fa40c71839a360aabc9bdd38fc61caa8e4288ae0
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/macros.h"
53 #include "util/hash_table.h"
54 #include "util/list.h"
55 #include "util/set.h"
56 #include "util/u_atomic.h"
57 #include "util/u_vector.h"
58 #include "util/u_math.h"
59 #include "util/vma.h"
60 #include "util/xmlconfig.h"
61 #include "vk_alloc.h"
62 #include "vk_debug_report.h"
63
64 /* Pre-declarations needed for WSI entrypoints */
65 struct wl_surface;
66 struct wl_display;
67 typedef struct xcb_connection_t xcb_connection_t;
68 typedef uint32_t xcb_visualid_t;
69 typedef uint32_t xcb_window_t;
70
71 struct anv_buffer;
72 struct anv_buffer_view;
73 struct anv_image_view;
74 struct anv_instance;
75
76 struct gen_l3_config;
77
78 #include <vulkan/vulkan.h>
79 #include <vulkan/vulkan_intel.h>
80 #include <vulkan/vk_icd.h>
81
82 #include "anv_android.h"
83 #include "anv_entrypoints.h"
84 #include "anv_extensions.h"
85 #include "isl/isl.h"
86
87 #include "dev/gen_debug.h"
88 #include "common/intel_log.h"
89 #include "wsi_common.h"
90
91 /* anv Virtual Memory Layout
92 * =========================
93 *
94 * When the anv driver is determining the virtual graphics addresses of memory
95 * objects itself using the softpin mechanism, the following memory ranges
96 * will be used.
97 *
98 * Three special considerations to notice:
99 *
100 * (1) the dynamic state pool is located within the same 4 GiB as the low
101 * heap. This is to work around a VF cache issue described in a comment in
102 * anv_physical_device_init_heaps.
103 *
104 * (2) the binding table pool is located at lower addresses than the surface
105 * state pool, within a 4 GiB range. This allows surface state base addresses
106 * to cover both binding tables (16 bit offsets) and surface states (32 bit
107 * offsets).
108 *
109 * (3) the last 4 GiB of the address space is withheld from the high
110 * heap. Various hardware units will read past the end of an object for
111 * various reasons. This healthy margin prevents reads from wrapping around
112 * 48-bit addresses.
113 */
114 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
115 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
116 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
117 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
118 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
119 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
120 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
121 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
122 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
123 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
124 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
125
126 #define LOW_HEAP_SIZE \
127 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
128 #define DYNAMIC_STATE_POOL_SIZE \
129 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
130 #define BINDING_TABLE_POOL_SIZE \
131 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
132 #define SURFACE_STATE_POOL_SIZE \
133 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
134 #define INSTRUCTION_STATE_POOL_SIZE \
135 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
136
137 /* Allowing different clear colors requires us to perform a depth resolve at
138 * the end of certain render passes. This is because while slow clears store
139 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
140 * See the PRMs for examples describing when additional resolves would be
141 * necessary. To enable fast clears without requiring extra resolves, we set
142 * the clear value to a globally-defined one. We could allow different values
143 * if the user doesn't expect coherent data during or after a render passes
144 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
145 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
146 * 1.0f seems to be the only value used. The only application that doesn't set
147 * this value does so through the usage of an seemingly uninitialized clear
148 * value.
149 */
150 #define ANV_HZ_FC_VAL 1.0f
151
152 #define MAX_VBS 28
153 #define MAX_XFB_BUFFERS 4
154 #define MAX_XFB_STREAMS 4
155 #define MAX_SETS 8
156 #define MAX_RTS 8
157 #define MAX_VIEWPORTS 16
158 #define MAX_SCISSORS 16
159 #define MAX_PUSH_CONSTANTS_SIZE 128
160 #define MAX_DYNAMIC_BUFFERS 16
161 #define MAX_IMAGES 64
162 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
163 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
164 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
165
166 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
167 *
168 * "The surface state model is used when a Binding Table Index (specified
169 * in the message descriptor) of less than 240 is specified. In this model,
170 * the Binding Table Index is used to index into the binding table, and the
171 * binding table entry contains a pointer to the SURFACE_STATE."
172 *
173 * Binding table values above 240 are used for various things in the hardware
174 * such as stateless, stateless with incoherent cache, SLM, and bindless.
175 */
176 #define MAX_BINDING_TABLE_SIZE 240
177
178 /* The kernel relocation API has a limitation of a 32-bit delta value
179 * applied to the address before it is written which, in spite of it being
180 * unsigned, is treated as signed . Because of the way that this maps to
181 * the Vulkan API, we cannot handle an offset into a buffer that does not
182 * fit into a signed 32 bits. The only mechanism we have for dealing with
183 * this at the moment is to limit all VkDeviceMemory objects to a maximum
184 * of 2GB each. The Vulkan spec allows us to do this:
185 *
186 * "Some platforms may have a limit on the maximum size of a single
187 * allocation. For example, certain systems may fail to create
188 * allocations with a size greater than or equal to 4GB. Such a limit is
189 * implementation-dependent, and if such a failure occurs then the error
190 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
191 *
192 * We don't use vk_error here because it's not an error so much as an
193 * indication to the application that the allocation is too large.
194 */
195 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
196
197 #define ANV_SVGS_VB_INDEX MAX_VBS
198 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
199
200 /* We reserve this MI ALU register for the purpose of handling predication.
201 * Other code which uses the MI ALU should leave it alone.
202 */
203 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
204
205 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
206
207 static inline uint32_t
208 align_down_npot_u32(uint32_t v, uint32_t a)
209 {
210 return v - (v % a);
211 }
212
213 static inline uint32_t
214 align_u32(uint32_t v, uint32_t a)
215 {
216 assert(a != 0 && a == (a & -a));
217 return (v + a - 1) & ~(a - 1);
218 }
219
220 static inline uint64_t
221 align_u64(uint64_t v, uint64_t a)
222 {
223 assert(a != 0 && a == (a & -a));
224 return (v + a - 1) & ~(a - 1);
225 }
226
227 static inline int32_t
228 align_i32(int32_t v, int32_t a)
229 {
230 assert(a != 0 && a == (a & -a));
231 return (v + a - 1) & ~(a - 1);
232 }
233
234 /** Alignment must be a power of 2. */
235 static inline bool
236 anv_is_aligned(uintmax_t n, uintmax_t a)
237 {
238 assert(a == (a & -a));
239 return (n & (a - 1)) == 0;
240 }
241
242 static inline uint32_t
243 anv_minify(uint32_t n, uint32_t levels)
244 {
245 if (unlikely(n == 0))
246 return 0;
247 else
248 return MAX2(n >> levels, 1);
249 }
250
251 static inline float
252 anv_clamp_f(float f, float min, float max)
253 {
254 assert(min < max);
255
256 if (f > max)
257 return max;
258 else if (f < min)
259 return min;
260 else
261 return f;
262 }
263
264 static inline bool
265 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
266 {
267 if (*inout_mask & clear_mask) {
268 *inout_mask &= ~clear_mask;
269 return true;
270 } else {
271 return false;
272 }
273 }
274
275 static inline union isl_color_value
276 vk_to_isl_color(VkClearColorValue color)
277 {
278 return (union isl_color_value) {
279 .u32 = {
280 color.uint32[0],
281 color.uint32[1],
282 color.uint32[2],
283 color.uint32[3],
284 },
285 };
286 }
287
288 #define for_each_bit(b, dword) \
289 for (uint32_t __dword = (dword); \
290 (b) = __builtin_ffs(__dword) - 1, __dword; \
291 __dword &= ~(1 << (b)))
292
293 #define typed_memcpy(dest, src, count) ({ \
294 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
295 memcpy((dest), (src), (count) * sizeof(*(src))); \
296 })
297
298 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
299 * to be added here in order to utilize mapping in debug/error/perf macros.
300 */
301 #define REPORT_OBJECT_TYPE(o) \
302 __builtin_choose_expr ( \
303 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
304 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
305 __builtin_choose_expr ( \
306 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
307 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
308 __builtin_choose_expr ( \
309 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
310 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
311 __builtin_choose_expr ( \
312 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
313 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), void*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
395 /* The void expression results in a compile-time error \
396 when assigning the result to something. */ \
397 (void)0)))))))))))))))))))))))))))))))
398
399 /* Whenever we generate an error, pass it through this function. Useful for
400 * debugging, where we can break on it. Only call at error site, not when
401 * propagating errors. Might be useful to plug in a stack trace here.
402 */
403
404 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
405 VkDebugReportObjectTypeEXT type, VkResult error,
406 const char *file, int line, const char *format,
407 va_list args);
408
409 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
410 VkDebugReportObjectTypeEXT type, VkResult error,
411 const char *file, int line, const char *format, ...);
412
413 #ifdef DEBUG
414 #define vk_error(error) __vk_errorf(NULL, NULL,\
415 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
416 error, __FILE__, __LINE__, NULL)
417 #define vk_errorv(instance, obj, error, format, args)\
418 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
419 __FILE__, __LINE__, format, args)
420 #define vk_errorf(instance, obj, error, format, ...)\
421 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
422 __FILE__, __LINE__, format, ## __VA_ARGS__)
423 #else
424 #define vk_error(error) error
425 #define vk_errorf(instance, obj, error, format, ...) error
426 #endif
427
428 /**
429 * Warn on ignored extension structs.
430 *
431 * The Vulkan spec requires us to ignore unsupported or unknown structs in
432 * a pNext chain. In debug mode, emitting warnings for ignored structs may
433 * help us discover structs that we should not have ignored.
434 *
435 *
436 * From the Vulkan 1.0.38 spec:
437 *
438 * Any component of the implementation (the loader, any enabled layers,
439 * and drivers) must skip over, without processing (other than reading the
440 * sType and pNext members) any chained structures with sType values not
441 * defined by extensions supported by that component.
442 */
443 #define anv_debug_ignored_stype(sType) \
444 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
445
446 void __anv_perf_warn(struct anv_instance *instance, const void *object,
447 VkDebugReportObjectTypeEXT type, const char *file,
448 int line, const char *format, ...)
449 anv_printflike(6, 7);
450 void anv_loge(const char *format, ...) anv_printflike(1, 2);
451 void anv_loge_v(const char *format, va_list va);
452
453 /**
454 * Print a FINISHME message, including its source location.
455 */
456 #define anv_finishme(format, ...) \
457 do { \
458 static bool reported = false; \
459 if (!reported) { \
460 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
461 ##__VA_ARGS__); \
462 reported = true; \
463 } \
464 } while (0)
465
466 /**
467 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
468 */
469 #define anv_perf_warn(instance, obj, format, ...) \
470 do { \
471 static bool reported = false; \
472 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
473 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
474 format, ##__VA_ARGS__); \
475 reported = true; \
476 } \
477 } while (0)
478
479 /* A non-fatal assert. Useful for debugging. */
480 #ifdef DEBUG
481 #define anv_assert(x) ({ \
482 if (unlikely(!(x))) \
483 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
484 })
485 #else
486 #define anv_assert(x)
487 #endif
488
489 /* A multi-pointer allocator
490 *
491 * When copying data structures from the user (such as a render pass), it's
492 * common to need to allocate data for a bunch of different things. Instead
493 * of doing several allocations and having to handle all of the error checking
494 * that entails, it can be easier to do a single allocation. This struct
495 * helps facilitate that. The intended usage looks like this:
496 *
497 * ANV_MULTIALLOC(ma)
498 * anv_multialloc_add(&ma, &main_ptr, 1);
499 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
500 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
501 *
502 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
503 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
504 */
505 struct anv_multialloc {
506 size_t size;
507 size_t align;
508
509 uint32_t ptr_count;
510 void **ptrs[8];
511 };
512
513 #define ANV_MULTIALLOC_INIT \
514 ((struct anv_multialloc) { 0, })
515
516 #define ANV_MULTIALLOC(_name) \
517 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
518
519 __attribute__((always_inline))
520 static inline void
521 _anv_multialloc_add(struct anv_multialloc *ma,
522 void **ptr, size_t size, size_t align)
523 {
524 size_t offset = align_u64(ma->size, align);
525 ma->size = offset + size;
526 ma->align = MAX2(ma->align, align);
527
528 /* Store the offset in the pointer. */
529 *ptr = (void *)(uintptr_t)offset;
530
531 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
532 ma->ptrs[ma->ptr_count++] = ptr;
533 }
534
535 #define anv_multialloc_add_size(_ma, _ptr, _size) \
536 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
537
538 #define anv_multialloc_add(_ma, _ptr, _count) \
539 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
540
541 __attribute__((always_inline))
542 static inline void *
543 anv_multialloc_alloc(struct anv_multialloc *ma,
544 const VkAllocationCallbacks *alloc,
545 VkSystemAllocationScope scope)
546 {
547 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
548 if (!ptr)
549 return NULL;
550
551 /* Fill out each of the pointers with their final value.
552 *
553 * for (uint32_t i = 0; i < ma->ptr_count; i++)
554 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
555 *
556 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
557 * constant, GCC is incapable of figuring this out and unrolling the loop
558 * so we have to give it a little help.
559 */
560 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
561 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
562 if ((_i) < ma->ptr_count) \
563 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
564 _ANV_MULTIALLOC_UPDATE_POINTER(0);
565 _ANV_MULTIALLOC_UPDATE_POINTER(1);
566 _ANV_MULTIALLOC_UPDATE_POINTER(2);
567 _ANV_MULTIALLOC_UPDATE_POINTER(3);
568 _ANV_MULTIALLOC_UPDATE_POINTER(4);
569 _ANV_MULTIALLOC_UPDATE_POINTER(5);
570 _ANV_MULTIALLOC_UPDATE_POINTER(6);
571 _ANV_MULTIALLOC_UPDATE_POINTER(7);
572 #undef _ANV_MULTIALLOC_UPDATE_POINTER
573
574 return ptr;
575 }
576
577 __attribute__((always_inline))
578 static inline void *
579 anv_multialloc_alloc2(struct anv_multialloc *ma,
580 const VkAllocationCallbacks *parent_alloc,
581 const VkAllocationCallbacks *alloc,
582 VkSystemAllocationScope scope)
583 {
584 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
585 }
586
587 /* Extra ANV-defined BO flags which won't be passed to the kernel */
588 #define ANV_BO_EXTERNAL (1ull << 31)
589 #define ANV_BO_FLAG_MASK (1ull << 31)
590
591 struct anv_bo {
592 uint32_t gem_handle;
593
594 /* Index into the current validation list. This is used by the
595 * validation list building alrogithm to track which buffers are already
596 * in the validation list so that we can ensure uniqueness.
597 */
598 uint32_t index;
599
600 /* Last known offset. This value is provided by the kernel when we
601 * execbuf and is used as the presumed offset for the next bunch of
602 * relocations.
603 */
604 uint64_t offset;
605
606 uint64_t size;
607 void *map;
608
609 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
610 uint32_t flags;
611 };
612
613 static inline void
614 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
615 {
616 bo->gem_handle = gem_handle;
617 bo->index = 0;
618 bo->offset = -1;
619 bo->size = size;
620 bo->map = NULL;
621 bo->flags = 0;
622 }
623
624 /* Represents a lock-free linked list of "free" things. This is used by
625 * both the block pool and the state pools. Unfortunately, in order to
626 * solve the ABA problem, we can't use a single uint32_t head.
627 */
628 union anv_free_list {
629 struct {
630 uint32_t offset;
631
632 /* A simple count that is incremented every time the head changes. */
633 uint32_t count;
634 };
635 uint64_t u64;
636 };
637
638 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
639
640 struct anv_block_state {
641 union {
642 struct {
643 uint32_t next;
644 uint32_t end;
645 };
646 uint64_t u64;
647 };
648 };
649
650 #define anv_block_pool_foreach_bo(bo, pool) \
651 for (bo = (pool)->bos; bo != &(pool)->bos[(pool)->nbos]; bo++)
652
653 #define ANV_MAX_BLOCK_POOL_BOS 20
654
655 struct anv_block_pool {
656 struct anv_device *device;
657
658 uint64_t bo_flags;
659
660 struct anv_bo bos[ANV_MAX_BLOCK_POOL_BOS];
661 struct anv_bo *bo;
662 uint32_t nbos;
663
664 uint64_t size;
665
666 /* The address where the start of the pool is pinned. The various bos that
667 * are created as the pool grows will have addresses in the range
668 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
669 */
670 uint64_t start_address;
671
672 /* The offset from the start of the bo to the "center" of the block
673 * pool. Pointers to allocated blocks are given by
674 * bo.map + center_bo_offset + offsets.
675 */
676 uint32_t center_bo_offset;
677
678 /* Current memory map of the block pool. This pointer may or may not
679 * point to the actual beginning of the block pool memory. If
680 * anv_block_pool_alloc_back has ever been called, then this pointer
681 * will point to the "center" position of the buffer and all offsets
682 * (negative or positive) given out by the block pool alloc functions
683 * will be valid relative to this pointer.
684 *
685 * In particular, map == bo.map + center_offset
686 *
687 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
688 * since it will handle the softpin case as well, where this points to NULL.
689 */
690 void *map;
691 int fd;
692
693 /**
694 * Array of mmaps and gem handles owned by the block pool, reclaimed when
695 * the block pool is destroyed.
696 */
697 struct u_vector mmap_cleanups;
698
699 struct anv_block_state state;
700
701 struct anv_block_state back_state;
702 };
703
704 /* Block pools are backed by a fixed-size 1GB memfd */
705 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
706
707 /* The center of the block pool is also the middle of the memfd. This may
708 * change in the future if we decide differently for some reason.
709 */
710 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
711
712 static inline uint32_t
713 anv_block_pool_size(struct anv_block_pool *pool)
714 {
715 return pool->state.end + pool->back_state.end;
716 }
717
718 struct anv_state {
719 int32_t offset;
720 uint32_t alloc_size;
721 void *map;
722 uint32_t idx;
723 };
724
725 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
726
727 struct anv_fixed_size_state_pool {
728 union anv_free_list free_list;
729 struct anv_block_state block;
730 };
731
732 #define ANV_MIN_STATE_SIZE_LOG2 6
733 #define ANV_MAX_STATE_SIZE_LOG2 21
734
735 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
736
737 struct anv_free_entry {
738 uint32_t next;
739 struct anv_state state;
740 };
741
742 struct anv_state_table {
743 struct anv_device *device;
744 int fd;
745 struct anv_free_entry *map;
746 uint32_t size;
747 struct anv_block_state state;
748 struct u_vector cleanups;
749 };
750
751 struct anv_state_pool {
752 struct anv_block_pool block_pool;
753
754 struct anv_state_table table;
755
756 /* The size of blocks which will be allocated from the block pool */
757 uint32_t block_size;
758
759 /** Free list for "back" allocations */
760 union anv_free_list back_alloc_free_list;
761
762 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
763 };
764
765 struct anv_state_stream_block;
766
767 struct anv_state_stream {
768 struct anv_state_pool *state_pool;
769
770 /* The size of blocks to allocate from the state pool */
771 uint32_t block_size;
772
773 /* Current block we're allocating from */
774 struct anv_state block;
775
776 /* Offset into the current block at which to allocate the next state */
777 uint32_t next;
778
779 /* List of all blocks allocated from this pool */
780 struct anv_state_stream_block *block_list;
781 };
782
783 /* The block_pool functions exported for testing only. The block pool should
784 * only be used via a state pool (see below).
785 */
786 VkResult anv_block_pool_init(struct anv_block_pool *pool,
787 struct anv_device *device,
788 uint64_t start_address,
789 uint32_t initial_size,
790 uint64_t bo_flags);
791 void anv_block_pool_finish(struct anv_block_pool *pool);
792 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
793 uint32_t block_size, uint32_t *padding);
794 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
795 uint32_t block_size);
796 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
797
798 VkResult anv_state_pool_init(struct anv_state_pool *pool,
799 struct anv_device *device,
800 uint64_t start_address,
801 uint32_t block_size,
802 uint64_t bo_flags);
803 void anv_state_pool_finish(struct anv_state_pool *pool);
804 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
805 uint32_t state_size, uint32_t alignment);
806 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
807 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
808 void anv_state_stream_init(struct anv_state_stream *stream,
809 struct anv_state_pool *state_pool,
810 uint32_t block_size);
811 void anv_state_stream_finish(struct anv_state_stream *stream);
812 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
813 uint32_t size, uint32_t alignment);
814
815 VkResult anv_state_table_init(struct anv_state_table *table,
816 struct anv_device *device,
817 uint32_t initial_entries);
818 void anv_state_table_finish(struct anv_state_table *table);
819 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
820 uint32_t count);
821 void anv_free_list_push(union anv_free_list *list,
822 struct anv_state_table *table,
823 uint32_t idx, uint32_t count);
824 struct anv_state* anv_free_list_pop(union anv_free_list *list,
825 struct anv_state_table *table);
826
827
828 static inline struct anv_state *
829 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
830 {
831 return &table->map[idx].state;
832 }
833 /**
834 * Implements a pool of re-usable BOs. The interface is identical to that
835 * of block_pool except that each block is its own BO.
836 */
837 struct anv_bo_pool {
838 struct anv_device *device;
839
840 uint64_t bo_flags;
841
842 void *free_list[16];
843 };
844
845 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
846 uint64_t bo_flags);
847 void anv_bo_pool_finish(struct anv_bo_pool *pool);
848 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
849 uint32_t size);
850 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
851
852 struct anv_scratch_bo {
853 bool exists;
854 struct anv_bo bo;
855 };
856
857 struct anv_scratch_pool {
858 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
859 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
860 };
861
862 void anv_scratch_pool_init(struct anv_device *device,
863 struct anv_scratch_pool *pool);
864 void anv_scratch_pool_finish(struct anv_device *device,
865 struct anv_scratch_pool *pool);
866 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
867 struct anv_scratch_pool *pool,
868 gl_shader_stage stage,
869 unsigned per_thread_scratch);
870
871 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
872 struct anv_bo_cache {
873 struct hash_table *bo_map;
874 pthread_mutex_t mutex;
875 };
876
877 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
878 void anv_bo_cache_finish(struct anv_bo_cache *cache);
879 VkResult anv_bo_cache_alloc(struct anv_device *device,
880 struct anv_bo_cache *cache,
881 uint64_t size, uint64_t bo_flags,
882 struct anv_bo **bo);
883 VkResult anv_bo_cache_import_host_ptr(struct anv_device *device,
884 struct anv_bo_cache *cache,
885 void *host_ptr, uint32_t size,
886 uint64_t bo_flags, struct anv_bo **bo_out);
887 VkResult anv_bo_cache_import(struct anv_device *device,
888 struct anv_bo_cache *cache,
889 int fd, uint64_t bo_flags,
890 struct anv_bo **bo);
891 VkResult anv_bo_cache_export(struct anv_device *device,
892 struct anv_bo_cache *cache,
893 struct anv_bo *bo_in, int *fd_out);
894 void anv_bo_cache_release(struct anv_device *device,
895 struct anv_bo_cache *cache,
896 struct anv_bo *bo);
897
898 struct anv_memory_type {
899 /* Standard bits passed on to the client */
900 VkMemoryPropertyFlags propertyFlags;
901 uint32_t heapIndex;
902
903 /* Driver-internal book-keeping */
904 VkBufferUsageFlags valid_buffer_usage;
905 };
906
907 struct anv_memory_heap {
908 /* Standard bits passed on to the client */
909 VkDeviceSize size;
910 VkMemoryHeapFlags flags;
911
912 /* Driver-internal book-keeping */
913 uint64_t vma_start;
914 uint64_t vma_size;
915 bool supports_48bit_addresses;
916 VkDeviceSize used;
917 };
918
919 struct anv_physical_device {
920 VK_LOADER_DATA _loader_data;
921
922 struct anv_instance * instance;
923 uint32_t chipset_id;
924 bool no_hw;
925 char path[20];
926 const char * name;
927 struct {
928 uint16_t domain;
929 uint8_t bus;
930 uint8_t device;
931 uint8_t function;
932 } pci_info;
933 struct gen_device_info info;
934 /** Amount of "GPU memory" we want to advertise
935 *
936 * Clearly, this value is bogus since Intel is a UMA architecture. On
937 * gen7 platforms, we are limited by GTT size unless we want to implement
938 * fine-grained tracking and GTT splitting. On Broadwell and above we are
939 * practically unlimited. However, we will never report more than 3/4 of
940 * the total system ram to try and avoid running out of RAM.
941 */
942 bool supports_48bit_addresses;
943 struct brw_compiler * compiler;
944 struct isl_device isl_dev;
945 int cmd_parser_version;
946 bool has_exec_async;
947 bool has_exec_capture;
948 bool has_exec_fence;
949 bool has_syncobj;
950 bool has_syncobj_wait;
951 bool has_context_priority;
952 bool use_softpin;
953 bool has_context_isolation;
954 bool has_mem_available;
955 bool always_use_bindless;
956
957 /** True if we can access buffers using A64 messages */
958 bool has_a64_buffer_access;
959 /** True if we can use bindless access for images */
960 bool has_bindless_images;
961 /** True if we can use bindless access for samplers */
962 bool has_bindless_samplers;
963
964 struct anv_device_extension_table supported_extensions;
965
966 uint32_t eu_total;
967 uint32_t subslice_total;
968
969 struct {
970 uint32_t type_count;
971 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
972 uint32_t heap_count;
973 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
974 } memory;
975
976 uint8_t driver_build_sha1[20];
977 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
978 uint8_t driver_uuid[VK_UUID_SIZE];
979 uint8_t device_uuid[VK_UUID_SIZE];
980
981 struct disk_cache * disk_cache;
982
983 struct wsi_device wsi_device;
984 int local_fd;
985 int master_fd;
986 };
987
988 struct anv_app_info {
989 const char* app_name;
990 uint32_t app_version;
991 const char* engine_name;
992 uint32_t engine_version;
993 uint32_t api_version;
994 };
995
996 struct anv_instance {
997 VK_LOADER_DATA _loader_data;
998
999 VkAllocationCallbacks alloc;
1000
1001 struct anv_app_info app_info;
1002
1003 struct anv_instance_extension_table enabled_extensions;
1004 struct anv_instance_dispatch_table dispatch;
1005 struct anv_device_dispatch_table device_dispatch;
1006
1007 int physicalDeviceCount;
1008 struct anv_physical_device physicalDevice;
1009
1010 bool pipeline_cache_enabled;
1011
1012 struct vk_debug_report_instance debug_report_callbacks;
1013
1014 struct driOptionCache dri_options;
1015 struct driOptionCache available_dri_options;
1016 };
1017
1018 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1019 void anv_finish_wsi(struct anv_physical_device *physical_device);
1020
1021 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1022 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1023 const char *name);
1024
1025 struct anv_queue {
1026 VK_LOADER_DATA _loader_data;
1027
1028 struct anv_device * device;
1029
1030 VkDeviceQueueCreateFlags flags;
1031 };
1032
1033 struct anv_pipeline_cache {
1034 struct anv_device * device;
1035 pthread_mutex_t mutex;
1036
1037 struct hash_table * nir_cache;
1038
1039 struct hash_table * cache;
1040 };
1041
1042 struct nir_xfb_info;
1043 struct anv_pipeline_bind_map;
1044
1045 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1046 struct anv_device *device,
1047 bool cache_enabled);
1048 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1049
1050 struct anv_shader_bin *
1051 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1052 const void *key, uint32_t key_size);
1053 struct anv_shader_bin *
1054 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1055 const void *key_data, uint32_t key_size,
1056 const void *kernel_data, uint32_t kernel_size,
1057 const void *constant_data,
1058 uint32_t constant_data_size,
1059 const struct brw_stage_prog_data *prog_data,
1060 uint32_t prog_data_size,
1061 const struct brw_compile_stats *stats,
1062 uint32_t num_stats,
1063 const struct nir_xfb_info *xfb_info,
1064 const struct anv_pipeline_bind_map *bind_map);
1065
1066 struct anv_shader_bin *
1067 anv_device_search_for_kernel(struct anv_device *device,
1068 struct anv_pipeline_cache *cache,
1069 const void *key_data, uint32_t key_size,
1070 bool *user_cache_bit);
1071
1072 struct anv_shader_bin *
1073 anv_device_upload_kernel(struct anv_device *device,
1074 struct anv_pipeline_cache *cache,
1075 const void *key_data, uint32_t key_size,
1076 const void *kernel_data, uint32_t kernel_size,
1077 const void *constant_data,
1078 uint32_t constant_data_size,
1079 const struct brw_stage_prog_data *prog_data,
1080 uint32_t prog_data_size,
1081 const struct brw_compile_stats *stats,
1082 uint32_t num_stats,
1083 const struct nir_xfb_info *xfb_info,
1084 const struct anv_pipeline_bind_map *bind_map);
1085
1086 struct nir_shader;
1087 struct nir_shader_compiler_options;
1088
1089 struct nir_shader *
1090 anv_device_search_for_nir(struct anv_device *device,
1091 struct anv_pipeline_cache *cache,
1092 const struct nir_shader_compiler_options *nir_options,
1093 unsigned char sha1_key[20],
1094 void *mem_ctx);
1095
1096 void
1097 anv_device_upload_nir(struct anv_device *device,
1098 struct anv_pipeline_cache *cache,
1099 const struct nir_shader *nir,
1100 unsigned char sha1_key[20]);
1101
1102 struct anv_device {
1103 VK_LOADER_DATA _loader_data;
1104
1105 VkAllocationCallbacks alloc;
1106
1107 struct anv_instance * instance;
1108 uint32_t chipset_id;
1109 bool no_hw;
1110 struct gen_device_info info;
1111 struct isl_device isl_dev;
1112 int context_id;
1113 int fd;
1114 bool can_chain_batches;
1115 bool robust_buffer_access;
1116 struct anv_device_extension_table enabled_extensions;
1117 struct anv_device_dispatch_table dispatch;
1118
1119 pthread_mutex_t vma_mutex;
1120 struct util_vma_heap vma_lo;
1121 struct util_vma_heap vma_hi;
1122 uint64_t vma_lo_available;
1123 uint64_t vma_hi_available;
1124
1125 /** List of all anv_device_memory objects */
1126 struct list_head memory_objects;
1127
1128 struct anv_bo_pool batch_bo_pool;
1129
1130 struct anv_bo_cache bo_cache;
1131
1132 struct anv_state_pool dynamic_state_pool;
1133 struct anv_state_pool instruction_state_pool;
1134 struct anv_state_pool binding_table_pool;
1135 struct anv_state_pool surface_state_pool;
1136
1137 struct anv_bo workaround_bo;
1138 struct anv_bo trivial_batch_bo;
1139 struct anv_bo hiz_clear_bo;
1140
1141 struct anv_pipeline_cache default_pipeline_cache;
1142 struct blorp_context blorp;
1143
1144 struct anv_state border_colors;
1145
1146 struct anv_state slice_hash;
1147
1148 struct anv_queue queue;
1149
1150 struct anv_scratch_pool scratch_pool;
1151
1152 uint32_t default_mocs;
1153 uint32_t external_mocs;
1154
1155 pthread_mutex_t mutex;
1156 pthread_cond_t queue_submit;
1157 bool _lost;
1158
1159 struct gen_batch_decode_ctx decoder_ctx;
1160 /*
1161 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1162 * the cmd_buffer's list.
1163 */
1164 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1165 };
1166
1167 static inline struct anv_state_pool *
1168 anv_binding_table_pool(struct anv_device *device)
1169 {
1170 if (device->instance->physicalDevice.use_softpin)
1171 return &device->binding_table_pool;
1172 else
1173 return &device->surface_state_pool;
1174 }
1175
1176 static inline struct anv_state
1177 anv_binding_table_pool_alloc(struct anv_device *device) {
1178 if (device->instance->physicalDevice.use_softpin)
1179 return anv_state_pool_alloc(&device->binding_table_pool,
1180 device->binding_table_pool.block_size, 0);
1181 else
1182 return anv_state_pool_alloc_back(&device->surface_state_pool);
1183 }
1184
1185 static inline void
1186 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1187 anv_state_pool_free(anv_binding_table_pool(device), state);
1188 }
1189
1190 static inline uint32_t
1191 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1192 {
1193 if (bo->flags & ANV_BO_EXTERNAL)
1194 return device->external_mocs;
1195 else
1196 return device->default_mocs;
1197 }
1198
1199 void anv_device_init_blorp(struct anv_device *device);
1200 void anv_device_finish_blorp(struct anv_device *device);
1201
1202 VkResult _anv_device_set_lost(struct anv_device *device,
1203 const char *file, int line,
1204 const char *msg, ...);
1205 #define anv_device_set_lost(dev, ...) \
1206 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1207
1208 static inline bool
1209 anv_device_is_lost(struct anv_device *device)
1210 {
1211 return unlikely(device->_lost);
1212 }
1213
1214 VkResult anv_device_execbuf(struct anv_device *device,
1215 struct drm_i915_gem_execbuffer2 *execbuf,
1216 struct anv_bo **execbuf_bos);
1217 VkResult anv_device_query_status(struct anv_device *device);
1218 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1219 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1220 int64_t timeout);
1221
1222 void* anv_gem_mmap(struct anv_device *device,
1223 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1224 void anv_gem_munmap(void *p, uint64_t size);
1225 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1226 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1227 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1228 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1229 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1230 int anv_gem_execbuffer(struct anv_device *device,
1231 struct drm_i915_gem_execbuffer2 *execbuf);
1232 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1233 uint32_t stride, uint32_t tiling);
1234 int anv_gem_create_context(struct anv_device *device);
1235 bool anv_gem_has_context_priority(int fd);
1236 int anv_gem_destroy_context(struct anv_device *device, int context);
1237 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1238 uint64_t value);
1239 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1240 uint64_t *value);
1241 int anv_gem_get_param(int fd, uint32_t param);
1242 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1243 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1244 int anv_gem_get_aperture(int fd, uint64_t *size);
1245 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1246 uint32_t *active, uint32_t *pending);
1247 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1248 int anv_gem_reg_read(struct anv_device *device,
1249 uint32_t offset, uint64_t *result);
1250 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1251 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1252 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1253 uint32_t read_domains, uint32_t write_domain);
1254 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1255 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1256 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1257 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1258 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1259 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1260 uint32_t handle);
1261 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1262 uint32_t handle, int fd);
1263 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1264 bool anv_gem_supports_syncobj_wait(int fd);
1265 int anv_gem_syncobj_wait(struct anv_device *device,
1266 uint32_t *handles, uint32_t num_handles,
1267 int64_t abs_timeout_ns, bool wait_all);
1268
1269 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1270 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1271
1272 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1273
1274 struct anv_reloc_list {
1275 uint32_t num_relocs;
1276 uint32_t array_length;
1277 struct drm_i915_gem_relocation_entry * relocs;
1278 struct anv_bo ** reloc_bos;
1279 struct set * deps;
1280 };
1281
1282 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1283 const VkAllocationCallbacks *alloc);
1284 void anv_reloc_list_finish(struct anv_reloc_list *list,
1285 const VkAllocationCallbacks *alloc);
1286
1287 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1288 const VkAllocationCallbacks *alloc,
1289 uint32_t offset, struct anv_bo *target_bo,
1290 uint32_t delta);
1291
1292 struct anv_batch_bo {
1293 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1294 struct list_head link;
1295
1296 struct anv_bo bo;
1297
1298 /* Bytes actually consumed in this batch BO */
1299 uint32_t length;
1300
1301 struct anv_reloc_list relocs;
1302 };
1303
1304 struct anv_batch {
1305 const VkAllocationCallbacks * alloc;
1306
1307 void * start;
1308 void * end;
1309 void * next;
1310
1311 struct anv_reloc_list * relocs;
1312
1313 /* This callback is called (with the associated user data) in the event
1314 * that the batch runs out of space.
1315 */
1316 VkResult (*extend_cb)(struct anv_batch *, void *);
1317 void * user_data;
1318
1319 /**
1320 * Current error status of the command buffer. Used to track inconsistent
1321 * or incomplete command buffer states that are the consequence of run-time
1322 * errors such as out of memory scenarios. We want to track this in the
1323 * batch because the command buffer object is not visible to some parts
1324 * of the driver.
1325 */
1326 VkResult status;
1327 };
1328
1329 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1330 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1331 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1332 void *location, struct anv_bo *bo, uint32_t offset);
1333 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1334 struct anv_batch *batch);
1335
1336 static inline VkResult
1337 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1338 {
1339 assert(error != VK_SUCCESS);
1340 if (batch->status == VK_SUCCESS)
1341 batch->status = error;
1342 return batch->status;
1343 }
1344
1345 static inline bool
1346 anv_batch_has_error(struct anv_batch *batch)
1347 {
1348 return batch->status != VK_SUCCESS;
1349 }
1350
1351 struct anv_address {
1352 struct anv_bo *bo;
1353 uint32_t offset;
1354 };
1355
1356 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1357
1358 static inline bool
1359 anv_address_is_null(struct anv_address addr)
1360 {
1361 return addr.bo == NULL && addr.offset == 0;
1362 }
1363
1364 static inline uint64_t
1365 anv_address_physical(struct anv_address addr)
1366 {
1367 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1368 return gen_canonical_address(addr.bo->offset + addr.offset);
1369 else
1370 return gen_canonical_address(addr.offset);
1371 }
1372
1373 static inline struct anv_address
1374 anv_address_add(struct anv_address addr, uint64_t offset)
1375 {
1376 addr.offset += offset;
1377 return addr;
1378 }
1379
1380 static inline void
1381 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1382 {
1383 unsigned reloc_size = 0;
1384 if (device->info.gen >= 8) {
1385 reloc_size = sizeof(uint64_t);
1386 *(uint64_t *)p = gen_canonical_address(v);
1387 } else {
1388 reloc_size = sizeof(uint32_t);
1389 *(uint32_t *)p = v;
1390 }
1391
1392 if (flush && !device->info.has_llc)
1393 gen_flush_range(p, reloc_size);
1394 }
1395
1396 static inline uint64_t
1397 _anv_combine_address(struct anv_batch *batch, void *location,
1398 const struct anv_address address, uint32_t delta)
1399 {
1400 if (address.bo == NULL) {
1401 return address.offset + delta;
1402 } else {
1403 assert(batch->start <= location && location < batch->end);
1404
1405 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1406 }
1407 }
1408
1409 #define __gen_address_type struct anv_address
1410 #define __gen_user_data struct anv_batch
1411 #define __gen_combine_address _anv_combine_address
1412
1413 /* Wrapper macros needed to work around preprocessor argument issues. In
1414 * particular, arguments don't get pre-evaluated if they are concatenated.
1415 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1416 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1417 * We can work around this easily enough with these helpers.
1418 */
1419 #define __anv_cmd_length(cmd) cmd ## _length
1420 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1421 #define __anv_cmd_header(cmd) cmd ## _header
1422 #define __anv_cmd_pack(cmd) cmd ## _pack
1423 #define __anv_reg_num(reg) reg ## _num
1424
1425 #define anv_pack_struct(dst, struc, ...) do { \
1426 struct struc __template = { \
1427 __VA_ARGS__ \
1428 }; \
1429 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1430 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1431 } while (0)
1432
1433 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1434 void *__dst = anv_batch_emit_dwords(batch, n); \
1435 if (__dst) { \
1436 struct cmd __template = { \
1437 __anv_cmd_header(cmd), \
1438 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1439 __VA_ARGS__ \
1440 }; \
1441 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1442 } \
1443 __dst; \
1444 })
1445
1446 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1447 do { \
1448 uint32_t *dw; \
1449 \
1450 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1451 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1452 if (!dw) \
1453 break; \
1454 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1455 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1456 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1457 } while (0)
1458
1459 #define anv_batch_emit(batch, cmd, name) \
1460 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1461 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1462 __builtin_expect(_dst != NULL, 1); \
1463 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1464 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1465 _dst = NULL; \
1466 }))
1467
1468 /* MEMORY_OBJECT_CONTROL_STATE:
1469 * .GraphicsDataTypeGFDT = 0,
1470 * .LLCCacheabilityControlLLCCC = 0,
1471 * .L3CacheabilityControlL3CC = 1,
1472 */
1473 #define GEN7_MOCS 1
1474
1475 /* MEMORY_OBJECT_CONTROL_STATE:
1476 * .LLCeLLCCacheabilityControlLLCCC = 0,
1477 * .L3CacheabilityControlL3CC = 1,
1478 */
1479 #define GEN75_MOCS 1
1480
1481 /* MEMORY_OBJECT_CONTROL_STATE:
1482 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1483 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1484 * .AgeforQUADLRU = 0
1485 */
1486 #define GEN8_MOCS 0x78
1487
1488 /* MEMORY_OBJECT_CONTROL_STATE:
1489 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1490 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1491 * .AgeforQUADLRU = 0
1492 */
1493 #define GEN8_EXTERNAL_MOCS 0x18
1494
1495 /* Skylake: MOCS is now an index into an array of 62 different caching
1496 * configurations programmed by the kernel.
1497 */
1498
1499 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1500 #define GEN9_MOCS (2 << 1)
1501
1502 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1503 #define GEN9_EXTERNAL_MOCS (1 << 1)
1504
1505 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1506 #define GEN10_MOCS GEN9_MOCS
1507 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1508
1509 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1510 #define GEN11_MOCS GEN9_MOCS
1511 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1512
1513 /* TigerLake MOCS */
1514 #define GEN12_MOCS GEN9_MOCS
1515 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1516 #define GEN12_EXTERNAL_MOCS (3 << 1)
1517
1518 struct anv_device_memory {
1519 struct list_head link;
1520
1521 struct anv_bo * bo;
1522 struct anv_memory_type * type;
1523 VkDeviceSize map_size;
1524 void * map;
1525
1526 /* If set, we are holding reference to AHardwareBuffer
1527 * which we must release when memory is freed.
1528 */
1529 struct AHardwareBuffer * ahw;
1530
1531 /* If set, this memory comes from a host pointer. */
1532 void * host_ptr;
1533 };
1534
1535 /**
1536 * Header for Vertex URB Entry (VUE)
1537 */
1538 struct anv_vue_header {
1539 uint32_t Reserved;
1540 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1541 uint32_t ViewportIndex;
1542 float PointWidth;
1543 };
1544
1545 /** Struct representing a sampled image descriptor
1546 *
1547 * This descriptor layout is used for sampled images, bare sampler, and
1548 * combined image/sampler descriptors.
1549 */
1550 struct anv_sampled_image_descriptor {
1551 /** Bindless image handle
1552 *
1553 * This is expected to already be shifted such that the 20-bit
1554 * SURFACE_STATE table index is in the top 20 bits.
1555 */
1556 uint32_t image;
1557
1558 /** Bindless sampler handle
1559 *
1560 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1561 * to the dynamic state base address.
1562 */
1563 uint32_t sampler;
1564 };
1565
1566 struct anv_texture_swizzle_descriptor {
1567 /** Texture swizzle
1568 *
1569 * See also nir_intrinsic_channel_select_intel
1570 */
1571 uint8_t swizzle[4];
1572
1573 /** Unused padding to ensure the struct is a multiple of 64 bits */
1574 uint32_t _pad;
1575 };
1576
1577 /** Struct representing a storage image descriptor */
1578 struct anv_storage_image_descriptor {
1579 /** Bindless image handles
1580 *
1581 * These are expected to already be shifted such that the 20-bit
1582 * SURFACE_STATE table index is in the top 20 bits.
1583 */
1584 uint32_t read_write;
1585 uint32_t write_only;
1586 };
1587
1588 /** Struct representing a address/range descriptor
1589 *
1590 * The fields of this struct correspond directly to the data layout of
1591 * nir_address_format_64bit_bounded_global addresses. The last field is the
1592 * offset in the NIR address so it must be zero so that when you load the
1593 * descriptor you get a pointer to the start of the range.
1594 */
1595 struct anv_address_range_descriptor {
1596 uint64_t address;
1597 uint32_t range;
1598 uint32_t zero;
1599 };
1600
1601 enum anv_descriptor_data {
1602 /** The descriptor contains a BTI reference to a surface state */
1603 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1604 /** The descriptor contains a BTI reference to a sampler state */
1605 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1606 /** The descriptor contains an actual buffer view */
1607 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1608 /** The descriptor contains auxiliary image layout data */
1609 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1610 /** The descriptor contains auxiliary image layout data */
1611 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1612 /** anv_address_range_descriptor with a buffer address and range */
1613 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1614 /** Bindless surface handle */
1615 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1616 /** Storage image handles */
1617 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1618 /** Storage image handles */
1619 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1620 };
1621
1622 struct anv_descriptor_set_binding_layout {
1623 #ifndef NDEBUG
1624 /* The type of the descriptors in this binding */
1625 VkDescriptorType type;
1626 #endif
1627
1628 /* Flags provided when this binding was created */
1629 VkDescriptorBindingFlagsEXT flags;
1630
1631 /* Bitfield representing the type of data this descriptor contains */
1632 enum anv_descriptor_data data;
1633
1634 /* Maximum number of YCbCr texture/sampler planes */
1635 uint8_t max_plane_count;
1636
1637 /* Number of array elements in this binding (or size in bytes for inline
1638 * uniform data)
1639 */
1640 uint16_t array_size;
1641
1642 /* Index into the flattend descriptor set */
1643 uint16_t descriptor_index;
1644
1645 /* Index into the dynamic state array for a dynamic buffer */
1646 int16_t dynamic_offset_index;
1647
1648 /* Index into the descriptor set buffer views */
1649 int16_t buffer_view_index;
1650
1651 /* Offset into the descriptor buffer where this descriptor lives */
1652 uint32_t descriptor_offset;
1653
1654 /* Immutable samplers (or NULL if no immutable samplers) */
1655 struct anv_sampler **immutable_samplers;
1656 };
1657
1658 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1659
1660 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1661 VkDescriptorType type);
1662
1663 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1664 const struct anv_descriptor_set_binding_layout *binding,
1665 bool sampler);
1666
1667 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1668 const struct anv_descriptor_set_binding_layout *binding,
1669 bool sampler);
1670
1671 struct anv_descriptor_set_layout {
1672 /* Descriptor set layouts can be destroyed at almost any time */
1673 uint32_t ref_cnt;
1674
1675 /* Number of bindings in this descriptor set */
1676 uint16_t binding_count;
1677
1678 /* Total size of the descriptor set with room for all array entries */
1679 uint16_t size;
1680
1681 /* Shader stages affected by this descriptor set */
1682 uint16_t shader_stages;
1683
1684 /* Number of buffer views in this descriptor set */
1685 uint16_t buffer_view_count;
1686
1687 /* Number of dynamic offsets used by this descriptor set */
1688 uint16_t dynamic_offset_count;
1689
1690 /* Size of the descriptor buffer for this descriptor set */
1691 uint32_t descriptor_buffer_size;
1692
1693 /* Bindings in this descriptor set */
1694 struct anv_descriptor_set_binding_layout binding[0];
1695 };
1696
1697 static inline void
1698 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1699 {
1700 assert(layout && layout->ref_cnt >= 1);
1701 p_atomic_inc(&layout->ref_cnt);
1702 }
1703
1704 static inline void
1705 anv_descriptor_set_layout_unref(struct anv_device *device,
1706 struct anv_descriptor_set_layout *layout)
1707 {
1708 assert(layout && layout->ref_cnt >= 1);
1709 if (p_atomic_dec_zero(&layout->ref_cnt))
1710 vk_free(&device->alloc, layout);
1711 }
1712
1713 struct anv_descriptor {
1714 VkDescriptorType type;
1715
1716 union {
1717 struct {
1718 VkImageLayout layout;
1719 struct anv_image_view *image_view;
1720 struct anv_sampler *sampler;
1721 };
1722
1723 struct {
1724 struct anv_buffer *buffer;
1725 uint64_t offset;
1726 uint64_t range;
1727 };
1728
1729 struct anv_buffer_view *buffer_view;
1730 };
1731 };
1732
1733 struct anv_descriptor_set {
1734 struct anv_descriptor_pool *pool;
1735 struct anv_descriptor_set_layout *layout;
1736 uint32_t size;
1737
1738 /* State relative to anv_descriptor_pool::bo */
1739 struct anv_state desc_mem;
1740 /* Surface state for the descriptor buffer */
1741 struct anv_state desc_surface_state;
1742
1743 uint32_t buffer_view_count;
1744 struct anv_buffer_view *buffer_views;
1745
1746 /* Link to descriptor pool's desc_sets list . */
1747 struct list_head pool_link;
1748
1749 struct anv_descriptor descriptors[0];
1750 };
1751
1752 struct anv_buffer_view {
1753 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1754 uint64_t range; /**< VkBufferViewCreateInfo::range */
1755
1756 struct anv_address address;
1757
1758 struct anv_state surface_state;
1759 struct anv_state storage_surface_state;
1760 struct anv_state writeonly_storage_surface_state;
1761
1762 struct brw_image_param storage_image_param;
1763 };
1764
1765 struct anv_push_descriptor_set {
1766 struct anv_descriptor_set set;
1767
1768 /* Put this field right behind anv_descriptor_set so it fills up the
1769 * descriptors[0] field. */
1770 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1771
1772 /** True if the descriptor set buffer has been referenced by a draw or
1773 * dispatch command.
1774 */
1775 bool set_used_on_gpu;
1776
1777 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1778 };
1779
1780 struct anv_descriptor_pool {
1781 uint32_t size;
1782 uint32_t next;
1783 uint32_t free_list;
1784
1785 struct anv_bo bo;
1786 struct util_vma_heap bo_heap;
1787
1788 struct anv_state_stream surface_state_stream;
1789 void *surface_state_free_list;
1790
1791 struct list_head desc_sets;
1792
1793 char data[0];
1794 };
1795
1796 enum anv_descriptor_template_entry_type {
1797 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1798 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1799 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1800 };
1801
1802 struct anv_descriptor_template_entry {
1803 /* The type of descriptor in this entry */
1804 VkDescriptorType type;
1805
1806 /* Binding in the descriptor set */
1807 uint32_t binding;
1808
1809 /* Offset at which to write into the descriptor set binding */
1810 uint32_t array_element;
1811
1812 /* Number of elements to write into the descriptor set binding */
1813 uint32_t array_count;
1814
1815 /* Offset into the user provided data */
1816 size_t offset;
1817
1818 /* Stride between elements into the user provided data */
1819 size_t stride;
1820 };
1821
1822 struct anv_descriptor_update_template {
1823 VkPipelineBindPoint bind_point;
1824
1825 /* The descriptor set this template corresponds to. This value is only
1826 * valid if the template was created with the templateType
1827 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1828 */
1829 uint8_t set;
1830
1831 /* Number of entries in this template */
1832 uint32_t entry_count;
1833
1834 /* Entries of the template */
1835 struct anv_descriptor_template_entry entries[0];
1836 };
1837
1838 size_t
1839 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1840
1841 void
1842 anv_descriptor_set_write_image_view(struct anv_device *device,
1843 struct anv_descriptor_set *set,
1844 const VkDescriptorImageInfo * const info,
1845 VkDescriptorType type,
1846 uint32_t binding,
1847 uint32_t element);
1848
1849 void
1850 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1851 struct anv_descriptor_set *set,
1852 VkDescriptorType type,
1853 struct anv_buffer_view *buffer_view,
1854 uint32_t binding,
1855 uint32_t element);
1856
1857 void
1858 anv_descriptor_set_write_buffer(struct anv_device *device,
1859 struct anv_descriptor_set *set,
1860 struct anv_state_stream *alloc_stream,
1861 VkDescriptorType type,
1862 struct anv_buffer *buffer,
1863 uint32_t binding,
1864 uint32_t element,
1865 VkDeviceSize offset,
1866 VkDeviceSize range);
1867 void
1868 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1869 struct anv_descriptor_set *set,
1870 uint32_t binding,
1871 const void *data,
1872 size_t offset,
1873 size_t size);
1874
1875 void
1876 anv_descriptor_set_write_template(struct anv_device *device,
1877 struct anv_descriptor_set *set,
1878 struct anv_state_stream *alloc_stream,
1879 const struct anv_descriptor_update_template *template,
1880 const void *data);
1881
1882 VkResult
1883 anv_descriptor_set_create(struct anv_device *device,
1884 struct anv_descriptor_pool *pool,
1885 struct anv_descriptor_set_layout *layout,
1886 struct anv_descriptor_set **out_set);
1887
1888 void
1889 anv_descriptor_set_destroy(struct anv_device *device,
1890 struct anv_descriptor_pool *pool,
1891 struct anv_descriptor_set *set);
1892
1893 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1894 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
1895 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
1896 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1897
1898 struct anv_pipeline_binding {
1899 /* The descriptor set this surface corresponds to. The special value of
1900 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1901 * to a color attachment and not a regular descriptor.
1902 */
1903 uint8_t set;
1904
1905 /* Binding in the descriptor set */
1906 uint32_t binding;
1907
1908 /* Index in the binding */
1909 uint32_t index;
1910
1911 /* Plane in the binding index */
1912 uint8_t plane;
1913
1914 /* Input attachment index (relative to the subpass) */
1915 uint8_t input_attachment_index;
1916
1917 /* For a storage image, whether it is write-only */
1918 bool write_only;
1919 };
1920
1921 struct anv_pipeline_layout {
1922 struct {
1923 struct anv_descriptor_set_layout *layout;
1924 uint32_t dynamic_offset_start;
1925 } set[MAX_SETS];
1926
1927 uint32_t num_sets;
1928
1929 unsigned char sha1[20];
1930 };
1931
1932 struct anv_buffer {
1933 struct anv_device * device;
1934 VkDeviceSize size;
1935
1936 VkBufferUsageFlags usage;
1937
1938 /* Set when bound */
1939 struct anv_address address;
1940 };
1941
1942 static inline uint64_t
1943 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1944 {
1945 assert(offset <= buffer->size);
1946 if (range == VK_WHOLE_SIZE) {
1947 return buffer->size - offset;
1948 } else {
1949 assert(range + offset >= range);
1950 assert(range + offset <= buffer->size);
1951 return range;
1952 }
1953 }
1954
1955 enum anv_cmd_dirty_bits {
1956 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1957 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1958 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1959 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1960 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1961 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1962 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1963 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1964 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1965 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1966 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1967 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1968 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
1969 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
1970 };
1971 typedef uint32_t anv_cmd_dirty_mask_t;
1972
1973 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
1974 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
1975 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
1976 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
1977 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
1978 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
1979 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
1980 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
1981 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
1982 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
1983 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
1984
1985 static inline enum anv_cmd_dirty_bits
1986 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
1987 {
1988 switch (vk_state) {
1989 case VK_DYNAMIC_STATE_VIEWPORT:
1990 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
1991 case VK_DYNAMIC_STATE_SCISSOR:
1992 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
1993 case VK_DYNAMIC_STATE_LINE_WIDTH:
1994 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
1995 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1996 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
1997 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1998 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
1999 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2000 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2001 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2002 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2003 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2004 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2005 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2006 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2007 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2008 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2009 default:
2010 assert(!"Unsupported dynamic state");
2011 return 0;
2012 }
2013 }
2014
2015
2016 enum anv_pipe_bits {
2017 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2018 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2019 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2020 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2021 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2022 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2023 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2024 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2025 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2026 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2027 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2028
2029 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2030 * a flush has happened but not a CS stall. The next time we do any sort
2031 * of invalidation we need to insert a CS stall at that time. Otherwise,
2032 * we would have to CS stall on every flush which could be bad.
2033 */
2034 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2035
2036 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2037 * target operations related to transfer commands with VkBuffer as
2038 * destination are ongoing. Some operations like copies on the command
2039 * streamer might need to be aware of this to trigger the appropriate stall
2040 * before they can proceed with the copy.
2041 */
2042 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2043 };
2044
2045 #define ANV_PIPE_FLUSH_BITS ( \
2046 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2047 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2048 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2049
2050 #define ANV_PIPE_STALL_BITS ( \
2051 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2052 ANV_PIPE_DEPTH_STALL_BIT | \
2053 ANV_PIPE_CS_STALL_BIT)
2054
2055 #define ANV_PIPE_INVALIDATE_BITS ( \
2056 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2057 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2058 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2059 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2060 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2061 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2062
2063 static inline enum anv_pipe_bits
2064 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2065 {
2066 enum anv_pipe_bits pipe_bits = 0;
2067
2068 unsigned b;
2069 for_each_bit(b, flags) {
2070 switch ((VkAccessFlagBits)(1 << b)) {
2071 case VK_ACCESS_SHADER_WRITE_BIT:
2072 /* We're transitioning a buffer that was previously used as write
2073 * destination through the data port. To make its content available
2074 * to future operations, flush the data cache.
2075 */
2076 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2077 break;
2078 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2079 /* We're transitioning a buffer that was previously used as render
2080 * target. To make its content available to future operations, flush
2081 * the render target cache.
2082 */
2083 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2084 break;
2085 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2086 /* We're transitioning a buffer that was previously used as depth
2087 * buffer. To make its content available to future operations, flush
2088 * the depth cache.
2089 */
2090 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2091 break;
2092 case VK_ACCESS_TRANSFER_WRITE_BIT:
2093 /* We're transitioning a buffer that was previously used as a
2094 * transfer write destination. Generic write operations include color
2095 * & depth operations as well as buffer operations like :
2096 * - vkCmdClearColorImage()
2097 * - vkCmdClearDepthStencilImage()
2098 * - vkCmdBlitImage()
2099 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2100 *
2101 * Most of these operations are implemented using Blorp which writes
2102 * through the render target, so flush that cache to make it visible
2103 * to future operations. And for depth related operations we also
2104 * need to flush the depth cache.
2105 */
2106 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2107 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2108 break;
2109 case VK_ACCESS_MEMORY_WRITE_BIT:
2110 /* We're transitioning a buffer for generic write operations. Flush
2111 * all the caches.
2112 */
2113 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2114 break;
2115 default:
2116 break; /* Nothing to do */
2117 }
2118 }
2119
2120 return pipe_bits;
2121 }
2122
2123 static inline enum anv_pipe_bits
2124 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2125 {
2126 enum anv_pipe_bits pipe_bits = 0;
2127
2128 unsigned b;
2129 for_each_bit(b, flags) {
2130 switch ((VkAccessFlagBits)(1 << b)) {
2131 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2132 /* Indirect draw commands take a buffer as input that we're going to
2133 * read from the command streamer to load some of the HW registers
2134 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2135 * command streamer stall so that all the cache flushes have
2136 * completed before the command streamer loads from memory.
2137 */
2138 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2139 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2140 * through a vertex buffer, so invalidate that cache.
2141 */
2142 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2143 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2144 * UBO from the buffer, so we need to invalidate constant cache.
2145 */
2146 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2147 break;
2148 case VK_ACCESS_INDEX_READ_BIT:
2149 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2150 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2151 * commands, so we invalidate the VF cache to make sure there is no
2152 * stale data when we start rendering.
2153 */
2154 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2155 break;
2156 case VK_ACCESS_UNIFORM_READ_BIT:
2157 /* We transitioning a buffer to be used as uniform data. Because
2158 * uniform is accessed through the data port & sampler, we need to
2159 * invalidate the texture cache (sampler) & constant cache (data
2160 * port) to avoid stale data.
2161 */
2162 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2163 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2164 break;
2165 case VK_ACCESS_SHADER_READ_BIT:
2166 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2167 case VK_ACCESS_TRANSFER_READ_BIT:
2168 /* Transitioning a buffer to be read through the sampler, so
2169 * invalidate the texture cache, we don't want any stale data.
2170 */
2171 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2172 break;
2173 case VK_ACCESS_MEMORY_READ_BIT:
2174 /* Transitioning a buffer for generic read, invalidate all the
2175 * caches.
2176 */
2177 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2178 break;
2179 case VK_ACCESS_MEMORY_WRITE_BIT:
2180 /* Generic write, make sure all previously written things land in
2181 * memory.
2182 */
2183 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2184 break;
2185 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2186 /* Transitioning a buffer for conditional rendering. We'll load the
2187 * content of this buffer into HW registers using the command
2188 * streamer, so we need to stall the command streamer to make sure
2189 * any in-flight flush operations have completed.
2190 */
2191 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2192 break;
2193 default:
2194 break; /* Nothing to do */
2195 }
2196 }
2197
2198 return pipe_bits;
2199 }
2200
2201 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2202 VK_IMAGE_ASPECT_COLOR_BIT | \
2203 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2204 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2205 VK_IMAGE_ASPECT_PLANE_2_BIT)
2206 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2207 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2208 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2209 VK_IMAGE_ASPECT_PLANE_2_BIT)
2210
2211 struct anv_vertex_binding {
2212 struct anv_buffer * buffer;
2213 VkDeviceSize offset;
2214 };
2215
2216 struct anv_xfb_binding {
2217 struct anv_buffer * buffer;
2218 VkDeviceSize offset;
2219 VkDeviceSize size;
2220 };
2221
2222 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2223 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2224 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2225
2226 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2227 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2228 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2229
2230 struct anv_push_constants {
2231 /* Push constant data provided by the client through vkPushConstants */
2232 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2233
2234 /* Used for vkCmdDispatchBase */
2235 uint32_t base_work_group_id[3];
2236 };
2237
2238 struct anv_dynamic_state {
2239 struct {
2240 uint32_t count;
2241 VkViewport viewports[MAX_VIEWPORTS];
2242 } viewport;
2243
2244 struct {
2245 uint32_t count;
2246 VkRect2D scissors[MAX_SCISSORS];
2247 } scissor;
2248
2249 float line_width;
2250
2251 struct {
2252 float bias;
2253 float clamp;
2254 float slope;
2255 } depth_bias;
2256
2257 float blend_constants[4];
2258
2259 struct {
2260 float min;
2261 float max;
2262 } depth_bounds;
2263
2264 struct {
2265 uint32_t front;
2266 uint32_t back;
2267 } stencil_compare_mask;
2268
2269 struct {
2270 uint32_t front;
2271 uint32_t back;
2272 } stencil_write_mask;
2273
2274 struct {
2275 uint32_t front;
2276 uint32_t back;
2277 } stencil_reference;
2278
2279 struct {
2280 uint32_t factor;
2281 uint16_t pattern;
2282 } line_stipple;
2283 };
2284
2285 extern const struct anv_dynamic_state default_dynamic_state;
2286
2287 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2288 const struct anv_dynamic_state *src,
2289 uint32_t copy_mask);
2290
2291 struct anv_surface_state {
2292 struct anv_state state;
2293 /** Address of the surface referred to by this state
2294 *
2295 * This address is relative to the start of the BO.
2296 */
2297 struct anv_address address;
2298 /* Address of the aux surface, if any
2299 *
2300 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2301 *
2302 * With the exception of gen8, the bottom 12 bits of this address' offset
2303 * include extra aux information.
2304 */
2305 struct anv_address aux_address;
2306 /* Address of the clear color, if any
2307 *
2308 * This address is relative to the start of the BO.
2309 */
2310 struct anv_address clear_address;
2311 };
2312
2313 /**
2314 * Attachment state when recording a renderpass instance.
2315 *
2316 * The clear value is valid only if there exists a pending clear.
2317 */
2318 struct anv_attachment_state {
2319 enum isl_aux_usage aux_usage;
2320 enum isl_aux_usage input_aux_usage;
2321 struct anv_surface_state color;
2322 struct anv_surface_state input;
2323
2324 VkImageLayout current_layout;
2325 VkImageAspectFlags pending_clear_aspects;
2326 VkImageAspectFlags pending_load_aspects;
2327 bool fast_clear;
2328 VkClearValue clear_value;
2329 bool clear_color_is_zero_one;
2330 bool clear_color_is_zero;
2331
2332 /* When multiview is active, attachments with a renderpass clear
2333 * operation have their respective layers cleared on the first
2334 * subpass that uses them, and only in that subpass. We keep track
2335 * of this using a bitfield to indicate which layers of an attachment
2336 * have not been cleared yet when multiview is active.
2337 */
2338 uint32_t pending_clear_views;
2339 struct anv_image_view * image_view;
2340 };
2341
2342 /** State tracking for particular pipeline bind point
2343 *
2344 * This struct is the base struct for anv_cmd_graphics_state and
2345 * anv_cmd_compute_state. These are used to track state which is bound to a
2346 * particular type of pipeline. Generic state that applies per-stage such as
2347 * binding table offsets and push constants is tracked generically with a
2348 * per-stage array in anv_cmd_state.
2349 */
2350 struct anv_cmd_pipeline_state {
2351 struct anv_pipeline *pipeline;
2352 struct anv_pipeline_layout *layout;
2353
2354 struct anv_descriptor_set *descriptors[MAX_SETS];
2355 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2356
2357 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2358 };
2359
2360 /** State tracking for graphics pipeline
2361 *
2362 * This has anv_cmd_pipeline_state as a base struct to track things which get
2363 * bound to a graphics pipeline. Along with general pipeline bind point state
2364 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2365 * state which is graphics-specific.
2366 */
2367 struct anv_cmd_graphics_state {
2368 struct anv_cmd_pipeline_state base;
2369
2370 anv_cmd_dirty_mask_t dirty;
2371 uint32_t vb_dirty;
2372
2373 struct anv_dynamic_state dynamic;
2374
2375 struct {
2376 struct anv_buffer *index_buffer;
2377 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2378 uint32_t index_offset;
2379 } gen7;
2380 };
2381
2382 /** State tracking for compute pipeline
2383 *
2384 * This has anv_cmd_pipeline_state as a base struct to track things which get
2385 * bound to a compute pipeline. Along with general pipeline bind point state
2386 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2387 * state which is compute-specific.
2388 */
2389 struct anv_cmd_compute_state {
2390 struct anv_cmd_pipeline_state base;
2391
2392 bool pipeline_dirty;
2393
2394 struct anv_address num_workgroups;
2395 };
2396
2397 /** State required while building cmd buffer */
2398 struct anv_cmd_state {
2399 /* PIPELINE_SELECT.PipelineSelection */
2400 uint32_t current_pipeline;
2401 const struct gen_l3_config * current_l3_config;
2402
2403 struct anv_cmd_graphics_state gfx;
2404 struct anv_cmd_compute_state compute;
2405
2406 enum anv_pipe_bits pending_pipe_bits;
2407 VkShaderStageFlags descriptors_dirty;
2408 VkShaderStageFlags push_constants_dirty;
2409
2410 struct anv_framebuffer * framebuffer;
2411 struct anv_render_pass * pass;
2412 struct anv_subpass * subpass;
2413 VkRect2D render_area;
2414 uint32_t restart_index;
2415 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2416 bool xfb_enabled;
2417 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2418 VkShaderStageFlags push_constant_stages;
2419 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2420 struct anv_state binding_tables[MESA_SHADER_STAGES];
2421 struct anv_state samplers[MESA_SHADER_STAGES];
2422
2423 /**
2424 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2425 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2426 * and before invoking the secondary in ExecuteCommands.
2427 */
2428 bool pma_fix_enabled;
2429
2430 /**
2431 * Whether or not we know for certain that HiZ is enabled for the current
2432 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2433 * enabled or not, this will be false.
2434 */
2435 bool hiz_enabled;
2436
2437 bool conditional_render_enabled;
2438
2439 /**
2440 * Last rendering scale argument provided to
2441 * genX(cmd_buffer_emit_hashing_mode)().
2442 */
2443 unsigned current_hash_scale;
2444
2445 /**
2446 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2447 * valid only when recording a render pass instance.
2448 */
2449 struct anv_attachment_state * attachments;
2450
2451 /**
2452 * Surface states for color render targets. These are stored in a single
2453 * flat array. For depth-stencil attachments, the surface state is simply
2454 * left blank.
2455 */
2456 struct anv_state render_pass_states;
2457
2458 /**
2459 * A null surface state of the right size to match the framebuffer. This
2460 * is one of the states in render_pass_states.
2461 */
2462 struct anv_state null_surface_state;
2463 };
2464
2465 struct anv_cmd_pool {
2466 VkAllocationCallbacks alloc;
2467 struct list_head cmd_buffers;
2468 };
2469
2470 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2471
2472 enum anv_cmd_buffer_exec_mode {
2473 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2474 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2475 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2476 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2477 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2478 };
2479
2480 struct anv_cmd_buffer {
2481 VK_LOADER_DATA _loader_data;
2482
2483 struct anv_device * device;
2484
2485 struct anv_cmd_pool * pool;
2486 struct list_head pool_link;
2487
2488 struct anv_batch batch;
2489
2490 /* Fields required for the actual chain of anv_batch_bo's.
2491 *
2492 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2493 */
2494 struct list_head batch_bos;
2495 enum anv_cmd_buffer_exec_mode exec_mode;
2496
2497 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2498 * referenced by this command buffer
2499 *
2500 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2501 */
2502 struct u_vector seen_bbos;
2503
2504 /* A vector of int32_t's for every block of binding tables.
2505 *
2506 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2507 */
2508 struct u_vector bt_block_states;
2509 uint32_t bt_next;
2510
2511 struct anv_reloc_list surface_relocs;
2512 /** Last seen surface state block pool center bo offset */
2513 uint32_t last_ss_pool_center;
2514
2515 /* Serial for tracking buffer completion */
2516 uint32_t serial;
2517
2518 /* Stream objects for storing temporary data */
2519 struct anv_state_stream surface_state_stream;
2520 struct anv_state_stream dynamic_state_stream;
2521
2522 VkCommandBufferUsageFlags usage_flags;
2523 VkCommandBufferLevel level;
2524
2525 struct anv_cmd_state state;
2526 };
2527
2528 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2529 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2530 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2531 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2532 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2533 struct anv_cmd_buffer *secondary);
2534 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2535 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2536 struct anv_cmd_buffer *cmd_buffer,
2537 const VkSemaphore *in_semaphores,
2538 uint32_t num_in_semaphores,
2539 const VkSemaphore *out_semaphores,
2540 uint32_t num_out_semaphores,
2541 VkFence fence);
2542
2543 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2544
2545 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2546 const void *data, uint32_t size, uint32_t alignment);
2547 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2548 uint32_t *a, uint32_t *b,
2549 uint32_t dwords, uint32_t alignment);
2550
2551 struct anv_address
2552 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2553 struct anv_state
2554 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2555 uint32_t entries, uint32_t *state_offset);
2556 struct anv_state
2557 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2558 struct anv_state
2559 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2560 uint32_t size, uint32_t alignment);
2561
2562 VkResult
2563 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2564
2565 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2566 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2567 bool depth_clamp_enable);
2568 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2569
2570 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2571 struct anv_render_pass *pass,
2572 struct anv_framebuffer *framebuffer,
2573 const VkClearValue *clear_values);
2574
2575 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2576
2577 struct anv_state
2578 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2579 gl_shader_stage stage);
2580 struct anv_state
2581 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2582
2583 const struct anv_image_view *
2584 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2585
2586 VkResult
2587 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2588 uint32_t num_entries,
2589 uint32_t *state_offset,
2590 struct anv_state *bt_state);
2591
2592 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2593
2594 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2595
2596 enum anv_fence_type {
2597 ANV_FENCE_TYPE_NONE = 0,
2598 ANV_FENCE_TYPE_BO,
2599 ANV_FENCE_TYPE_SYNCOBJ,
2600 ANV_FENCE_TYPE_WSI,
2601 };
2602
2603 enum anv_bo_fence_state {
2604 /** Indicates that this is a new (or newly reset fence) */
2605 ANV_BO_FENCE_STATE_RESET,
2606
2607 /** Indicates that this fence has been submitted to the GPU but is still
2608 * (as far as we know) in use by the GPU.
2609 */
2610 ANV_BO_FENCE_STATE_SUBMITTED,
2611
2612 ANV_BO_FENCE_STATE_SIGNALED,
2613 };
2614
2615 struct anv_fence_impl {
2616 enum anv_fence_type type;
2617
2618 union {
2619 /** Fence implementation for BO fences
2620 *
2621 * These fences use a BO and a set of CPU-tracked state flags. The BO
2622 * is added to the object list of the last execbuf call in a QueueSubmit
2623 * and is marked EXEC_WRITE. The state flags track when the BO has been
2624 * submitted to the kernel. We need to do this because Vulkan lets you
2625 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2626 * will say it's idle in this case.
2627 */
2628 struct {
2629 struct anv_bo bo;
2630 enum anv_bo_fence_state state;
2631 } bo;
2632
2633 /** DRM syncobj handle for syncobj-based fences */
2634 uint32_t syncobj;
2635
2636 /** WSI fence */
2637 struct wsi_fence *fence_wsi;
2638 };
2639 };
2640
2641 struct anv_fence {
2642 /* Permanent fence state. Every fence has some form of permanent state
2643 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2644 * cross-process fences) or it could just be a dummy for use internally.
2645 */
2646 struct anv_fence_impl permanent;
2647
2648 /* Temporary fence state. A fence *may* have temporary state. That state
2649 * is added to the fence by an import operation and is reset back to
2650 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2651 * state cannot be signaled because the fence must already be signaled
2652 * before the temporary state can be exported from the fence in the other
2653 * process and imported here.
2654 */
2655 struct anv_fence_impl temporary;
2656 };
2657
2658 struct anv_event {
2659 uint64_t semaphore;
2660 struct anv_state state;
2661 };
2662
2663 enum anv_semaphore_type {
2664 ANV_SEMAPHORE_TYPE_NONE = 0,
2665 ANV_SEMAPHORE_TYPE_DUMMY,
2666 ANV_SEMAPHORE_TYPE_BO,
2667 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2668 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2669 };
2670
2671 struct anv_semaphore_impl {
2672 enum anv_semaphore_type type;
2673
2674 union {
2675 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2676 * This BO will be added to the object list on any execbuf2 calls for
2677 * which this semaphore is used as a wait or signal fence. When used as
2678 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2679 */
2680 struct anv_bo *bo;
2681
2682 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2683 * If the semaphore is in the unsignaled state due to either just being
2684 * created or because it has been used for a wait, fd will be -1.
2685 */
2686 int fd;
2687
2688 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2689 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2690 * import so we don't need to bother with a userspace cache.
2691 */
2692 uint32_t syncobj;
2693 };
2694 };
2695
2696 struct anv_semaphore {
2697 /* Permanent semaphore state. Every semaphore has some form of permanent
2698 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2699 * (for cross-process semaphores0 or it could just be a dummy for use
2700 * internally.
2701 */
2702 struct anv_semaphore_impl permanent;
2703
2704 /* Temporary semaphore state. A semaphore *may* have temporary state.
2705 * That state is added to the semaphore by an import operation and is reset
2706 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2707 * semaphore with temporary state cannot be signaled because the semaphore
2708 * must already be signaled before the temporary state can be exported from
2709 * the semaphore in the other process and imported here.
2710 */
2711 struct anv_semaphore_impl temporary;
2712 };
2713
2714 void anv_semaphore_reset_temporary(struct anv_device *device,
2715 struct anv_semaphore *semaphore);
2716
2717 struct anv_shader_module {
2718 unsigned char sha1[20];
2719 uint32_t size;
2720 char data[0];
2721 };
2722
2723 static inline gl_shader_stage
2724 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2725 {
2726 assert(__builtin_popcount(vk_stage) == 1);
2727 return ffs(vk_stage) - 1;
2728 }
2729
2730 static inline VkShaderStageFlagBits
2731 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2732 {
2733 return (1 << mesa_stage);
2734 }
2735
2736 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2737
2738 #define anv_foreach_stage(stage, stage_bits) \
2739 for (gl_shader_stage stage, \
2740 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2741 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2742 __tmp &= ~(1 << (stage)))
2743
2744 struct anv_pipeline_bind_map {
2745 uint32_t surface_count;
2746 uint32_t sampler_count;
2747
2748 struct anv_pipeline_binding * surface_to_descriptor;
2749 struct anv_pipeline_binding * sampler_to_descriptor;
2750 };
2751
2752 struct anv_shader_bin_key {
2753 uint32_t size;
2754 uint8_t data[0];
2755 };
2756
2757 struct anv_shader_bin {
2758 uint32_t ref_cnt;
2759
2760 const struct anv_shader_bin_key *key;
2761
2762 struct anv_state kernel;
2763 uint32_t kernel_size;
2764
2765 struct anv_state constant_data;
2766 uint32_t constant_data_size;
2767
2768 const struct brw_stage_prog_data *prog_data;
2769 uint32_t prog_data_size;
2770
2771 struct brw_compile_stats stats[3];
2772 uint32_t num_stats;
2773
2774 struct nir_xfb_info *xfb_info;
2775
2776 struct anv_pipeline_bind_map bind_map;
2777 };
2778
2779 struct anv_shader_bin *
2780 anv_shader_bin_create(struct anv_device *device,
2781 const void *key, uint32_t key_size,
2782 const void *kernel, uint32_t kernel_size,
2783 const void *constant_data, uint32_t constant_data_size,
2784 const struct brw_stage_prog_data *prog_data,
2785 uint32_t prog_data_size, const void *prog_data_param,
2786 const struct brw_compile_stats *stats, uint32_t num_stats,
2787 const struct nir_xfb_info *xfb_info,
2788 const struct anv_pipeline_bind_map *bind_map);
2789
2790 void
2791 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2792
2793 static inline void
2794 anv_shader_bin_ref(struct anv_shader_bin *shader)
2795 {
2796 assert(shader && shader->ref_cnt >= 1);
2797 p_atomic_inc(&shader->ref_cnt);
2798 }
2799
2800 static inline void
2801 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2802 {
2803 assert(shader && shader->ref_cnt >= 1);
2804 if (p_atomic_dec_zero(&shader->ref_cnt))
2805 anv_shader_bin_destroy(device, shader);
2806 }
2807
2808 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2809 #define MAX_PIPELINE_EXECUTABLES 7
2810
2811 struct anv_pipeline_executable {
2812 gl_shader_stage stage;
2813
2814 struct brw_compile_stats stats;
2815
2816 char *disasm;
2817 };
2818
2819 struct anv_pipeline {
2820 struct anv_device * device;
2821 struct anv_batch batch;
2822 uint32_t batch_data[512];
2823 struct anv_reloc_list batch_relocs;
2824 anv_cmd_dirty_mask_t dynamic_state_mask;
2825 struct anv_dynamic_state dynamic_state;
2826
2827 void * mem_ctx;
2828
2829 VkPipelineCreateFlags flags;
2830 struct anv_subpass * subpass;
2831
2832 bool needs_data_cache;
2833
2834 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2835
2836 uint32_t num_executables;
2837 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2838
2839 struct {
2840 const struct gen_l3_config * l3_config;
2841 uint32_t total_size;
2842 } urb;
2843
2844 VkShaderStageFlags active_stages;
2845 struct anv_state blend_state;
2846
2847 uint32_t vb_used;
2848 struct anv_pipeline_vertex_binding {
2849 uint32_t stride;
2850 bool instanced;
2851 uint32_t instance_divisor;
2852 } vb[MAX_VBS];
2853
2854 uint8_t xfb_used;
2855
2856 bool primitive_restart;
2857 uint32_t topology;
2858
2859 uint32_t cs_right_mask;
2860
2861 bool writes_depth;
2862 bool depth_test_enable;
2863 bool writes_stencil;
2864 bool stencil_test_enable;
2865 bool depth_clamp_enable;
2866 bool depth_clip_enable;
2867 bool sample_shading_enable;
2868 bool kill_pixel;
2869
2870 struct {
2871 uint32_t sf[7];
2872 uint32_t depth_stencil_state[3];
2873 } gen7;
2874
2875 struct {
2876 uint32_t sf[4];
2877 uint32_t raster[5];
2878 uint32_t wm_depth_stencil[3];
2879 } gen8;
2880
2881 struct {
2882 uint32_t wm_depth_stencil[4];
2883 } gen9;
2884
2885 uint32_t interface_descriptor_data[8];
2886 };
2887
2888 static inline bool
2889 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2890 gl_shader_stage stage)
2891 {
2892 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2893 }
2894
2895 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2896 static inline const struct brw_##prefix##_prog_data * \
2897 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2898 { \
2899 if (anv_pipeline_has_stage(pipeline, stage)) { \
2900 return (const struct brw_##prefix##_prog_data *) \
2901 pipeline->shaders[stage]->prog_data; \
2902 } else { \
2903 return NULL; \
2904 } \
2905 }
2906
2907 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2908 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2909 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2910 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2911 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2912 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2913
2914 static inline const struct brw_vue_prog_data *
2915 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2916 {
2917 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2918 return &get_gs_prog_data(pipeline)->base;
2919 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2920 return &get_tes_prog_data(pipeline)->base;
2921 else
2922 return &get_vs_prog_data(pipeline)->base;
2923 }
2924
2925 VkResult
2926 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2927 struct anv_pipeline_cache *cache,
2928 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2929 const VkAllocationCallbacks *alloc);
2930
2931 VkResult
2932 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2933 struct anv_pipeline_cache *cache,
2934 const VkComputePipelineCreateInfo *info,
2935 const struct anv_shader_module *module,
2936 const char *entrypoint,
2937 const VkSpecializationInfo *spec_info);
2938
2939 struct anv_format_plane {
2940 enum isl_format isl_format:16;
2941 struct isl_swizzle swizzle;
2942
2943 /* Whether this plane contains chroma channels */
2944 bool has_chroma;
2945
2946 /* For downscaling of YUV planes */
2947 uint8_t denominator_scales[2];
2948
2949 /* How to map sampled ycbcr planes to a single 4 component element. */
2950 struct isl_swizzle ycbcr_swizzle;
2951
2952 /* What aspect is associated to this plane */
2953 VkImageAspectFlags aspect;
2954 };
2955
2956
2957 struct anv_format {
2958 struct anv_format_plane planes[3];
2959 VkFormat vk_format;
2960 uint8_t n_planes;
2961 bool can_ycbcr;
2962 };
2963
2964 static inline uint32_t
2965 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2966 VkImageAspectFlags aspect_mask)
2967 {
2968 switch (aspect_mask) {
2969 case VK_IMAGE_ASPECT_COLOR_BIT:
2970 case VK_IMAGE_ASPECT_DEPTH_BIT:
2971 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2972 return 0;
2973 case VK_IMAGE_ASPECT_STENCIL_BIT:
2974 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2975 return 0;
2976 /* Fall-through */
2977 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2978 return 1;
2979 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2980 return 2;
2981 default:
2982 /* Purposefully assert with depth/stencil aspects. */
2983 unreachable("invalid image aspect");
2984 }
2985 }
2986
2987 static inline VkImageAspectFlags
2988 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2989 uint32_t plane)
2990 {
2991 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2992 if (util_bitcount(image_aspects) > 1)
2993 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2994 return VK_IMAGE_ASPECT_COLOR_BIT;
2995 }
2996 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2997 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2998 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2999 return VK_IMAGE_ASPECT_STENCIL_BIT;
3000 }
3001
3002 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3003 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3004
3005 const struct anv_format *
3006 anv_get_format(VkFormat format);
3007
3008 static inline uint32_t
3009 anv_get_format_planes(VkFormat vk_format)
3010 {
3011 const struct anv_format *format = anv_get_format(vk_format);
3012
3013 return format != NULL ? format->n_planes : 0;
3014 }
3015
3016 struct anv_format_plane
3017 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3018 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3019
3020 static inline enum isl_format
3021 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3022 VkImageAspectFlags aspect, VkImageTiling tiling)
3023 {
3024 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3025 }
3026
3027 static inline struct isl_swizzle
3028 anv_swizzle_for_render(struct isl_swizzle swizzle)
3029 {
3030 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3031 * RGB as RGBA for texturing
3032 */
3033 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3034 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3035
3036 /* But it doesn't matter what we render to that channel */
3037 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3038
3039 return swizzle;
3040 }
3041
3042 void
3043 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3044
3045 /**
3046 * Subsurface of an anv_image.
3047 */
3048 struct anv_surface {
3049 /** Valid only if isl_surf::size_B > 0. */
3050 struct isl_surf isl;
3051
3052 /**
3053 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3054 */
3055 uint32_t offset;
3056 };
3057
3058 struct anv_image {
3059 VkImageType type; /**< VkImageCreateInfo::imageType */
3060 /* The original VkFormat provided by the client. This may not match any
3061 * of the actual surface formats.
3062 */
3063 VkFormat vk_format;
3064 const struct anv_format *format;
3065
3066 VkImageAspectFlags aspects;
3067 VkExtent3D extent;
3068 uint32_t levels;
3069 uint32_t array_size;
3070 uint32_t samples; /**< VkImageCreateInfo::samples */
3071 uint32_t n_planes;
3072 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3073 VkImageUsageFlags stencil_usage;
3074 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3075 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3076
3077 /** True if this is needs to be bound to an appropriately tiled BO.
3078 *
3079 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3080 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3081 * we require a dedicated allocation so that we can know to allocate a
3082 * tiled buffer.
3083 */
3084 bool needs_set_tiling;
3085
3086 /**
3087 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3088 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3089 */
3090 uint64_t drm_format_mod;
3091
3092 VkDeviceSize size;
3093 uint32_t alignment;
3094
3095 /* Whether the image is made of several underlying buffer objects rather a
3096 * single one with different offsets.
3097 */
3098 bool disjoint;
3099
3100 /* All the formats that can be used when creating views of this image
3101 * are CCS_E compatible.
3102 */
3103 bool ccs_e_compatible;
3104
3105 /* Image was created with external format. */
3106 bool external_format;
3107
3108 /**
3109 * Image subsurfaces
3110 *
3111 * For each foo, anv_image::planes[x].surface is valid if and only if
3112 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3113 * to figure the number associated with a given aspect.
3114 *
3115 * The hardware requires that the depth buffer and stencil buffer be
3116 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3117 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3118 * allocate the depth and stencil buffers as separate surfaces in the same
3119 * bo.
3120 *
3121 * Memory layout :
3122 *
3123 * -----------------------
3124 * | surface0 | /|\
3125 * ----------------------- |
3126 * | shadow surface0 | |
3127 * ----------------------- | Plane 0
3128 * | aux surface0 | |
3129 * ----------------------- |
3130 * | fast clear colors0 | \|/
3131 * -----------------------
3132 * | surface1 | /|\
3133 * ----------------------- |
3134 * | shadow surface1 | |
3135 * ----------------------- | Plane 1
3136 * | aux surface1 | |
3137 * ----------------------- |
3138 * | fast clear colors1 | \|/
3139 * -----------------------
3140 * | ... |
3141 * | |
3142 * -----------------------
3143 */
3144 struct {
3145 /**
3146 * Offset of the entire plane (whenever the image is disjoint this is
3147 * set to 0).
3148 */
3149 uint32_t offset;
3150
3151 VkDeviceSize size;
3152 uint32_t alignment;
3153
3154 struct anv_surface surface;
3155
3156 /**
3157 * A surface which shadows the main surface and may have different
3158 * tiling. This is used for sampling using a tiling that isn't supported
3159 * for other operations.
3160 */
3161 struct anv_surface shadow_surface;
3162
3163 /**
3164 * For color images, this is the aux usage for this image when not used
3165 * as a color attachment.
3166 *
3167 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3168 * image has a HiZ buffer.
3169 */
3170 enum isl_aux_usage aux_usage;
3171
3172 struct anv_surface aux_surface;
3173
3174 /**
3175 * Offset of the fast clear state (used to compute the
3176 * fast_clear_state_offset of the following planes).
3177 */
3178 uint32_t fast_clear_state_offset;
3179
3180 /**
3181 * BO associated with this plane, set when bound.
3182 */
3183 struct anv_address address;
3184
3185 /**
3186 * When destroying the image, also free the bo.
3187 * */
3188 bool bo_is_owned;
3189 } planes[3];
3190 };
3191
3192 /* The ordering of this enum is important */
3193 enum anv_fast_clear_type {
3194 /** Image does not have/support any fast-clear blocks */
3195 ANV_FAST_CLEAR_NONE = 0,
3196 /** Image has/supports fast-clear but only to the default value */
3197 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3198 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3199 ANV_FAST_CLEAR_ANY = 2,
3200 };
3201
3202 /* Returns the number of auxiliary buffer levels attached to an image. */
3203 static inline uint8_t
3204 anv_image_aux_levels(const struct anv_image * const image,
3205 VkImageAspectFlagBits aspect)
3206 {
3207 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3208 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3209 image->planes[plane].aux_surface.isl.levels : 0;
3210 }
3211
3212 /* Returns the number of auxiliary buffer layers attached to an image. */
3213 static inline uint32_t
3214 anv_image_aux_layers(const struct anv_image * const image,
3215 VkImageAspectFlagBits aspect,
3216 const uint8_t miplevel)
3217 {
3218 assert(image);
3219
3220 /* The miplevel must exist in the main buffer. */
3221 assert(miplevel < image->levels);
3222
3223 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3224 /* There are no layers with auxiliary data because the miplevel has no
3225 * auxiliary data.
3226 */
3227 return 0;
3228 } else {
3229 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3230 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
3231 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
3232 }
3233 }
3234
3235 static inline struct anv_address
3236 anv_image_get_clear_color_addr(const struct anv_device *device,
3237 const struct anv_image *image,
3238 VkImageAspectFlagBits aspect)
3239 {
3240 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3241
3242 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3243 return anv_address_add(image->planes[plane].address,
3244 image->planes[plane].fast_clear_state_offset);
3245 }
3246
3247 static inline struct anv_address
3248 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3249 const struct anv_image *image,
3250 VkImageAspectFlagBits aspect)
3251 {
3252 struct anv_address addr =
3253 anv_image_get_clear_color_addr(device, image, aspect);
3254
3255 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3256 device->isl_dev.ss.clear_color_state_size :
3257 device->isl_dev.ss.clear_value_size;
3258 return anv_address_add(addr, clear_color_state_size);
3259 }
3260
3261 static inline struct anv_address
3262 anv_image_get_compression_state_addr(const struct anv_device *device,
3263 const struct anv_image *image,
3264 VkImageAspectFlagBits aspect,
3265 uint32_t level, uint32_t array_layer)
3266 {
3267 assert(level < anv_image_aux_levels(image, aspect));
3268 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3269 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3270 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3271
3272 struct anv_address addr =
3273 anv_image_get_fast_clear_type_addr(device, image, aspect);
3274 addr.offset += 4; /* Go past the fast clear type */
3275
3276 if (image->type == VK_IMAGE_TYPE_3D) {
3277 for (uint32_t l = 0; l < level; l++)
3278 addr.offset += anv_minify(image->extent.depth, l) * 4;
3279 } else {
3280 addr.offset += level * image->array_size * 4;
3281 }
3282 addr.offset += array_layer * 4;
3283
3284 return addr;
3285 }
3286
3287 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3288 static inline bool
3289 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3290 const struct anv_image *image)
3291 {
3292 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3293 return false;
3294
3295 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3296 * struct. There's documentation which suggests that this feature actually
3297 * reduces performance on BDW, but it has only been observed to help so
3298 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3299 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3300 */
3301 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3302 return false;
3303
3304 return image->samples == 1;
3305 }
3306
3307 void
3308 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3309 const struct anv_image *image,
3310 VkImageAspectFlagBits aspect,
3311 enum isl_aux_usage aux_usage,
3312 uint32_t level,
3313 uint32_t base_layer,
3314 uint32_t layer_count);
3315
3316 void
3317 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3318 const struct anv_image *image,
3319 VkImageAspectFlagBits aspect,
3320 enum isl_aux_usage aux_usage,
3321 enum isl_format format, struct isl_swizzle swizzle,
3322 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3323 VkRect2D area, union isl_color_value clear_color);
3324 void
3325 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3326 const struct anv_image *image,
3327 VkImageAspectFlags aspects,
3328 enum isl_aux_usage depth_aux_usage,
3329 uint32_t level,
3330 uint32_t base_layer, uint32_t layer_count,
3331 VkRect2D area,
3332 float depth_value, uint8_t stencil_value);
3333 void
3334 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3335 const struct anv_image *src_image,
3336 enum isl_aux_usage src_aux_usage,
3337 uint32_t src_level, uint32_t src_base_layer,
3338 const struct anv_image *dst_image,
3339 enum isl_aux_usage dst_aux_usage,
3340 uint32_t dst_level, uint32_t dst_base_layer,
3341 VkImageAspectFlagBits aspect,
3342 uint32_t src_x, uint32_t src_y,
3343 uint32_t dst_x, uint32_t dst_y,
3344 uint32_t width, uint32_t height,
3345 uint32_t layer_count,
3346 enum blorp_filter filter);
3347 void
3348 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3349 const struct anv_image *image,
3350 VkImageAspectFlagBits aspect, uint32_t level,
3351 uint32_t base_layer, uint32_t layer_count,
3352 enum isl_aux_op hiz_op);
3353 void
3354 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3355 const struct anv_image *image,
3356 VkImageAspectFlags aspects,
3357 uint32_t level,
3358 uint32_t base_layer, uint32_t layer_count,
3359 VkRect2D area, uint8_t stencil_value);
3360 void
3361 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3362 const struct anv_image *image,
3363 enum isl_format format,
3364 VkImageAspectFlagBits aspect,
3365 uint32_t base_layer, uint32_t layer_count,
3366 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3367 bool predicate);
3368 void
3369 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3370 const struct anv_image *image,
3371 enum isl_format format,
3372 VkImageAspectFlagBits aspect, uint32_t level,
3373 uint32_t base_layer, uint32_t layer_count,
3374 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3375 bool predicate);
3376
3377 void
3378 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3379 const struct anv_image *image,
3380 VkImageAspectFlagBits aspect,
3381 uint32_t base_level, uint32_t level_count,
3382 uint32_t base_layer, uint32_t layer_count);
3383
3384 enum isl_aux_usage
3385 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3386 const struct anv_image *image,
3387 const VkImageAspectFlagBits aspect,
3388 const VkImageLayout layout);
3389
3390 enum anv_fast_clear_type
3391 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3392 const struct anv_image * const image,
3393 const VkImageAspectFlagBits aspect,
3394 const VkImageLayout layout);
3395
3396 /* This is defined as a macro so that it works for both
3397 * VkImageSubresourceRange and VkImageSubresourceLayers
3398 */
3399 #define anv_get_layerCount(_image, _range) \
3400 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3401 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3402
3403 static inline uint32_t
3404 anv_get_levelCount(const struct anv_image *image,
3405 const VkImageSubresourceRange *range)
3406 {
3407 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3408 image->levels - range->baseMipLevel : range->levelCount;
3409 }
3410
3411 static inline VkImageAspectFlags
3412 anv_image_expand_aspects(const struct anv_image *image,
3413 VkImageAspectFlags aspects)
3414 {
3415 /* If the underlying image has color plane aspects and
3416 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3417 * the underlying image. */
3418 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3419 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3420 return image->aspects;
3421
3422 return aspects;
3423 }
3424
3425 static inline bool
3426 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3427 VkImageAspectFlags aspects2)
3428 {
3429 if (aspects1 == aspects2)
3430 return true;
3431
3432 /* Only 1 color aspects are compatibles. */
3433 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3434 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3435 util_bitcount(aspects1) == util_bitcount(aspects2))
3436 return true;
3437
3438 return false;
3439 }
3440
3441 struct anv_image_view {
3442 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3443
3444 VkImageAspectFlags aspect_mask;
3445 VkFormat vk_format;
3446 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3447
3448 unsigned n_planes;
3449 struct {
3450 uint32_t image_plane;
3451
3452 struct isl_view isl;
3453
3454 /**
3455 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3456 * image layout of SHADER_READ_ONLY_OPTIMAL or
3457 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3458 */
3459 struct anv_surface_state optimal_sampler_surface_state;
3460
3461 /**
3462 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3463 * image layout of GENERAL.
3464 */
3465 struct anv_surface_state general_sampler_surface_state;
3466
3467 /**
3468 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3469 * states for write-only and readable, using the real format for
3470 * write-only and the lowered format for readable.
3471 */
3472 struct anv_surface_state storage_surface_state;
3473 struct anv_surface_state writeonly_storage_surface_state;
3474
3475 struct brw_image_param storage_image_param;
3476 } planes[3];
3477 };
3478
3479 enum anv_image_view_state_flags {
3480 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3481 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3482 };
3483
3484 void anv_image_fill_surface_state(struct anv_device *device,
3485 const struct anv_image *image,
3486 VkImageAspectFlagBits aspect,
3487 const struct isl_view *view,
3488 isl_surf_usage_flags_t view_usage,
3489 enum isl_aux_usage aux_usage,
3490 const union isl_color_value *clear_color,
3491 enum anv_image_view_state_flags flags,
3492 struct anv_surface_state *state_inout,
3493 struct brw_image_param *image_param_out);
3494
3495 struct anv_image_create_info {
3496 const VkImageCreateInfo *vk_info;
3497
3498 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3499 isl_tiling_flags_t isl_tiling_flags;
3500
3501 /** These flags will be added to any derived from VkImageCreateInfo. */
3502 isl_surf_usage_flags_t isl_extra_usage_flags;
3503
3504 uint32_t stride;
3505 bool external_format;
3506 };
3507
3508 VkResult anv_image_create(VkDevice _device,
3509 const struct anv_image_create_info *info,
3510 const VkAllocationCallbacks* alloc,
3511 VkImage *pImage);
3512
3513 const struct anv_surface *
3514 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3515 VkImageAspectFlags aspect_mask);
3516
3517 enum isl_format
3518 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3519
3520 static inline struct VkExtent3D
3521 anv_sanitize_image_extent(const VkImageType imageType,
3522 const struct VkExtent3D imageExtent)
3523 {
3524 switch (imageType) {
3525 case VK_IMAGE_TYPE_1D:
3526 return (VkExtent3D) { imageExtent.width, 1, 1 };
3527 case VK_IMAGE_TYPE_2D:
3528 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3529 case VK_IMAGE_TYPE_3D:
3530 return imageExtent;
3531 default:
3532 unreachable("invalid image type");
3533 }
3534 }
3535
3536 static inline struct VkOffset3D
3537 anv_sanitize_image_offset(const VkImageType imageType,
3538 const struct VkOffset3D imageOffset)
3539 {
3540 switch (imageType) {
3541 case VK_IMAGE_TYPE_1D:
3542 return (VkOffset3D) { imageOffset.x, 0, 0 };
3543 case VK_IMAGE_TYPE_2D:
3544 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3545 case VK_IMAGE_TYPE_3D:
3546 return imageOffset;
3547 default:
3548 unreachable("invalid image type");
3549 }
3550 }
3551
3552 VkFormatFeatureFlags
3553 anv_get_image_format_features(const struct gen_device_info *devinfo,
3554 VkFormat vk_format,
3555 const struct anv_format *anv_format,
3556 VkImageTiling vk_tiling);
3557
3558 void anv_fill_buffer_surface_state(struct anv_device *device,
3559 struct anv_state state,
3560 enum isl_format format,
3561 struct anv_address address,
3562 uint32_t range, uint32_t stride);
3563
3564 static inline void
3565 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3566 const struct anv_attachment_state *att_state,
3567 const struct anv_image_view *iview)
3568 {
3569 const struct isl_format_layout *view_fmtl =
3570 isl_format_get_layout(iview->planes[0].isl.format);
3571
3572 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3573 if (view_fmtl->channels.c.bits) \
3574 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3575
3576 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3577 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3578 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3579 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3580
3581 #undef COPY_CLEAR_COLOR_CHANNEL
3582 }
3583
3584
3585 struct anv_ycbcr_conversion {
3586 const struct anv_format * format;
3587 VkSamplerYcbcrModelConversion ycbcr_model;
3588 VkSamplerYcbcrRange ycbcr_range;
3589 VkComponentSwizzle mapping[4];
3590 VkChromaLocation chroma_offsets[2];
3591 VkFilter chroma_filter;
3592 bool chroma_reconstruction;
3593 };
3594
3595 struct anv_sampler {
3596 uint32_t state[3][4];
3597 uint32_t n_planes;
3598 struct anv_ycbcr_conversion *conversion;
3599
3600 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3601 * and with a 32-byte stride for use as bindless samplers.
3602 */
3603 struct anv_state bindless_state;
3604 };
3605
3606 struct anv_framebuffer {
3607 uint32_t width;
3608 uint32_t height;
3609 uint32_t layers;
3610
3611 uint32_t attachment_count;
3612 struct anv_image_view * attachments[0];
3613 };
3614
3615 struct anv_subpass_attachment {
3616 VkImageUsageFlagBits usage;
3617 uint32_t attachment;
3618 VkImageLayout layout;
3619 };
3620
3621 struct anv_subpass {
3622 uint32_t attachment_count;
3623
3624 /**
3625 * A pointer to all attachment references used in this subpass.
3626 * Only valid if ::attachment_count > 0.
3627 */
3628 struct anv_subpass_attachment * attachments;
3629 uint32_t input_count;
3630 struct anv_subpass_attachment * input_attachments;
3631 uint32_t color_count;
3632 struct anv_subpass_attachment * color_attachments;
3633 struct anv_subpass_attachment * resolve_attachments;
3634
3635 struct anv_subpass_attachment * depth_stencil_attachment;
3636 struct anv_subpass_attachment * ds_resolve_attachment;
3637 VkResolveModeFlagBitsKHR depth_resolve_mode;
3638 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3639
3640 uint32_t view_mask;
3641
3642 /** Subpass has a depth/stencil self-dependency */
3643 bool has_ds_self_dep;
3644
3645 /** Subpass has at least one color resolve attachment */
3646 bool has_color_resolve;
3647 };
3648
3649 static inline unsigned
3650 anv_subpass_view_count(const struct anv_subpass *subpass)
3651 {
3652 return MAX2(1, util_bitcount(subpass->view_mask));
3653 }
3654
3655 struct anv_render_pass_attachment {
3656 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3657 * its members individually.
3658 */
3659 VkFormat format;
3660 uint32_t samples;
3661 VkImageUsageFlags usage;
3662 VkAttachmentLoadOp load_op;
3663 VkAttachmentStoreOp store_op;
3664 VkAttachmentLoadOp stencil_load_op;
3665 VkImageLayout initial_layout;
3666 VkImageLayout final_layout;
3667 VkImageLayout first_subpass_layout;
3668
3669 /* The subpass id in which the attachment will be used last. */
3670 uint32_t last_subpass_idx;
3671 };
3672
3673 struct anv_render_pass {
3674 uint32_t attachment_count;
3675 uint32_t subpass_count;
3676 /* An array of subpass_count+1 flushes, one per subpass boundary */
3677 enum anv_pipe_bits * subpass_flushes;
3678 struct anv_render_pass_attachment * attachments;
3679 struct anv_subpass subpasses[0];
3680 };
3681
3682 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3683
3684 struct anv_query_pool {
3685 VkQueryType type;
3686 VkQueryPipelineStatisticFlags pipeline_statistics;
3687 /** Stride between slots, in bytes */
3688 uint32_t stride;
3689 /** Number of slots in this query pool */
3690 uint32_t slots;
3691 struct anv_bo bo;
3692 };
3693
3694 int anv_get_instance_entrypoint_index(const char *name);
3695 int anv_get_device_entrypoint_index(const char *name);
3696
3697 bool
3698 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3699 const struct anv_instance_extension_table *instance);
3700
3701 bool
3702 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3703 const struct anv_instance_extension_table *instance,
3704 const struct anv_device_extension_table *device);
3705
3706 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3707 const char *name);
3708
3709 void anv_dump_image_to_ppm(struct anv_device *device,
3710 struct anv_image *image, unsigned miplevel,
3711 unsigned array_layer, VkImageAspectFlagBits aspect,
3712 const char *filename);
3713
3714 enum anv_dump_action {
3715 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3716 };
3717
3718 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3719 void anv_dump_finish(void);
3720
3721 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3722
3723 static inline uint32_t
3724 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3725 {
3726 /* This function must be called from within a subpass. */
3727 assert(cmd_state->pass && cmd_state->subpass);
3728
3729 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3730
3731 /* The id of this subpass shouldn't exceed the number of subpasses in this
3732 * render pass minus 1.
3733 */
3734 assert(subpass_id < cmd_state->pass->subpass_count);
3735 return subpass_id;
3736 }
3737
3738 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3739 \
3740 static inline struct __anv_type * \
3741 __anv_type ## _from_handle(__VkType _handle) \
3742 { \
3743 return (struct __anv_type *) _handle; \
3744 } \
3745 \
3746 static inline __VkType \
3747 __anv_type ## _to_handle(struct __anv_type *_obj) \
3748 { \
3749 return (__VkType) _obj; \
3750 }
3751
3752 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3753 \
3754 static inline struct __anv_type * \
3755 __anv_type ## _from_handle(__VkType _handle) \
3756 { \
3757 return (struct __anv_type *)(uintptr_t) _handle; \
3758 } \
3759 \
3760 static inline __VkType \
3761 __anv_type ## _to_handle(struct __anv_type *_obj) \
3762 { \
3763 return (__VkType)(uintptr_t) _obj; \
3764 }
3765
3766 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3767 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3768
3769 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3770 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3771 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3772 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3773 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3774
3775 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3776 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3777 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3778 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3779 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3780 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3781 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3782 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3783 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3784 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3785 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3786 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3787 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3788 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3789 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3790 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3791 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3792 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3793 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3794 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3795 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3796 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3797 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3798
3799 /* Gen-specific function declarations */
3800 #ifdef genX
3801 # include "anv_genX.h"
3802 #else
3803 # define genX(x) gen7_##x
3804 # include "anv_genX.h"
3805 # undef genX
3806 # define genX(x) gen75_##x
3807 # include "anv_genX.h"
3808 # undef genX
3809 # define genX(x) gen8_##x
3810 # include "anv_genX.h"
3811 # undef genX
3812 # define genX(x) gen9_##x
3813 # include "anv_genX.h"
3814 # undef genX
3815 # define genX(x) gen10_##x
3816 # include "anv_genX.h"
3817 # undef genX
3818 # define genX(x) gen11_##x
3819 # include "anv_genX.h"
3820 # undef genX
3821 # define genX(x) gen12_##x
3822 # include "anv_genX.h"
3823 # undef genX
3824 #endif
3825
3826 #endif /* ANV_PRIVATE_H */