct anv_surface aux_surface;
2943
2944 /**
2945 * Offset of the fast clear state (used to compute the
2946 * fast_clear_state_offset of the following planes).
2947 */
2948 uint32_t fast_clear_state_offset;
2949
2950 /**
2951 * BO associated with this plane, set when bound.
2952 */
2953 struct anv_address address;
2954
2955 /**
2956 * When destroying the image, also free the bo.
2957 * */
2958 bool bo_is_owned;
2959 } planes[3];
2960 };
2961
2962 /* The ordering of this enum is important */
2963 enum anv_fast_clear_type {
2964 /** Image does not have/support any fast-clear blocks */
2965 ANV_FAST_CLEAR_NONE = 0,
2966 /** Image has/supports fast-clear but only to the default value */
2967 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2968 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2969 ANV_FAST_CLEAR_ANY = 2,
2970 };
2971
2972 /* Returns the number of auxiliary buffer levels attached to an image. */
2973 static inline uint8_t
2974 anv_image_aux_levels(const struct anv_image * const image,
2975 VkImageAspectFlagBits aspect)
2976 {
2977 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2978 return image->planes[plane].aux_surface.isl.size_B > 0 ?
2979 image->planes[plane].aux_surface.isl.levels : 0;
2980 }
2981
2982 /* Returns the number of auxiliary buffer layers attached to an image. */
2983 static inline uint32_t
2984 anv_image_aux_layers(const struct anv_image * const image,
2985 VkImageAspectFlagBits aspect,
2986 const uint8_t miplevel)
2987 {
2988 assert(image);
2989
2990 /* The miplevel must exist in the main buffer. */
2991 assert(miplevel < image->levels);
2992
2993 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2994 /* There are no layers with auxiliary data because the miplevel has no
2995 * auxiliary data.
2996 */
2997 return 0;
2998 } else {
2999 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3000 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3001 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3002 }
3003 }
3004
3005 static inline struct anv_address
3006 anv_image_get_clear_color_addr(const struct anv_device *device,
3007 const struct anv_image *image,
3008 VkImageAspectFlagBits aspect)
3009 {
3010 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3011
3012 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3013 return anv_address_add(image->planes[plane].address,
3014 image->planes[plane].fast_clear_state_offset);
3015 }
3016
3017 static inline struct anv_address
3018 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3019 const struct anv_image *image,
3020 VkImageAspectFlagBits aspect)
3021 {
3022 struct anv_address addr =
3023 anv_image_get_clear_color_addr(device, image, aspect);
3024
3025 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3026 device->isl_dev.ss.clear_color_state_size :
3027 device->isl_dev.ss.clear_value_size;
3028 return anv_address_add(addr, clear_color_state_size);
3029 }
3030
3031 static inline struct anv_address
3032 anv_image_get_compression_state_addr(const struct anv_device *device,
3033 const struct anv_image *image,
3034 VkImageAspectFlagBits aspect,
3035 uint32_t level, uint32_t array_layer)
3036 {
3037 assert(level < anv_image_aux_levels(image, aspect));
3038 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3039 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3040 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3041
3042 struct anv_address addr =
3043 anv_image_get_fast_clear_type_addr(device, image, aspect);
3044 addr.offset += 4; /* Go past the fast clear type */
3045
3046 if (image->type == VK_IMAGE_TYPE_3D) {
3047 for (uint32_t l = 0; l < level; l++)
3048 addr.offset += anv_minify(image->extent.depth, l) * 4;
3049 } else {
3050 addr.offset += level * image->array_size * 4;
3051 }
3052 addr.offset += array_layer * 4;
3053
3054 return addr;
3055 }
3056
3057 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3058 static inline bool
3059 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3060 const struct anv_image *image)
3061 {
3062 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3063 return false;
3064
3065 if (devinfo->gen < 8)
3066 return false;
3067
3068 return image->samples == 1;
3069 }
3070
3071 void
3072 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3073 const struct anv_image *image,
3074 VkImageAspectFlagBits aspect,
3075 enum isl_aux_usage aux_usage,
3076 uint32_t level,
3077 uint32_t base_layer,
3078 uint32_t layer_count);
3079
3080 void
3081 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3082 const struct anv_image *image,
3083 VkImageAspectFlagBits aspect,
3084 enum isl_aux_usage aux_usage,
3085 enum isl_format format, struct isl_swizzle swizzle,
3086 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3087 VkRect2D area, union isl_color_value clear_color);
3088 void
3089 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3090 const struct anv_image *image,
3091 VkImageAspectFlags aspects,
3092 enum isl_aux_usage depth_aux_usage,
3093 uint32_t level,
3094 uint32_t base_layer, uint32_t layer_count,
3095 VkRect2D area,
3096 float depth_value, uint8_t stencil_value);
3097 void
3098 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3099 const struct anv_image *src_image,
3100 enum isl_aux_usage src_aux_usage,
3101 uint32_t src_level, uint32_t src_base_layer,
3102 const struct anv_image *dst_image,
3103 enum isl_aux_usage dst_aux_usage,
3104 uint32_t dst_level, uint32_t dst_base_layer,
3105 VkImageAspectFlagBits aspect,
3106 uint32_t src_x, uint32_t src_y,
3107 uint32_t dst_x, uint32_t dst_y,
3108 uint32_t width, uint32_t height,
3109 uint32_t layer_count,
3110 enum blorp_filter filter);
3111 void
3112 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3113 const struct anv_image *image,
3114 VkImageAspectFlagBits aspect, uint32_t level,
3115 uint32_t base_layer, uint32_t layer_count,
3116 enum isl_aux_op hiz_op);
3117 void
3118 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3119 const struct anv_image *image,
3120 VkImageAspectFlags aspects,
3121 uint32_t level,
3122 uint32_t base_layer, uint32_t layer_count,
3123 VkRect2D area, uint8_t stencil_value);
3124 void
3125 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3126 const struct anv_image *image,
3127 enum isl_format format,
3128 VkImageAspectFlagBits aspect,
3129 uint32_t base_layer, uint32_t layer_count,
3130 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3131 bool predicate);
3132 void
3133 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3134 const struct anv_image *image,
3135 enum isl_format format,
3136 VkImageAspectFlagBits aspect, uint32_t level,
3137 uint32_t base_layer, uint32_t layer_count,
3138 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3139 bool predicate);
3140
3141 void
3142 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3143 const struct anv_image *image,
3144 uint32_t base_level, uint32_t level_count,
3145 uint32_t base_layer, uint32_t layer_count);
3146
3147 enum isl_aux_usage
3148 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3149 const struct anv_image *image,
3150 const VkImageAspectFlagBits aspect,
3151 const VkImageLayout layout);
3152
3153 enum anv_fast_clear_type
3154 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3155 const struct anv_image * const image,
3156 const VkImageAspectFlagBits aspect,
3157 const VkImageLayout layout);
3158
3159 /* This is defined as a macro so that it works for both
3160 * VkImageSubresourceRange and VkImageSubresourceLayers
3161 */
3162 #define anv_get_layerCount(_image, _range) \
3163 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3164 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3165
3166 static inline uint32_t
3167 anv_get_levelCount(const struct anv_image *image,
3168 const VkImageSubresourceRange *range)
3169 {
3170 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3171 image->levels - range->baseMipLevel : range->levelCount;
3172 }
3173
3174 static inline VkImageAspectFlags
3175 anv_image_expand_aspects(const struct anv_image *image,
3176 VkImageAspectFlags aspects)
3177 {
3178 /* If the underlying image has color plane aspects and
3179 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3180 * the underlying image. */
3181 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3182 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3183 return image->aspects;
3184
3185 return aspects;
3186 }
3187
3188 static inline bool
3189 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3190 VkImageAspectFlags aspects2)
3191 {
3192 if (aspects1 == aspects2)
3193 return true;
3194
3195 /* Only 1 color aspects are compatibles. */
3196 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3197 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3198 util_bitcount(aspects1) == util_bitcount(aspects2))
3199 return true;
3200
3201 return false;
3202 }
3203
3204 struct anv_image_view {
3205 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3206
3207 VkImageAspectFlags aspect_mask;
3208 VkFormat vk_format;
3209 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3210
3211 unsigned n_planes;
3212 struct {
3213 uint32_t image_plane;
3214
3215 struct isl_view isl;
3216
3217 /**
3218 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3219 * image layout of SHADER_READ_ONLY_OPTIMAL or
3220 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3221 */
3222 struct anv_surface_state optimal_sampler_surface_state;
3223
3224 /**
3225 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3226 * image layout of GENERAL.
3227 */
3228 struct anv_surface_state general_sampler_surface_state;
3229
3230 /**
3231 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3232 * states for write-only and readable, using the real format for
3233 * write-only and the lowered format for readable.
3234 */
3235 struct anv_surface_state storage_surface_state;
3236 struct anv_surface_state writeonly_storage_surface_state;
3237
3238 struct brw_image_param storage_image_param;
3239 } planes[3];
3240 };
3241
3242 enum anv_image_view_state_flags {
3243 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3244 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3245 };
3246
3247 void anv_image_fill_surface_state(struct anv_device *device,
3248 const struct anv_image *image,
3249 VkImageAspectFlagBits aspect,
3250 const struct isl_view *view,
3251 isl_surf_usage_flags_t view_usage,
3252 enum isl_aux_usage aux_usage,
3253 const union isl_color_value *clear_color,
3254 enum anv_image_view_state_flags flags,
3255 struct anv_surface_state *state_inout,
3256 struct brw_image_param *image_param_out);
3257
3258 struct anv_image_create_info {
3259 const VkImageCreateInfo *vk_info;
3260
3261 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3262 isl_tiling_flags_t isl_tiling_flags;
3263
3264 /** These flags will be added to any derived from VkImageCreateInfo. */
3265 isl_surf_usage_flags_t isl_extra_usage_flags;
3266
3267 uint32_t stride;
3268 bool external_format;
3269 };
3270
3271 VkResult anv_image_create(VkDevice _device,
3272 const struct anv_image_create_info *info,
3273 const VkAllocationCallbacks* alloc,
3274 VkImage *pImage);
3275
3276 const struct anv_surface *
3277 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3278 VkImageAspectFlags aspect_mask);
3279
3280 enum isl_format
3281 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3282
3283 static inline struct VkExtent3D
3284 anv_sanitize_image_extent(const VkImageType imageType,
3285 const struct VkExtent3D imageExtent)
3286 {
3287 switch (imageType) {
3288 case VK_IMAGE_TYPE_1D:
3289 return (VkExtent3D) { imageExtent.width, 1, 1 };
3290 case VK_IMAGE_TYPE_2D:
3291 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3292 case VK_IMAGE_TYPE_3D:
3293 return imageExtent;
3294 default:
3295 unreachable("invalid image type");
3296 }
3297 }
3298
3299 static inline struct VkOffset3D
3300 anv_sanitize_image_offset(const VkImageType imageType,
3301 const struct VkOffset3D imageOffset)
3302 {
3303 switch (imageType) {
3304 case VK_IMAGE_TYPE_1D:
3305 return (VkOffset3D) { imageOffset.x, 0, 0 };
3306 case VK_IMAGE_TYPE_2D:
3307 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3308 case VK_IMAGE_TYPE_3D:
3309 return imageOffset;
3310 default:
3311 unreachable("invalid image type");
3312 }
3313 }
3314
3315 VkFormatFeatureFlags
3316 anv_get_image_format_features(const struct gen_device_info *devinfo,
3317 VkFormat vk_format,
3318 const struct anv_format *anv_format,
3319 VkImageTiling vk_tiling);
3320
3321 void anv_fill_buffer_surface_state(struct anv_device *device,
3322 struct anv_state state,
3323 enum isl_format format,
3324 struct anv_address address,
3325 uint32_t range, uint32_t stride);
3326
3327 static inline void
3328 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3329 const struct anv_attachment_state *att_state,
3330 const struct anv_image_view *iview)
3331 {
3332 const struct isl_format_layout *view_fmtl =
3333 isl_format_get_layout(iview->planes[0].isl.format);
3334
3335 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3336 if (view_fmtl->channels.c.bits) \
3337 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3338
3339 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3340 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3341 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3342 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3343
3344 #undef COPY_CLEAR_COLOR_CHANNEL
3345 }
3346
3347
3348 struct anv_ycbcr_conversion {
3349 const struct anv_format * format;
3350 VkSamplerYcbcrModelConversion ycbcr_model;
3351 VkSamplerYcbcrRange ycbcr_range;
3352 VkComponentSwizzle mapping[4];
3353 VkChromaLocation chroma_offsets[2];
3354 VkFilter chroma_filter;
3355 bool chroma_reconstruction;
3356 };
3357
3358 struct anv_sampler {
3359 uint32_t state[3][4];
3360 uint32_t n_planes;
3361 struct anv_ycbcr_conversion *conversion;
3362 };
3363
3364 struct anv_framebuffer {
3365 uint32_t width;
3366 uint32_t height;
3367 uint32_t layers;
3368
3369 uint32_t attachment_count;
3370 struct anv_image_view * attachments[0];
3371 };
3372
3373 struct anv_subpass_attachment {
3374 VkImageUsageFlagBits usage;
3375 uint32_t attachment;
3376 VkImageLayout layout;
3377 };
3378
3379 struct anv_subpass {
3380 uint32_t attachment_count;
3381
3382 /**
3383 * A pointer to all attachment references used in this subpass.
3384 * Only valid if ::attachment_count > 0.
3385 */
3386 struct anv_subpass_attachment * attachments;
3387 uint32_t input_count;
3388 struct anv_subpass_attachment * input_attachments;
3389 uint32_t color_count;
3390 struct anv_subpass_attachment * color_attachments;
3391 struct anv_subpass_attachment * resolve_attachments;
3392
3393 struct anv_subpass_attachment * depth_stencil_attachment;
3394 struct anv_subpass_attachment * ds_resolve_attachment;
3395 VkResolveModeFlagBitsKHR depth_resolve_mode;
3396 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3397
3398 uint32_t view_mask;
3399
3400 /** Subpass has a depth/stencil self-dependency */
3401 bool has_ds_self_dep;
3402
3403 /** Subpass has at least one color resolve attachment */
3404 bool has_color_resolve;
3405 };
3406
3407 static inline unsigned
3408 anv_subpass_view_count(const struct anv_subpass *subpass)
3409 {
3410 return MAX2(1, util_bitcount(subpass->view_mask));
3411 }
3412
3413 struct anv_render_pass_attachment {
3414 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3415 * its members individually.
3416 */
3417 VkFormat format;
3418 uint32_t samples;
3419 VkImageUsageFlags usage;
3420 VkAttachmentLoadOp load_op;
3421 VkAttachmentStoreOp store_op;
3422 VkAttachmentLoadOp stencil_load_op;
3423 VkImageLayout initial_layout;
3424 VkImageLayout final_layout;
3425 VkImageLayout first_subpass_layout;
3426
3427 /* The subpass id in which the attachment will be used last. */
3428 uint32_t last_subpass_idx;
3429 };
3430
3431 struct anv_render_pass {
3432 uint32_t attachment_count;
3433 uint32_t subpass_count;
3434 /* An array of subpass_count+1 flushes, one per subpass boundary */
3435 enum anv_pipe_bits * subpass_flushes;
3436 struct anv_render_pass_attachment * attachments;
3437 struct anv_subpass subpasses[0];
3438 };
3439
3440 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3441
3442 struct anv_query_pool {
3443 VkQueryType type;
3444 VkQueryPipelineStatisticFlags pipeline_statistics;
3445 /** Stride between slots, in bytes */
3446 uint32_t stride;
3447 /** Number of slots in this query pool */
3448 uint32_t slots;
3449 struct anv_bo bo;
3450 };
3451
3452 int anv_get_instance_entrypoint_index(const char *name);
3453 int anv_get_device_entrypoint_index(const char *name);
3454
3455 bool
3456 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3457 const struct anv_instance_extension_table *instance);
3458
3459 bool
3460 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3461 const struct anv_instance_extension_table *instance,
3462 const struct anv_device_extension_table *device);
3463
3464 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3465 const char *name);
3466
3467 void anv_dump_image_to_ppm(struct anv_device *device,
3468 struct anv_image *image, unsigned miplevel,
3469 unsigned array_layer, VkImageAspectFlagBits aspect,
3470 const char *filename);
3471
3472 enum anv_dump_action {
3473 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3474 };
3475
3476 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3477 void anv_dump_finish(void);
3478
3479 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3480 struct anv_framebuffer *fb);
3481
3482 static inline uint32_t
3483 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3484 {
3485 /* This function must be called from within a subpass. */
3486 assert(cmd_state->pass && cmd_state->subpass);
3487
3488 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3489
3490 /* The id of this subpass shouldn't exceed the number of subpasses in this
3491 * render pass minus 1.
3492 */
3493 assert(subpass_id < cmd_state->pass->subpass_count);
3494 return subpass_id;
3495 }
3496
3497 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3498 \
3499 static inline struct __anv_type * \
3500 __anv_type ## _from_handle(__VkType _handle) \
3501 { \
3502 return (struct __anv_type *) _handle; \
3503 } \
3504 \
3505 static inline __VkType \
3506 __anv_type ## _to_handle(struct __anv_type *_obj) \
3507 { \
3508 return (__VkType) _obj; \
3509 }
3510
3511 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3512 \
3513 static inline struct __anv_type * \
3514 __anv_type ## _from_handle(__VkType _handle) \
3515 { \
3516 return (struct __anv_type *)(uintptr_t) _handle; \
3517 } \
3518 \
3519 static inline __VkType \
3520 __anv_type ## _to_handle(struct __anv_type *_obj) \
3521 { \
3522 return (__VkType)(uintptr_t) _obj; \
3523 }
3524
3525 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3526 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3527
3528 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3529 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3530 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3531 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3532 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3533
3534 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3535 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3536 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3537 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3538 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3539 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3540 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3541 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3542 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3543 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3544 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3545 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3546 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3547 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3548 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3549 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3550 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3551 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3552 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3553 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3554 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3555 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3556 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3557
3558 /* Gen-specific function declarations */
3559 #ifdef genX
3560 # include "anv_genX.h"
3561 #else
3562 # define genX(x) gen7_##x
3563 # include "anv_genX.h"
3564 # undef genX
3565 # define genX(x) gen75_##x
3566 # include "anv_genX.h"
3567 # undef genX
3568 # define genX(x) gen8_##x
3569 # include "anv_genX.h"
3570 # undef genX
3571 # define genX(x) gen9_##x
3572 # include "anv_genX.h"
3573 # undef genX
3574 # define genX(x) gen10_##x
3575 # include "anv_genX.h"
3576 # undef genX
3577 # define genX(x) gen11_##x
3578 # include "anv_genX.h"
3579 # undef genX
3580 #endif
3581
3582 #endif /* ANV_PRIVATE_H */