d8fffc3bf6d9000fc6559171845f96c24f32909a
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #pragma once
25
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdbool.h>
29 #include <pthread.h>
30 #include <assert.h>
31 #include <stdint.h>
32 #include <i915_drm.h>
33
34 #ifdef HAVE_VALGRIND
35 #include <valgrind.h>
36 #include <memcheck.h>
37 #define VG(x) x
38 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
39 #else
40 #define VG(x)
41 #endif
42
43 #include "brw_device_info.h"
44 #include "brw_compiler.h"
45 #include "util/macros.h"
46 #include "util/list.h"
47
48 /* Pre-declarations needed for WSI entrypoints */
49 struct wl_surface;
50 struct wl_display;
51 typedef struct xcb_connection_t xcb_connection_t;
52 typedef uint32_t xcb_visualid_t;
53 typedef uint32_t xcb_window_t;
54
55 struct anv_l3_config;
56
57 #include <vulkan/vulkan.h>
58 #include <vulkan/vulkan_intel.h>
59 #include <vulkan/vk_icd.h>
60
61 #include "anv_entrypoints.h"
62 #include "brw_context.h"
63 #include "isl/isl.h"
64
65 #ifdef __cplusplus
66 extern "C" {
67 #endif
68
69 #define MAX_VBS 32
70 #define MAX_SETS 8
71 #define MAX_RTS 8
72 #define MAX_VIEWPORTS 16
73 #define MAX_SCISSORS 16
74 #define MAX_PUSH_CONSTANTS_SIZE 128
75 #define MAX_DYNAMIC_BUFFERS 16
76 #define MAX_IMAGES 8
77 #define MAX_SAMPLES_LOG2 4 /* SKL supports 16 samples */
78
79 #define anv_noreturn __attribute__((__noreturn__))
80 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
81
82 #define MIN(a, b) ((a) < (b) ? (a) : (b))
83 #define MAX(a, b) ((a) > (b) ? (a) : (b))
84
85 static inline uint32_t
86 align_u32(uint32_t v, uint32_t a)
87 {
88 assert(a != 0 && a == (a & -a));
89 return (v + a - 1) & ~(a - 1);
90 }
91
92 static inline uint64_t
93 align_u64(uint64_t v, uint64_t a)
94 {
95 assert(a != 0 && a == (a & -a));
96 return (v + a - 1) & ~(a - 1);
97 }
98
99 static inline int32_t
100 align_i32(int32_t v, int32_t a)
101 {
102 assert(a != 0 && a == (a & -a));
103 return (v + a - 1) & ~(a - 1);
104 }
105
106 /** Alignment must be a power of 2. */
107 static inline bool
108 anv_is_aligned(uintmax_t n, uintmax_t a)
109 {
110 assert(a == (a & -a));
111 return (n & (a - 1)) == 0;
112 }
113
114 static inline uint32_t
115 anv_minify(uint32_t n, uint32_t levels)
116 {
117 if (unlikely(n == 0))
118 return 0;
119 else
120 return MAX(n >> levels, 1);
121 }
122
123 static inline float
124 anv_clamp_f(float f, float min, float max)
125 {
126 assert(min < max);
127
128 if (f > max)
129 return max;
130 else if (f < min)
131 return min;
132 else
133 return f;
134 }
135
136 static inline bool
137 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
138 {
139 if (*inout_mask & clear_mask) {
140 *inout_mask &= ~clear_mask;
141 return true;
142 } else {
143 return false;
144 }
145 }
146
147 #define for_each_bit(b, dword) \
148 for (uint32_t __dword = (dword); \
149 (b) = __builtin_ffs(__dword) - 1, __dword; \
150 __dword &= ~(1 << (b)))
151
152 #define typed_memcpy(dest, src, count) ({ \
153 static_assert(sizeof(*src) == sizeof(*dest), ""); \
154 memcpy((dest), (src), (count) * sizeof(*(src))); \
155 })
156
157 #define zero(x) (memset(&(x), 0, sizeof(x)))
158
159 /* Define no kernel as 1, since that's an illegal offset for a kernel */
160 #define NO_KERNEL 1
161
162 struct anv_common {
163 VkStructureType sType;
164 const void* pNext;
165 };
166
167 /* Whenever we generate an error, pass it through this function. Useful for
168 * debugging, where we can break on it. Only call at error site, not when
169 * propagating errors. Might be useful to plug in a stack trace here.
170 */
171
172 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
173
174 #ifdef DEBUG
175 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
176 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
177 #else
178 #define vk_error(error) error
179 #define vk_errorf(error, format, ...) error
180 #endif
181
182 void __anv_finishme(const char *file, int line, const char *format, ...)
183 anv_printflike(3, 4);
184 void anv_loge(const char *format, ...) anv_printflike(1, 2);
185 void anv_loge_v(const char *format, va_list va);
186
187 /**
188 * Print a FINISHME message, including its source location.
189 */
190 #define anv_finishme(format, ...) \
191 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__);
192
193 /* A non-fatal assert. Useful for debugging. */
194 #ifdef DEBUG
195 #define anv_assert(x) ({ \
196 if (unlikely(!(x))) \
197 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
198 })
199 #else
200 #define anv_assert(x)
201 #endif
202
203 /**
204 * If a block of code is annotated with anv_validate, then the block runs only
205 * in debug builds.
206 */
207 #ifdef DEBUG
208 #define anv_validate if (1)
209 #else
210 #define anv_validate if (0)
211 #endif
212
213 void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2);
214 void anv_abortfv(const char *format, va_list va) anv_noreturn;
215
216 #define stub_return(v) \
217 do { \
218 anv_finishme("stub %s", __func__); \
219 return (v); \
220 } while (0)
221
222 #define stub() \
223 do { \
224 anv_finishme("stub %s", __func__); \
225 return; \
226 } while (0)
227
228 /**
229 * A dynamically growable, circular buffer. Elements are added at head and
230 * removed from tail. head and tail are free-running uint32_t indices and we
231 * only compute the modulo with size when accessing the array. This way,
232 * number of bytes in the queue is always head - tail, even in case of
233 * wraparound.
234 */
235
236 struct anv_vector {
237 uint32_t head;
238 uint32_t tail;
239 uint32_t element_size;
240 uint32_t size;
241 void *data;
242 };
243
244 int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size);
245 void *anv_vector_add(struct anv_vector *queue);
246 void *anv_vector_remove(struct anv_vector *queue);
247
248 static inline int
249 anv_vector_length(struct anv_vector *queue)
250 {
251 return (queue->head - queue->tail) / queue->element_size;
252 }
253
254 static inline void *
255 anv_vector_head(struct anv_vector *vector)
256 {
257 assert(vector->tail < vector->head);
258 return (void *)((char *)vector->data +
259 ((vector->head - vector->element_size) &
260 (vector->size - 1)));
261 }
262
263 static inline void *
264 anv_vector_tail(struct anv_vector *vector)
265 {
266 return (void *)((char *)vector->data + (vector->tail & (vector->size - 1)));
267 }
268
269 static inline void
270 anv_vector_finish(struct anv_vector *queue)
271 {
272 free(queue->data);
273 }
274
275 #define anv_vector_foreach(elem, queue) \
276 static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \
277 for (uint32_t __anv_vector_offset = (queue)->tail; \
278 elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \
279 __anv_vector_offset += (queue)->element_size)
280
281 struct anv_bo {
282 uint32_t gem_handle;
283
284 /* Index into the current validation list. This is used by the
285 * validation list building alrogithm to track which buffers are already
286 * in the validation list so that we can ensure uniqueness.
287 */
288 uint32_t index;
289
290 /* Last known offset. This value is provided by the kernel when we
291 * execbuf and is used as the presumed offset for the next bunch of
292 * relocations.
293 */
294 uint64_t offset;
295
296 uint64_t size;
297 void *map;
298
299 /* We need to set the WRITE flag on winsys bos so GEM will know we're
300 * writing to them and synchronize uses on other rings (eg if the display
301 * server uses the blitter ring).
302 */
303 bool is_winsys_bo;
304 };
305
306 /* Represents a lock-free linked list of "free" things. This is used by
307 * both the block pool and the state pools. Unfortunately, in order to
308 * solve the ABA problem, we can't use a single uint32_t head.
309 */
310 union anv_free_list {
311 struct {
312 int32_t offset;
313
314 /* A simple count that is incremented every time the head changes. */
315 uint32_t count;
316 };
317 uint64_t u64;
318 };
319
320 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
321
322 struct anv_block_state {
323 union {
324 struct {
325 uint32_t next;
326 uint32_t end;
327 };
328 uint64_t u64;
329 };
330 };
331
332 struct anv_block_pool {
333 struct anv_device *device;
334
335 struct anv_bo bo;
336
337 /* The offset from the start of the bo to the "center" of the block
338 * pool. Pointers to allocated blocks are given by
339 * bo.map + center_bo_offset + offsets.
340 */
341 uint32_t center_bo_offset;
342
343 /* Current memory map of the block pool. This pointer may or may not
344 * point to the actual beginning of the block pool memory. If
345 * anv_block_pool_alloc_back has ever been called, then this pointer
346 * will point to the "center" position of the buffer and all offsets
347 * (negative or positive) given out by the block pool alloc functions
348 * will be valid relative to this pointer.
349 *
350 * In particular, map == bo.map + center_offset
351 */
352 void *map;
353 int fd;
354
355 /**
356 * Array of mmaps and gem handles owned by the block pool, reclaimed when
357 * the block pool is destroyed.
358 */
359 struct anv_vector mmap_cleanups;
360
361 uint32_t block_size;
362
363 union anv_free_list free_list;
364 struct anv_block_state state;
365
366 union anv_free_list back_free_list;
367 struct anv_block_state back_state;
368 };
369
370 /* Block pools are backed by a fixed-size 2GB memfd */
371 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
372
373 /* The center of the block pool is also the middle of the memfd. This may
374 * change in the future if we decide differently for some reason.
375 */
376 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
377
378 static inline uint32_t
379 anv_block_pool_size(struct anv_block_pool *pool)
380 {
381 return pool->state.end + pool->back_state.end;
382 }
383
384 struct anv_state {
385 int32_t offset;
386 uint32_t alloc_size;
387 void *map;
388 };
389
390 struct anv_fixed_size_state_pool {
391 size_t state_size;
392 union anv_free_list free_list;
393 struct anv_block_state block;
394 };
395
396 #define ANV_MIN_STATE_SIZE_LOG2 6
397 #define ANV_MAX_STATE_SIZE_LOG2 10
398
399 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2)
400
401 struct anv_state_pool {
402 struct anv_block_pool *block_pool;
403 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
404 };
405
406 struct anv_state_stream_block;
407
408 struct anv_state_stream {
409 struct anv_block_pool *block_pool;
410
411 /* The current working block */
412 struct anv_state_stream_block *block;
413
414 /* Offset at which the current block starts */
415 uint32_t start;
416 /* Offset at which to allocate the next state */
417 uint32_t next;
418 /* Offset at which the current block ends */
419 uint32_t end;
420 };
421
422 #define CACHELINE_SIZE 64
423 #define CACHELINE_MASK 63
424
425 static inline void
426 anv_clflush_range(void *start, size_t size)
427 {
428 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
429 void *end = start + size;
430
431 __builtin_ia32_mfence();
432 while (p < end) {
433 __builtin_ia32_clflush(p);
434 p += CACHELINE_SIZE;
435 }
436 }
437
438 static void inline
439 anv_state_clflush(struct anv_state state)
440 {
441 anv_clflush_range(state.map, state.alloc_size);
442 }
443
444 void anv_block_pool_init(struct anv_block_pool *pool,
445 struct anv_device *device, uint32_t block_size);
446 void anv_block_pool_finish(struct anv_block_pool *pool);
447 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
448 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
449 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
450 void anv_state_pool_init(struct anv_state_pool *pool,
451 struct anv_block_pool *block_pool);
452 void anv_state_pool_finish(struct anv_state_pool *pool);
453 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
454 size_t state_size, size_t alignment);
455 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
456 void anv_state_stream_init(struct anv_state_stream *stream,
457 struct anv_block_pool *block_pool);
458 void anv_state_stream_finish(struct anv_state_stream *stream);
459 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
460 uint32_t size, uint32_t alignment);
461
462 /**
463 * Implements a pool of re-usable BOs. The interface is identical to that
464 * of block_pool except that each block is its own BO.
465 */
466 struct anv_bo_pool {
467 struct anv_device *device;
468
469 void *free_list[16];
470 };
471
472 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
473 void anv_bo_pool_finish(struct anv_bo_pool *pool);
474 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
475 uint32_t size);
476 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
477
478
479 void *anv_resolve_entrypoint(uint32_t index);
480
481 extern struct anv_dispatch_table dtable;
482
483 #define ANV_CALL(func) ({ \
484 if (dtable.func == NULL) { \
485 size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \
486 dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \
487 } \
488 dtable.func; \
489 })
490
491 static inline void *
492 anv_alloc(const VkAllocationCallbacks *alloc,
493 size_t size, size_t align,
494 VkSystemAllocationScope scope)
495 {
496 return alloc->pfnAllocation(alloc->pUserData, size, align, scope);
497 }
498
499 static inline void *
500 anv_realloc(const VkAllocationCallbacks *alloc,
501 void *ptr, size_t size, size_t align,
502 VkSystemAllocationScope scope)
503 {
504 return alloc->pfnReallocation(alloc->pUserData, ptr, size, align, scope);
505 }
506
507 static inline void
508 anv_free(const VkAllocationCallbacks *alloc, void *data)
509 {
510 alloc->pfnFree(alloc->pUserData, data);
511 }
512
513 static inline void *
514 anv_alloc2(const VkAllocationCallbacks *parent_alloc,
515 const VkAllocationCallbacks *alloc,
516 size_t size, size_t align,
517 VkSystemAllocationScope scope)
518 {
519 if (alloc)
520 return anv_alloc(alloc, size, align, scope);
521 else
522 return anv_alloc(parent_alloc, size, align, scope);
523 }
524
525 static inline void
526 anv_free2(const VkAllocationCallbacks *parent_alloc,
527 const VkAllocationCallbacks *alloc,
528 void *data)
529 {
530 if (alloc)
531 anv_free(alloc, data);
532 else
533 anv_free(parent_alloc, data);
534 }
535
536 struct anv_wsi_interaface;
537
538 #define VK_ICD_WSI_PLATFORM_MAX 5
539
540 struct anv_physical_device {
541 VK_LOADER_DATA _loader_data;
542
543 struct anv_instance * instance;
544 uint32_t chipset_id;
545 const char * path;
546 const char * name;
547 const struct brw_device_info * info;
548 uint64_t aperture_size;
549 struct brw_compiler * compiler;
550 struct isl_device isl_dev;
551 int cmd_parser_version;
552
553 struct anv_wsi_interface * wsi[VK_ICD_WSI_PLATFORM_MAX];
554 };
555
556 struct anv_instance {
557 VK_LOADER_DATA _loader_data;
558
559 VkAllocationCallbacks alloc;
560
561 uint32_t apiVersion;
562 int physicalDeviceCount;
563 struct anv_physical_device physicalDevice;
564 };
565
566 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
567 void anv_finish_wsi(struct anv_physical_device *physical_device);
568
569 struct anv_meta_state {
570 VkAllocationCallbacks alloc;
571
572 /**
573 * Use array element `i` for images with `2^i` samples.
574 */
575 struct {
576 /**
577 * Pipeline N is used to clear color attachment N of the current
578 * subpass.
579 *
580 * HACK: We use one pipeline per color attachment to work around the
581 * compiler's inability to dynamically set the render target index of
582 * the render target write message.
583 */
584 struct anv_pipeline *color_pipelines[MAX_RTS];
585
586 struct anv_pipeline *depth_only_pipeline;
587 struct anv_pipeline *stencil_only_pipeline;
588 struct anv_pipeline *depthstencil_pipeline;
589 } clear[1 + MAX_SAMPLES_LOG2];
590
591 struct {
592 VkRenderPass render_pass;
593
594 /** Pipeline that blits from a 1D image. */
595 VkPipeline pipeline_1d_src;
596
597 /** Pipeline that blits from a 2D image. */
598 VkPipeline pipeline_2d_src;
599
600 /** Pipeline that blits from a 3D image. */
601 VkPipeline pipeline_3d_src;
602
603 VkPipelineLayout pipeline_layout;
604 VkDescriptorSetLayout ds_layout;
605 } blit;
606
607 struct {
608 VkRenderPass render_pass;
609
610 VkPipelineLayout img_p_layout;
611 VkDescriptorSetLayout img_ds_layout;
612 VkPipelineLayout buf_p_layout;
613 VkDescriptorSetLayout buf_ds_layout;
614
615 /* Pipelines indexed by source and destination type. See the
616 * blit2d_src_type and blit2d_dst_type enums in anv_meta_blit2d.c to
617 * see what these mean.
618 */
619 VkPipeline pipelines[2][3];
620 } blit2d;
621
622 struct {
623 /** Pipeline [i] resolves an image with 2^(i+1) samples. */
624 VkPipeline pipelines[MAX_SAMPLES_LOG2];
625
626 VkRenderPass pass;
627 VkPipelineLayout pipeline_layout;
628 VkDescriptorSetLayout ds_layout;
629 } resolve;
630 };
631
632 struct anv_queue {
633 VK_LOADER_DATA _loader_data;
634
635 struct anv_device * device;
636
637 struct anv_state_pool * pool;
638 };
639
640 struct anv_pipeline_cache {
641 struct anv_device * device;
642 struct anv_state_stream program_stream;
643 pthread_mutex_t mutex;
644
645 uint32_t total_size;
646 uint32_t table_size;
647 uint32_t kernel_count;
648 uint32_t * hash_table;
649 };
650
651 struct anv_pipeline_bind_map;
652
653 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
654 struct anv_device *device);
655 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
656 uint32_t anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
657 const unsigned char *sha1,
658 const struct brw_stage_prog_data **prog_data,
659 struct anv_pipeline_bind_map *map);
660 uint32_t anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
661 const unsigned char *sha1,
662 const void *kernel,
663 size_t kernel_size,
664 const struct brw_stage_prog_data **prog_data,
665 size_t prog_data_size,
666 struct anv_pipeline_bind_map *map);
667
668 struct anv_device {
669 VK_LOADER_DATA _loader_data;
670
671 VkAllocationCallbacks alloc;
672
673 struct anv_instance * instance;
674 uint32_t chipset_id;
675 struct brw_device_info info;
676 struct isl_device isl_dev;
677 int context_id;
678 int fd;
679 bool can_chain_batches;
680 bool robust_buffer_access;
681
682 struct anv_bo_pool batch_bo_pool;
683
684 struct anv_block_pool dynamic_state_block_pool;
685 struct anv_state_pool dynamic_state_pool;
686
687 struct anv_block_pool instruction_block_pool;
688 struct anv_pipeline_cache default_pipeline_cache;
689
690 struct anv_block_pool surface_state_block_pool;
691 struct anv_state_pool surface_state_pool;
692
693 struct anv_bo workaround_bo;
694
695 struct anv_meta_state meta_state;
696
697 struct anv_state border_colors;
698
699 struct anv_queue queue;
700
701 struct anv_block_pool scratch_block_pool;
702
703 uint32_t default_mocs;
704
705 pthread_mutex_t mutex;
706 };
707
708 void anv_device_get_cache_uuid(void *uuid);
709
710
711 void* anv_gem_mmap(struct anv_device *device,
712 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
713 void anv_gem_munmap(void *p, uint64_t size);
714 uint32_t anv_gem_create(struct anv_device *device, size_t size);
715 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
716 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
717 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
718 int anv_gem_execbuffer(struct anv_device *device,
719 struct drm_i915_gem_execbuffer2 *execbuf);
720 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
721 uint32_t stride, uint32_t tiling);
722 int anv_gem_create_context(struct anv_device *device);
723 int anv_gem_destroy_context(struct anv_device *device, int context);
724 int anv_gem_get_param(int fd, uint32_t param);
725 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
726 int anv_gem_get_aperture(int fd, uint64_t *size);
727 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
728 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
729 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
730 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
731 uint32_t read_domains, uint32_t write_domain);
732
733 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
734
735 struct anv_reloc_list {
736 size_t num_relocs;
737 size_t array_length;
738 struct drm_i915_gem_relocation_entry * relocs;
739 struct anv_bo ** reloc_bos;
740 };
741
742 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
743 const VkAllocationCallbacks *alloc);
744 void anv_reloc_list_finish(struct anv_reloc_list *list,
745 const VkAllocationCallbacks *alloc);
746
747 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
748 const VkAllocationCallbacks *alloc,
749 uint32_t offset, struct anv_bo *target_bo,
750 uint32_t delta);
751
752 struct anv_batch_bo {
753 /* Link in the anv_cmd_buffer.owned_batch_bos list */
754 struct list_head link;
755
756 struct anv_bo bo;
757
758 /* Bytes actually consumed in this batch BO */
759 size_t length;
760
761 /* Last seen surface state block pool bo offset */
762 uint32_t last_ss_pool_bo_offset;
763
764 struct anv_reloc_list relocs;
765 };
766
767 struct anv_batch {
768 const VkAllocationCallbacks * alloc;
769
770 void * start;
771 void * end;
772 void * next;
773
774 struct anv_reloc_list * relocs;
775
776 /* This callback is called (with the associated user data) in the event
777 * that the batch runs out of space.
778 */
779 VkResult (*extend_cb)(struct anv_batch *, void *);
780 void * user_data;
781 };
782
783 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
784 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
785 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
786 void *location, struct anv_bo *bo, uint32_t offset);
787 VkResult anv_device_submit_simple_batch(struct anv_device *device,
788 struct anv_batch *batch);
789
790 struct anv_address {
791 struct anv_bo *bo;
792 uint32_t offset;
793 };
794
795 #define __gen_address_type struct anv_address
796 #define __gen_user_data struct anv_batch
797
798 static inline uint64_t
799 __gen_combine_address(struct anv_batch *batch, void *location,
800 const struct anv_address address, uint32_t delta)
801 {
802 if (address.bo == NULL) {
803 return address.offset + delta;
804 } else {
805 assert(batch->start <= location && location < batch->end);
806
807 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
808 }
809 }
810
811 /* Wrapper macros needed to work around preprocessor argument issues. In
812 * particular, arguments don't get pre-evaluated if they are concatenated.
813 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
814 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
815 * We can work around this easily enough with these helpers.
816 */
817 #define __anv_cmd_length(cmd) cmd ## _length
818 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
819 #define __anv_cmd_header(cmd) cmd ## _header
820 #define __anv_cmd_pack(cmd) cmd ## _pack
821 #define __anv_reg_num(reg) reg ## _num
822
823 #define anv_pack_struct(dst, struc, ...) do { \
824 struct struc __template = { \
825 __VA_ARGS__ \
826 }; \
827 __anv_cmd_pack(struc)(NULL, dst, &__template); \
828 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
829 } while (0)
830
831 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
832 void *__dst = anv_batch_emit_dwords(batch, n); \
833 struct cmd __template = { \
834 __anv_cmd_header(cmd), \
835 .DWordLength = n - __anv_cmd_length_bias(cmd), \
836 __VA_ARGS__ \
837 }; \
838 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
839 __dst; \
840 })
841
842 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
843 do { \
844 uint32_t *dw; \
845 \
846 static_assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1), "mismatch merge"); \
847 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
848 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
849 dw[i] = (dwords0)[i] | (dwords1)[i]; \
850 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
851 } while (0)
852
853 #define anv_batch_emit(batch, cmd, name) \
854 for (struct cmd name = { __anv_cmd_header(cmd) }, \
855 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
856 __builtin_expect(_dst != NULL, 1); \
857 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
858 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
859 _dst = NULL; \
860 }))
861
862 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
863 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
864 struct anv_state __state = \
865 anv_state_pool_alloc((pool), __size, align); \
866 struct cmd __template = { \
867 __VA_ARGS__ \
868 }; \
869 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
870 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
871 if (!(pool)->block_pool->device->info.has_llc) \
872 anv_state_clflush(__state); \
873 __state; \
874 })
875
876 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
877 .GraphicsDataTypeGFDT = 0, \
878 .LLCCacheabilityControlLLCCC = 0, \
879 .L3CacheabilityControlL3CC = 1, \
880 }
881
882 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
883 .LLCeLLCCacheabilityControlLLCCC = 0, \
884 .L3CacheabilityControlL3CC = 1, \
885 }
886
887 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
888 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
889 .TargetCache = L3DefertoPATforLLCeLLCselection, \
890 .AgeforQUADLRU = 0 \
891 }
892
893 /* Skylake: MOCS is now an index into an array of 62 different caching
894 * configurations programmed by the kernel.
895 */
896
897 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
898 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
899 .IndextoMOCSTables = 2 \
900 }
901
902 #define GEN9_MOCS_PTE { \
903 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
904 .IndextoMOCSTables = 1 \
905 }
906
907 struct anv_device_memory {
908 struct anv_bo bo;
909 uint32_t type_index;
910 VkDeviceSize map_size;
911 void * map;
912 };
913
914 /**
915 * Header for Vertex URB Entry (VUE)
916 */
917 struct anv_vue_header {
918 uint32_t Reserved;
919 uint32_t RTAIndex; /* RenderTargetArrayIndex */
920 uint32_t ViewportIndex;
921 float PointWidth;
922 };
923
924 struct anv_descriptor_set_binding_layout {
925 /* Number of array elements in this binding */
926 uint16_t array_size;
927
928 /* Index into the flattend descriptor set */
929 uint16_t descriptor_index;
930
931 /* Index into the dynamic state array for a dynamic buffer */
932 int16_t dynamic_offset_index;
933
934 /* Index into the descriptor set buffer views */
935 int16_t buffer_index;
936
937 struct {
938 /* Index into the binding table for the associated surface */
939 int16_t surface_index;
940
941 /* Index into the sampler table for the associated sampler */
942 int16_t sampler_index;
943
944 /* Index into the image table for the associated image */
945 int16_t image_index;
946 } stage[MESA_SHADER_STAGES];
947
948 /* Immutable samplers (or NULL if no immutable samplers) */
949 struct anv_sampler **immutable_samplers;
950 };
951
952 struct anv_descriptor_set_layout {
953 /* Number of bindings in this descriptor set */
954 uint16_t binding_count;
955
956 /* Total size of the descriptor set with room for all array entries */
957 uint16_t size;
958
959 /* Shader stages affected by this descriptor set */
960 uint16_t shader_stages;
961
962 /* Number of buffers in this descriptor set */
963 uint16_t buffer_count;
964
965 /* Number of dynamic offsets used by this descriptor set */
966 uint16_t dynamic_offset_count;
967
968 /* Bindings in this descriptor set */
969 struct anv_descriptor_set_binding_layout binding[0];
970 };
971
972 struct anv_descriptor {
973 VkDescriptorType type;
974
975 union {
976 struct {
977 struct anv_image_view *image_view;
978 struct anv_sampler *sampler;
979 };
980
981 struct anv_buffer_view *buffer_view;
982 };
983 };
984
985 struct anv_descriptor_set {
986 const struct anv_descriptor_set_layout *layout;
987 uint32_t size;
988 uint32_t buffer_count;
989 struct anv_buffer_view *buffer_views;
990 struct anv_descriptor descriptors[0];
991 };
992
993 struct anv_descriptor_pool {
994 uint32_t size;
995 uint32_t next;
996 uint32_t free_list;
997
998 struct anv_state_stream surface_state_stream;
999 void *surface_state_free_list;
1000
1001 char data[0];
1002 };
1003
1004 VkResult
1005 anv_descriptor_set_create(struct anv_device *device,
1006 struct anv_descriptor_pool *pool,
1007 const struct anv_descriptor_set_layout *layout,
1008 struct anv_descriptor_set **out_set);
1009
1010 void
1011 anv_descriptor_set_destroy(struct anv_device *device,
1012 struct anv_descriptor_pool *pool,
1013 struct anv_descriptor_set *set);
1014
1015 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT16_MAX
1016
1017 struct anv_pipeline_binding {
1018 /* The descriptor set this surface corresponds to. The special value of
1019 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1020 * to a color attachment and not a regular descriptor.
1021 */
1022 uint16_t set;
1023
1024 /* Offset into the descriptor set or attachment list. */
1025 uint16_t offset;
1026 };
1027
1028 struct anv_pipeline_layout {
1029 struct {
1030 struct anv_descriptor_set_layout *layout;
1031 uint32_t dynamic_offset_start;
1032 } set[MAX_SETS];
1033
1034 uint32_t num_sets;
1035
1036 struct {
1037 bool has_dynamic_offsets;
1038 } stage[MESA_SHADER_STAGES];
1039 };
1040
1041 struct anv_buffer {
1042 struct anv_device * device;
1043 VkDeviceSize size;
1044
1045 VkBufferUsageFlags usage;
1046
1047 /* Set when bound */
1048 struct anv_bo * bo;
1049 VkDeviceSize offset;
1050 };
1051
1052 enum anv_cmd_dirty_bits {
1053 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1054 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1055 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1056 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1057 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1058 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1059 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1060 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1061 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1062 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1063 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1064 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1065 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1066 };
1067 typedef uint32_t anv_cmd_dirty_mask_t;
1068
1069 struct anv_vertex_binding {
1070 struct anv_buffer * buffer;
1071 VkDeviceSize offset;
1072 };
1073
1074 struct anv_push_constants {
1075 /* Current allocated size of this push constants data structure.
1076 * Because a decent chunk of it may not be used (images on SKL, for
1077 * instance), we won't actually allocate the entire structure up-front.
1078 */
1079 uint32_t size;
1080
1081 /* Push constant data provided by the client through vkPushConstants */
1082 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1083
1084 /* Our hardware only provides zero-based vertex and instance id so, in
1085 * order to satisfy the vulkan requirements, we may have to push one or
1086 * both of these into the shader.
1087 */
1088 uint32_t base_vertex;
1089 uint32_t base_instance;
1090
1091 /* Offsets and ranges for dynamically bound buffers */
1092 struct {
1093 uint32_t offset;
1094 uint32_t range;
1095 } dynamic[MAX_DYNAMIC_BUFFERS];
1096
1097 /* Image data for image_load_store on pre-SKL */
1098 struct brw_image_param images[MAX_IMAGES];
1099 };
1100
1101 struct anv_dynamic_state {
1102 struct {
1103 uint32_t count;
1104 VkViewport viewports[MAX_VIEWPORTS];
1105 } viewport;
1106
1107 struct {
1108 uint32_t count;
1109 VkRect2D scissors[MAX_SCISSORS];
1110 } scissor;
1111
1112 float line_width;
1113
1114 struct {
1115 float bias;
1116 float clamp;
1117 float slope;
1118 } depth_bias;
1119
1120 float blend_constants[4];
1121
1122 struct {
1123 float min;
1124 float max;
1125 } depth_bounds;
1126
1127 struct {
1128 uint32_t front;
1129 uint32_t back;
1130 } stencil_compare_mask;
1131
1132 struct {
1133 uint32_t front;
1134 uint32_t back;
1135 } stencil_write_mask;
1136
1137 struct {
1138 uint32_t front;
1139 uint32_t back;
1140 } stencil_reference;
1141 };
1142
1143 extern const struct anv_dynamic_state default_dynamic_state;
1144
1145 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1146 const struct anv_dynamic_state *src,
1147 uint32_t copy_mask);
1148
1149 /**
1150 * Attachment state when recording a renderpass instance.
1151 *
1152 * The clear value is valid only if there exists a pending clear.
1153 */
1154 struct anv_attachment_state {
1155 VkImageAspectFlags pending_clear_aspects;
1156 VkClearValue clear_value;
1157 };
1158
1159 /** State required while building cmd buffer */
1160 struct anv_cmd_state {
1161 /* PIPELINE_SELECT.PipelineSelection */
1162 uint32_t current_pipeline;
1163 const struct anv_l3_config * current_l3_config;
1164 uint32_t vb_dirty;
1165 anv_cmd_dirty_mask_t dirty;
1166 anv_cmd_dirty_mask_t compute_dirty;
1167 uint32_t num_workgroups_offset;
1168 struct anv_bo *num_workgroups_bo;
1169 VkShaderStageFlags descriptors_dirty;
1170 VkShaderStageFlags push_constants_dirty;
1171 uint32_t scratch_size;
1172 struct anv_pipeline * pipeline;
1173 struct anv_pipeline * compute_pipeline;
1174 struct anv_framebuffer * framebuffer;
1175 struct anv_render_pass * pass;
1176 struct anv_subpass * subpass;
1177 uint32_t restart_index;
1178 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1179 struct anv_descriptor_set * descriptors[MAX_SETS];
1180 VkShaderStageFlags push_constant_stages;
1181 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1182 struct anv_state binding_tables[MESA_SHADER_STAGES];
1183 struct anv_state samplers[MESA_SHADER_STAGES];
1184 struct anv_dynamic_state dynamic;
1185 bool need_query_wa;
1186
1187 /**
1188 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1189 * valid only when recording a render pass instance.
1190 */
1191 struct anv_attachment_state * attachments;
1192
1193 struct {
1194 struct anv_buffer * index_buffer;
1195 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1196 uint32_t index_offset;
1197 } gen7;
1198 };
1199
1200 struct anv_cmd_pool {
1201 VkAllocationCallbacks alloc;
1202 struct list_head cmd_buffers;
1203 };
1204
1205 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1206
1207 enum anv_cmd_buffer_exec_mode {
1208 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1209 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1210 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1211 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1212 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1213 };
1214
1215 struct anv_cmd_buffer {
1216 VK_LOADER_DATA _loader_data;
1217
1218 struct anv_device * device;
1219
1220 struct anv_cmd_pool * pool;
1221 struct list_head pool_link;
1222
1223 struct anv_batch batch;
1224
1225 /* Fields required for the actual chain of anv_batch_bo's.
1226 *
1227 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1228 */
1229 struct list_head batch_bos;
1230 enum anv_cmd_buffer_exec_mode exec_mode;
1231
1232 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1233 * referenced by this command buffer
1234 *
1235 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1236 */
1237 struct anv_vector seen_bbos;
1238
1239 /* A vector of int32_t's for every block of binding tables.
1240 *
1241 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1242 */
1243 struct anv_vector bt_blocks;
1244 uint32_t bt_next;
1245 struct anv_reloc_list surface_relocs;
1246
1247 /* Information needed for execbuf
1248 *
1249 * These fields are generated by anv_cmd_buffer_prepare_execbuf().
1250 */
1251 struct {
1252 struct drm_i915_gem_execbuffer2 execbuf;
1253
1254 struct drm_i915_gem_exec_object2 * objects;
1255 uint32_t bo_count;
1256 struct anv_bo ** bos;
1257
1258 /* Allocated length of the 'objects' and 'bos' arrays */
1259 uint32_t array_length;
1260
1261 bool need_reloc;
1262 } execbuf2;
1263
1264 /* Serial for tracking buffer completion */
1265 uint32_t serial;
1266
1267 /* Stream objects for storing temporary data */
1268 struct anv_state_stream surface_state_stream;
1269 struct anv_state_stream dynamic_state_stream;
1270
1271 VkCommandBufferUsageFlags usage_flags;
1272 VkCommandBufferLevel level;
1273
1274 struct anv_cmd_state state;
1275 };
1276
1277 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1278 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1279 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1280 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1281 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1282 struct anv_cmd_buffer *secondary);
1283 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1284
1285 VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1286 unsigned stage, struct anv_state *bt_state);
1287 VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
1288 unsigned stage, struct anv_state *state);
1289 uint32_t gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer);
1290 void gen7_cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
1291 uint32_t stages);
1292
1293 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1294 const void *data, uint32_t size, uint32_t alignment);
1295 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1296 uint32_t *a, uint32_t *b,
1297 uint32_t dwords, uint32_t alignment);
1298
1299 struct anv_address
1300 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1301 struct anv_state
1302 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1303 uint32_t entries, uint32_t *state_offset);
1304 struct anv_state
1305 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1306 struct anv_state
1307 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1308 uint32_t size, uint32_t alignment);
1309
1310 VkResult
1311 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1312
1313 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1314 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1315
1316 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1317
1318 void anv_cmd_state_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1319 const VkRenderPassBeginInfo *info);
1320
1321 void anv_cmd_buffer_set_subpass(struct anv_cmd_buffer *cmd_buffer,
1322 struct anv_subpass *subpass);
1323
1324 struct anv_state
1325 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1326 gl_shader_stage stage);
1327 struct anv_state
1328 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1329
1330 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1331 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1332
1333 const struct anv_image_view *
1334 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1335
1336 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1337
1338 struct anv_fence {
1339 struct anv_bo bo;
1340 struct drm_i915_gem_execbuffer2 execbuf;
1341 struct drm_i915_gem_exec_object2 exec2_objects[1];
1342 bool ready;
1343 };
1344
1345 struct anv_event {
1346 uint64_t semaphore;
1347 struct anv_state state;
1348 };
1349
1350 struct nir_shader;
1351
1352 struct anv_shader_module {
1353 struct nir_shader * nir;
1354
1355 unsigned char sha1[20];
1356 uint32_t size;
1357 char data[0];
1358 };
1359
1360 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1361 struct anv_shader_module *module,
1362 const char *entrypoint,
1363 const VkSpecializationInfo *spec_info);
1364
1365 static inline gl_shader_stage
1366 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1367 {
1368 assert(__builtin_popcount(vk_stage) == 1);
1369 return ffs(vk_stage) - 1;
1370 }
1371
1372 static inline VkShaderStageFlagBits
1373 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1374 {
1375 return (1 << mesa_stage);
1376 }
1377
1378 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1379
1380 #define anv_foreach_stage(stage, stage_bits) \
1381 for (gl_shader_stage stage, \
1382 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1383 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1384 __tmp &= ~(1 << (stage)))
1385
1386 struct anv_pipeline_bind_map {
1387 uint32_t surface_count;
1388 uint32_t sampler_count;
1389 uint32_t image_count;
1390 uint32_t attachment_count;
1391
1392 struct anv_pipeline_binding * surface_to_descriptor;
1393 struct anv_pipeline_binding * sampler_to_descriptor;
1394 uint32_t * surface_to_attachment;
1395 };
1396
1397 struct anv_pipeline {
1398 struct anv_device * device;
1399 struct anv_batch batch;
1400 uint32_t batch_data[512];
1401 struct anv_reloc_list batch_relocs;
1402 uint32_t dynamic_state_mask;
1403 struct anv_dynamic_state dynamic_state;
1404
1405 struct anv_pipeline_layout * layout;
1406 struct anv_pipeline_bind_map bindings[MESA_SHADER_STAGES];
1407
1408 bool use_repclear;
1409 bool needs_data_cache;
1410
1411 const struct brw_stage_prog_data * prog_data[MESA_SHADER_STAGES];
1412 uint32_t scratch_start[MESA_SHADER_STAGES];
1413 uint32_t total_scratch;
1414 struct {
1415 uint32_t start[MESA_SHADER_GEOMETRY + 1];
1416 uint32_t size[MESA_SHADER_GEOMETRY + 1];
1417 uint32_t entries[MESA_SHADER_GEOMETRY + 1];
1418 const struct anv_l3_config * l3_config;
1419 uint32_t total_size;
1420 } urb;
1421
1422 VkShaderStageFlags active_stages;
1423 struct anv_state blend_state;
1424 uint32_t vs_simd8;
1425 uint32_t vs_vec4;
1426 uint32_t ps_ksp0;
1427 uint32_t gs_kernel;
1428 uint32_t cs_simd;
1429
1430 uint32_t vb_used;
1431 uint32_t binding_stride[MAX_VBS];
1432 bool instancing_enable[MAX_VBS];
1433 bool primitive_restart;
1434 uint32_t topology;
1435
1436 uint32_t cs_thread_width_max;
1437 uint32_t cs_right_mask;
1438
1439 struct {
1440 uint32_t sf[7];
1441 uint32_t depth_stencil_state[3];
1442 } gen7;
1443
1444 struct {
1445 uint32_t sf[4];
1446 uint32_t raster[5];
1447 uint32_t wm_depth_stencil[3];
1448 } gen8;
1449
1450 struct {
1451 uint32_t wm_depth_stencil[4];
1452 } gen9;
1453 };
1454
1455 static inline const struct brw_vs_prog_data *
1456 get_vs_prog_data(struct anv_pipeline *pipeline)
1457 {
1458 return (const struct brw_vs_prog_data *) pipeline->prog_data[MESA_SHADER_VERTEX];
1459 }
1460
1461 static inline const struct brw_gs_prog_data *
1462 get_gs_prog_data(struct anv_pipeline *pipeline)
1463 {
1464 return (const struct brw_gs_prog_data *) pipeline->prog_data[MESA_SHADER_GEOMETRY];
1465 }
1466
1467 static inline const struct brw_wm_prog_data *
1468 get_wm_prog_data(struct anv_pipeline *pipeline)
1469 {
1470 return (const struct brw_wm_prog_data *) pipeline->prog_data[MESA_SHADER_FRAGMENT];
1471 }
1472
1473 static inline const struct brw_cs_prog_data *
1474 get_cs_prog_data(struct anv_pipeline *pipeline)
1475 {
1476 return (const struct brw_cs_prog_data *) pipeline->prog_data[MESA_SHADER_COMPUTE];
1477 }
1478
1479 struct anv_graphics_pipeline_create_info {
1480 /**
1481 * If non-negative, overrides the color attachment count of the pipeline's
1482 * subpass.
1483 */
1484 int8_t color_attachment_count;
1485
1486 bool use_repclear;
1487 bool disable_vs;
1488 bool use_rectlist;
1489 };
1490
1491 VkResult
1492 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1493 struct anv_pipeline_cache *cache,
1494 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1495 const struct anv_graphics_pipeline_create_info *extra,
1496 const VkAllocationCallbacks *alloc);
1497
1498 VkResult
1499 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1500 struct anv_pipeline_cache *cache,
1501 const VkComputePipelineCreateInfo *info,
1502 struct anv_shader_module *module,
1503 const char *entrypoint,
1504 const VkSpecializationInfo *spec_info);
1505
1506 VkResult
1507 anv_graphics_pipeline_create(VkDevice device,
1508 VkPipelineCache cache,
1509 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1510 const struct anv_graphics_pipeline_create_info *extra,
1511 const VkAllocationCallbacks *alloc,
1512 VkPipeline *pPipeline);
1513
1514 struct anv_format_swizzle {
1515 enum isl_channel_select r:4;
1516 enum isl_channel_select g:4;
1517 enum isl_channel_select b:4;
1518 enum isl_channel_select a:4;
1519 };
1520
1521 struct anv_format {
1522 enum isl_format isl_format:16;
1523 struct anv_format_swizzle swizzle;
1524 };
1525
1526 struct anv_format
1527 anv_get_format(const struct brw_device_info *devinfo, VkFormat format,
1528 VkImageAspectFlags aspect, VkImageTiling tiling);
1529
1530 static inline enum isl_format
1531 anv_get_isl_format(const struct brw_device_info *devinfo, VkFormat vk_format,
1532 VkImageAspectFlags aspect, VkImageTiling tiling)
1533 {
1534 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1535 }
1536
1537 void
1538 anv_compute_urb_partition(struct anv_pipeline *pipeline);
1539
1540 void
1541 anv_setup_pipeline_l3_config(struct anv_pipeline *pipeline);
1542
1543 /**
1544 * Subsurface of an anv_image.
1545 */
1546 struct anv_surface {
1547 struct isl_surf isl;
1548
1549 /**
1550 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1551 */
1552 uint32_t offset;
1553 };
1554
1555 struct anv_image {
1556 VkImageType type;
1557 /* The original VkFormat provided by the client. This may not match any
1558 * of the actual surface formats.
1559 */
1560 VkFormat vk_format;
1561 VkImageAspectFlags aspects;
1562 VkExtent3D extent;
1563 uint32_t levels;
1564 uint32_t array_size;
1565 uint32_t samples; /**< VkImageCreateInfo::samples */
1566 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1567 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1568
1569 VkDeviceSize size;
1570 uint32_t alignment;
1571
1572 /* Set when bound */
1573 struct anv_bo *bo;
1574 VkDeviceSize offset;
1575
1576 /**
1577 * Image subsurfaces
1578 *
1579 * For each foo, anv_image::foo_surface is valid if and only if
1580 * anv_image::aspects has a foo aspect.
1581 *
1582 * The hardware requires that the depth buffer and stencil buffer be
1583 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1584 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1585 * allocate the depth and stencil buffers as separate surfaces in the same
1586 * bo.
1587 */
1588 union {
1589 struct anv_surface color_surface;
1590
1591 struct {
1592 struct anv_surface depth_surface;
1593 struct anv_surface stencil_surface;
1594 };
1595 };
1596 };
1597
1598 static inline uint32_t
1599 anv_get_layerCount(const struct anv_image *image,
1600 const VkImageSubresourceRange *range)
1601 {
1602 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1603 image->array_size - range->baseArrayLayer : range->layerCount;
1604 }
1605
1606 static inline uint32_t
1607 anv_get_levelCount(const struct anv_image *image,
1608 const VkImageSubresourceRange *range)
1609 {
1610 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1611 image->levels - range->baseMipLevel : range->levelCount;
1612 }
1613
1614
1615 struct anv_image_view {
1616 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1617 struct anv_bo *bo;
1618 uint32_t offset; /**< Offset into bo. */
1619
1620 VkImageAspectFlags aspect_mask;
1621 VkFormat vk_format;
1622 uint32_t base_layer;
1623 uint32_t base_mip;
1624 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1625
1626 /** RENDER_SURFACE_STATE when using image as a color render target. */
1627 struct anv_state color_rt_surface_state;
1628
1629 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1630 struct anv_state sampler_surface_state;
1631
1632 /** RENDER_SURFACE_STATE when using image as a storage image. */
1633 struct anv_state storage_surface_state;
1634
1635 struct brw_image_param storage_image_param;
1636 };
1637
1638 struct anv_image_create_info {
1639 const VkImageCreateInfo *vk_info;
1640 isl_tiling_flags_t isl_tiling_flags;
1641 uint32_t stride;
1642 };
1643
1644 VkResult anv_image_create(VkDevice _device,
1645 const struct anv_image_create_info *info,
1646 const VkAllocationCallbacks* alloc,
1647 VkImage *pImage);
1648
1649 struct anv_surface *
1650 anv_image_get_surface_for_aspect_mask(struct anv_image *image,
1651 VkImageAspectFlags aspect_mask);
1652
1653 void anv_image_view_init(struct anv_image_view *view,
1654 struct anv_device *device,
1655 const VkImageViewCreateInfo* pCreateInfo,
1656 struct anv_cmd_buffer *cmd_buffer,
1657 VkImageUsageFlags usage_mask);
1658
1659 struct anv_buffer_view {
1660 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1661 struct anv_bo *bo;
1662 uint32_t offset; /**< Offset into bo. */
1663 uint64_t range; /**< VkBufferViewCreateInfo::range */
1664
1665 struct anv_state surface_state;
1666 struct anv_state storage_surface_state;
1667
1668 struct brw_image_param storage_image_param;
1669 };
1670
1671 void anv_buffer_view_init(struct anv_buffer_view *view,
1672 struct anv_device *device,
1673 const VkBufferViewCreateInfo* pCreateInfo,
1674 struct anv_cmd_buffer *cmd_buffer);
1675
1676 enum isl_format
1677 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1678
1679 static inline struct VkExtent3D
1680 anv_sanitize_image_extent(const VkImageType imageType,
1681 const struct VkExtent3D imageExtent)
1682 {
1683 switch (imageType) {
1684 case VK_IMAGE_TYPE_1D:
1685 return (VkExtent3D) { imageExtent.width, 1, 1 };
1686 case VK_IMAGE_TYPE_2D:
1687 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1688 case VK_IMAGE_TYPE_3D:
1689 return imageExtent;
1690 default:
1691 unreachable("invalid image type");
1692 }
1693 }
1694
1695 static inline struct VkOffset3D
1696 anv_sanitize_image_offset(const VkImageType imageType,
1697 const struct VkOffset3D imageOffset)
1698 {
1699 switch (imageType) {
1700 case VK_IMAGE_TYPE_1D:
1701 return (VkOffset3D) { imageOffset.x, 0, 0 };
1702 case VK_IMAGE_TYPE_2D:
1703 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1704 case VK_IMAGE_TYPE_3D:
1705 return imageOffset;
1706 default:
1707 unreachable("invalid image type");
1708 }
1709 }
1710
1711
1712 void anv_fill_buffer_surface_state(struct anv_device *device,
1713 struct anv_state state,
1714 enum isl_format format,
1715 uint32_t offset, uint32_t range,
1716 uint32_t stride);
1717
1718 void anv_image_view_fill_image_param(struct anv_device *device,
1719 struct anv_image_view *view,
1720 struct brw_image_param *param);
1721 void anv_buffer_view_fill_image_param(struct anv_device *device,
1722 struct anv_buffer_view *view,
1723 struct brw_image_param *param);
1724
1725 struct anv_sampler {
1726 uint32_t state[4];
1727 };
1728
1729 struct anv_framebuffer {
1730 uint32_t width;
1731 uint32_t height;
1732 uint32_t layers;
1733
1734 uint32_t attachment_count;
1735 struct anv_image_view * attachments[0];
1736 };
1737
1738 struct anv_subpass {
1739 uint32_t input_count;
1740 uint32_t * input_attachments;
1741 uint32_t color_count;
1742 uint32_t * color_attachments;
1743 uint32_t * resolve_attachments;
1744 uint32_t depth_stencil_attachment;
1745
1746 /** Subpass has at least one resolve attachment */
1747 bool has_resolve;
1748 };
1749
1750 struct anv_render_pass_attachment {
1751 VkFormat format;
1752 uint32_t samples;
1753 VkAttachmentLoadOp load_op;
1754 VkAttachmentLoadOp stencil_load_op;
1755 };
1756
1757 struct anv_render_pass {
1758 uint32_t attachment_count;
1759 uint32_t subpass_count;
1760 uint32_t * subpass_attachments;
1761 struct anv_render_pass_attachment * attachments;
1762 struct anv_subpass subpasses[0];
1763 };
1764
1765 extern struct anv_render_pass anv_meta_dummy_renderpass;
1766
1767 struct anv_query_pool_slot {
1768 uint64_t begin;
1769 uint64_t end;
1770 uint64_t available;
1771 };
1772
1773 struct anv_query_pool {
1774 VkQueryType type;
1775 uint32_t slots;
1776 struct anv_bo bo;
1777 };
1778
1779 VkResult anv_device_init_meta(struct anv_device *device);
1780 void anv_device_finish_meta(struct anv_device *device);
1781
1782 void *anv_lookup_entrypoint(const char *name);
1783
1784 void anv_dump_image_to_ppm(struct anv_device *device,
1785 struct anv_image *image, unsigned miplevel,
1786 unsigned array_layer, const char *filename);
1787
1788 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1789 \
1790 static inline struct __anv_type * \
1791 __anv_type ## _from_handle(__VkType _handle) \
1792 { \
1793 return (struct __anv_type *) _handle; \
1794 } \
1795 \
1796 static inline __VkType \
1797 __anv_type ## _to_handle(struct __anv_type *_obj) \
1798 { \
1799 return (__VkType) _obj; \
1800 }
1801
1802 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1803 \
1804 static inline struct __anv_type * \
1805 __anv_type ## _from_handle(__VkType _handle) \
1806 { \
1807 return (struct __anv_type *)(uintptr_t) _handle; \
1808 } \
1809 \
1810 static inline __VkType \
1811 __anv_type ## _to_handle(struct __anv_type *_obj) \
1812 { \
1813 return (__VkType)(uintptr_t) _obj; \
1814 }
1815
1816 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1817 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1818
1819 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1820 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1821 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1822 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1823 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1824
1825 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1826 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1827 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1828 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1829 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1830 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1831 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1832 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1833 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1834 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1835 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1836 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1837 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1838 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1839 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1840 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1841 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1842 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1843 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1844
1845 #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \
1846 \
1847 static inline const __VkType * \
1848 __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \
1849 { \
1850 return (const __VkType *) __anv_obj; \
1851 }
1852
1853 #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \
1854 const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name)
1855
1856 ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier)
1857 ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier)
1858 ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier)
1859
1860 /* Gen-specific function declarations */
1861 #ifdef genX
1862 # include "anv_genX.h"
1863 #else
1864 # define genX(x) gen7_##x
1865 # include "anv_genX.h"
1866 # undef genX
1867 # define genX(x) gen75_##x
1868 # include "anv_genX.h"
1869 # undef genX
1870 # define genX(x) gen8_##x
1871 # include "anv_genX.h"
1872 # undef genX
1873 # define genX(x) gen9_##x
1874 # include "anv_genX.h"
1875 # undef genX
1876 #endif
1877
1878 #ifdef __cplusplus
1879 }
1880 #endif