cd24714f93e6b35ba16a2d8efe50d980cab46a8b
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_gem.h"
48 #include "dev/gen_device_info.h"
49 #include "blorp/blorp.h"
50 #include "compiler/brw_compiler.h"
51 #include "util/macros.h"
52 #include "util/hash_table.h"
53 #include "util/list.h"
54 #include "util/set.h"
55 #include "util/u_atomic.h"
56 #include "util/u_vector.h"
57 #include "util/u_math.h"
58 #include "util/vma.h"
59 #include "vk_alloc.h"
60 #include "vk_debug_report.h"
61
62 /* Pre-declarations needed for WSI entrypoints */
63 struct wl_surface;
64 struct wl_display;
65 typedef struct xcb_connection_t xcb_connection_t;
66 typedef uint32_t xcb_visualid_t;
67 typedef uint32_t xcb_window_t;
68
69 struct anv_buffer;
70 struct anv_buffer_view;
71 struct anv_image_view;
72 struct anv_instance;
73
74 struct gen_l3_config;
75
76 #include <vulkan/vulkan.h>
77 #include <vulkan/vulkan_intel.h>
78 #include <vulkan/vk_icd.h>
79
80 #include "anv_android.h"
81 #include "anv_entrypoints.h"
82 #include "anv_extensions.h"
83 #include "isl/isl.h"
84
85 #include "common/gen_debug.h"
86 #include "common/intel_log.h"
87 #include "wsi_common.h"
88
89 /* anv Virtual Memory Layout
90 * =========================
91 *
92 * When the anv driver is determining the virtual graphics addresses of memory
93 * objects itself using the softpin mechanism, the following memory ranges
94 * will be used.
95 *
96 * Three special considerations to notice:
97 *
98 * (1) the dynamic state pool is located within the same 4 GiB as the low
99 * heap. This is to work around a VF cache issue described in a comment in
100 * anv_physical_device_init_heaps.
101 *
102 * (2) the binding table pool is located at lower addresses than the surface
103 * state pool, within a 4 GiB range. This allows surface state base addresses
104 * to cover both binding tables (16 bit offsets) and surface states (32 bit
105 * offsets).
106 *
107 * (3) the last 4 GiB of the address space is withheld from the high
108 * heap. Various hardware units will read past the end of an object for
109 * various reasons. This healthy margin prevents reads from wrapping around
110 * 48-bit addresses.
111 */
112 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
113 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
114 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
115 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
116 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
117 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
118 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
119 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
120 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
121 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
122 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
123 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
124
125 #define LOW_HEAP_SIZE \
126 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
127 #define HIGH_HEAP_SIZE \
128 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
129 #define DYNAMIC_STATE_POOL_SIZE \
130 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
131 #define BINDING_TABLE_POOL_SIZE \
132 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
133 #define SURFACE_STATE_POOL_SIZE \
134 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
135 #define INSTRUCTION_STATE_POOL_SIZE \
136 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
137
138 /* Allowing different clear colors requires us to perform a depth resolve at
139 * the end of certain render passes. This is because while slow clears store
140 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
141 * See the PRMs for examples describing when additional resolves would be
142 * necessary. To enable fast clears without requiring extra resolves, we set
143 * the clear value to a globally-defined one. We could allow different values
144 * if the user doesn't expect coherent data during or after a render passes
145 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
146 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
147 * 1.0f seems to be the only value used. The only application that doesn't set
148 * this value does so through the usage of an seemingly uninitialized clear
149 * value.
150 */
151 #define ANV_HZ_FC_VAL 1.0f
152
153 #define MAX_VBS 28
154 #define MAX_SETS 8
155 #define MAX_RTS 8
156 #define MAX_VIEWPORTS 16
157 #define MAX_SCISSORS 16
158 #define MAX_PUSH_CONSTANTS_SIZE 128
159 #define MAX_DYNAMIC_BUFFERS 16
160 #define MAX_IMAGES 8
161 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
162
163 /* The kernel relocation API has a limitation of a 32-bit delta value
164 * applied to the address before it is written which, in spite of it being
165 * unsigned, is treated as signed . Because of the way that this maps to
166 * the Vulkan API, we cannot handle an offset into a buffer that does not
167 * fit into a signed 32 bits. The only mechanism we have for dealing with
168 * this at the moment is to limit all VkDeviceMemory objects to a maximum
169 * of 2GB each. The Vulkan spec allows us to do this:
170 *
171 * "Some platforms may have a limit on the maximum size of a single
172 * allocation. For example, certain systems may fail to create
173 * allocations with a size greater than or equal to 4GB. Such a limit is
174 * implementation-dependent, and if such a failure occurs then the error
175 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
176 *
177 * We don't use vk_error here because it's not an error so much as an
178 * indication to the application that the allocation is too large.
179 */
180 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
181
182 #define ANV_SVGS_VB_INDEX MAX_VBS
183 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
184
185 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
186
187 static inline uint32_t
188 align_down_npot_u32(uint32_t v, uint32_t a)
189 {
190 return v - (v % a);
191 }
192
193 static inline uint32_t
194 align_u32(uint32_t v, uint32_t a)
195 {
196 assert(a != 0 && a == (a & -a));
197 return (v + a - 1) & ~(a - 1);
198 }
199
200 static inline uint64_t
201 align_u64(uint64_t v, uint64_t a)
202 {
203 assert(a != 0 && a == (a & -a));
204 return (v + a - 1) & ~(a - 1);
205 }
206
207 static inline int32_t
208 align_i32(int32_t v, int32_t a)
209 {
210 assert(a != 0 && a == (a & -a));
211 return (v + a - 1) & ~(a - 1);
212 }
213
214 /** Alignment must be a power of 2. */
215 static inline bool
216 anv_is_aligned(uintmax_t n, uintmax_t a)
217 {
218 assert(a == (a & -a));
219 return (n & (a - 1)) == 0;
220 }
221
222 static inline uint32_t
223 anv_minify(uint32_t n, uint32_t levels)
224 {
225 if (unlikely(n == 0))
226 return 0;
227 else
228 return MAX2(n >> levels, 1);
229 }
230
231 static inline float
232 anv_clamp_f(float f, float min, float max)
233 {
234 assert(min < max);
235
236 if (f > max)
237 return max;
238 else if (f < min)
239 return min;
240 else
241 return f;
242 }
243
244 static inline bool
245 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
246 {
247 if (*inout_mask & clear_mask) {
248 *inout_mask &= ~clear_mask;
249 return true;
250 } else {
251 return false;
252 }
253 }
254
255 static inline union isl_color_value
256 vk_to_isl_color(VkClearColorValue color)
257 {
258 return (union isl_color_value) {
259 .u32 = {
260 color.uint32[0],
261 color.uint32[1],
262 color.uint32[2],
263 color.uint32[3],
264 },
265 };
266 }
267
268 #define for_each_bit(b, dword) \
269 for (uint32_t __dword = (dword); \
270 (b) = __builtin_ffs(__dword) - 1, __dword; \
271 __dword &= ~(1 << (b)))
272
273 #define typed_memcpy(dest, src, count) ({ \
274 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
275 memcpy((dest), (src), (count) * sizeof(*(src))); \
276 })
277
278 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
279 * to be added here in order to utilize mapping in debug/error/perf macros.
280 */
281 #define REPORT_OBJECT_TYPE(o) \
282 __builtin_choose_expr ( \
283 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
284 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
285 __builtin_choose_expr ( \
286 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
287 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
288 __builtin_choose_expr ( \
289 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
290 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
291 __builtin_choose_expr ( \
292 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
293 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
294 __builtin_choose_expr ( \
295 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
296 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
297 __builtin_choose_expr ( \
298 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
299 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
300 __builtin_choose_expr ( \
301 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
302 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
303 __builtin_choose_expr ( \
304 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
305 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
306 __builtin_choose_expr ( \
307 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
308 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
309 __builtin_choose_expr ( \
310 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
311 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
312 __builtin_choose_expr ( \
313 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
314 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
315 __builtin_choose_expr ( \
316 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
317 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
318 __builtin_choose_expr ( \
319 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
320 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
321 __builtin_choose_expr ( \
322 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
323 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
324 __builtin_choose_expr ( \
325 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
326 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
327 __builtin_choose_expr ( \
328 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
329 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
330 __builtin_choose_expr ( \
331 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
332 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
333 __builtin_choose_expr ( \
334 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
335 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
336 __builtin_choose_expr ( \
337 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
338 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
339 __builtin_choose_expr ( \
340 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
341 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
342 __builtin_choose_expr ( \
343 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
344 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
345 __builtin_choose_expr ( \
346 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
347 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
348 __builtin_choose_expr ( \
349 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
350 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
351 __builtin_choose_expr ( \
352 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
353 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
354 __builtin_choose_expr ( \
355 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
356 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
357 __builtin_choose_expr ( \
358 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
359 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
360 __builtin_choose_expr ( \
361 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
362 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
363 __builtin_choose_expr ( \
364 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
365 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
366 __builtin_choose_expr ( \
367 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
368 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
369 __builtin_choose_expr ( \
370 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
371 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
372 __builtin_choose_expr ( \
373 __builtin_types_compatible_p (__typeof (o), void*), \
374 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
375 /* The void expression results in a compile-time error \
376 when assigning the result to something. */ \
377 (void)0)))))))))))))))))))))))))))))))
378
379 /* Whenever we generate an error, pass it through this function. Useful for
380 * debugging, where we can break on it. Only call at error site, not when
381 * propagating errors. Might be useful to plug in a stack trace here.
382 */
383
384 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
385 VkDebugReportObjectTypeEXT type, VkResult error,
386 const char *file, int line, const char *format,
387 va_list args);
388
389 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
390 VkDebugReportObjectTypeEXT type, VkResult error,
391 const char *file, int line, const char *format, ...);
392
393 #ifdef DEBUG
394 #define vk_error(error) __vk_errorf(NULL, NULL,\
395 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
396 error, __FILE__, __LINE__, NULL)
397 #define vk_errorv(instance, obj, error, format, args)\
398 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
399 __FILE__, __LINE__, format, args)
400 #define vk_errorf(instance, obj, error, format, ...)\
401 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
402 __FILE__, __LINE__, format, ## __VA_ARGS__)
403 #else
404 #define vk_error(error) error
405 #define vk_errorf(instance, obj, error, format, ...) error
406 #endif
407
408 /**
409 * Warn on ignored extension structs.
410 *
411 * The Vulkan spec requires us to ignore unsupported or unknown structs in
412 * a pNext chain. In debug mode, emitting warnings for ignored structs may
413 * help us discover structs that we should not have ignored.
414 *
415 *
416 * From the Vulkan 1.0.38 spec:
417 *
418 * Any component of the implementation (the loader, any enabled layers,
419 * and drivers) must skip over, without processing (other than reading the
420 * sType and pNext members) any chained structures with sType values not
421 * defined by extensions supported by that component.
422 */
423 #define anv_debug_ignored_stype(sType) \
424 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
425
426 void __anv_perf_warn(struct anv_instance *instance, const void *object,
427 VkDebugReportObjectTypeEXT type, const char *file,
428 int line, const char *format, ...)
429 anv_printflike(6, 7);
430 void anv_loge(const char *format, ...) anv_printflike(1, 2);
431 void anv_loge_v(const char *format, va_list va);
432
433 /**
434 * Print a FINISHME message, including its source location.
435 */
436 #define anv_finishme(format, ...) \
437 do { \
438 static bool reported = false; \
439 if (!reported) { \
440 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
441 ##__VA_ARGS__); \
442 reported = true; \
443 } \
444 } while (0)
445
446 /**
447 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
448 */
449 #define anv_perf_warn(instance, obj, format, ...) \
450 do { \
451 static bool reported = false; \
452 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
453 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
454 format, ##__VA_ARGS__); \
455 reported = true; \
456 } \
457 } while (0)
458
459 /* A non-fatal assert. Useful for debugging. */
460 #ifdef DEBUG
461 #define anv_assert(x) ({ \
462 if (unlikely(!(x))) \
463 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
464 })
465 #else
466 #define anv_assert(x)
467 #endif
468
469 /* A multi-pointer allocator
470 *
471 * When copying data structures from the user (such as a render pass), it's
472 * common to need to allocate data for a bunch of different things. Instead
473 * of doing several allocations and having to handle all of the error checking
474 * that entails, it can be easier to do a single allocation. This struct
475 * helps facilitate that. The intended usage looks like this:
476 *
477 * ANV_MULTIALLOC(ma)
478 * anv_multialloc_add(&ma, &main_ptr, 1);
479 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
480 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
481 *
482 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
483 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
484 */
485 struct anv_multialloc {
486 size_t size;
487 size_t align;
488
489 uint32_t ptr_count;
490 void **ptrs[8];
491 };
492
493 #define ANV_MULTIALLOC_INIT \
494 ((struct anv_multialloc) { 0, })
495
496 #define ANV_MULTIALLOC(_name) \
497 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
498
499 __attribute__((always_inline))
500 static inline void
501 _anv_multialloc_add(struct anv_multialloc *ma,
502 void **ptr, size_t size, size_t align)
503 {
504 size_t offset = align_u64(ma->size, align);
505 ma->size = offset + size;
506 ma->align = MAX2(ma->align, align);
507
508 /* Store the offset in the pointer. */
509 *ptr = (void *)(uintptr_t)offset;
510
511 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
512 ma->ptrs[ma->ptr_count++] = ptr;
513 }
514
515 #define anv_multialloc_add_size(_ma, _ptr, _size) \
516 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
517
518 #define anv_multialloc_add(_ma, _ptr, _count) \
519 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
520
521 __attribute__((always_inline))
522 static inline void *
523 anv_multialloc_alloc(struct anv_multialloc *ma,
524 const VkAllocationCallbacks *alloc,
525 VkSystemAllocationScope scope)
526 {
527 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
528 if (!ptr)
529 return NULL;
530
531 /* Fill out each of the pointers with their final value.
532 *
533 * for (uint32_t i = 0; i < ma->ptr_count; i++)
534 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
535 *
536 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
537 * constant, GCC is incapable of figuring this out and unrolling the loop
538 * so we have to give it a little help.
539 */
540 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
541 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
542 if ((_i) < ma->ptr_count) \
543 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
544 _ANV_MULTIALLOC_UPDATE_POINTER(0);
545 _ANV_MULTIALLOC_UPDATE_POINTER(1);
546 _ANV_MULTIALLOC_UPDATE_POINTER(2);
547 _ANV_MULTIALLOC_UPDATE_POINTER(3);
548 _ANV_MULTIALLOC_UPDATE_POINTER(4);
549 _ANV_MULTIALLOC_UPDATE_POINTER(5);
550 _ANV_MULTIALLOC_UPDATE_POINTER(6);
551 _ANV_MULTIALLOC_UPDATE_POINTER(7);
552 #undef _ANV_MULTIALLOC_UPDATE_POINTER
553
554 return ptr;
555 }
556
557 __attribute__((always_inline))
558 static inline void *
559 anv_multialloc_alloc2(struct anv_multialloc *ma,
560 const VkAllocationCallbacks *parent_alloc,
561 const VkAllocationCallbacks *alloc,
562 VkSystemAllocationScope scope)
563 {
564 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
565 }
566
567 /* Extra ANV-defined BO flags which won't be passed to the kernel */
568 #define ANV_BO_EXTERNAL (1ull << 31)
569 #define ANV_BO_FLAG_MASK (1ull << 31)
570
571 struct anv_bo {
572 uint32_t gem_handle;
573
574 /* Index into the current validation list. This is used by the
575 * validation list building alrogithm to track which buffers are already
576 * in the validation list so that we can ensure uniqueness.
577 */
578 uint32_t index;
579
580 /* Last known offset. This value is provided by the kernel when we
581 * execbuf and is used as the presumed offset for the next bunch of
582 * relocations.
583 */
584 uint64_t offset;
585
586 uint64_t size;
587 void *map;
588
589 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
590 uint32_t flags;
591 };
592
593 static inline void
594 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
595 {
596 bo->gem_handle = gem_handle;
597 bo->index = 0;
598 bo->offset = -1;
599 bo->size = size;
600 bo->map = NULL;
601 bo->flags = 0;
602 }
603
604 /* Represents a lock-free linked list of "free" things. This is used by
605 * both the block pool and the state pools. Unfortunately, in order to
606 * solve the ABA problem, we can't use a single uint32_t head.
607 */
608 union anv_free_list {
609 struct {
610 int32_t offset;
611
612 /* A simple count that is incremented every time the head changes. */
613 uint32_t count;
614 };
615 uint64_t u64;
616 };
617
618 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
619
620 struct anv_block_state {
621 union {
622 struct {
623 uint32_t next;
624 uint32_t end;
625 };
626 uint64_t u64;
627 };
628 };
629
630 struct anv_block_pool {
631 struct anv_device *device;
632
633 uint64_t bo_flags;
634
635 struct anv_bo bo;
636
637 /* The address where the start of the pool is pinned. The various bos that
638 * are created as the pool grows will have addresses in the range
639 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
640 */
641 uint64_t start_address;
642
643 /* The offset from the start of the bo to the "center" of the block
644 * pool. Pointers to allocated blocks are given by
645 * bo.map + center_bo_offset + offsets.
646 */
647 uint32_t center_bo_offset;
648
649 /* Current memory map of the block pool. This pointer may or may not
650 * point to the actual beginning of the block pool memory. If
651 * anv_block_pool_alloc_back has ever been called, then this pointer
652 * will point to the "center" position of the buffer and all offsets
653 * (negative or positive) given out by the block pool alloc functions
654 * will be valid relative to this pointer.
655 *
656 * In particular, map == bo.map + center_offset
657 */
658 void *map;
659 int fd;
660
661 /**
662 * Array of mmaps and gem handles owned by the block pool, reclaimed when
663 * the block pool is destroyed.
664 */
665 struct u_vector mmap_cleanups;
666
667 struct anv_block_state state;
668
669 struct anv_block_state back_state;
670 };
671
672 /* Block pools are backed by a fixed-size 1GB memfd */
673 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
674
675 /* The center of the block pool is also the middle of the memfd. This may
676 * change in the future if we decide differently for some reason.
677 */
678 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
679
680 static inline uint32_t
681 anv_block_pool_size(struct anv_block_pool *pool)
682 {
683 return pool->state.end + pool->back_state.end;
684 }
685
686 struct anv_state {
687 int32_t offset;
688 uint32_t alloc_size;
689 void *map;
690 };
691
692 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
693
694 struct anv_fixed_size_state_pool {
695 union anv_free_list free_list;
696 struct anv_block_state block;
697 };
698
699 #define ANV_MIN_STATE_SIZE_LOG2 6
700 #define ANV_MAX_STATE_SIZE_LOG2 20
701
702 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
703
704 struct anv_state_pool {
705 struct anv_block_pool block_pool;
706
707 /* The size of blocks which will be allocated from the block pool */
708 uint32_t block_size;
709
710 /** Free list for "back" allocations */
711 union anv_free_list back_alloc_free_list;
712
713 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
714 };
715
716 struct anv_state_stream_block;
717
718 struct anv_state_stream {
719 struct anv_state_pool *state_pool;
720
721 /* The size of blocks to allocate from the state pool */
722 uint32_t block_size;
723
724 /* Current block we're allocating from */
725 struct anv_state block;
726
727 /* Offset into the current block at which to allocate the next state */
728 uint32_t next;
729
730 /* List of all blocks allocated from this pool */
731 struct anv_state_stream_block *block_list;
732 };
733
734 /* The block_pool functions exported for testing only. The block pool should
735 * only be used via a state pool (see below).
736 */
737 VkResult anv_block_pool_init(struct anv_block_pool *pool,
738 struct anv_device *device,
739 uint64_t start_address,
740 uint32_t initial_size,
741 uint64_t bo_flags);
742 void anv_block_pool_finish(struct anv_block_pool *pool);
743 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
744 uint32_t block_size);
745 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
746 uint32_t block_size);
747
748 VkResult anv_state_pool_init(struct anv_state_pool *pool,
749 struct anv_device *device,
750 uint64_t start_address,
751 uint32_t block_size,
752 uint64_t bo_flags);
753 void anv_state_pool_finish(struct anv_state_pool *pool);
754 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
755 uint32_t state_size, uint32_t alignment);
756 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
757 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
758 void anv_state_stream_init(struct anv_state_stream *stream,
759 struct anv_state_pool *state_pool,
760 uint32_t block_size);
761 void anv_state_stream_finish(struct anv_state_stream *stream);
762 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
763 uint32_t size, uint32_t alignment);
764
765 /**
766 * Implements a pool of re-usable BOs. The interface is identical to that
767 * of block_pool except that each block is its own BO.
768 */
769 struct anv_bo_pool {
770 struct anv_device *device;
771
772 uint64_t bo_flags;
773
774 void *free_list[16];
775 };
776
777 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
778 uint64_t bo_flags);
779 void anv_bo_pool_finish(struct anv_bo_pool *pool);
780 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
781 uint32_t size);
782 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
783
784 struct anv_scratch_bo {
785 bool exists;
786 struct anv_bo bo;
787 };
788
789 struct anv_scratch_pool {
790 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
791 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
792 };
793
794 void anv_scratch_pool_init(struct anv_device *device,
795 struct anv_scratch_pool *pool);
796 void anv_scratch_pool_finish(struct anv_device *device,
797 struct anv_scratch_pool *pool);
798 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
799 struct anv_scratch_pool *pool,
800 gl_shader_stage stage,
801 unsigned per_thread_scratch);
802
803 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
804 struct anv_bo_cache {
805 struct hash_table *bo_map;
806 pthread_mutex_t mutex;
807 };
808
809 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
810 void anv_bo_cache_finish(struct anv_bo_cache *cache);
811 VkResult anv_bo_cache_alloc(struct anv_device *device,
812 struct anv_bo_cache *cache,
813 uint64_t size, uint64_t bo_flags,
814 struct anv_bo **bo);
815 VkResult anv_bo_cache_import(struct anv_device *device,
816 struct anv_bo_cache *cache,
817 int fd, uint64_t bo_flags,
818 struct anv_bo **bo);
819 VkResult anv_bo_cache_export(struct anv_device *device,
820 struct anv_bo_cache *cache,
821 struct anv_bo *bo_in, int *fd_out);
822 void anv_bo_cache_release(struct anv_device *device,
823 struct anv_bo_cache *cache,
824 struct anv_bo *bo);
825
826 struct anv_memory_type {
827 /* Standard bits passed on to the client */
828 VkMemoryPropertyFlags propertyFlags;
829 uint32_t heapIndex;
830
831 /* Driver-internal book-keeping */
832 VkBufferUsageFlags valid_buffer_usage;
833 };
834
835 struct anv_memory_heap {
836 /* Standard bits passed on to the client */
837 VkDeviceSize size;
838 VkMemoryHeapFlags flags;
839
840 /* Driver-internal book-keeping */
841 bool supports_48bit_addresses;
842 };
843
844 struct anv_physical_device {
845 VK_LOADER_DATA _loader_data;
846
847 struct anv_instance * instance;
848 uint32_t chipset_id;
849 bool no_hw;
850 char path[20];
851 const char * name;
852 struct {
853 uint16_t domain;
854 uint8_t bus;
855 uint8_t device;
856 uint8_t function;
857 } pci_info;
858 struct gen_device_info info;
859 /** Amount of "GPU memory" we want to advertise
860 *
861 * Clearly, this value is bogus since Intel is a UMA architecture. On
862 * gen7 platforms, we are limited by GTT size unless we want to implement
863 * fine-grained tracking and GTT splitting. On Broadwell and above we are
864 * practically unlimited. However, we will never report more than 3/4 of
865 * the total system ram to try and avoid running out of RAM.
866 */
867 bool supports_48bit_addresses;
868 struct brw_compiler * compiler;
869 struct isl_device isl_dev;
870 int cmd_parser_version;
871 bool has_exec_async;
872 bool has_exec_capture;
873 bool has_exec_fence;
874 bool has_syncobj;
875 bool has_syncobj_wait;
876 bool has_context_priority;
877 bool use_softpin;
878 bool has_context_isolation;
879
880 struct anv_device_extension_table supported_extensions;
881
882 uint32_t eu_total;
883 uint32_t subslice_total;
884
885 struct {
886 uint32_t type_count;
887 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
888 uint32_t heap_count;
889 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
890 } memory;
891
892 uint8_t driver_build_sha1[20];
893 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
894 uint8_t driver_uuid[VK_UUID_SIZE];
895 uint8_t device_uuid[VK_UUID_SIZE];
896
897 struct disk_cache * disk_cache;
898
899 struct wsi_device wsi_device;
900 int local_fd;
901 int master_fd;
902 };
903
904 struct anv_app_info {
905 const char* app_name;
906 uint32_t app_version;
907 const char* engine_name;
908 uint32_t engine_version;
909 uint32_t api_version;
910 };
911
912 struct anv_instance {
913 VK_LOADER_DATA _loader_data;
914
915 VkAllocationCallbacks alloc;
916
917 struct anv_app_info app_info;
918
919 struct anv_instance_extension_table enabled_extensions;
920 struct anv_instance_dispatch_table dispatch;
921 struct anv_device_dispatch_table device_dispatch;
922
923 int physicalDeviceCount;
924 struct anv_physical_device physicalDevice;
925
926 bool pipeline_cache_enabled;
927
928 struct vk_debug_report_instance debug_report_callbacks;
929 };
930
931 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
932 void anv_finish_wsi(struct anv_physical_device *physical_device);
933
934 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
935 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
936 const char *name);
937
938 struct anv_queue {
939 VK_LOADER_DATA _loader_data;
940
941 struct anv_device * device;
942
943 VkDeviceQueueCreateFlags flags;
944 };
945
946 struct anv_pipeline_cache {
947 struct anv_device * device;
948 pthread_mutex_t mutex;
949
950 struct hash_table * cache;
951 };
952
953 struct anv_pipeline_bind_map;
954
955 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
956 struct anv_device *device,
957 bool cache_enabled);
958 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
959
960 struct anv_shader_bin *
961 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
962 const void *key, uint32_t key_size);
963 struct anv_shader_bin *
964 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
965 const void *key_data, uint32_t key_size,
966 const void *kernel_data, uint32_t kernel_size,
967 const void *constant_data,
968 uint32_t constant_data_size,
969 const struct brw_stage_prog_data *prog_data,
970 uint32_t prog_data_size,
971 const struct anv_pipeline_bind_map *bind_map);
972
973 struct anv_shader_bin *
974 anv_device_search_for_kernel(struct anv_device *device,
975 struct anv_pipeline_cache *cache,
976 const void *key_data, uint32_t key_size);
977
978 struct anv_shader_bin *
979 anv_device_upload_kernel(struct anv_device *device,
980 struct anv_pipeline_cache *cache,
981 const void *key_data, uint32_t key_size,
982 const void *kernel_data, uint32_t kernel_size,
983 const void *constant_data,
984 uint32_t constant_data_size,
985 const struct brw_stage_prog_data *prog_data,
986 uint32_t prog_data_size,
987 const struct anv_pipeline_bind_map *bind_map);
988
989 struct anv_device {
990 VK_LOADER_DATA _loader_data;
991
992 VkAllocationCallbacks alloc;
993
994 struct anv_instance * instance;
995 uint32_t chipset_id;
996 bool no_hw;
997 struct gen_device_info info;
998 struct isl_device isl_dev;
999 int context_id;
1000 int fd;
1001 bool can_chain_batches;
1002 bool robust_buffer_access;
1003 struct anv_device_extension_table enabled_extensions;
1004 struct anv_device_dispatch_table dispatch;
1005
1006 pthread_mutex_t vma_mutex;
1007 struct util_vma_heap vma_lo;
1008 struct util_vma_heap vma_hi;
1009 uint64_t vma_lo_available;
1010 uint64_t vma_hi_available;
1011
1012 struct anv_bo_pool batch_bo_pool;
1013
1014 struct anv_bo_cache bo_cache;
1015
1016 struct anv_state_pool dynamic_state_pool;
1017 struct anv_state_pool instruction_state_pool;
1018 struct anv_state_pool binding_table_pool;
1019 struct anv_state_pool surface_state_pool;
1020
1021 struct anv_bo workaround_bo;
1022 struct anv_bo trivial_batch_bo;
1023 struct anv_bo hiz_clear_bo;
1024
1025 struct anv_pipeline_cache default_pipeline_cache;
1026 struct blorp_context blorp;
1027
1028 struct anv_state border_colors;
1029
1030 struct anv_queue queue;
1031
1032 struct anv_scratch_pool scratch_pool;
1033
1034 uint32_t default_mocs;
1035 uint32_t external_mocs;
1036
1037 pthread_mutex_t mutex;
1038 pthread_cond_t queue_submit;
1039 bool _lost;
1040 };
1041
1042 static inline struct anv_state_pool *
1043 anv_binding_table_pool(struct anv_device *device)
1044 {
1045 if (device->instance->physicalDevice.use_softpin)
1046 return &device->binding_table_pool;
1047 else
1048 return &device->surface_state_pool;
1049 }
1050
1051 static inline struct anv_state
1052 anv_binding_table_pool_alloc(struct anv_device *device) {
1053 if (device->instance->physicalDevice.use_softpin)
1054 return anv_state_pool_alloc(&device->binding_table_pool,
1055 device->binding_table_pool.block_size, 0);
1056 else
1057 return anv_state_pool_alloc_back(&device->surface_state_pool);
1058 }
1059
1060 static inline void
1061 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1062 anv_state_pool_free(anv_binding_table_pool(device), state);
1063 }
1064
1065 static inline uint32_t
1066 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1067 {
1068 if (bo->flags & ANV_BO_EXTERNAL)
1069 return device->external_mocs;
1070 else
1071 return device->default_mocs;
1072 }
1073
1074 static void inline
1075 anv_state_flush(struct anv_device *device, struct anv_state state)
1076 {
1077 if (device->info.has_llc)
1078 return;
1079
1080 gen_flush_range(state.map, state.alloc_size);
1081 }
1082
1083 void anv_device_init_blorp(struct anv_device *device);
1084 void anv_device_finish_blorp(struct anv_device *device);
1085
1086 VkResult _anv_device_set_lost(struct anv_device *device,
1087 const char *file, int line,
1088 const char *msg, ...);
1089 #define anv_device_set_lost(dev, ...) \
1090 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1091
1092 static inline bool
1093 anv_device_is_lost(struct anv_device *device)
1094 {
1095 return unlikely(device->_lost);
1096 }
1097
1098 VkResult anv_device_execbuf(struct anv_device *device,
1099 struct drm_i915_gem_execbuffer2 *execbuf,
1100 struct anv_bo **execbuf_bos);
1101 VkResult anv_device_query_status(struct anv_device *device);
1102 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1103 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1104 int64_t timeout);
1105
1106 void* anv_gem_mmap(struct anv_device *device,
1107 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1108 void anv_gem_munmap(void *p, uint64_t size);
1109 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1110 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1111 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1112 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1113 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1114 int anv_gem_execbuffer(struct anv_device *device,
1115 struct drm_i915_gem_execbuffer2 *execbuf);
1116 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1117 uint32_t stride, uint32_t tiling);
1118 int anv_gem_create_context(struct anv_device *device);
1119 bool anv_gem_has_context_priority(int fd);
1120 int anv_gem_destroy_context(struct anv_device *device, int context);
1121 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1122 uint64_t value);
1123 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1124 uint64_t *value);
1125 int anv_gem_get_param(int fd, uint32_t param);
1126 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1127 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1128 int anv_gem_get_aperture(int fd, uint64_t *size);
1129 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1130 uint32_t *active, uint32_t *pending);
1131 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1132 int anv_gem_reg_read(struct anv_device *device,
1133 uint32_t offset, uint64_t *result);
1134 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1135 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1136 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1137 uint32_t read_domains, uint32_t write_domain);
1138 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1139 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1140 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1141 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1142 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1143 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1144 uint32_t handle);
1145 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1146 uint32_t handle, int fd);
1147 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1148 bool anv_gem_supports_syncobj_wait(int fd);
1149 int anv_gem_syncobj_wait(struct anv_device *device,
1150 uint32_t *handles, uint32_t num_handles,
1151 int64_t abs_timeout_ns, bool wait_all);
1152
1153 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1154 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1155
1156 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1157
1158 struct anv_reloc_list {
1159 uint32_t num_relocs;
1160 uint32_t array_length;
1161 struct drm_i915_gem_relocation_entry * relocs;
1162 struct anv_bo ** reloc_bos;
1163 struct set * deps;
1164 };
1165
1166 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1167 const VkAllocationCallbacks *alloc);
1168 void anv_reloc_list_finish(struct anv_reloc_list *list,
1169 const VkAllocationCallbacks *alloc);
1170
1171 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1172 const VkAllocationCallbacks *alloc,
1173 uint32_t offset, struct anv_bo *target_bo,
1174 uint32_t delta);
1175
1176 struct anv_batch_bo {
1177 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1178 struct list_head link;
1179
1180 struct anv_bo bo;
1181
1182 /* Bytes actually consumed in this batch BO */
1183 uint32_t length;
1184
1185 struct anv_reloc_list relocs;
1186 };
1187
1188 struct anv_batch {
1189 const VkAllocationCallbacks * alloc;
1190
1191 void * start;
1192 void * end;
1193 void * next;
1194
1195 struct anv_reloc_list * relocs;
1196
1197 /* This callback is called (with the associated user data) in the event
1198 * that the batch runs out of space.
1199 */
1200 VkResult (*extend_cb)(struct anv_batch *, void *);
1201 void * user_data;
1202
1203 /**
1204 * Current error status of the command buffer. Used to track inconsistent
1205 * or incomplete command buffer states that are the consequence of run-time
1206 * errors such as out of memory scenarios. We want to track this in the
1207 * batch because the command buffer object is not visible to some parts
1208 * of the driver.
1209 */
1210 VkResult status;
1211 };
1212
1213 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1214 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1215 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1216 void *location, struct anv_bo *bo, uint32_t offset);
1217 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1218 struct anv_batch *batch);
1219
1220 static inline VkResult
1221 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1222 {
1223 assert(error != VK_SUCCESS);
1224 if (batch->status == VK_SUCCESS)
1225 batch->status = error;
1226 return batch->status;
1227 }
1228
1229 static inline bool
1230 anv_batch_has_error(struct anv_batch *batch)
1231 {
1232 return batch->status != VK_SUCCESS;
1233 }
1234
1235 struct anv_address {
1236 struct anv_bo *bo;
1237 uint32_t offset;
1238 };
1239
1240 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1241
1242 static inline bool
1243 anv_address_is_null(struct anv_address addr)
1244 {
1245 return addr.bo == NULL && addr.offset == 0;
1246 }
1247
1248 static inline uint64_t
1249 anv_address_physical(struct anv_address addr)
1250 {
1251 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1252 return gen_canonical_address(addr.bo->offset + addr.offset);
1253 else
1254 return gen_canonical_address(addr.offset);
1255 }
1256
1257 static inline struct anv_address
1258 anv_address_add(struct anv_address addr, uint64_t offset)
1259 {
1260 addr.offset += offset;
1261 return addr;
1262 }
1263
1264 static inline void
1265 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1266 {
1267 unsigned reloc_size = 0;
1268 if (device->info.gen >= 8) {
1269 reloc_size = sizeof(uint64_t);
1270 *(uint64_t *)p = gen_canonical_address(v);
1271 } else {
1272 reloc_size = sizeof(uint32_t);
1273 *(uint32_t *)p = v;
1274 }
1275
1276 if (flush && !device->info.has_llc)
1277 gen_flush_range(p, reloc_size);
1278 }
1279
1280 static inline uint64_t
1281 _anv_combine_address(struct anv_batch *batch, void *location,
1282 const struct anv_address address, uint32_t delta)
1283 {
1284 if (address.bo == NULL) {
1285 return address.offset + delta;
1286 } else {
1287 assert(batch->start <= location && location < batch->end);
1288
1289 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1290 }
1291 }
1292
1293 #define __gen_address_type struct anv_address
1294 #define __gen_user_data struct anv_batch
1295 #define __gen_combine_address _anv_combine_address
1296
1297 /* Wrapper macros needed to work around preprocessor argument issues. In
1298 * particular, arguments don't get pre-evaluated if they are concatenated.
1299 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1300 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1301 * We can work around this easily enough with these helpers.
1302 */
1303 #define __anv_cmd_length(cmd) cmd ## _length
1304 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1305 #define __anv_cmd_header(cmd) cmd ## _header
1306 #define __anv_cmd_pack(cmd) cmd ## _pack
1307 #define __anv_reg_num(reg) reg ## _num
1308
1309 #define anv_pack_struct(dst, struc, ...) do { \
1310 struct struc __template = { \
1311 __VA_ARGS__ \
1312 }; \
1313 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1314 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1315 } while (0)
1316
1317 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1318 void *__dst = anv_batch_emit_dwords(batch, n); \
1319 if (__dst) { \
1320 struct cmd __template = { \
1321 __anv_cmd_header(cmd), \
1322 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1323 __VA_ARGS__ \
1324 }; \
1325 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1326 } \
1327 __dst; \
1328 })
1329
1330 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1331 do { \
1332 uint32_t *dw; \
1333 \
1334 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1335 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1336 if (!dw) \
1337 break; \
1338 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1339 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1340 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1341 } while (0)
1342
1343 #define anv_batch_emit(batch, cmd, name) \
1344 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1345 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1346 __builtin_expect(_dst != NULL, 1); \
1347 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1348 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1349 _dst = NULL; \
1350 }))
1351
1352 /* MEMORY_OBJECT_CONTROL_STATE:
1353 * .GraphicsDataTypeGFDT = 0,
1354 * .LLCCacheabilityControlLLCCC = 0,
1355 * .L3CacheabilityControlL3CC = 1,
1356 */
1357 #define GEN7_MOCS 1
1358
1359 /* MEMORY_OBJECT_CONTROL_STATE:
1360 * .LLCeLLCCacheabilityControlLLCCC = 0,
1361 * .L3CacheabilityControlL3CC = 1,
1362 */
1363 #define GEN75_MOCS 1
1364
1365 /* MEMORY_OBJECT_CONTROL_STATE:
1366 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1367 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1368 * .AgeforQUADLRU = 0
1369 */
1370 #define GEN8_MOCS 0x78
1371
1372 /* MEMORY_OBJECT_CONTROL_STATE:
1373 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1374 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1375 * .AgeforQUADLRU = 0
1376 */
1377 #define GEN8_EXTERNAL_MOCS 0x18
1378
1379 /* Skylake: MOCS is now an index into an array of 62 different caching
1380 * configurations programmed by the kernel.
1381 */
1382
1383 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1384 #define GEN9_MOCS 2
1385
1386 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1387 #define GEN9_EXTERNAL_MOCS 1
1388
1389 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1390 #define GEN10_MOCS GEN9_MOCS
1391 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1392
1393 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1394 #define GEN11_MOCS GEN9_MOCS
1395 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1396
1397 struct anv_device_memory {
1398 struct anv_bo * bo;
1399 struct anv_memory_type * type;
1400 VkDeviceSize map_size;
1401 void * map;
1402
1403 /* If set, we are holding reference to AHardwareBuffer
1404 * which we must release when memory is freed.
1405 */
1406 struct AHardwareBuffer * ahw;
1407 };
1408
1409 /**
1410 * Header for Vertex URB Entry (VUE)
1411 */
1412 struct anv_vue_header {
1413 uint32_t Reserved;
1414 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1415 uint32_t ViewportIndex;
1416 float PointWidth;
1417 };
1418
1419 struct anv_descriptor_set_binding_layout {
1420 #ifndef NDEBUG
1421 /* The type of the descriptors in this binding */
1422 VkDescriptorType type;
1423 #endif
1424
1425 /* Number of array elements in this binding */
1426 uint16_t array_size;
1427
1428 /* Index into the flattend descriptor set */
1429 uint16_t descriptor_index;
1430
1431 /* Index into the dynamic state array for a dynamic buffer */
1432 int16_t dynamic_offset_index;
1433
1434 /* Index into the descriptor set buffer views */
1435 int16_t buffer_index;
1436
1437 struct {
1438 /* Index into the binding table for the associated surface */
1439 int16_t surface_index;
1440
1441 /* Index into the sampler table for the associated sampler */
1442 int16_t sampler_index;
1443
1444 /* Index into the image table for the associated image */
1445 int16_t image_index;
1446 } stage[MESA_SHADER_STAGES];
1447
1448 /* Immutable samplers (or NULL if no immutable samplers) */
1449 struct anv_sampler **immutable_samplers;
1450 };
1451
1452 struct anv_descriptor_set_layout {
1453 /* Descriptor set layouts can be destroyed at almost any time */
1454 uint32_t ref_cnt;
1455
1456 /* Number of bindings in this descriptor set */
1457 uint16_t binding_count;
1458
1459 /* Total size of the descriptor set with room for all array entries */
1460 uint16_t size;
1461
1462 /* Shader stages affected by this descriptor set */
1463 uint16_t shader_stages;
1464
1465 /* Number of buffers in this descriptor set */
1466 uint16_t buffer_count;
1467
1468 /* Number of dynamic offsets used by this descriptor set */
1469 uint16_t dynamic_offset_count;
1470
1471 /* Bindings in this descriptor set */
1472 struct anv_descriptor_set_binding_layout binding[0];
1473 };
1474
1475 static inline void
1476 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1477 {
1478 assert(layout && layout->ref_cnt >= 1);
1479 p_atomic_inc(&layout->ref_cnt);
1480 }
1481
1482 static inline void
1483 anv_descriptor_set_layout_unref(struct anv_device *device,
1484 struct anv_descriptor_set_layout *layout)
1485 {
1486 assert(layout && layout->ref_cnt >= 1);
1487 if (p_atomic_dec_zero(&layout->ref_cnt))
1488 vk_free(&device->alloc, layout);
1489 }
1490
1491 struct anv_descriptor {
1492 VkDescriptorType type;
1493
1494 union {
1495 struct {
1496 VkImageLayout layout;
1497 struct anv_image_view *image_view;
1498 struct anv_sampler *sampler;
1499 };
1500
1501 struct {
1502 struct anv_buffer *buffer;
1503 uint64_t offset;
1504 uint64_t range;
1505 };
1506
1507 struct anv_buffer_view *buffer_view;
1508 };
1509 };
1510
1511 struct anv_descriptor_set {
1512 struct anv_descriptor_set_layout *layout;
1513 uint32_t size;
1514 uint32_t buffer_count;
1515 struct anv_buffer_view *buffer_views;
1516 struct anv_descriptor descriptors[0];
1517 };
1518
1519 struct anv_buffer_view {
1520 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1521 uint64_t range; /**< VkBufferViewCreateInfo::range */
1522
1523 struct anv_address address;
1524
1525 struct anv_state surface_state;
1526 struct anv_state storage_surface_state;
1527 struct anv_state writeonly_storage_surface_state;
1528
1529 struct brw_image_param storage_image_param;
1530 };
1531
1532 struct anv_push_descriptor_set {
1533 struct anv_descriptor_set set;
1534
1535 /* Put this field right behind anv_descriptor_set so it fills up the
1536 * descriptors[0] field. */
1537 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1538 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1539 };
1540
1541 struct anv_descriptor_pool {
1542 uint32_t size;
1543 uint32_t next;
1544 uint32_t free_list;
1545
1546 struct anv_state_stream surface_state_stream;
1547 void *surface_state_free_list;
1548
1549 char data[0];
1550 };
1551
1552 enum anv_descriptor_template_entry_type {
1553 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1554 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1555 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1556 };
1557
1558 struct anv_descriptor_template_entry {
1559 /* The type of descriptor in this entry */
1560 VkDescriptorType type;
1561
1562 /* Binding in the descriptor set */
1563 uint32_t binding;
1564
1565 /* Offset at which to write into the descriptor set binding */
1566 uint32_t array_element;
1567
1568 /* Number of elements to write into the descriptor set binding */
1569 uint32_t array_count;
1570
1571 /* Offset into the user provided data */
1572 size_t offset;
1573
1574 /* Stride between elements into the user provided data */
1575 size_t stride;
1576 };
1577
1578 struct anv_descriptor_update_template {
1579 VkPipelineBindPoint bind_point;
1580
1581 /* The descriptor set this template corresponds to. This value is only
1582 * valid if the template was created with the templateType
1583 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1584 */
1585 uint8_t set;
1586
1587 /* Number of entries in this template */
1588 uint32_t entry_count;
1589
1590 /* Entries of the template */
1591 struct anv_descriptor_template_entry entries[0];
1592 };
1593
1594 size_t
1595 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1596
1597 void
1598 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1599 const struct gen_device_info * const devinfo,
1600 const VkDescriptorImageInfo * const info,
1601 VkDescriptorType type,
1602 uint32_t binding,
1603 uint32_t element);
1604
1605 void
1606 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1607 VkDescriptorType type,
1608 struct anv_buffer_view *buffer_view,
1609 uint32_t binding,
1610 uint32_t element);
1611
1612 void
1613 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1614 struct anv_device *device,
1615 struct anv_state_stream *alloc_stream,
1616 VkDescriptorType type,
1617 struct anv_buffer *buffer,
1618 uint32_t binding,
1619 uint32_t element,
1620 VkDeviceSize offset,
1621 VkDeviceSize range);
1622
1623 void
1624 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1625 struct anv_device *device,
1626 struct anv_state_stream *alloc_stream,
1627 const struct anv_descriptor_update_template *template,
1628 const void *data);
1629
1630 VkResult
1631 anv_descriptor_set_create(struct anv_device *device,
1632 struct anv_descriptor_pool *pool,
1633 struct anv_descriptor_set_layout *layout,
1634 struct anv_descriptor_set **out_set);
1635
1636 void
1637 anv_descriptor_set_destroy(struct anv_device *device,
1638 struct anv_descriptor_pool *pool,
1639 struct anv_descriptor_set *set);
1640
1641 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1642 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1643
1644 struct anv_pipeline_binding {
1645 /* The descriptor set this surface corresponds to. The special value of
1646 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1647 * to a color attachment and not a regular descriptor.
1648 */
1649 uint8_t set;
1650
1651 /* Binding in the descriptor set */
1652 uint32_t binding;
1653
1654 /* Index in the binding */
1655 uint32_t index;
1656
1657 /* Plane in the binding index */
1658 uint8_t plane;
1659
1660 /* Input attachment index (relative to the subpass) */
1661 uint8_t input_attachment_index;
1662
1663 /* For a storage image, whether it is write-only */
1664 bool write_only;
1665 };
1666
1667 struct anv_pipeline_layout {
1668 struct {
1669 struct anv_descriptor_set_layout *layout;
1670 uint32_t dynamic_offset_start;
1671 } set[MAX_SETS];
1672
1673 uint32_t num_sets;
1674
1675 struct {
1676 bool has_dynamic_offsets;
1677 } stage[MESA_SHADER_STAGES];
1678
1679 unsigned char sha1[20];
1680 };
1681
1682 struct anv_buffer {
1683 struct anv_device * device;
1684 VkDeviceSize size;
1685
1686 VkBufferUsageFlags usage;
1687
1688 /* Set when bound */
1689 struct anv_address address;
1690 };
1691
1692 static inline uint64_t
1693 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1694 {
1695 assert(offset <= buffer->size);
1696 if (range == VK_WHOLE_SIZE) {
1697 return buffer->size - offset;
1698 } else {
1699 assert(range + offset >= range);
1700 assert(range + offset <= buffer->size);
1701 return range;
1702 }
1703 }
1704
1705 enum anv_cmd_dirty_bits {
1706 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1707 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1708 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1709 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1710 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1711 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1712 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1713 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1714 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1715 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1716 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1717 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1718 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1719 };
1720 typedef uint32_t anv_cmd_dirty_mask_t;
1721
1722 enum anv_pipe_bits {
1723 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1724 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1725 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1726 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1727 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1728 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1729 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1730 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1731 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1732 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1733 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1734
1735 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1736 * a flush has happened but not a CS stall. The next time we do any sort
1737 * of invalidation we need to insert a CS stall at that time. Otherwise,
1738 * we would have to CS stall on every flush which could be bad.
1739 */
1740 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1741
1742 /* This bit does not exist directly in PIPE_CONTROL. It means that render
1743 * target operations are ongoing. Some operations like copies on the
1744 * command streamer might need to be aware of this to trigger the
1745 * appropriate stall before they can proceed with the copy.
1746 */
1747 ANV_PIPE_RENDER_TARGET_WRITES = (1 << 22),
1748 };
1749
1750 #define ANV_PIPE_FLUSH_BITS ( \
1751 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1752 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1753 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1754
1755 #define ANV_PIPE_STALL_BITS ( \
1756 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1757 ANV_PIPE_DEPTH_STALL_BIT | \
1758 ANV_PIPE_CS_STALL_BIT)
1759
1760 #define ANV_PIPE_INVALIDATE_BITS ( \
1761 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1762 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1763 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1764 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1765 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1766 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1767
1768 static inline enum anv_pipe_bits
1769 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1770 {
1771 enum anv_pipe_bits pipe_bits = 0;
1772
1773 unsigned b;
1774 for_each_bit(b, flags) {
1775 switch ((VkAccessFlagBits)(1 << b)) {
1776 case VK_ACCESS_SHADER_WRITE_BIT:
1777 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1778 break;
1779 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1780 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1781 break;
1782 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1783 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1784 break;
1785 case VK_ACCESS_TRANSFER_WRITE_BIT:
1786 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1787 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1788 break;
1789 case VK_ACCESS_MEMORY_WRITE_BIT:
1790 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1791 break;
1792 default:
1793 break; /* Nothing to do */
1794 }
1795 }
1796
1797 return pipe_bits;
1798 }
1799
1800 static inline enum anv_pipe_bits
1801 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1802 {
1803 enum anv_pipe_bits pipe_bits = 0;
1804
1805 unsigned b;
1806 for_each_bit(b, flags) {
1807 switch ((VkAccessFlagBits)(1 << b)) {
1808 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1809 case VK_ACCESS_INDEX_READ_BIT:
1810 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1811 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1812 break;
1813 case VK_ACCESS_UNIFORM_READ_BIT:
1814 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1815 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1816 break;
1817 case VK_ACCESS_SHADER_READ_BIT:
1818 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1819 case VK_ACCESS_TRANSFER_READ_BIT:
1820 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1821 break;
1822 case VK_ACCESS_MEMORY_READ_BIT:
1823 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
1824 break;
1825 case VK_ACCESS_MEMORY_WRITE_BIT:
1826 pipe_bits |= ANV_PIPE_FLUSH_BITS;
1827 break;
1828 default:
1829 break; /* Nothing to do */
1830 }
1831 }
1832
1833 return pipe_bits;
1834 }
1835
1836 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1837 VK_IMAGE_ASPECT_COLOR_BIT | \
1838 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1839 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1840 VK_IMAGE_ASPECT_PLANE_2_BIT)
1841 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1842 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1843 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1844 VK_IMAGE_ASPECT_PLANE_2_BIT)
1845
1846 struct anv_vertex_binding {
1847 struct anv_buffer * buffer;
1848 VkDeviceSize offset;
1849 };
1850
1851 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
1852 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
1853
1854 struct anv_push_constants {
1855 /* Current allocated size of this push constants data structure.
1856 * Because a decent chunk of it may not be used (images on SKL, for
1857 * instance), we won't actually allocate the entire structure up-front.
1858 */
1859 uint32_t size;
1860
1861 /* Push constant data provided by the client through vkPushConstants */
1862 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1863
1864 /* Used for vkCmdDispatchBase */
1865 uint32_t base_work_group_id[3];
1866
1867 /* Image data for image_load_store on pre-SKL */
1868 struct brw_image_param images[MAX_IMAGES];
1869 };
1870
1871 struct anv_dynamic_state {
1872 struct {
1873 uint32_t count;
1874 VkViewport viewports[MAX_VIEWPORTS];
1875 } viewport;
1876
1877 struct {
1878 uint32_t count;
1879 VkRect2D scissors[MAX_SCISSORS];
1880 } scissor;
1881
1882 float line_width;
1883
1884 struct {
1885 float bias;
1886 float clamp;
1887 float slope;
1888 } depth_bias;
1889
1890 float blend_constants[4];
1891
1892 struct {
1893 float min;
1894 float max;
1895 } depth_bounds;
1896
1897 struct {
1898 uint32_t front;
1899 uint32_t back;
1900 } stencil_compare_mask;
1901
1902 struct {
1903 uint32_t front;
1904 uint32_t back;
1905 } stencil_write_mask;
1906
1907 struct {
1908 uint32_t front;
1909 uint32_t back;
1910 } stencil_reference;
1911 };
1912
1913 extern const struct anv_dynamic_state default_dynamic_state;
1914
1915 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1916 const struct anv_dynamic_state *src,
1917 uint32_t copy_mask);
1918
1919 struct anv_surface_state {
1920 struct anv_state state;
1921 /** Address of the surface referred to by this state
1922 *
1923 * This address is relative to the start of the BO.
1924 */
1925 struct anv_address address;
1926 /* Address of the aux surface, if any
1927 *
1928 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
1929 *
1930 * With the exception of gen8, the bottom 12 bits of this address' offset
1931 * include extra aux information.
1932 */
1933 struct anv_address aux_address;
1934 /* Address of the clear color, if any
1935 *
1936 * This address is relative to the start of the BO.
1937 */
1938 struct anv_address clear_address;
1939 };
1940
1941 /**
1942 * Attachment state when recording a renderpass instance.
1943 *
1944 * The clear value is valid only if there exists a pending clear.
1945 */
1946 struct anv_attachment_state {
1947 enum isl_aux_usage aux_usage;
1948 enum isl_aux_usage input_aux_usage;
1949 struct anv_surface_state color;
1950 struct anv_surface_state input;
1951
1952 VkImageLayout current_layout;
1953 VkImageAspectFlags pending_clear_aspects;
1954 VkImageAspectFlags pending_load_aspects;
1955 bool fast_clear;
1956 VkClearValue clear_value;
1957 bool clear_color_is_zero_one;
1958 bool clear_color_is_zero;
1959
1960 /* When multiview is active, attachments with a renderpass clear
1961 * operation have their respective layers cleared on the first
1962 * subpass that uses them, and only in that subpass. We keep track
1963 * of this using a bitfield to indicate which layers of an attachment
1964 * have not been cleared yet when multiview is active.
1965 */
1966 uint32_t pending_clear_views;
1967 };
1968
1969 /** State tracking for particular pipeline bind point
1970 *
1971 * This struct is the base struct for anv_cmd_graphics_state and
1972 * anv_cmd_compute_state. These are used to track state which is bound to a
1973 * particular type of pipeline. Generic state that applies per-stage such as
1974 * binding table offsets and push constants is tracked generically with a
1975 * per-stage array in anv_cmd_state.
1976 */
1977 struct anv_cmd_pipeline_state {
1978 struct anv_pipeline *pipeline;
1979 struct anv_pipeline_layout *layout;
1980
1981 struct anv_descriptor_set *descriptors[MAX_SETS];
1982 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1983
1984 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
1985 };
1986
1987 /** State tracking for graphics pipeline
1988 *
1989 * This has anv_cmd_pipeline_state as a base struct to track things which get
1990 * bound to a graphics pipeline. Along with general pipeline bind point state
1991 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1992 * state which is graphics-specific.
1993 */
1994 struct anv_cmd_graphics_state {
1995 struct anv_cmd_pipeline_state base;
1996
1997 anv_cmd_dirty_mask_t dirty;
1998 uint32_t vb_dirty;
1999
2000 struct anv_dynamic_state dynamic;
2001
2002 struct {
2003 struct anv_buffer *index_buffer;
2004 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2005 uint32_t index_offset;
2006 } gen7;
2007 };
2008
2009 /** State tracking for compute pipeline
2010 *
2011 * This has anv_cmd_pipeline_state as a base struct to track things which get
2012 * bound to a compute pipeline. Along with general pipeline bind point state
2013 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2014 * state which is compute-specific.
2015 */
2016 struct anv_cmd_compute_state {
2017 struct anv_cmd_pipeline_state base;
2018
2019 bool pipeline_dirty;
2020
2021 struct anv_address num_workgroups;
2022 };
2023
2024 /** State required while building cmd buffer */
2025 struct anv_cmd_state {
2026 /* PIPELINE_SELECT.PipelineSelection */
2027 uint32_t current_pipeline;
2028 const struct gen_l3_config * current_l3_config;
2029
2030 struct anv_cmd_graphics_state gfx;
2031 struct anv_cmd_compute_state compute;
2032
2033 enum anv_pipe_bits pending_pipe_bits;
2034 VkShaderStageFlags descriptors_dirty;
2035 VkShaderStageFlags push_constants_dirty;
2036
2037 struct anv_framebuffer * framebuffer;
2038 struct anv_render_pass * pass;
2039 struct anv_subpass * subpass;
2040 VkRect2D render_area;
2041 uint32_t restart_index;
2042 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2043 VkShaderStageFlags push_constant_stages;
2044 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
2045 struct anv_state binding_tables[MESA_SHADER_STAGES];
2046 struct anv_state samplers[MESA_SHADER_STAGES];
2047
2048 /**
2049 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2050 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2051 * and before invoking the secondary in ExecuteCommands.
2052 */
2053 bool pma_fix_enabled;
2054
2055 /**
2056 * Whether or not we know for certain that HiZ is enabled for the current
2057 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2058 * enabled or not, this will be false.
2059 */
2060 bool hiz_enabled;
2061
2062 /**
2063 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2064 * valid only when recording a render pass instance.
2065 */
2066 struct anv_attachment_state * attachments;
2067
2068 /**
2069 * Surface states for color render targets. These are stored in a single
2070 * flat array. For depth-stencil attachments, the surface state is simply
2071 * left blank.
2072 */
2073 struct anv_state render_pass_states;
2074
2075 /**
2076 * A null surface state of the right size to match the framebuffer. This
2077 * is one of the states in render_pass_states.
2078 */
2079 struct anv_state null_surface_state;
2080 };
2081
2082 struct anv_cmd_pool {
2083 VkAllocationCallbacks alloc;
2084 struct list_head cmd_buffers;
2085 };
2086
2087 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2088
2089 enum anv_cmd_buffer_exec_mode {
2090 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2091 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2092 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2093 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2094 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2095 };
2096
2097 struct anv_cmd_buffer {
2098 VK_LOADER_DATA _loader_data;
2099
2100 struct anv_device * device;
2101
2102 struct anv_cmd_pool * pool;
2103 struct list_head pool_link;
2104
2105 struct anv_batch batch;
2106
2107 /* Fields required for the actual chain of anv_batch_bo's.
2108 *
2109 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2110 */
2111 struct list_head batch_bos;
2112 enum anv_cmd_buffer_exec_mode exec_mode;
2113
2114 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2115 * referenced by this command buffer
2116 *
2117 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2118 */
2119 struct u_vector seen_bbos;
2120
2121 /* A vector of int32_t's for every block of binding tables.
2122 *
2123 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2124 */
2125 struct u_vector bt_block_states;
2126 uint32_t bt_next;
2127
2128 struct anv_reloc_list surface_relocs;
2129 /** Last seen surface state block pool center bo offset */
2130 uint32_t last_ss_pool_center;
2131
2132 /* Serial for tracking buffer completion */
2133 uint32_t serial;
2134
2135 /* Stream objects for storing temporary data */
2136 struct anv_state_stream surface_state_stream;
2137 struct anv_state_stream dynamic_state_stream;
2138
2139 VkCommandBufferUsageFlags usage_flags;
2140 VkCommandBufferLevel level;
2141
2142 struct anv_cmd_state state;
2143 };
2144
2145 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2146 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2147 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2148 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2149 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2150 struct anv_cmd_buffer *secondary);
2151 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2152 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2153 struct anv_cmd_buffer *cmd_buffer,
2154 const VkSemaphore *in_semaphores,
2155 uint32_t num_in_semaphores,
2156 const VkSemaphore *out_semaphores,
2157 uint32_t num_out_semaphores,
2158 VkFence fence);
2159
2160 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2161
2162 VkResult
2163 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2164 gl_shader_stage stage, uint32_t size);
2165 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2166 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2167 (offsetof(struct anv_push_constants, field) + \
2168 sizeof(cmd_buffer->state.push_constants[0]->field)))
2169
2170 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2171 const void *data, uint32_t size, uint32_t alignment);
2172 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2173 uint32_t *a, uint32_t *b,
2174 uint32_t dwords, uint32_t alignment);
2175
2176 struct anv_address
2177 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2178 struct anv_state
2179 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2180 uint32_t entries, uint32_t *state_offset);
2181 struct anv_state
2182 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2183 struct anv_state
2184 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2185 uint32_t size, uint32_t alignment);
2186
2187 VkResult
2188 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2189
2190 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2191 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2192 bool depth_clamp_enable);
2193 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2194
2195 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2196 struct anv_render_pass *pass,
2197 struct anv_framebuffer *framebuffer,
2198 const VkClearValue *clear_values);
2199
2200 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2201
2202 struct anv_state
2203 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2204 gl_shader_stage stage);
2205 struct anv_state
2206 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2207
2208 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
2209
2210 const struct anv_image_view *
2211 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2212
2213 VkResult
2214 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2215 uint32_t num_entries,
2216 uint32_t *state_offset,
2217 struct anv_state *bt_state);
2218
2219 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2220
2221 enum anv_fence_type {
2222 ANV_FENCE_TYPE_NONE = 0,
2223 ANV_FENCE_TYPE_BO,
2224 ANV_FENCE_TYPE_SYNCOBJ,
2225 ANV_FENCE_TYPE_WSI,
2226 };
2227
2228 enum anv_bo_fence_state {
2229 /** Indicates that this is a new (or newly reset fence) */
2230 ANV_BO_FENCE_STATE_RESET,
2231
2232 /** Indicates that this fence has been submitted to the GPU but is still
2233 * (as far as we know) in use by the GPU.
2234 */
2235 ANV_BO_FENCE_STATE_SUBMITTED,
2236
2237 ANV_BO_FENCE_STATE_SIGNALED,
2238 };
2239
2240 struct anv_fence_impl {
2241 enum anv_fence_type type;
2242
2243 union {
2244 /** Fence implementation for BO fences
2245 *
2246 * These fences use a BO and a set of CPU-tracked state flags. The BO
2247 * is added to the object list of the last execbuf call in a QueueSubmit
2248 * and is marked EXEC_WRITE. The state flags track when the BO has been
2249 * submitted to the kernel. We need to do this because Vulkan lets you
2250 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2251 * will say it's idle in this case.
2252 */
2253 struct {
2254 struct anv_bo bo;
2255 enum anv_bo_fence_state state;
2256 } bo;
2257
2258 /** DRM syncobj handle for syncobj-based fences */
2259 uint32_t syncobj;
2260
2261 /** WSI fence */
2262 struct wsi_fence *fence_wsi;
2263 };
2264 };
2265
2266 struct anv_fence {
2267 /* Permanent fence state. Every fence has some form of permanent state
2268 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2269 * cross-process fences) or it could just be a dummy for use internally.
2270 */
2271 struct anv_fence_impl permanent;
2272
2273 /* Temporary fence state. A fence *may* have temporary state. That state
2274 * is added to the fence by an import operation and is reset back to
2275 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2276 * state cannot be signaled because the fence must already be signaled
2277 * before the temporary state can be exported from the fence in the other
2278 * process and imported here.
2279 */
2280 struct anv_fence_impl temporary;
2281 };
2282
2283 struct anv_event {
2284 uint64_t semaphore;
2285 struct anv_state state;
2286 };
2287
2288 enum anv_semaphore_type {
2289 ANV_SEMAPHORE_TYPE_NONE = 0,
2290 ANV_SEMAPHORE_TYPE_DUMMY,
2291 ANV_SEMAPHORE_TYPE_BO,
2292 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2293 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2294 };
2295
2296 struct anv_semaphore_impl {
2297 enum anv_semaphore_type type;
2298
2299 union {
2300 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2301 * This BO will be added to the object list on any execbuf2 calls for
2302 * which this semaphore is used as a wait or signal fence. When used as
2303 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2304 */
2305 struct anv_bo *bo;
2306
2307 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2308 * If the semaphore is in the unsignaled state due to either just being
2309 * created or because it has been used for a wait, fd will be -1.
2310 */
2311 int fd;
2312
2313 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2314 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2315 * import so we don't need to bother with a userspace cache.
2316 */
2317 uint32_t syncobj;
2318 };
2319 };
2320
2321 struct anv_semaphore {
2322 /* Permanent semaphore state. Every semaphore has some form of permanent
2323 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2324 * (for cross-process semaphores0 or it could just be a dummy for use
2325 * internally.
2326 */
2327 struct anv_semaphore_impl permanent;
2328
2329 /* Temporary semaphore state. A semaphore *may* have temporary state.
2330 * That state is added to the semaphore by an import operation and is reset
2331 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2332 * semaphore with temporary state cannot be signaled because the semaphore
2333 * must already be signaled before the temporary state can be exported from
2334 * the semaphore in the other process and imported here.
2335 */
2336 struct anv_semaphore_impl temporary;
2337 };
2338
2339 void anv_semaphore_reset_temporary(struct anv_device *device,
2340 struct anv_semaphore *semaphore);
2341
2342 struct anv_shader_module {
2343 unsigned char sha1[20];
2344 uint32_t size;
2345 char data[0];
2346 };
2347
2348 static inline gl_shader_stage
2349 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2350 {
2351 assert(__builtin_popcount(vk_stage) == 1);
2352 return ffs(vk_stage) - 1;
2353 }
2354
2355 static inline VkShaderStageFlagBits
2356 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2357 {
2358 return (1 << mesa_stage);
2359 }
2360
2361 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2362
2363 #define anv_foreach_stage(stage, stage_bits) \
2364 for (gl_shader_stage stage, \
2365 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2366 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2367 __tmp &= ~(1 << (stage)))
2368
2369 struct anv_pipeline_bind_map {
2370 uint32_t surface_count;
2371 uint32_t sampler_count;
2372 uint32_t image_count;
2373
2374 struct anv_pipeline_binding * surface_to_descriptor;
2375 struct anv_pipeline_binding * sampler_to_descriptor;
2376 };
2377
2378 struct anv_shader_bin_key {
2379 uint32_t size;
2380 uint8_t data[0];
2381 };
2382
2383 struct anv_shader_bin {
2384 uint32_t ref_cnt;
2385
2386 const struct anv_shader_bin_key *key;
2387
2388 struct anv_state kernel;
2389 uint32_t kernel_size;
2390
2391 struct anv_state constant_data;
2392 uint32_t constant_data_size;
2393
2394 const struct brw_stage_prog_data *prog_data;
2395 uint32_t prog_data_size;
2396
2397 struct anv_pipeline_bind_map bind_map;
2398 };
2399
2400 struct anv_shader_bin *
2401 anv_shader_bin_create(struct anv_device *device,
2402 const void *key, uint32_t key_size,
2403 const void *kernel, uint32_t kernel_size,
2404 const void *constant_data, uint32_t constant_data_size,
2405 const struct brw_stage_prog_data *prog_data,
2406 uint32_t prog_data_size, const void *prog_data_param,
2407 const struct anv_pipeline_bind_map *bind_map);
2408
2409 void
2410 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2411
2412 static inline void
2413 anv_shader_bin_ref(struct anv_shader_bin *shader)
2414 {
2415 assert(shader && shader->ref_cnt >= 1);
2416 p_atomic_inc(&shader->ref_cnt);
2417 }
2418
2419 static inline void
2420 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2421 {
2422 assert(shader && shader->ref_cnt >= 1);
2423 if (p_atomic_dec_zero(&shader->ref_cnt))
2424 anv_shader_bin_destroy(device, shader);
2425 }
2426
2427 struct anv_pipeline {
2428 struct anv_device * device;
2429 struct anv_batch batch;
2430 uint32_t batch_data[512];
2431 struct anv_reloc_list batch_relocs;
2432 uint32_t dynamic_state_mask;
2433 struct anv_dynamic_state dynamic_state;
2434
2435 struct anv_subpass * subpass;
2436
2437 bool needs_data_cache;
2438
2439 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2440
2441 struct {
2442 const struct gen_l3_config * l3_config;
2443 uint32_t total_size;
2444 } urb;
2445
2446 VkShaderStageFlags active_stages;
2447 struct anv_state blend_state;
2448
2449 uint32_t vb_used;
2450 struct anv_pipeline_vertex_binding {
2451 uint32_t stride;
2452 bool instanced;
2453 uint32_t instance_divisor;
2454 } vb[MAX_VBS];
2455
2456 bool primitive_restart;
2457 uint32_t topology;
2458
2459 uint32_t cs_right_mask;
2460
2461 bool writes_depth;
2462 bool depth_test_enable;
2463 bool writes_stencil;
2464 bool stencil_test_enable;
2465 bool depth_clamp_enable;
2466 bool sample_shading_enable;
2467 bool kill_pixel;
2468
2469 struct {
2470 uint32_t sf[7];
2471 uint32_t depth_stencil_state[3];
2472 } gen7;
2473
2474 struct {
2475 uint32_t sf[4];
2476 uint32_t raster[5];
2477 uint32_t wm_depth_stencil[3];
2478 } gen8;
2479
2480 struct {
2481 uint32_t wm_depth_stencil[4];
2482 } gen9;
2483
2484 uint32_t interface_descriptor_data[8];
2485 };
2486
2487 static inline bool
2488 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2489 gl_shader_stage stage)
2490 {
2491 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2492 }
2493
2494 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2495 static inline const struct brw_##prefix##_prog_data * \
2496 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2497 { \
2498 if (anv_pipeline_has_stage(pipeline, stage)) { \
2499 return (const struct brw_##prefix##_prog_data *) \
2500 pipeline->shaders[stage]->prog_data; \
2501 } else { \
2502 return NULL; \
2503 } \
2504 }
2505
2506 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2507 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2508 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2509 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2510 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2511 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2512
2513 static inline const struct brw_vue_prog_data *
2514 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2515 {
2516 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2517 return &get_gs_prog_data(pipeline)->base;
2518 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2519 return &get_tes_prog_data(pipeline)->base;
2520 else
2521 return &get_vs_prog_data(pipeline)->base;
2522 }
2523
2524 VkResult
2525 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2526 struct anv_pipeline_cache *cache,
2527 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2528 const VkAllocationCallbacks *alloc);
2529
2530 VkResult
2531 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2532 struct anv_pipeline_cache *cache,
2533 const VkComputePipelineCreateInfo *info,
2534 const struct anv_shader_module *module,
2535 const char *entrypoint,
2536 const VkSpecializationInfo *spec_info);
2537
2538 struct anv_format_plane {
2539 enum isl_format isl_format:16;
2540 struct isl_swizzle swizzle;
2541
2542 /* Whether this plane contains chroma channels */
2543 bool has_chroma;
2544
2545 /* For downscaling of YUV planes */
2546 uint8_t denominator_scales[2];
2547
2548 /* How to map sampled ycbcr planes to a single 4 component element. */
2549 struct isl_swizzle ycbcr_swizzle;
2550
2551 /* What aspect is associated to this plane */
2552 VkImageAspectFlags aspect;
2553 };
2554
2555
2556 struct anv_format {
2557 struct anv_format_plane planes[3];
2558 uint8_t n_planes;
2559 bool can_ycbcr;
2560 };
2561
2562 static inline uint32_t
2563 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2564 VkImageAspectFlags aspect_mask)
2565 {
2566 switch (aspect_mask) {
2567 case VK_IMAGE_ASPECT_COLOR_BIT:
2568 case VK_IMAGE_ASPECT_DEPTH_BIT:
2569 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2570 return 0;
2571 case VK_IMAGE_ASPECT_STENCIL_BIT:
2572 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2573 return 0;
2574 /* Fall-through */
2575 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2576 return 1;
2577 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2578 return 2;
2579 default:
2580 /* Purposefully assert with depth/stencil aspects. */
2581 unreachable("invalid image aspect");
2582 }
2583 }
2584
2585 static inline VkImageAspectFlags
2586 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2587 uint32_t plane)
2588 {
2589 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2590 if (util_bitcount(image_aspects) > 1)
2591 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2592 return VK_IMAGE_ASPECT_COLOR_BIT;
2593 }
2594 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2595 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2596 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2597 return VK_IMAGE_ASPECT_STENCIL_BIT;
2598 }
2599
2600 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2601 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2602
2603 const struct anv_format *
2604 anv_get_format(VkFormat format);
2605
2606 static inline uint32_t
2607 anv_get_format_planes(VkFormat vk_format)
2608 {
2609 const struct anv_format *format = anv_get_format(vk_format);
2610
2611 return format != NULL ? format->n_planes : 0;
2612 }
2613
2614 struct anv_format_plane
2615 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2616 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2617
2618 static inline enum isl_format
2619 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2620 VkImageAspectFlags aspect, VkImageTiling tiling)
2621 {
2622 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2623 }
2624
2625 static inline struct isl_swizzle
2626 anv_swizzle_for_render(struct isl_swizzle swizzle)
2627 {
2628 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2629 * RGB as RGBA for texturing
2630 */
2631 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2632 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2633
2634 /* But it doesn't matter what we render to that channel */
2635 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2636
2637 return swizzle;
2638 }
2639
2640 void
2641 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2642
2643 /**
2644 * Subsurface of an anv_image.
2645 */
2646 struct anv_surface {
2647 /** Valid only if isl_surf::size_B > 0. */
2648 struct isl_surf isl;
2649
2650 /**
2651 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2652 */
2653 uint32_t offset;
2654 };
2655
2656 struct anv_image {
2657 VkImageType type;
2658 /* The original VkFormat provided by the client. This may not match any
2659 * of the actual surface formats.
2660 */
2661 VkFormat vk_format;
2662 const struct anv_format *format;
2663
2664 VkImageAspectFlags aspects;
2665 VkExtent3D extent;
2666 uint32_t levels;
2667 uint32_t array_size;
2668 uint32_t samples; /**< VkImageCreateInfo::samples */
2669 uint32_t n_planes;
2670 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2671 VkImageCreateFlags create_flags; /* Flags used when creating image. */
2672 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2673
2674 /** True if this is needs to be bound to an appropriately tiled BO.
2675 *
2676 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2677 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2678 * we require a dedicated allocation so that we can know to allocate a
2679 * tiled buffer.
2680 */
2681 bool needs_set_tiling;
2682
2683 /**
2684 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2685 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2686 */
2687 uint64_t drm_format_mod;
2688
2689 VkDeviceSize size;
2690 uint32_t alignment;
2691
2692 /* Whether the image is made of several underlying buffer objects rather a
2693 * single one with different offsets.
2694 */
2695 bool disjoint;
2696
2697 /* All the formats that can be used when creating views of this image
2698 * are CCS_E compatible.
2699 */
2700 bool ccs_e_compatible;
2701
2702 /* Image was created with external format. */
2703 bool external_format;
2704
2705 /**
2706 * Image subsurfaces
2707 *
2708 * For each foo, anv_image::planes[x].surface is valid if and only if
2709 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2710 * to figure the number associated with a given aspect.
2711 *
2712 * The hardware requires that the depth buffer and stencil buffer be
2713 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2714 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2715 * allocate the depth and stencil buffers as separate surfaces in the same
2716 * bo.
2717 *
2718 * Memory layout :
2719 *
2720 * -----------------------
2721 * | surface0 | /|\
2722 * ----------------------- |
2723 * | shadow surface0 | |
2724 * ----------------------- | Plane 0
2725 * | aux surface0 | |
2726 * ----------------------- |
2727 * | fast clear colors0 | \|/
2728 * -----------------------
2729 * | surface1 | /|\
2730 * ----------------------- |
2731 * | shadow surface1 | |
2732 * ----------------------- | Plane 1
2733 * | aux surface1 | |
2734 * ----------------------- |
2735 * | fast clear colors1 | \|/
2736 * -----------------------
2737 * | ... |
2738 * | |
2739 * -----------------------
2740 */
2741 struct {
2742 /**
2743 * Offset of the entire plane (whenever the image is disjoint this is
2744 * set to 0).
2745 */
2746 uint32_t offset;
2747
2748 VkDeviceSize size;
2749 uint32_t alignment;
2750
2751 struct anv_surface surface;
2752
2753 /**
2754 * A surface which shadows the main surface and may have different
2755 * tiling. This is used for sampling using a tiling that isn't supported
2756 * for other operations.
2757 */
2758 struct anv_surface shadow_surface;
2759
2760 /**
2761 * For color images, this is the aux usage for this image when not used
2762 * as a color attachment.
2763 *
2764 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2765 * image has a HiZ buffer.
2766 */
2767 enum isl_aux_usage aux_usage;
2768
2769 struct anv_surface aux_surface;
2770
2771 /**
2772 * Offset of the fast clear state (used to compute the
2773 * fast_clear_state_offset of the following planes).
2774 */
2775 uint32_t fast_clear_state_offset;
2776
2777 /**
2778 * BO associated with this plane, set when bound.
2779 */
2780 struct anv_address address;
2781
2782 /**
2783 * When destroying the image, also free the bo.
2784 * */
2785 bool bo_is_owned;
2786 } planes[3];
2787 };
2788
2789 /* The ordering of this enum is important */
2790 enum anv_fast_clear_type {
2791 /** Image does not have/support any fast-clear blocks */
2792 ANV_FAST_CLEAR_NONE = 0,
2793 /** Image has/supports fast-clear but only to the default value */
2794 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2795 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2796 ANV_FAST_CLEAR_ANY = 2,
2797 };
2798
2799 /* Returns the number of auxiliary buffer levels attached to an image. */
2800 static inline uint8_t
2801 anv_image_aux_levels(const struct anv_image * const image,
2802 VkImageAspectFlagBits aspect)
2803 {
2804 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2805 return image->planes[plane].aux_surface.isl.size_B > 0 ?
2806 image->planes[plane].aux_surface.isl.levels : 0;
2807 }
2808
2809 /* Returns the number of auxiliary buffer layers attached to an image. */
2810 static inline uint32_t
2811 anv_image_aux_layers(const struct anv_image * const image,
2812 VkImageAspectFlagBits aspect,
2813 const uint8_t miplevel)
2814 {
2815 assert(image);
2816
2817 /* The miplevel must exist in the main buffer. */
2818 assert(miplevel < image->levels);
2819
2820 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2821 /* There are no layers with auxiliary data because the miplevel has no
2822 * auxiliary data.
2823 */
2824 return 0;
2825 } else {
2826 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2827 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2828 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2829 }
2830 }
2831
2832 static inline struct anv_address
2833 anv_image_get_clear_color_addr(const struct anv_device *device,
2834 const struct anv_image *image,
2835 VkImageAspectFlagBits aspect)
2836 {
2837 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
2838
2839 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2840 return anv_address_add(image->planes[plane].address,
2841 image->planes[plane].fast_clear_state_offset);
2842 }
2843
2844 static inline struct anv_address
2845 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
2846 const struct anv_image *image,
2847 VkImageAspectFlagBits aspect)
2848 {
2849 struct anv_address addr =
2850 anv_image_get_clear_color_addr(device, image, aspect);
2851
2852 const unsigned clear_color_state_size = device->info.gen >= 10 ?
2853 device->isl_dev.ss.clear_color_state_size :
2854 device->isl_dev.ss.clear_value_size;
2855 return anv_address_add(addr, clear_color_state_size);
2856 }
2857
2858 static inline struct anv_address
2859 anv_image_get_compression_state_addr(const struct anv_device *device,
2860 const struct anv_image *image,
2861 VkImageAspectFlagBits aspect,
2862 uint32_t level, uint32_t array_layer)
2863 {
2864 assert(level < anv_image_aux_levels(image, aspect));
2865 assert(array_layer < anv_image_aux_layers(image, aspect, level));
2866 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2867 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
2868
2869 struct anv_address addr =
2870 anv_image_get_fast_clear_type_addr(device, image, aspect);
2871 addr.offset += 4; /* Go past the fast clear type */
2872
2873 if (image->type == VK_IMAGE_TYPE_3D) {
2874 for (uint32_t l = 0; l < level; l++)
2875 addr.offset += anv_minify(image->extent.depth, l) * 4;
2876 } else {
2877 addr.offset += level * image->array_size * 4;
2878 }
2879 addr.offset += array_layer * 4;
2880
2881 return addr;
2882 }
2883
2884 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2885 static inline bool
2886 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2887 const struct anv_image *image)
2888 {
2889 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
2890 return false;
2891
2892 if (devinfo->gen < 8)
2893 return false;
2894
2895 return image->samples == 1;
2896 }
2897
2898 void
2899 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
2900 const struct anv_image *image,
2901 VkImageAspectFlagBits aspect,
2902 enum isl_aux_usage aux_usage,
2903 uint32_t level,
2904 uint32_t base_layer,
2905 uint32_t layer_count);
2906
2907 void
2908 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
2909 const struct anv_image *image,
2910 VkImageAspectFlagBits aspect,
2911 enum isl_aux_usage aux_usage,
2912 enum isl_format format, struct isl_swizzle swizzle,
2913 uint32_t level, uint32_t base_layer, uint32_t layer_count,
2914 VkRect2D area, union isl_color_value clear_color);
2915 void
2916 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
2917 const struct anv_image *image,
2918 VkImageAspectFlags aspects,
2919 enum isl_aux_usage depth_aux_usage,
2920 uint32_t level,
2921 uint32_t base_layer, uint32_t layer_count,
2922 VkRect2D area,
2923 float depth_value, uint8_t stencil_value);
2924 void
2925 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
2926 const struct anv_image *image,
2927 VkImageAspectFlagBits aspect, uint32_t level,
2928 uint32_t base_layer, uint32_t layer_count,
2929 enum isl_aux_op hiz_op);
2930 void
2931 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
2932 const struct anv_image *image,
2933 VkImageAspectFlags aspects,
2934 uint32_t level,
2935 uint32_t base_layer, uint32_t layer_count,
2936 VkRect2D area, uint8_t stencil_value);
2937 void
2938 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
2939 const struct anv_image *image,
2940 VkImageAspectFlagBits aspect,
2941 uint32_t base_layer, uint32_t layer_count,
2942 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
2943 bool predicate);
2944 void
2945 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
2946 const struct anv_image *image,
2947 VkImageAspectFlagBits aspect, uint32_t level,
2948 uint32_t base_layer, uint32_t layer_count,
2949 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
2950 bool predicate);
2951
2952 void
2953 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
2954 const struct anv_image *image,
2955 uint32_t base_level, uint32_t level_count,
2956 uint32_t base_layer, uint32_t layer_count);
2957
2958 enum isl_aux_usage
2959 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2960 const struct anv_image *image,
2961 const VkImageAspectFlagBits aspect,
2962 const VkImageLayout layout);
2963
2964 enum anv_fast_clear_type
2965 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
2966 const struct anv_image * const image,
2967 const VkImageAspectFlagBits aspect,
2968 const VkImageLayout layout);
2969
2970 /* This is defined as a macro so that it works for both
2971 * VkImageSubresourceRange and VkImageSubresourceLayers
2972 */
2973 #define anv_get_layerCount(_image, _range) \
2974 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2975 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2976
2977 static inline uint32_t
2978 anv_get_levelCount(const struct anv_image *image,
2979 const VkImageSubresourceRange *range)
2980 {
2981 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2982 image->levels - range->baseMipLevel : range->levelCount;
2983 }
2984
2985 static inline VkImageAspectFlags
2986 anv_image_expand_aspects(const struct anv_image *image,
2987 VkImageAspectFlags aspects)
2988 {
2989 /* If the underlying image has color plane aspects and
2990 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
2991 * the underlying image. */
2992 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
2993 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
2994 return image->aspects;
2995
2996 return aspects;
2997 }
2998
2999 static inline bool
3000 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3001 VkImageAspectFlags aspects2)
3002 {
3003 if (aspects1 == aspects2)
3004 return true;
3005
3006 /* Only 1 color aspects are compatibles. */
3007 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3008 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3009 util_bitcount(aspects1) == util_bitcount(aspects2))
3010 return true;
3011
3012 return false;
3013 }
3014
3015 struct anv_image_view {
3016 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3017
3018 VkImageAspectFlags aspect_mask;
3019 VkFormat vk_format;
3020 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3021
3022 unsigned n_planes;
3023 struct {
3024 uint32_t image_plane;
3025
3026 struct isl_view isl;
3027
3028 /**
3029 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3030 * image layout of SHADER_READ_ONLY_OPTIMAL or
3031 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3032 */
3033 struct anv_surface_state optimal_sampler_surface_state;
3034
3035 /**
3036 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3037 * image layout of GENERAL.
3038 */
3039 struct anv_surface_state general_sampler_surface_state;
3040
3041 /**
3042 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3043 * states for write-only and readable, using the real format for
3044 * write-only and the lowered format for readable.
3045 */
3046 struct anv_surface_state storage_surface_state;
3047 struct anv_surface_state writeonly_storage_surface_state;
3048
3049 struct brw_image_param storage_image_param;
3050 } planes[3];
3051 };
3052
3053 enum anv_image_view_state_flags {
3054 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3055 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3056 };
3057
3058 void anv_image_fill_surface_state(struct anv_device *device,
3059 const struct anv_image *image,
3060 VkImageAspectFlagBits aspect,
3061 const struct isl_view *view,
3062 isl_surf_usage_flags_t view_usage,
3063 enum isl_aux_usage aux_usage,
3064 const union isl_color_value *clear_color,
3065 enum anv_image_view_state_flags flags,
3066 struct anv_surface_state *state_inout,
3067 struct brw_image_param *image_param_out);
3068
3069 struct anv_image_create_info {
3070 const VkImageCreateInfo *vk_info;
3071
3072 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3073 isl_tiling_flags_t isl_tiling_flags;
3074
3075 /** These flags will be added to any derived from VkImageCreateInfo. */
3076 isl_surf_usage_flags_t isl_extra_usage_flags;
3077
3078 uint32_t stride;
3079 bool external_format;
3080 };
3081
3082 VkResult anv_image_create(VkDevice _device,
3083 const struct anv_image_create_info *info,
3084 const VkAllocationCallbacks* alloc,
3085 VkImage *pImage);
3086
3087 const struct anv_surface *
3088 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3089 VkImageAspectFlags aspect_mask);
3090
3091 enum isl_format
3092 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3093
3094 static inline struct VkExtent3D
3095 anv_sanitize_image_extent(const VkImageType imageType,
3096 const struct VkExtent3D imageExtent)
3097 {
3098 switch (imageType) {
3099 case VK_IMAGE_TYPE_1D:
3100 return (VkExtent3D) { imageExtent.width, 1, 1 };
3101 case VK_IMAGE_TYPE_2D:
3102 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3103 case VK_IMAGE_TYPE_3D:
3104 return imageExtent;
3105 default:
3106 unreachable("invalid image type");
3107 }
3108 }
3109
3110 static inline struct VkOffset3D
3111 anv_sanitize_image_offset(const VkImageType imageType,
3112 const struct VkOffset3D imageOffset)
3113 {
3114 switch (imageType) {
3115 case VK_IMAGE_TYPE_1D:
3116 return (VkOffset3D) { imageOffset.x, 0, 0 };
3117 case VK_IMAGE_TYPE_2D:
3118 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3119 case VK_IMAGE_TYPE_3D:
3120 return imageOffset;
3121 default:
3122 unreachable("invalid image type");
3123 }
3124 }
3125
3126 VkFormatFeatureFlags
3127 anv_get_image_format_features(const struct gen_device_info *devinfo,
3128 VkFormat vk_format,
3129 const struct anv_format *anv_format,
3130 VkImageTiling vk_tiling);
3131
3132 void anv_fill_buffer_surface_state(struct anv_device *device,
3133 struct anv_state state,
3134 enum isl_format format,
3135 struct anv_address address,
3136 uint32_t range, uint32_t stride);
3137
3138 static inline void
3139 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3140 const struct anv_attachment_state *att_state,
3141 const struct anv_image_view *iview)
3142 {
3143 const struct isl_format_layout *view_fmtl =
3144 isl_format_get_layout(iview->planes[0].isl.format);
3145
3146 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3147 if (view_fmtl->channels.c.bits) \
3148 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3149
3150 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3151 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3152 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3153 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3154
3155 #undef COPY_CLEAR_COLOR_CHANNEL
3156 }
3157
3158
3159 struct anv_ycbcr_conversion {
3160 const struct anv_format * format;
3161 VkSamplerYcbcrModelConversion ycbcr_model;
3162 VkSamplerYcbcrRange ycbcr_range;
3163 VkComponentSwizzle mapping[4];
3164 VkChromaLocation chroma_offsets[2];
3165 VkFilter chroma_filter;
3166 bool chroma_reconstruction;
3167 };
3168
3169 struct anv_sampler {
3170 uint32_t state[3][4];
3171 uint32_t n_planes;
3172 struct anv_ycbcr_conversion *conversion;
3173 };
3174
3175 struct anv_framebuffer {
3176 uint32_t width;
3177 uint32_t height;
3178 uint32_t layers;
3179
3180 uint32_t attachment_count;
3181 struct anv_image_view * attachments[0];
3182 };
3183
3184 struct anv_subpass_attachment {
3185 VkImageUsageFlagBits usage;
3186 uint32_t attachment;
3187 VkImageLayout layout;
3188 };
3189
3190 struct anv_subpass {
3191 uint32_t attachment_count;
3192
3193 /**
3194 * A pointer to all attachment references used in this subpass.
3195 * Only valid if ::attachment_count > 0.
3196 */
3197 struct anv_subpass_attachment * attachments;
3198 uint32_t input_count;
3199 struct anv_subpass_attachment * input_attachments;
3200 uint32_t color_count;
3201 struct anv_subpass_attachment * color_attachments;
3202 struct anv_subpass_attachment * resolve_attachments;
3203
3204 struct anv_subpass_attachment * depth_stencil_attachment;
3205
3206 uint32_t view_mask;
3207
3208 /** Subpass has a depth/stencil self-dependency */
3209 bool has_ds_self_dep;
3210
3211 /** Subpass has at least one resolve attachment */
3212 bool has_resolve;
3213 };
3214
3215 static inline unsigned
3216 anv_subpass_view_count(const struct anv_subpass *subpass)
3217 {
3218 return MAX2(1, util_bitcount(subpass->view_mask));
3219 }
3220
3221 struct anv_render_pass_attachment {
3222 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3223 * its members individually.
3224 */
3225 VkFormat format;
3226 uint32_t samples;
3227 VkImageUsageFlags usage;
3228 VkAttachmentLoadOp load_op;
3229 VkAttachmentStoreOp store_op;
3230 VkAttachmentLoadOp stencil_load_op;
3231 VkImageLayout initial_layout;
3232 VkImageLayout final_layout;
3233 VkImageLayout first_subpass_layout;
3234
3235 /* The subpass id in which the attachment will be used last. */
3236 uint32_t last_subpass_idx;
3237 };
3238
3239 struct anv_render_pass {
3240 uint32_t attachment_count;
3241 uint32_t subpass_count;
3242 /* An array of subpass_count+1 flushes, one per subpass boundary */
3243 enum anv_pipe_bits * subpass_flushes;
3244 struct anv_render_pass_attachment * attachments;
3245 struct anv_subpass subpasses[0];
3246 };
3247
3248 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3249
3250 struct anv_query_pool {
3251 VkQueryType type;
3252 VkQueryPipelineStatisticFlags pipeline_statistics;
3253 /** Stride between slots, in bytes */
3254 uint32_t stride;
3255 /** Number of slots in this query pool */
3256 uint32_t slots;
3257 struct anv_bo bo;
3258 };
3259
3260 int anv_get_instance_entrypoint_index(const char *name);
3261 int anv_get_device_entrypoint_index(const char *name);
3262
3263 bool
3264 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3265 const struct anv_instance_extension_table *instance);
3266
3267 bool
3268 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3269 const struct anv_instance_extension_table *instance,
3270 const struct anv_device_extension_table *device);
3271
3272 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3273 const char *name);
3274
3275 void anv_dump_image_to_ppm(struct anv_device *device,
3276 struct anv_image *image, unsigned miplevel,
3277 unsigned array_layer, VkImageAspectFlagBits aspect,
3278 const char *filename);
3279
3280 enum anv_dump_action {
3281 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3282 };
3283
3284 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3285 void anv_dump_finish(void);
3286
3287 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3288 struct anv_framebuffer *fb);
3289
3290 static inline uint32_t
3291 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3292 {
3293 /* This function must be called from within a subpass. */
3294 assert(cmd_state->pass && cmd_state->subpass);
3295
3296 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3297
3298 /* The id of this subpass shouldn't exceed the number of subpasses in this
3299 * render pass minus 1.
3300 */
3301 assert(subpass_id < cmd_state->pass->subpass_count);
3302 return subpass_id;
3303 }
3304
3305 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3306 \
3307 static inline struct __anv_type * \
3308 __anv_type ## _from_handle(__VkType _handle) \
3309 { \
3310 return (struct __anv_type *) _handle; \
3311 } \
3312 \
3313 static inline __VkType \
3314 __anv_type ## _to_handle(struct __anv_type *_obj) \
3315 { \
3316 return (__VkType) _obj; \
3317 }
3318
3319 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3320 \
3321 static inline struct __anv_type * \
3322 __anv_type ## _from_handle(__VkType _handle) \
3323 { \
3324 return (struct __anv_type *)(uintptr_t) _handle; \
3325 } \
3326 \
3327 static inline __VkType \
3328 __anv_type ## _to_handle(struct __anv_type *_obj) \
3329 { \
3330 return (__VkType)(uintptr_t) _obj; \
3331 }
3332
3333 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3334 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3335
3336 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3337 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3338 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3339 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3340 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3341
3342 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3343 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3344 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3345 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3346 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3347 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3348 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
3349 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3350 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3351 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3352 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3353 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3354 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3355 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3356 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3357 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3358 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3359 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3360 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3361 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3362 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3363 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3364 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3365
3366 /* Gen-specific function declarations */
3367 #ifdef genX
3368 # include "anv_genX.h"
3369 #else
3370 # define genX(x) gen7_##x
3371 # include "anv_genX.h"
3372 # undef genX
3373 # define genX(x) gen75_##x
3374 # include "anv_genX.h"
3375 # undef genX
3376 # define genX(x) gen8_##x
3377 # include "anv_genX.h"
3378 # undef genX
3379 # define genX(x) gen9_##x
3380 # include "anv_genX.h"
3381 # undef genX
3382 # define genX(x) gen10_##x
3383 # include "anv_genX.h"
3384 # undef genX
3385 # define genX(x) gen11_##x
3386 # include "anv_genX.h"
3387 # undef genX
3388 #endif
3389
3390 #endif /* ANV_PRIVATE_H */