ff28d897a21b38f6a0f4cd8dcf09d2e8174f1087
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131
132 #define LOW_HEAP_SIZE \
133 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
134 #define DYNAMIC_STATE_POOL_SIZE \
135 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
136 #define BINDING_TABLE_POOL_SIZE \
137 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
138 #define SURFACE_STATE_POOL_SIZE \
139 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
140 #define INSTRUCTION_STATE_POOL_SIZE \
141 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
142
143 /* Allowing different clear colors requires us to perform a depth resolve at
144 * the end of certain render passes. This is because while slow clears store
145 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
146 * See the PRMs for examples describing when additional resolves would be
147 * necessary. To enable fast clears without requiring extra resolves, we set
148 * the clear value to a globally-defined one. We could allow different values
149 * if the user doesn't expect coherent data during or after a render passes
150 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
151 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
152 * 1.0f seems to be the only value used. The only application that doesn't set
153 * this value does so through the usage of an seemingly uninitialized clear
154 * value.
155 */
156 #define ANV_HZ_FC_VAL 1.0f
157
158 #define MAX_VBS 28
159 #define MAX_XFB_BUFFERS 4
160 #define MAX_XFB_STREAMS 4
161 #define MAX_SETS 8
162 #define MAX_RTS 8
163 #define MAX_VIEWPORTS 16
164 #define MAX_SCISSORS 16
165 #define MAX_PUSH_CONSTANTS_SIZE 128
166 #define MAX_DYNAMIC_BUFFERS 16
167 #define MAX_IMAGES 64
168 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
169 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
170 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
171
172 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
173 *
174 * "The surface state model is used when a Binding Table Index (specified
175 * in the message descriptor) of less than 240 is specified. In this model,
176 * the Binding Table Index is used to index into the binding table, and the
177 * binding table entry contains a pointer to the SURFACE_STATE."
178 *
179 * Binding table values above 240 are used for various things in the hardware
180 * such as stateless, stateless with incoherent cache, SLM, and bindless.
181 */
182 #define MAX_BINDING_TABLE_SIZE 240
183
184 /* The kernel relocation API has a limitation of a 32-bit delta value
185 * applied to the address before it is written which, in spite of it being
186 * unsigned, is treated as signed . Because of the way that this maps to
187 * the Vulkan API, we cannot handle an offset into a buffer that does not
188 * fit into a signed 32 bits. The only mechanism we have for dealing with
189 * this at the moment is to limit all VkDeviceMemory objects to a maximum
190 * of 2GB each. The Vulkan spec allows us to do this:
191 *
192 * "Some platforms may have a limit on the maximum size of a single
193 * allocation. For example, certain systems may fail to create
194 * allocations with a size greater than or equal to 4GB. Such a limit is
195 * implementation-dependent, and if such a failure occurs then the error
196 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
197 *
198 * We don't use vk_error here because it's not an error so much as an
199 * indication to the application that the allocation is too large.
200 */
201 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
202
203 #define ANV_SVGS_VB_INDEX MAX_VBS
204 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
205
206 /* We reserve this MI ALU register for the purpose of handling predication.
207 * Other code which uses the MI ALU should leave it alone.
208 */
209 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
210
211 /* For gen12 we set the streamout buffers using 4 separate commands
212 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
213 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
214 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
215 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
216 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
217 * 3DSTATE_SO_BUFFER_INDEX_0.
218 */
219 #define SO_BUFFER_INDEX_0_CMD 0x60
220 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
221
222 static inline uint32_t
223 align_down_npot_u32(uint32_t v, uint32_t a)
224 {
225 return v - (v % a);
226 }
227
228 static inline uint32_t
229 align_u32(uint32_t v, uint32_t a)
230 {
231 assert(a != 0 && a == (a & -a));
232 return (v + a - 1) & ~(a - 1);
233 }
234
235 static inline uint64_t
236 align_u64(uint64_t v, uint64_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return (v + a - 1) & ~(a - 1);
240 }
241
242 static inline int32_t
243 align_i32(int32_t v, int32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return (v + a - 1) & ~(a - 1);
247 }
248
249 /** Alignment must be a power of 2. */
250 static inline bool
251 anv_is_aligned(uintmax_t n, uintmax_t a)
252 {
253 assert(a == (a & -a));
254 return (n & (a - 1)) == 0;
255 }
256
257 static inline uint32_t
258 anv_minify(uint32_t n, uint32_t levels)
259 {
260 if (unlikely(n == 0))
261 return 0;
262 else
263 return MAX2(n >> levels, 1);
264 }
265
266 static inline float
267 anv_clamp_f(float f, float min, float max)
268 {
269 assert(min < max);
270
271 if (f > max)
272 return max;
273 else if (f < min)
274 return min;
275 else
276 return f;
277 }
278
279 static inline bool
280 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
281 {
282 if (*inout_mask & clear_mask) {
283 *inout_mask &= ~clear_mask;
284 return true;
285 } else {
286 return false;
287 }
288 }
289
290 static inline union isl_color_value
291 vk_to_isl_color(VkClearColorValue color)
292 {
293 return (union isl_color_value) {
294 .u32 = {
295 color.uint32[0],
296 color.uint32[1],
297 color.uint32[2],
298 color.uint32[3],
299 },
300 };
301 }
302
303 #define for_each_bit(b, dword) \
304 for (uint32_t __dword = (dword); \
305 (b) = __builtin_ffs(__dword) - 1, __dword; \
306 __dword &= ~(1 << (b)))
307
308 #define typed_memcpy(dest, src, count) ({ \
309 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
310 memcpy((dest), (src), (count) * sizeof(*(src))); \
311 })
312
313 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
314 * to be added here in order to utilize mapping in debug/error/perf macros.
315 */
316 #define REPORT_OBJECT_TYPE(o) \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), void*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
410 /* The void expression results in a compile-time error \
411 when assigning the result to something. */ \
412 (void)0)))))))))))))))))))))))))))))))
413
414 /* Whenever we generate an error, pass it through this function. Useful for
415 * debugging, where we can break on it. Only call at error site, not when
416 * propagating errors. Might be useful to plug in a stack trace here.
417 */
418
419 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
420 VkDebugReportObjectTypeEXT type, VkResult error,
421 const char *file, int line, const char *format,
422 va_list args);
423
424 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
425 VkDebugReportObjectTypeEXT type, VkResult error,
426 const char *file, int line, const char *format, ...)
427 anv_printflike(7, 8);
428
429 #ifdef DEBUG
430 #define vk_error(error) __vk_errorf(NULL, NULL,\
431 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
432 error, __FILE__, __LINE__, NULL)
433 #define vk_errorv(instance, obj, error, format, args)\
434 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
435 __FILE__, __LINE__, format, args)
436 #define vk_errorf(instance, obj, error, format, ...)\
437 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
438 __FILE__, __LINE__, format, ## __VA_ARGS__)
439 #else
440 #define vk_error(error) error
441 #define vk_errorf(instance, obj, error, format, ...) error
442 #endif
443
444 /**
445 * Warn on ignored extension structs.
446 *
447 * The Vulkan spec requires us to ignore unsupported or unknown structs in
448 * a pNext chain. In debug mode, emitting warnings for ignored structs may
449 * help us discover structs that we should not have ignored.
450 *
451 *
452 * From the Vulkan 1.0.38 spec:
453 *
454 * Any component of the implementation (the loader, any enabled layers,
455 * and drivers) must skip over, without processing (other than reading the
456 * sType and pNext members) any chained structures with sType values not
457 * defined by extensions supported by that component.
458 */
459 #define anv_debug_ignored_stype(sType) \
460 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
461
462 void __anv_perf_warn(struct anv_instance *instance, const void *object,
463 VkDebugReportObjectTypeEXT type, const char *file,
464 int line, const char *format, ...)
465 anv_printflike(6, 7);
466 void anv_loge(const char *format, ...) anv_printflike(1, 2);
467 void anv_loge_v(const char *format, va_list va);
468
469 /**
470 * Print a FINISHME message, including its source location.
471 */
472 #define anv_finishme(format, ...) \
473 do { \
474 static bool reported = false; \
475 if (!reported) { \
476 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
477 ##__VA_ARGS__); \
478 reported = true; \
479 } \
480 } while (0)
481
482 /**
483 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
484 */
485 #define anv_perf_warn(instance, obj, format, ...) \
486 do { \
487 static bool reported = false; \
488 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
489 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
490 format, ##__VA_ARGS__); \
491 reported = true; \
492 } \
493 } while (0)
494
495 /* A non-fatal assert. Useful for debugging. */
496 #ifdef DEBUG
497 #define anv_assert(x) ({ \
498 if (unlikely(!(x))) \
499 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
500 })
501 #else
502 #define anv_assert(x)
503 #endif
504
505 /* A multi-pointer allocator
506 *
507 * When copying data structures from the user (such as a render pass), it's
508 * common to need to allocate data for a bunch of different things. Instead
509 * of doing several allocations and having to handle all of the error checking
510 * that entails, it can be easier to do a single allocation. This struct
511 * helps facilitate that. The intended usage looks like this:
512 *
513 * ANV_MULTIALLOC(ma)
514 * anv_multialloc_add(&ma, &main_ptr, 1);
515 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
516 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
517 *
518 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
519 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
520 */
521 struct anv_multialloc {
522 size_t size;
523 size_t align;
524
525 uint32_t ptr_count;
526 void **ptrs[8];
527 };
528
529 #define ANV_MULTIALLOC_INIT \
530 ((struct anv_multialloc) { 0, })
531
532 #define ANV_MULTIALLOC(_name) \
533 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
534
535 __attribute__((always_inline))
536 static inline void
537 _anv_multialloc_add(struct anv_multialloc *ma,
538 void **ptr, size_t size, size_t align)
539 {
540 size_t offset = align_u64(ma->size, align);
541 ma->size = offset + size;
542 ma->align = MAX2(ma->align, align);
543
544 /* Store the offset in the pointer. */
545 *ptr = (void *)(uintptr_t)offset;
546
547 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
548 ma->ptrs[ma->ptr_count++] = ptr;
549 }
550
551 #define anv_multialloc_add_size(_ma, _ptr, _size) \
552 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
553
554 #define anv_multialloc_add(_ma, _ptr, _count) \
555 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
556
557 __attribute__((always_inline))
558 static inline void *
559 anv_multialloc_alloc(struct anv_multialloc *ma,
560 const VkAllocationCallbacks *alloc,
561 VkSystemAllocationScope scope)
562 {
563 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
564 if (!ptr)
565 return NULL;
566
567 /* Fill out each of the pointers with their final value.
568 *
569 * for (uint32_t i = 0; i < ma->ptr_count; i++)
570 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
571 *
572 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
573 * constant, GCC is incapable of figuring this out and unrolling the loop
574 * so we have to give it a little help.
575 */
576 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
577 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
578 if ((_i) < ma->ptr_count) \
579 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
580 _ANV_MULTIALLOC_UPDATE_POINTER(0);
581 _ANV_MULTIALLOC_UPDATE_POINTER(1);
582 _ANV_MULTIALLOC_UPDATE_POINTER(2);
583 _ANV_MULTIALLOC_UPDATE_POINTER(3);
584 _ANV_MULTIALLOC_UPDATE_POINTER(4);
585 _ANV_MULTIALLOC_UPDATE_POINTER(5);
586 _ANV_MULTIALLOC_UPDATE_POINTER(6);
587 _ANV_MULTIALLOC_UPDATE_POINTER(7);
588 #undef _ANV_MULTIALLOC_UPDATE_POINTER
589
590 return ptr;
591 }
592
593 __attribute__((always_inline))
594 static inline void *
595 anv_multialloc_alloc2(struct anv_multialloc *ma,
596 const VkAllocationCallbacks *parent_alloc,
597 const VkAllocationCallbacks *alloc,
598 VkSystemAllocationScope scope)
599 {
600 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
601 }
602
603 struct anv_bo {
604 uint32_t gem_handle;
605
606 uint32_t refcount;
607
608 /* Index into the current validation list. This is used by the
609 * validation list building alrogithm to track which buffers are already
610 * in the validation list so that we can ensure uniqueness.
611 */
612 uint32_t index;
613
614 /* Index for use with util_sparse_array_free_list */
615 uint32_t free_index;
616
617 /* Last known offset. This value is provided by the kernel when we
618 * execbuf and is used as the presumed offset for the next bunch of
619 * relocations.
620 */
621 uint64_t offset;
622
623 uint64_t size;
624
625 /* Map for internally mapped BOs.
626 *
627 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
628 */
629 void *map;
630
631 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
632 uint32_t flags;
633
634 /** True if this BO may be shared with other processes */
635 bool is_external:1;
636
637 /** True if this BO is a wrapper
638 *
639 * When set to true, none of the fields in this BO are meaningful except
640 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
641 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
642 * is set in the physical device.
643 */
644 bool is_wrapper:1;
645
646 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
647 bool has_fixed_address:1;
648
649 /** True if this BO wraps a host pointer */
650 bool from_host_ptr:1;
651 };
652
653 static inline struct anv_bo *
654 anv_bo_unwrap(struct anv_bo *bo)
655 {
656 while (bo->is_wrapper)
657 bo = bo->map;
658 return bo;
659 }
660
661 /* Represents a lock-free linked list of "free" things. This is used by
662 * both the block pool and the state pools. Unfortunately, in order to
663 * solve the ABA problem, we can't use a single uint32_t head.
664 */
665 union anv_free_list {
666 struct {
667 uint32_t offset;
668
669 /* A simple count that is incremented every time the head changes. */
670 uint32_t count;
671 };
672 /* Make sure it's aligned to 64 bits. This will make atomic operations
673 * faster on 32 bit platforms.
674 */
675 uint64_t u64 __attribute__ ((aligned (8)));
676 };
677
678 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
679
680 struct anv_block_state {
681 union {
682 struct {
683 uint32_t next;
684 uint32_t end;
685 };
686 /* Make sure it's aligned to 64 bits. This will make atomic operations
687 * faster on 32 bit platforms.
688 */
689 uint64_t u64 __attribute__ ((aligned (8)));
690 };
691 };
692
693 #define anv_block_pool_foreach_bo(bo, pool) \
694 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
695 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
696 _pp_bo++)
697
698 #define ANV_MAX_BLOCK_POOL_BOS 20
699
700 struct anv_block_pool {
701 struct anv_device *device;
702 bool use_softpin;
703
704 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
705 * around the actual BO so that we grow the pool after the wrapper BO has
706 * been put in a relocation list. This is only used in the non-softpin
707 * case.
708 */
709 struct anv_bo wrapper_bo;
710
711 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
712 struct anv_bo *bo;
713 uint32_t nbos;
714
715 uint64_t size;
716
717 /* The address where the start of the pool is pinned. The various bos that
718 * are created as the pool grows will have addresses in the range
719 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
720 */
721 uint64_t start_address;
722
723 /* The offset from the start of the bo to the "center" of the block
724 * pool. Pointers to allocated blocks are given by
725 * bo.map + center_bo_offset + offsets.
726 */
727 uint32_t center_bo_offset;
728
729 /* Current memory map of the block pool. This pointer may or may not
730 * point to the actual beginning of the block pool memory. If
731 * anv_block_pool_alloc_back has ever been called, then this pointer
732 * will point to the "center" position of the buffer and all offsets
733 * (negative or positive) given out by the block pool alloc functions
734 * will be valid relative to this pointer.
735 *
736 * In particular, map == bo.map + center_offset
737 *
738 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
739 * since it will handle the softpin case as well, where this points to NULL.
740 */
741 void *map;
742 int fd;
743
744 /**
745 * Array of mmaps and gem handles owned by the block pool, reclaimed when
746 * the block pool is destroyed.
747 */
748 struct u_vector mmap_cleanups;
749
750 struct anv_block_state state;
751
752 struct anv_block_state back_state;
753 };
754
755 /* Block pools are backed by a fixed-size 1GB memfd */
756 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
757
758 /* The center of the block pool is also the middle of the memfd. This may
759 * change in the future if we decide differently for some reason.
760 */
761 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
762
763 static inline uint32_t
764 anv_block_pool_size(struct anv_block_pool *pool)
765 {
766 return pool->state.end + pool->back_state.end;
767 }
768
769 struct anv_state {
770 int32_t offset;
771 uint32_t alloc_size;
772 void *map;
773 uint32_t idx;
774 };
775
776 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
777
778 struct anv_fixed_size_state_pool {
779 union anv_free_list free_list;
780 struct anv_block_state block;
781 };
782
783 #define ANV_MIN_STATE_SIZE_LOG2 6
784 #define ANV_MAX_STATE_SIZE_LOG2 21
785
786 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
787
788 struct anv_free_entry {
789 uint32_t next;
790 struct anv_state state;
791 };
792
793 struct anv_state_table {
794 struct anv_device *device;
795 int fd;
796 struct anv_free_entry *map;
797 uint32_t size;
798 struct anv_block_state state;
799 struct u_vector cleanups;
800 };
801
802 struct anv_state_pool {
803 struct anv_block_pool block_pool;
804
805 struct anv_state_table table;
806
807 /* The size of blocks which will be allocated from the block pool */
808 uint32_t block_size;
809
810 /** Free list for "back" allocations */
811 union anv_free_list back_alloc_free_list;
812
813 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
814 };
815
816 struct anv_state_stream_block;
817
818 struct anv_state_stream {
819 struct anv_state_pool *state_pool;
820
821 /* The size of blocks to allocate from the state pool */
822 uint32_t block_size;
823
824 /* Current block we're allocating from */
825 struct anv_state block;
826
827 /* Offset into the current block at which to allocate the next state */
828 uint32_t next;
829
830 /* List of all blocks allocated from this pool */
831 struct anv_state_stream_block *block_list;
832 };
833
834 /* The block_pool functions exported for testing only. The block pool should
835 * only be used via a state pool (see below).
836 */
837 VkResult anv_block_pool_init(struct anv_block_pool *pool,
838 struct anv_device *device,
839 uint64_t start_address,
840 uint32_t initial_size);
841 void anv_block_pool_finish(struct anv_block_pool *pool);
842 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
843 uint32_t block_size, uint32_t *padding);
844 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
845 uint32_t block_size);
846 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
847
848 VkResult anv_state_pool_init(struct anv_state_pool *pool,
849 struct anv_device *device,
850 uint64_t start_address,
851 uint32_t block_size);
852 void anv_state_pool_finish(struct anv_state_pool *pool);
853 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
854 uint32_t state_size, uint32_t alignment);
855 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
856 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
857 void anv_state_stream_init(struct anv_state_stream *stream,
858 struct anv_state_pool *state_pool,
859 uint32_t block_size);
860 void anv_state_stream_finish(struct anv_state_stream *stream);
861 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
862 uint32_t size, uint32_t alignment);
863
864 VkResult anv_state_table_init(struct anv_state_table *table,
865 struct anv_device *device,
866 uint32_t initial_entries);
867 void anv_state_table_finish(struct anv_state_table *table);
868 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
869 uint32_t count);
870 void anv_free_list_push(union anv_free_list *list,
871 struct anv_state_table *table,
872 uint32_t idx, uint32_t count);
873 struct anv_state* anv_free_list_pop(union anv_free_list *list,
874 struct anv_state_table *table);
875
876
877 static inline struct anv_state *
878 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
879 {
880 return &table->map[idx].state;
881 }
882 /**
883 * Implements a pool of re-usable BOs. The interface is identical to that
884 * of block_pool except that each block is its own BO.
885 */
886 struct anv_bo_pool {
887 struct anv_device *device;
888
889 uint64_t bo_flags;
890
891 struct util_sparse_array_free_list free_list[16];
892 };
893
894 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
895 uint64_t bo_flags);
896 void anv_bo_pool_finish(struct anv_bo_pool *pool);
897 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
898 struct anv_bo **bo_out);
899 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
900
901 struct anv_scratch_pool {
902 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
903 struct anv_bo *bos[16][MESA_SHADER_STAGES];
904 };
905
906 void anv_scratch_pool_init(struct anv_device *device,
907 struct anv_scratch_pool *pool);
908 void anv_scratch_pool_finish(struct anv_device *device,
909 struct anv_scratch_pool *pool);
910 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
911 struct anv_scratch_pool *pool,
912 gl_shader_stage stage,
913 unsigned per_thread_scratch);
914
915 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
916 struct anv_bo_cache {
917 struct util_sparse_array bo_map;
918 pthread_mutex_t mutex;
919 };
920
921 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
922 void anv_bo_cache_finish(struct anv_bo_cache *cache);
923
924 struct anv_memory_type {
925 /* Standard bits passed on to the client */
926 VkMemoryPropertyFlags propertyFlags;
927 uint32_t heapIndex;
928
929 /* Driver-internal book-keeping */
930 VkBufferUsageFlags valid_buffer_usage;
931 };
932
933 struct anv_memory_heap {
934 /* Standard bits passed on to the client */
935 VkDeviceSize size;
936 VkMemoryHeapFlags flags;
937
938 /* Driver-internal book-keeping */
939 uint64_t vma_start;
940 uint64_t vma_size;
941 bool supports_48bit_addresses;
942 VkDeviceSize used;
943 };
944
945 struct anv_physical_device {
946 VK_LOADER_DATA _loader_data;
947
948 struct anv_instance * instance;
949 uint32_t chipset_id;
950 bool no_hw;
951 char path[20];
952 const char * name;
953 struct {
954 uint16_t domain;
955 uint8_t bus;
956 uint8_t device;
957 uint8_t function;
958 } pci_info;
959 struct gen_device_info info;
960 /** Amount of "GPU memory" we want to advertise
961 *
962 * Clearly, this value is bogus since Intel is a UMA architecture. On
963 * gen7 platforms, we are limited by GTT size unless we want to implement
964 * fine-grained tracking and GTT splitting. On Broadwell and above we are
965 * practically unlimited. However, we will never report more than 3/4 of
966 * the total system ram to try and avoid running out of RAM.
967 */
968 bool supports_48bit_addresses;
969 struct brw_compiler * compiler;
970 struct isl_device isl_dev;
971 struct gen_perf_config * perf;
972 int cmd_parser_version;
973 bool has_exec_async;
974 bool has_exec_capture;
975 bool has_exec_fence;
976 bool has_syncobj;
977 bool has_syncobj_wait;
978 bool has_context_priority;
979 bool use_softpin;
980 bool has_context_isolation;
981 bool has_mem_available;
982 bool always_use_bindless;
983
984 /** True if we can access buffers using A64 messages */
985 bool has_a64_buffer_access;
986 /** True if we can use bindless access for images */
987 bool has_bindless_images;
988 /** True if we can use bindless access for samplers */
989 bool has_bindless_samplers;
990
991 struct anv_device_extension_table supported_extensions;
992 struct anv_physical_device_dispatch_table dispatch;
993
994 uint32_t eu_total;
995 uint32_t subslice_total;
996
997 struct {
998 uint32_t type_count;
999 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1000 uint32_t heap_count;
1001 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1002 } memory;
1003
1004 uint8_t driver_build_sha1[20];
1005 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1006 uint8_t driver_uuid[VK_UUID_SIZE];
1007 uint8_t device_uuid[VK_UUID_SIZE];
1008
1009 struct disk_cache * disk_cache;
1010
1011 struct wsi_device wsi_device;
1012 int local_fd;
1013 int master_fd;
1014 };
1015
1016 struct anv_app_info {
1017 const char* app_name;
1018 uint32_t app_version;
1019 const char* engine_name;
1020 uint32_t engine_version;
1021 uint32_t api_version;
1022 };
1023
1024 struct anv_instance {
1025 VK_LOADER_DATA _loader_data;
1026
1027 VkAllocationCallbacks alloc;
1028
1029 struct anv_app_info app_info;
1030
1031 struct anv_instance_extension_table enabled_extensions;
1032 struct anv_instance_dispatch_table dispatch;
1033 struct anv_device_dispatch_table device_dispatch;
1034
1035 int physicalDeviceCount;
1036 struct anv_physical_device physicalDevice;
1037
1038 bool pipeline_cache_enabled;
1039
1040 struct vk_debug_report_instance debug_report_callbacks;
1041
1042 struct driOptionCache dri_options;
1043 struct driOptionCache available_dri_options;
1044 };
1045
1046 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1047 void anv_finish_wsi(struct anv_physical_device *physical_device);
1048
1049 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1050 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1051 const char *name);
1052
1053 struct anv_queue {
1054 VK_LOADER_DATA _loader_data;
1055
1056 struct anv_device * device;
1057
1058 VkDeviceQueueCreateFlags flags;
1059 };
1060
1061 struct anv_pipeline_cache {
1062 struct anv_device * device;
1063 pthread_mutex_t mutex;
1064
1065 struct hash_table * nir_cache;
1066
1067 struct hash_table * cache;
1068 };
1069
1070 struct nir_xfb_info;
1071 struct anv_pipeline_bind_map;
1072
1073 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1074 struct anv_device *device,
1075 bool cache_enabled);
1076 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1077
1078 struct anv_shader_bin *
1079 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1080 const void *key, uint32_t key_size);
1081 struct anv_shader_bin *
1082 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1083 const void *key_data, uint32_t key_size,
1084 const void *kernel_data, uint32_t kernel_size,
1085 const void *constant_data,
1086 uint32_t constant_data_size,
1087 const struct brw_stage_prog_data *prog_data,
1088 uint32_t prog_data_size,
1089 const struct brw_compile_stats *stats,
1090 uint32_t num_stats,
1091 const struct nir_xfb_info *xfb_info,
1092 const struct anv_pipeline_bind_map *bind_map);
1093
1094 struct anv_shader_bin *
1095 anv_device_search_for_kernel(struct anv_device *device,
1096 struct anv_pipeline_cache *cache,
1097 const void *key_data, uint32_t key_size,
1098 bool *user_cache_bit);
1099
1100 struct anv_shader_bin *
1101 anv_device_upload_kernel(struct anv_device *device,
1102 struct anv_pipeline_cache *cache,
1103 const void *key_data, uint32_t key_size,
1104 const void *kernel_data, uint32_t kernel_size,
1105 const void *constant_data,
1106 uint32_t constant_data_size,
1107 const struct brw_stage_prog_data *prog_data,
1108 uint32_t prog_data_size,
1109 const struct brw_compile_stats *stats,
1110 uint32_t num_stats,
1111 const struct nir_xfb_info *xfb_info,
1112 const struct anv_pipeline_bind_map *bind_map);
1113
1114 struct nir_shader;
1115 struct nir_shader_compiler_options;
1116
1117 struct nir_shader *
1118 anv_device_search_for_nir(struct anv_device *device,
1119 struct anv_pipeline_cache *cache,
1120 const struct nir_shader_compiler_options *nir_options,
1121 unsigned char sha1_key[20],
1122 void *mem_ctx);
1123
1124 void
1125 anv_device_upload_nir(struct anv_device *device,
1126 struct anv_pipeline_cache *cache,
1127 const struct nir_shader *nir,
1128 unsigned char sha1_key[20]);
1129
1130 struct anv_device {
1131 VK_LOADER_DATA _loader_data;
1132
1133 VkAllocationCallbacks alloc;
1134
1135 struct anv_instance * instance;
1136 uint32_t chipset_id;
1137 bool no_hw;
1138 struct gen_device_info info;
1139 struct isl_device isl_dev;
1140 int context_id;
1141 int fd;
1142 bool can_chain_batches;
1143 bool robust_buffer_access;
1144 struct anv_device_extension_table enabled_extensions;
1145 struct anv_device_dispatch_table dispatch;
1146
1147 pthread_mutex_t vma_mutex;
1148 struct util_vma_heap vma_lo;
1149 struct util_vma_heap vma_hi;
1150 uint64_t vma_lo_available;
1151 uint64_t vma_hi_available;
1152
1153 /** List of all anv_device_memory objects */
1154 struct list_head memory_objects;
1155
1156 struct anv_bo_pool batch_bo_pool;
1157
1158 struct anv_bo_cache bo_cache;
1159
1160 struct anv_state_pool dynamic_state_pool;
1161 struct anv_state_pool instruction_state_pool;
1162 struct anv_state_pool binding_table_pool;
1163 struct anv_state_pool surface_state_pool;
1164
1165 struct anv_bo * workaround_bo;
1166 struct anv_bo * trivial_batch_bo;
1167 struct anv_bo * hiz_clear_bo;
1168
1169 struct anv_pipeline_cache default_pipeline_cache;
1170 struct blorp_context blorp;
1171
1172 struct anv_state border_colors;
1173
1174 struct anv_state slice_hash;
1175
1176 struct anv_queue queue;
1177
1178 struct anv_scratch_pool scratch_pool;
1179
1180 uint32_t default_mocs;
1181 uint32_t external_mocs;
1182
1183 pthread_mutex_t mutex;
1184 pthread_cond_t queue_submit;
1185 int _lost;
1186
1187 struct gen_batch_decode_ctx decoder_ctx;
1188 /*
1189 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1190 * the cmd_buffer's list.
1191 */
1192 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1193
1194 int perf_fd; /* -1 if no opened */
1195 uint64_t perf_metric; /* 0 if unset */
1196
1197 struct gen_aux_map_context *aux_map_ctx;
1198 };
1199
1200 static inline struct anv_state_pool *
1201 anv_binding_table_pool(struct anv_device *device)
1202 {
1203 if (device->instance->physicalDevice.use_softpin)
1204 return &device->binding_table_pool;
1205 else
1206 return &device->surface_state_pool;
1207 }
1208
1209 static inline struct anv_state
1210 anv_binding_table_pool_alloc(struct anv_device *device) {
1211 if (device->instance->physicalDevice.use_softpin)
1212 return anv_state_pool_alloc(&device->binding_table_pool,
1213 device->binding_table_pool.block_size, 0);
1214 else
1215 return anv_state_pool_alloc_back(&device->surface_state_pool);
1216 }
1217
1218 static inline void
1219 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1220 anv_state_pool_free(anv_binding_table_pool(device), state);
1221 }
1222
1223 static inline uint32_t
1224 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1225 {
1226 if (bo->is_external)
1227 return device->external_mocs;
1228 else
1229 return device->default_mocs;
1230 }
1231
1232 void anv_device_init_blorp(struct anv_device *device);
1233 void anv_device_finish_blorp(struct anv_device *device);
1234
1235 void _anv_device_set_all_queue_lost(struct anv_device *device);
1236 VkResult _anv_device_set_lost(struct anv_device *device,
1237 const char *file, int line,
1238 const char *msg, ...)
1239 anv_printflike(4, 5);
1240 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1241 const char *file, int line,
1242 const char *msg, ...)
1243 anv_printflike(4, 5);
1244 #define anv_device_set_lost(dev, ...) \
1245 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1246 #define anv_queue_set_lost(queue, ...) \
1247 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1248
1249 static inline bool
1250 anv_device_is_lost(struct anv_device *device)
1251 {
1252 return unlikely(p_atomic_read(&device->_lost));
1253 }
1254
1255 VkResult anv_device_query_status(struct anv_device *device);
1256
1257
1258 enum anv_bo_alloc_flags {
1259 /** Specifies that the BO must have a 32-bit address
1260 *
1261 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1262 */
1263 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1264
1265 /** Specifies that the BO may be shared externally */
1266 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1267
1268 /** Specifies that the BO should be mapped */
1269 ANV_BO_ALLOC_MAPPED = (1 << 2),
1270
1271 /** Specifies that the BO should be snooped so we get coherency */
1272 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1273
1274 /** Specifies that the BO should be captured in error states */
1275 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1276
1277 /** Specifies that the BO will have an address assigned by the caller */
1278 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1279
1280 /** Enables implicit synchronization on the BO
1281 *
1282 * This is the opposite of EXEC_OBJECT_ASYNC.
1283 */
1284 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1285
1286 /** Enables implicit synchronization on the BO
1287 *
1288 * This is equivalent to EXEC_OBJECT_WRITE.
1289 */
1290 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1291 };
1292
1293 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1294 enum anv_bo_alloc_flags alloc_flags,
1295 struct anv_bo **bo);
1296 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1297 void *host_ptr, uint32_t size,
1298 enum anv_bo_alloc_flags alloc_flags,
1299 struct anv_bo **bo_out);
1300 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1301 enum anv_bo_alloc_flags alloc_flags,
1302 struct anv_bo **bo);
1303 VkResult anv_device_export_bo(struct anv_device *device,
1304 struct anv_bo *bo, int *fd_out);
1305 void anv_device_release_bo(struct anv_device *device,
1306 struct anv_bo *bo);
1307
1308 static inline struct anv_bo *
1309 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1310 {
1311 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1312 }
1313
1314 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1315 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1316 int64_t timeout);
1317
1318 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1319 void anv_queue_finish(struct anv_queue *queue);
1320
1321 VkResult anv_queue_execbuf(struct anv_queue *queue,
1322 struct drm_i915_gem_execbuffer2 *execbuf,
1323 struct anv_bo **execbuf_bos);
1324 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1325 struct anv_batch *batch);
1326
1327 uint64_t anv_gettime_ns(void);
1328 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1329
1330 void* anv_gem_mmap(struct anv_device *device,
1331 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1332 void anv_gem_munmap(void *p, uint64_t size);
1333 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1334 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1335 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1336 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1337 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1338 int anv_gem_execbuffer(struct anv_device *device,
1339 struct drm_i915_gem_execbuffer2 *execbuf);
1340 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1341 uint32_t stride, uint32_t tiling);
1342 int anv_gem_create_context(struct anv_device *device);
1343 bool anv_gem_has_context_priority(int fd);
1344 int anv_gem_destroy_context(struct anv_device *device, int context);
1345 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1346 uint64_t value);
1347 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1348 uint64_t *value);
1349 int anv_gem_get_param(int fd, uint32_t param);
1350 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1351 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1352 int anv_gem_get_aperture(int fd, uint64_t *size);
1353 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1354 uint32_t *active, uint32_t *pending);
1355 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1356 int anv_gem_reg_read(struct anv_device *device,
1357 uint32_t offset, uint64_t *result);
1358 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1359 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1360 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1361 uint32_t read_domains, uint32_t write_domain);
1362 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1363 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1364 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1365 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1366 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1367 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1368 uint32_t handle);
1369 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1370 uint32_t handle, int fd);
1371 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1372 bool anv_gem_supports_syncobj_wait(int fd);
1373 int anv_gem_syncobj_wait(struct anv_device *device,
1374 uint32_t *handles, uint32_t num_handles,
1375 int64_t abs_timeout_ns, bool wait_all);
1376
1377 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1378 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1379
1380 struct anv_reloc_list {
1381 uint32_t num_relocs;
1382 uint32_t array_length;
1383 struct drm_i915_gem_relocation_entry * relocs;
1384 struct anv_bo ** reloc_bos;
1385 uint32_t dep_words;
1386 BITSET_WORD * deps;
1387 };
1388
1389 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1390 const VkAllocationCallbacks *alloc);
1391 void anv_reloc_list_finish(struct anv_reloc_list *list,
1392 const VkAllocationCallbacks *alloc);
1393
1394 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1395 const VkAllocationCallbacks *alloc,
1396 uint32_t offset, struct anv_bo *target_bo,
1397 uint32_t delta, uint64_t *address_u64_out);
1398
1399 struct anv_batch_bo {
1400 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1401 struct list_head link;
1402
1403 struct anv_bo * bo;
1404
1405 /* Bytes actually consumed in this batch BO */
1406 uint32_t length;
1407
1408 struct anv_reloc_list relocs;
1409 };
1410
1411 struct anv_batch {
1412 const VkAllocationCallbacks * alloc;
1413
1414 void * start;
1415 void * end;
1416 void * next;
1417
1418 struct anv_reloc_list * relocs;
1419
1420 /* This callback is called (with the associated user data) in the event
1421 * that the batch runs out of space.
1422 */
1423 VkResult (*extend_cb)(struct anv_batch *, void *);
1424 void * user_data;
1425
1426 /**
1427 * Current error status of the command buffer. Used to track inconsistent
1428 * or incomplete command buffer states that are the consequence of run-time
1429 * errors such as out of memory scenarios. We want to track this in the
1430 * batch because the command buffer object is not visible to some parts
1431 * of the driver.
1432 */
1433 VkResult status;
1434 };
1435
1436 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1437 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1438 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1439 void *location, struct anv_bo *bo, uint32_t offset);
1440
1441 static inline VkResult
1442 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1443 {
1444 assert(error != VK_SUCCESS);
1445 if (batch->status == VK_SUCCESS)
1446 batch->status = error;
1447 return batch->status;
1448 }
1449
1450 static inline bool
1451 anv_batch_has_error(struct anv_batch *batch)
1452 {
1453 return batch->status != VK_SUCCESS;
1454 }
1455
1456 struct anv_address {
1457 struct anv_bo *bo;
1458 uint32_t offset;
1459 };
1460
1461 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1462
1463 static inline bool
1464 anv_address_is_null(struct anv_address addr)
1465 {
1466 return addr.bo == NULL && addr.offset == 0;
1467 }
1468
1469 static inline uint64_t
1470 anv_address_physical(struct anv_address addr)
1471 {
1472 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1473 return gen_canonical_address(addr.bo->offset + addr.offset);
1474 else
1475 return gen_canonical_address(addr.offset);
1476 }
1477
1478 static inline struct anv_address
1479 anv_address_add(struct anv_address addr, uint64_t offset)
1480 {
1481 addr.offset += offset;
1482 return addr;
1483 }
1484
1485 static inline void
1486 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1487 {
1488 unsigned reloc_size = 0;
1489 if (device->info.gen >= 8) {
1490 reloc_size = sizeof(uint64_t);
1491 *(uint64_t *)p = gen_canonical_address(v);
1492 } else {
1493 reloc_size = sizeof(uint32_t);
1494 *(uint32_t *)p = v;
1495 }
1496
1497 if (flush && !device->info.has_llc)
1498 gen_flush_range(p, reloc_size);
1499 }
1500
1501 static inline uint64_t
1502 _anv_combine_address(struct anv_batch *batch, void *location,
1503 const struct anv_address address, uint32_t delta)
1504 {
1505 if (address.bo == NULL) {
1506 return address.offset + delta;
1507 } else {
1508 assert(batch->start <= location && location < batch->end);
1509
1510 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1511 }
1512 }
1513
1514 #define __gen_address_type struct anv_address
1515 #define __gen_user_data struct anv_batch
1516 #define __gen_combine_address _anv_combine_address
1517
1518 /* Wrapper macros needed to work around preprocessor argument issues. In
1519 * particular, arguments don't get pre-evaluated if they are concatenated.
1520 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1521 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1522 * We can work around this easily enough with these helpers.
1523 */
1524 #define __anv_cmd_length(cmd) cmd ## _length
1525 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1526 #define __anv_cmd_header(cmd) cmd ## _header
1527 #define __anv_cmd_pack(cmd) cmd ## _pack
1528 #define __anv_reg_num(reg) reg ## _num
1529
1530 #define anv_pack_struct(dst, struc, ...) do { \
1531 struct struc __template = { \
1532 __VA_ARGS__ \
1533 }; \
1534 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1535 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1536 } while (0)
1537
1538 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1539 void *__dst = anv_batch_emit_dwords(batch, n); \
1540 if (__dst) { \
1541 struct cmd __template = { \
1542 __anv_cmd_header(cmd), \
1543 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1544 __VA_ARGS__ \
1545 }; \
1546 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1547 } \
1548 __dst; \
1549 })
1550
1551 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1552 do { \
1553 uint32_t *dw; \
1554 \
1555 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1556 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1557 if (!dw) \
1558 break; \
1559 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1560 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1561 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1562 } while (0)
1563
1564 #define anv_batch_emit(batch, cmd, name) \
1565 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1566 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1567 __builtin_expect(_dst != NULL, 1); \
1568 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1569 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1570 _dst = NULL; \
1571 }))
1572
1573 /* MEMORY_OBJECT_CONTROL_STATE:
1574 * .GraphicsDataTypeGFDT = 0,
1575 * .LLCCacheabilityControlLLCCC = 0,
1576 * .L3CacheabilityControlL3CC = 1,
1577 */
1578 #define GEN7_MOCS 1
1579
1580 /* MEMORY_OBJECT_CONTROL_STATE:
1581 * .LLCeLLCCacheabilityControlLLCCC = 0,
1582 * .L3CacheabilityControlL3CC = 1,
1583 */
1584 #define GEN75_MOCS 1
1585
1586 /* MEMORY_OBJECT_CONTROL_STATE:
1587 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1588 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1589 * .AgeforQUADLRU = 0
1590 */
1591 #define GEN8_MOCS 0x78
1592
1593 /* MEMORY_OBJECT_CONTROL_STATE:
1594 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1595 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1596 * .AgeforQUADLRU = 0
1597 */
1598 #define GEN8_EXTERNAL_MOCS 0x18
1599
1600 /* Skylake: MOCS is now an index into an array of 62 different caching
1601 * configurations programmed by the kernel.
1602 */
1603
1604 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1605 #define GEN9_MOCS (2 << 1)
1606
1607 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1608 #define GEN9_EXTERNAL_MOCS (1 << 1)
1609
1610 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1611 #define GEN10_MOCS GEN9_MOCS
1612 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1613
1614 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1615 #define GEN11_MOCS GEN9_MOCS
1616 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1617
1618 /* TigerLake MOCS */
1619 #define GEN12_MOCS GEN9_MOCS
1620 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1621 #define GEN12_EXTERNAL_MOCS (3 << 1)
1622
1623 struct anv_device_memory {
1624 struct list_head link;
1625
1626 struct anv_bo * bo;
1627 struct anv_memory_type * type;
1628 VkDeviceSize map_size;
1629 void * map;
1630
1631 /* If set, we are holding reference to AHardwareBuffer
1632 * which we must release when memory is freed.
1633 */
1634 struct AHardwareBuffer * ahw;
1635
1636 /* If set, this memory comes from a host pointer. */
1637 void * host_ptr;
1638 };
1639
1640 /**
1641 * Header for Vertex URB Entry (VUE)
1642 */
1643 struct anv_vue_header {
1644 uint32_t Reserved;
1645 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1646 uint32_t ViewportIndex;
1647 float PointWidth;
1648 };
1649
1650 /** Struct representing a sampled image descriptor
1651 *
1652 * This descriptor layout is used for sampled images, bare sampler, and
1653 * combined image/sampler descriptors.
1654 */
1655 struct anv_sampled_image_descriptor {
1656 /** Bindless image handle
1657 *
1658 * This is expected to already be shifted such that the 20-bit
1659 * SURFACE_STATE table index is in the top 20 bits.
1660 */
1661 uint32_t image;
1662
1663 /** Bindless sampler handle
1664 *
1665 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1666 * to the dynamic state base address.
1667 */
1668 uint32_t sampler;
1669 };
1670
1671 struct anv_texture_swizzle_descriptor {
1672 /** Texture swizzle
1673 *
1674 * See also nir_intrinsic_channel_select_intel
1675 */
1676 uint8_t swizzle[4];
1677
1678 /** Unused padding to ensure the struct is a multiple of 64 bits */
1679 uint32_t _pad;
1680 };
1681
1682 /** Struct representing a storage image descriptor */
1683 struct anv_storage_image_descriptor {
1684 /** Bindless image handles
1685 *
1686 * These are expected to already be shifted such that the 20-bit
1687 * SURFACE_STATE table index is in the top 20 bits.
1688 */
1689 uint32_t read_write;
1690 uint32_t write_only;
1691 };
1692
1693 /** Struct representing a address/range descriptor
1694 *
1695 * The fields of this struct correspond directly to the data layout of
1696 * nir_address_format_64bit_bounded_global addresses. The last field is the
1697 * offset in the NIR address so it must be zero so that when you load the
1698 * descriptor you get a pointer to the start of the range.
1699 */
1700 struct anv_address_range_descriptor {
1701 uint64_t address;
1702 uint32_t range;
1703 uint32_t zero;
1704 };
1705
1706 enum anv_descriptor_data {
1707 /** The descriptor contains a BTI reference to a surface state */
1708 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1709 /** The descriptor contains a BTI reference to a sampler state */
1710 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1711 /** The descriptor contains an actual buffer view */
1712 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1713 /** The descriptor contains auxiliary image layout data */
1714 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1715 /** The descriptor contains auxiliary image layout data */
1716 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1717 /** anv_address_range_descriptor with a buffer address and range */
1718 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1719 /** Bindless surface handle */
1720 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1721 /** Storage image handles */
1722 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1723 /** Storage image handles */
1724 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1725 };
1726
1727 struct anv_descriptor_set_binding_layout {
1728 #ifndef NDEBUG
1729 /* The type of the descriptors in this binding */
1730 VkDescriptorType type;
1731 #endif
1732
1733 /* Flags provided when this binding was created */
1734 VkDescriptorBindingFlagsEXT flags;
1735
1736 /* Bitfield representing the type of data this descriptor contains */
1737 enum anv_descriptor_data data;
1738
1739 /* Maximum number of YCbCr texture/sampler planes */
1740 uint8_t max_plane_count;
1741
1742 /* Number of array elements in this binding (or size in bytes for inline
1743 * uniform data)
1744 */
1745 uint16_t array_size;
1746
1747 /* Index into the flattend descriptor set */
1748 uint16_t descriptor_index;
1749
1750 /* Index into the dynamic state array for a dynamic buffer */
1751 int16_t dynamic_offset_index;
1752
1753 /* Index into the descriptor set buffer views */
1754 int16_t buffer_view_index;
1755
1756 /* Offset into the descriptor buffer where this descriptor lives */
1757 uint32_t descriptor_offset;
1758
1759 /* Immutable samplers (or NULL if no immutable samplers) */
1760 struct anv_sampler **immutable_samplers;
1761 };
1762
1763 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1764
1765 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1766 VkDescriptorType type);
1767
1768 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1769 const struct anv_descriptor_set_binding_layout *binding,
1770 bool sampler);
1771
1772 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1773 const struct anv_descriptor_set_binding_layout *binding,
1774 bool sampler);
1775
1776 struct anv_descriptor_set_layout {
1777 /* Descriptor set layouts can be destroyed at almost any time */
1778 uint32_t ref_cnt;
1779
1780 /* Number of bindings in this descriptor set */
1781 uint16_t binding_count;
1782
1783 /* Total size of the descriptor set with room for all array entries */
1784 uint16_t size;
1785
1786 /* Shader stages affected by this descriptor set */
1787 uint16_t shader_stages;
1788
1789 /* Number of buffer views in this descriptor set */
1790 uint16_t buffer_view_count;
1791
1792 /* Number of dynamic offsets used by this descriptor set */
1793 uint16_t dynamic_offset_count;
1794
1795 /* Size of the descriptor buffer for this descriptor set */
1796 uint32_t descriptor_buffer_size;
1797
1798 /* Bindings in this descriptor set */
1799 struct anv_descriptor_set_binding_layout binding[0];
1800 };
1801
1802 static inline void
1803 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1804 {
1805 assert(layout && layout->ref_cnt >= 1);
1806 p_atomic_inc(&layout->ref_cnt);
1807 }
1808
1809 static inline void
1810 anv_descriptor_set_layout_unref(struct anv_device *device,
1811 struct anv_descriptor_set_layout *layout)
1812 {
1813 assert(layout && layout->ref_cnt >= 1);
1814 if (p_atomic_dec_zero(&layout->ref_cnt))
1815 vk_free(&device->alloc, layout);
1816 }
1817
1818 struct anv_descriptor {
1819 VkDescriptorType type;
1820
1821 union {
1822 struct {
1823 VkImageLayout layout;
1824 struct anv_image_view *image_view;
1825 struct anv_sampler *sampler;
1826 };
1827
1828 struct {
1829 struct anv_buffer *buffer;
1830 uint64_t offset;
1831 uint64_t range;
1832 };
1833
1834 struct anv_buffer_view *buffer_view;
1835 };
1836 };
1837
1838 struct anv_descriptor_set {
1839 struct anv_descriptor_pool *pool;
1840 struct anv_descriptor_set_layout *layout;
1841 uint32_t size;
1842
1843 /* State relative to anv_descriptor_pool::bo */
1844 struct anv_state desc_mem;
1845 /* Surface state for the descriptor buffer */
1846 struct anv_state desc_surface_state;
1847
1848 uint32_t buffer_view_count;
1849 struct anv_buffer_view *buffer_views;
1850
1851 /* Link to descriptor pool's desc_sets list . */
1852 struct list_head pool_link;
1853
1854 struct anv_descriptor descriptors[0];
1855 };
1856
1857 struct anv_buffer_view {
1858 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1859 uint64_t range; /**< VkBufferViewCreateInfo::range */
1860
1861 struct anv_address address;
1862
1863 struct anv_state surface_state;
1864 struct anv_state storage_surface_state;
1865 struct anv_state writeonly_storage_surface_state;
1866
1867 struct brw_image_param storage_image_param;
1868 };
1869
1870 struct anv_push_descriptor_set {
1871 struct anv_descriptor_set set;
1872
1873 /* Put this field right behind anv_descriptor_set so it fills up the
1874 * descriptors[0] field. */
1875 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1876
1877 /** True if the descriptor set buffer has been referenced by a draw or
1878 * dispatch command.
1879 */
1880 bool set_used_on_gpu;
1881
1882 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1883 };
1884
1885 struct anv_descriptor_pool {
1886 uint32_t size;
1887 uint32_t next;
1888 uint32_t free_list;
1889
1890 struct anv_bo *bo;
1891 struct util_vma_heap bo_heap;
1892
1893 struct anv_state_stream surface_state_stream;
1894 void *surface_state_free_list;
1895
1896 struct list_head desc_sets;
1897
1898 char data[0];
1899 };
1900
1901 enum anv_descriptor_template_entry_type {
1902 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1903 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1904 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1905 };
1906
1907 struct anv_descriptor_template_entry {
1908 /* The type of descriptor in this entry */
1909 VkDescriptorType type;
1910
1911 /* Binding in the descriptor set */
1912 uint32_t binding;
1913
1914 /* Offset at which to write into the descriptor set binding */
1915 uint32_t array_element;
1916
1917 /* Number of elements to write into the descriptor set binding */
1918 uint32_t array_count;
1919
1920 /* Offset into the user provided data */
1921 size_t offset;
1922
1923 /* Stride between elements into the user provided data */
1924 size_t stride;
1925 };
1926
1927 struct anv_descriptor_update_template {
1928 VkPipelineBindPoint bind_point;
1929
1930 /* The descriptor set this template corresponds to. This value is only
1931 * valid if the template was created with the templateType
1932 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1933 */
1934 uint8_t set;
1935
1936 /* Number of entries in this template */
1937 uint32_t entry_count;
1938
1939 /* Entries of the template */
1940 struct anv_descriptor_template_entry entries[0];
1941 };
1942
1943 size_t
1944 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1945
1946 void
1947 anv_descriptor_set_write_image_view(struct anv_device *device,
1948 struct anv_descriptor_set *set,
1949 const VkDescriptorImageInfo * const info,
1950 VkDescriptorType type,
1951 uint32_t binding,
1952 uint32_t element);
1953
1954 void
1955 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1956 struct anv_descriptor_set *set,
1957 VkDescriptorType type,
1958 struct anv_buffer_view *buffer_view,
1959 uint32_t binding,
1960 uint32_t element);
1961
1962 void
1963 anv_descriptor_set_write_buffer(struct anv_device *device,
1964 struct anv_descriptor_set *set,
1965 struct anv_state_stream *alloc_stream,
1966 VkDescriptorType type,
1967 struct anv_buffer *buffer,
1968 uint32_t binding,
1969 uint32_t element,
1970 VkDeviceSize offset,
1971 VkDeviceSize range);
1972 void
1973 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1974 struct anv_descriptor_set *set,
1975 uint32_t binding,
1976 const void *data,
1977 size_t offset,
1978 size_t size);
1979
1980 void
1981 anv_descriptor_set_write_template(struct anv_device *device,
1982 struct anv_descriptor_set *set,
1983 struct anv_state_stream *alloc_stream,
1984 const struct anv_descriptor_update_template *template,
1985 const void *data);
1986
1987 VkResult
1988 anv_descriptor_set_create(struct anv_device *device,
1989 struct anv_descriptor_pool *pool,
1990 struct anv_descriptor_set_layout *layout,
1991 struct anv_descriptor_set **out_set);
1992
1993 void
1994 anv_descriptor_set_destroy(struct anv_device *device,
1995 struct anv_descriptor_pool *pool,
1996 struct anv_descriptor_set *set);
1997
1998 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
1999 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2000 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2001 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2002
2003 struct anv_pipeline_binding {
2004 /* The descriptor set this surface corresponds to. The special value of
2005 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
2006 * to a color attachment and not a regular descriptor.
2007 */
2008 uint8_t set;
2009
2010 /* Binding in the descriptor set */
2011 uint32_t binding;
2012
2013 /* Index in the binding */
2014 uint32_t index;
2015
2016 /* Plane in the binding index */
2017 uint8_t plane;
2018
2019 /* Input attachment index (relative to the subpass) */
2020 uint8_t input_attachment_index;
2021
2022 /* For a storage image, whether it is write-only */
2023 bool write_only;
2024 };
2025
2026 struct anv_pipeline_layout {
2027 struct {
2028 struct anv_descriptor_set_layout *layout;
2029 uint32_t dynamic_offset_start;
2030 } set[MAX_SETS];
2031
2032 uint32_t num_sets;
2033
2034 unsigned char sha1[20];
2035 };
2036
2037 struct anv_buffer {
2038 struct anv_device * device;
2039 VkDeviceSize size;
2040
2041 VkBufferUsageFlags usage;
2042
2043 /* Set when bound */
2044 struct anv_address address;
2045 };
2046
2047 static inline uint64_t
2048 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2049 {
2050 assert(offset <= buffer->size);
2051 if (range == VK_WHOLE_SIZE) {
2052 return buffer->size - offset;
2053 } else {
2054 assert(range + offset >= range);
2055 assert(range + offset <= buffer->size);
2056 return range;
2057 }
2058 }
2059
2060 enum anv_cmd_dirty_bits {
2061 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2062 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2063 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2064 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2065 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2066 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2067 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2068 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2069 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2070 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2071 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2072 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2073 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2074 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2075 };
2076 typedef uint32_t anv_cmd_dirty_mask_t;
2077
2078 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2079 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2080 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2081 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2082 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2083 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2084 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2085 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2086 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2087 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2088 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2089
2090 static inline enum anv_cmd_dirty_bits
2091 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2092 {
2093 switch (vk_state) {
2094 case VK_DYNAMIC_STATE_VIEWPORT:
2095 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2096 case VK_DYNAMIC_STATE_SCISSOR:
2097 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2098 case VK_DYNAMIC_STATE_LINE_WIDTH:
2099 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2100 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2101 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2102 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2103 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2104 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2105 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2106 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2107 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2108 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2109 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2110 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2111 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2112 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2113 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2114 default:
2115 assert(!"Unsupported dynamic state");
2116 return 0;
2117 }
2118 }
2119
2120
2121 enum anv_pipe_bits {
2122 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2123 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2124 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2125 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2126 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2127 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2128 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2129 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2130 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2131 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2132 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2133 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2134
2135 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2136 * a flush has happened but not a CS stall. The next time we do any sort
2137 * of invalidation we need to insert a CS stall at that time. Otherwise,
2138 * we would have to CS stall on every flush which could be bad.
2139 */
2140 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2141
2142 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2143 * target operations related to transfer commands with VkBuffer as
2144 * destination are ongoing. Some operations like copies on the command
2145 * streamer might need to be aware of this to trigger the appropriate stall
2146 * before they can proceed with the copy.
2147 */
2148 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2149 };
2150
2151 #define ANV_PIPE_FLUSH_BITS ( \
2152 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2153 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2154 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2155 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2156
2157 #define ANV_PIPE_STALL_BITS ( \
2158 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2159 ANV_PIPE_DEPTH_STALL_BIT | \
2160 ANV_PIPE_CS_STALL_BIT)
2161
2162 #define ANV_PIPE_INVALIDATE_BITS ( \
2163 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2164 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2165 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2166 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2167 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2168 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2169
2170 static inline enum anv_pipe_bits
2171 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2172 {
2173 enum anv_pipe_bits pipe_bits = 0;
2174
2175 unsigned b;
2176 for_each_bit(b, flags) {
2177 switch ((VkAccessFlagBits)(1 << b)) {
2178 case VK_ACCESS_SHADER_WRITE_BIT:
2179 /* We're transitioning a buffer that was previously used as write
2180 * destination through the data port. To make its content available
2181 * to future operations, flush the data cache.
2182 */
2183 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2184 break;
2185 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2186 /* We're transitioning a buffer that was previously used as render
2187 * target. To make its content available to future operations, flush
2188 * the render target cache.
2189 */
2190 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2191 break;
2192 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2193 /* We're transitioning a buffer that was previously used as depth
2194 * buffer. To make its content available to future operations, flush
2195 * the depth cache.
2196 */
2197 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2198 break;
2199 case VK_ACCESS_TRANSFER_WRITE_BIT:
2200 /* We're transitioning a buffer that was previously used as a
2201 * transfer write destination. Generic write operations include color
2202 * & depth operations as well as buffer operations like :
2203 * - vkCmdClearColorImage()
2204 * - vkCmdClearDepthStencilImage()
2205 * - vkCmdBlitImage()
2206 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2207 *
2208 * Most of these operations are implemented using Blorp which writes
2209 * through the render target, so flush that cache to make it visible
2210 * to future operations. And for depth related operations we also
2211 * need to flush the depth cache.
2212 */
2213 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2214 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2215 break;
2216 case VK_ACCESS_MEMORY_WRITE_BIT:
2217 /* We're transitioning a buffer for generic write operations. Flush
2218 * all the caches.
2219 */
2220 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2221 break;
2222 default:
2223 break; /* Nothing to do */
2224 }
2225 }
2226
2227 return pipe_bits;
2228 }
2229
2230 static inline enum anv_pipe_bits
2231 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2232 {
2233 enum anv_pipe_bits pipe_bits = 0;
2234
2235 unsigned b;
2236 for_each_bit(b, flags) {
2237 switch ((VkAccessFlagBits)(1 << b)) {
2238 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2239 /* Indirect draw commands take a buffer as input that we're going to
2240 * read from the command streamer to load some of the HW registers
2241 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2242 * command streamer stall so that all the cache flushes have
2243 * completed before the command streamer loads from memory.
2244 */
2245 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2246 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2247 * through a vertex buffer, so invalidate that cache.
2248 */
2249 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2250 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2251 * UBO from the buffer, so we need to invalidate constant cache.
2252 */
2253 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2254 break;
2255 case VK_ACCESS_INDEX_READ_BIT:
2256 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2257 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2258 * commands, so we invalidate the VF cache to make sure there is no
2259 * stale data when we start rendering.
2260 */
2261 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2262 break;
2263 case VK_ACCESS_UNIFORM_READ_BIT:
2264 /* We transitioning a buffer to be used as uniform data. Because
2265 * uniform is accessed through the data port & sampler, we need to
2266 * invalidate the texture cache (sampler) & constant cache (data
2267 * port) to avoid stale data.
2268 */
2269 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2270 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2271 break;
2272 case VK_ACCESS_SHADER_READ_BIT:
2273 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2274 case VK_ACCESS_TRANSFER_READ_BIT:
2275 /* Transitioning a buffer to be read through the sampler, so
2276 * invalidate the texture cache, we don't want any stale data.
2277 */
2278 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2279 break;
2280 case VK_ACCESS_MEMORY_READ_BIT:
2281 /* Transitioning a buffer for generic read, invalidate all the
2282 * caches.
2283 */
2284 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2285 break;
2286 case VK_ACCESS_MEMORY_WRITE_BIT:
2287 /* Generic write, make sure all previously written things land in
2288 * memory.
2289 */
2290 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2291 break;
2292 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2293 /* Transitioning a buffer for conditional rendering. We'll load the
2294 * content of this buffer into HW registers using the command
2295 * streamer, so we need to stall the command streamer to make sure
2296 * any in-flight flush operations have completed.
2297 */
2298 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2299 break;
2300 default:
2301 break; /* Nothing to do */
2302 }
2303 }
2304
2305 return pipe_bits;
2306 }
2307
2308 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2309 VK_IMAGE_ASPECT_COLOR_BIT | \
2310 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2311 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2312 VK_IMAGE_ASPECT_PLANE_2_BIT)
2313 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2314 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2315 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2316 VK_IMAGE_ASPECT_PLANE_2_BIT)
2317
2318 struct anv_vertex_binding {
2319 struct anv_buffer * buffer;
2320 VkDeviceSize offset;
2321 };
2322
2323 struct anv_xfb_binding {
2324 struct anv_buffer * buffer;
2325 VkDeviceSize offset;
2326 VkDeviceSize size;
2327 };
2328
2329 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2330 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2331 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2332
2333 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2334 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2335 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2336
2337 struct anv_push_constants {
2338 /* Push constant data provided by the client through vkPushConstants */
2339 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2340
2341 /* Used for vkCmdDispatchBase */
2342 uint32_t base_work_group_id[3];
2343 };
2344
2345 struct anv_dynamic_state {
2346 struct {
2347 uint32_t count;
2348 VkViewport viewports[MAX_VIEWPORTS];
2349 } viewport;
2350
2351 struct {
2352 uint32_t count;
2353 VkRect2D scissors[MAX_SCISSORS];
2354 } scissor;
2355
2356 float line_width;
2357
2358 struct {
2359 float bias;
2360 float clamp;
2361 float slope;
2362 } depth_bias;
2363
2364 float blend_constants[4];
2365
2366 struct {
2367 float min;
2368 float max;
2369 } depth_bounds;
2370
2371 struct {
2372 uint32_t front;
2373 uint32_t back;
2374 } stencil_compare_mask;
2375
2376 struct {
2377 uint32_t front;
2378 uint32_t back;
2379 } stencil_write_mask;
2380
2381 struct {
2382 uint32_t front;
2383 uint32_t back;
2384 } stencil_reference;
2385
2386 struct {
2387 uint32_t factor;
2388 uint16_t pattern;
2389 } line_stipple;
2390 };
2391
2392 extern const struct anv_dynamic_state default_dynamic_state;
2393
2394 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2395 const struct anv_dynamic_state *src,
2396 uint32_t copy_mask);
2397
2398 struct anv_surface_state {
2399 struct anv_state state;
2400 /** Address of the surface referred to by this state
2401 *
2402 * This address is relative to the start of the BO.
2403 */
2404 struct anv_address address;
2405 /* Address of the aux surface, if any
2406 *
2407 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2408 *
2409 * With the exception of gen8, the bottom 12 bits of this address' offset
2410 * include extra aux information.
2411 */
2412 struct anv_address aux_address;
2413 /* Address of the clear color, if any
2414 *
2415 * This address is relative to the start of the BO.
2416 */
2417 struct anv_address clear_address;
2418 };
2419
2420 /**
2421 * Attachment state when recording a renderpass instance.
2422 *
2423 * The clear value is valid only if there exists a pending clear.
2424 */
2425 struct anv_attachment_state {
2426 enum isl_aux_usage aux_usage;
2427 enum isl_aux_usage input_aux_usage;
2428 struct anv_surface_state color;
2429 struct anv_surface_state input;
2430
2431 VkImageLayout current_layout;
2432 VkImageLayout current_stencil_layout;
2433 VkImageAspectFlags pending_clear_aspects;
2434 VkImageAspectFlags pending_load_aspects;
2435 bool fast_clear;
2436 VkClearValue clear_value;
2437 bool clear_color_is_zero_one;
2438 bool clear_color_is_zero;
2439
2440 /* When multiview is active, attachments with a renderpass clear
2441 * operation have their respective layers cleared on the first
2442 * subpass that uses them, and only in that subpass. We keep track
2443 * of this using a bitfield to indicate which layers of an attachment
2444 * have not been cleared yet when multiview is active.
2445 */
2446 uint32_t pending_clear_views;
2447 struct anv_image_view * image_view;
2448 };
2449
2450 /** State tracking for particular pipeline bind point
2451 *
2452 * This struct is the base struct for anv_cmd_graphics_state and
2453 * anv_cmd_compute_state. These are used to track state which is bound to a
2454 * particular type of pipeline. Generic state that applies per-stage such as
2455 * binding table offsets and push constants is tracked generically with a
2456 * per-stage array in anv_cmd_state.
2457 */
2458 struct anv_cmd_pipeline_state {
2459 struct anv_pipeline *pipeline;
2460 struct anv_pipeline_layout *layout;
2461
2462 struct anv_descriptor_set *descriptors[MAX_SETS];
2463 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2464
2465 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2466 };
2467
2468 /** State tracking for graphics pipeline
2469 *
2470 * This has anv_cmd_pipeline_state as a base struct to track things which get
2471 * bound to a graphics pipeline. Along with general pipeline bind point state
2472 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2473 * state which is graphics-specific.
2474 */
2475 struct anv_cmd_graphics_state {
2476 struct anv_cmd_pipeline_state base;
2477
2478 anv_cmd_dirty_mask_t dirty;
2479 uint32_t vb_dirty;
2480
2481 struct anv_dynamic_state dynamic;
2482
2483 struct {
2484 struct anv_buffer *index_buffer;
2485 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2486 uint32_t index_offset;
2487 } gen7;
2488 };
2489
2490 /** State tracking for compute pipeline
2491 *
2492 * This has anv_cmd_pipeline_state as a base struct to track things which get
2493 * bound to a compute pipeline. Along with general pipeline bind point state
2494 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2495 * state which is compute-specific.
2496 */
2497 struct anv_cmd_compute_state {
2498 struct anv_cmd_pipeline_state base;
2499
2500 bool pipeline_dirty;
2501
2502 struct anv_address num_workgroups;
2503 };
2504
2505 /** State required while building cmd buffer */
2506 struct anv_cmd_state {
2507 /* PIPELINE_SELECT.PipelineSelection */
2508 uint32_t current_pipeline;
2509 const struct gen_l3_config * current_l3_config;
2510 uint32_t last_aux_map_state;
2511
2512 struct anv_cmd_graphics_state gfx;
2513 struct anv_cmd_compute_state compute;
2514
2515 enum anv_pipe_bits pending_pipe_bits;
2516 VkShaderStageFlags descriptors_dirty;
2517 VkShaderStageFlags push_constants_dirty;
2518
2519 struct anv_framebuffer * framebuffer;
2520 struct anv_render_pass * pass;
2521 struct anv_subpass * subpass;
2522 VkRect2D render_area;
2523 uint32_t restart_index;
2524 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2525 bool xfb_enabled;
2526 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2527 VkShaderStageFlags push_constant_stages;
2528 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2529 struct anv_state binding_tables[MESA_SHADER_STAGES];
2530 struct anv_state samplers[MESA_SHADER_STAGES];
2531
2532 /**
2533 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2534 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2535 * and before invoking the secondary in ExecuteCommands.
2536 */
2537 bool pma_fix_enabled;
2538
2539 /**
2540 * Whether or not we know for certain that HiZ is enabled for the current
2541 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2542 * enabled or not, this will be false.
2543 */
2544 bool hiz_enabled;
2545
2546 bool conditional_render_enabled;
2547
2548 /**
2549 * Last rendering scale argument provided to
2550 * genX(cmd_buffer_emit_hashing_mode)().
2551 */
2552 unsigned current_hash_scale;
2553
2554 /**
2555 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2556 * valid only when recording a render pass instance.
2557 */
2558 struct anv_attachment_state * attachments;
2559
2560 /**
2561 * Surface states for color render targets. These are stored in a single
2562 * flat array. For depth-stencil attachments, the surface state is simply
2563 * left blank.
2564 */
2565 struct anv_state render_pass_states;
2566
2567 /**
2568 * A null surface state of the right size to match the framebuffer. This
2569 * is one of the states in render_pass_states.
2570 */
2571 struct anv_state null_surface_state;
2572 };
2573
2574 struct anv_cmd_pool {
2575 VkAllocationCallbacks alloc;
2576 struct list_head cmd_buffers;
2577 };
2578
2579 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2580
2581 enum anv_cmd_buffer_exec_mode {
2582 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2583 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2584 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2585 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2586 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2587 };
2588
2589 struct anv_cmd_buffer {
2590 VK_LOADER_DATA _loader_data;
2591
2592 struct anv_device * device;
2593
2594 struct anv_cmd_pool * pool;
2595 struct list_head pool_link;
2596
2597 struct anv_batch batch;
2598
2599 /* Fields required for the actual chain of anv_batch_bo's.
2600 *
2601 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2602 */
2603 struct list_head batch_bos;
2604 enum anv_cmd_buffer_exec_mode exec_mode;
2605
2606 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2607 * referenced by this command buffer
2608 *
2609 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2610 */
2611 struct u_vector seen_bbos;
2612
2613 /* A vector of int32_t's for every block of binding tables.
2614 *
2615 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2616 */
2617 struct u_vector bt_block_states;
2618 uint32_t bt_next;
2619
2620 struct anv_reloc_list surface_relocs;
2621 /** Last seen surface state block pool center bo offset */
2622 uint32_t last_ss_pool_center;
2623
2624 /* Serial for tracking buffer completion */
2625 uint32_t serial;
2626
2627 /* Stream objects for storing temporary data */
2628 struct anv_state_stream surface_state_stream;
2629 struct anv_state_stream dynamic_state_stream;
2630
2631 VkCommandBufferUsageFlags usage_flags;
2632 VkCommandBufferLevel level;
2633
2634 struct anv_cmd_state state;
2635
2636 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2637 uint64_t intel_perf_marker;
2638 };
2639
2640 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2641 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2642 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2643 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2644 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2645 struct anv_cmd_buffer *secondary);
2646 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2647 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2648 struct anv_cmd_buffer *cmd_buffer,
2649 const VkSemaphore *in_semaphores,
2650 uint32_t num_in_semaphores,
2651 const VkSemaphore *out_semaphores,
2652 uint32_t num_out_semaphores,
2653 VkFence fence);
2654
2655 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2656
2657 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2658 const void *data, uint32_t size, uint32_t alignment);
2659 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2660 uint32_t *a, uint32_t *b,
2661 uint32_t dwords, uint32_t alignment);
2662
2663 struct anv_address
2664 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2665 struct anv_state
2666 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2667 uint32_t entries, uint32_t *state_offset);
2668 struct anv_state
2669 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2670 struct anv_state
2671 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2672 uint32_t size, uint32_t alignment);
2673
2674 VkResult
2675 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2676
2677 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2678 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2679 bool depth_clamp_enable);
2680 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2681
2682 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2683 struct anv_render_pass *pass,
2684 struct anv_framebuffer *framebuffer,
2685 const VkClearValue *clear_values);
2686
2687 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2688
2689 struct anv_state
2690 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2691 gl_shader_stage stage);
2692 struct anv_state
2693 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2694
2695 const struct anv_image_view *
2696 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2697
2698 VkResult
2699 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2700 uint32_t num_entries,
2701 uint32_t *state_offset,
2702 struct anv_state *bt_state);
2703
2704 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2705
2706 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2707
2708 enum anv_fence_type {
2709 ANV_FENCE_TYPE_NONE = 0,
2710 ANV_FENCE_TYPE_BO,
2711 ANV_FENCE_TYPE_SYNCOBJ,
2712 ANV_FENCE_TYPE_WSI,
2713 };
2714
2715 enum anv_bo_fence_state {
2716 /** Indicates that this is a new (or newly reset fence) */
2717 ANV_BO_FENCE_STATE_RESET,
2718
2719 /** Indicates that this fence has been submitted to the GPU but is still
2720 * (as far as we know) in use by the GPU.
2721 */
2722 ANV_BO_FENCE_STATE_SUBMITTED,
2723
2724 ANV_BO_FENCE_STATE_SIGNALED,
2725 };
2726
2727 struct anv_fence_impl {
2728 enum anv_fence_type type;
2729
2730 union {
2731 /** Fence implementation for BO fences
2732 *
2733 * These fences use a BO and a set of CPU-tracked state flags. The BO
2734 * is added to the object list of the last execbuf call in a QueueSubmit
2735 * and is marked EXEC_WRITE. The state flags track when the BO has been
2736 * submitted to the kernel. We need to do this because Vulkan lets you
2737 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2738 * will say it's idle in this case.
2739 */
2740 struct {
2741 struct anv_bo *bo;
2742 enum anv_bo_fence_state state;
2743 } bo;
2744
2745 /** DRM syncobj handle for syncobj-based fences */
2746 uint32_t syncobj;
2747
2748 /** WSI fence */
2749 struct wsi_fence *fence_wsi;
2750 };
2751 };
2752
2753 struct anv_fence {
2754 /* Permanent fence state. Every fence has some form of permanent state
2755 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2756 * cross-process fences) or it could just be a dummy for use internally.
2757 */
2758 struct anv_fence_impl permanent;
2759
2760 /* Temporary fence state. A fence *may* have temporary state. That state
2761 * is added to the fence by an import operation and is reset back to
2762 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2763 * state cannot be signaled because the fence must already be signaled
2764 * before the temporary state can be exported from the fence in the other
2765 * process and imported here.
2766 */
2767 struct anv_fence_impl temporary;
2768 };
2769
2770 struct anv_event {
2771 uint64_t semaphore;
2772 struct anv_state state;
2773 };
2774
2775 enum anv_semaphore_type {
2776 ANV_SEMAPHORE_TYPE_NONE = 0,
2777 ANV_SEMAPHORE_TYPE_DUMMY,
2778 ANV_SEMAPHORE_TYPE_BO,
2779 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2780 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2781 };
2782
2783 struct anv_semaphore_impl {
2784 enum anv_semaphore_type type;
2785
2786 union {
2787 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2788 * This BO will be added to the object list on any execbuf2 calls for
2789 * which this semaphore is used as a wait or signal fence. When used as
2790 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2791 */
2792 struct anv_bo *bo;
2793
2794 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2795 * If the semaphore is in the unsignaled state due to either just being
2796 * created or because it has been used for a wait, fd will be -1.
2797 */
2798 int fd;
2799
2800 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2801 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2802 * import so we don't need to bother with a userspace cache.
2803 */
2804 uint32_t syncobj;
2805 };
2806 };
2807
2808 struct anv_semaphore {
2809 /* Permanent semaphore state. Every semaphore has some form of permanent
2810 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2811 * (for cross-process semaphores0 or it could just be a dummy for use
2812 * internally.
2813 */
2814 struct anv_semaphore_impl permanent;
2815
2816 /* Temporary semaphore state. A semaphore *may* have temporary state.
2817 * That state is added to the semaphore by an import operation and is reset
2818 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2819 * semaphore with temporary state cannot be signaled because the semaphore
2820 * must already be signaled before the temporary state can be exported from
2821 * the semaphore in the other process and imported here.
2822 */
2823 struct anv_semaphore_impl temporary;
2824 };
2825
2826 void anv_semaphore_reset_temporary(struct anv_device *device,
2827 struct anv_semaphore *semaphore);
2828
2829 struct anv_shader_module {
2830 unsigned char sha1[20];
2831 uint32_t size;
2832 char data[0];
2833 };
2834
2835 static inline gl_shader_stage
2836 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2837 {
2838 assert(__builtin_popcount(vk_stage) == 1);
2839 return ffs(vk_stage) - 1;
2840 }
2841
2842 static inline VkShaderStageFlagBits
2843 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2844 {
2845 return (1 << mesa_stage);
2846 }
2847
2848 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2849
2850 #define anv_foreach_stage(stage, stage_bits) \
2851 for (gl_shader_stage stage, \
2852 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2853 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2854 __tmp &= ~(1 << (stage)))
2855
2856 struct anv_pipeline_bind_map {
2857 uint32_t surface_count;
2858 uint32_t sampler_count;
2859
2860 struct anv_pipeline_binding * surface_to_descriptor;
2861 struct anv_pipeline_binding * sampler_to_descriptor;
2862 };
2863
2864 struct anv_shader_bin_key {
2865 uint32_t size;
2866 uint8_t data[0];
2867 };
2868
2869 struct anv_shader_bin {
2870 uint32_t ref_cnt;
2871
2872 const struct anv_shader_bin_key *key;
2873
2874 struct anv_state kernel;
2875 uint32_t kernel_size;
2876
2877 struct anv_state constant_data;
2878 uint32_t constant_data_size;
2879
2880 const struct brw_stage_prog_data *prog_data;
2881 uint32_t prog_data_size;
2882
2883 struct brw_compile_stats stats[3];
2884 uint32_t num_stats;
2885
2886 struct nir_xfb_info *xfb_info;
2887
2888 struct anv_pipeline_bind_map bind_map;
2889 };
2890
2891 struct anv_shader_bin *
2892 anv_shader_bin_create(struct anv_device *device,
2893 const void *key, uint32_t key_size,
2894 const void *kernel, uint32_t kernel_size,
2895 const void *constant_data, uint32_t constant_data_size,
2896 const struct brw_stage_prog_data *prog_data,
2897 uint32_t prog_data_size, const void *prog_data_param,
2898 const struct brw_compile_stats *stats, uint32_t num_stats,
2899 const struct nir_xfb_info *xfb_info,
2900 const struct anv_pipeline_bind_map *bind_map);
2901
2902 void
2903 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2904
2905 static inline void
2906 anv_shader_bin_ref(struct anv_shader_bin *shader)
2907 {
2908 assert(shader && shader->ref_cnt >= 1);
2909 p_atomic_inc(&shader->ref_cnt);
2910 }
2911
2912 static inline void
2913 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2914 {
2915 assert(shader && shader->ref_cnt >= 1);
2916 if (p_atomic_dec_zero(&shader->ref_cnt))
2917 anv_shader_bin_destroy(device, shader);
2918 }
2919
2920 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2921 #define MAX_PIPELINE_EXECUTABLES 7
2922
2923 struct anv_pipeline_executable {
2924 gl_shader_stage stage;
2925
2926 struct brw_compile_stats stats;
2927
2928 char *nir;
2929 char *disasm;
2930 };
2931
2932 struct anv_pipeline {
2933 struct anv_device * device;
2934 struct anv_batch batch;
2935 uint32_t batch_data[512];
2936 struct anv_reloc_list batch_relocs;
2937 anv_cmd_dirty_mask_t dynamic_state_mask;
2938 struct anv_dynamic_state dynamic_state;
2939
2940 void * mem_ctx;
2941
2942 VkPipelineCreateFlags flags;
2943 struct anv_subpass * subpass;
2944
2945 bool needs_data_cache;
2946
2947 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2948
2949 uint32_t num_executables;
2950 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
2951
2952 struct {
2953 const struct gen_l3_config * l3_config;
2954 uint32_t total_size;
2955 } urb;
2956
2957 VkShaderStageFlags active_stages;
2958 struct anv_state blend_state;
2959
2960 uint32_t vb_used;
2961 struct anv_pipeline_vertex_binding {
2962 uint32_t stride;
2963 bool instanced;
2964 uint32_t instance_divisor;
2965 } vb[MAX_VBS];
2966
2967 uint8_t xfb_used;
2968
2969 bool primitive_restart;
2970 uint32_t topology;
2971
2972 uint32_t cs_right_mask;
2973
2974 bool writes_depth;
2975 bool depth_test_enable;
2976 bool writes_stencil;
2977 bool stencil_test_enable;
2978 bool depth_clamp_enable;
2979 bool depth_clip_enable;
2980 bool sample_shading_enable;
2981 bool kill_pixel;
2982 bool depth_bounds_test_enable;
2983
2984 struct {
2985 uint32_t sf[7];
2986 uint32_t depth_stencil_state[3];
2987 } gen7;
2988
2989 struct {
2990 uint32_t sf[4];
2991 uint32_t raster[5];
2992 uint32_t wm_depth_stencil[3];
2993 } gen8;
2994
2995 struct {
2996 uint32_t wm_depth_stencil[4];
2997 } gen9;
2998
2999 uint32_t interface_descriptor_data[8];
3000 };
3001
3002 static inline bool
3003 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3004 gl_shader_stage stage)
3005 {
3006 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3007 }
3008
3009 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3010 static inline const struct brw_##prefix##_prog_data * \
3011 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3012 { \
3013 if (anv_pipeline_has_stage(pipeline, stage)) { \
3014 return (const struct brw_##prefix##_prog_data *) \
3015 pipeline->shaders[stage]->prog_data; \
3016 } else { \
3017 return NULL; \
3018 } \
3019 }
3020
3021 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3022 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3023 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3024 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3025 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3026 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3027
3028 static inline const struct brw_vue_prog_data *
3029 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3030 {
3031 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3032 return &get_gs_prog_data(pipeline)->base;
3033 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3034 return &get_tes_prog_data(pipeline)->base;
3035 else
3036 return &get_vs_prog_data(pipeline)->base;
3037 }
3038
3039 VkResult
3040 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3041 struct anv_pipeline_cache *cache,
3042 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3043 const VkAllocationCallbacks *alloc);
3044
3045 VkResult
3046 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3047 struct anv_pipeline_cache *cache,
3048 const VkComputePipelineCreateInfo *info,
3049 const struct anv_shader_module *module,
3050 const char *entrypoint,
3051 const VkSpecializationInfo *spec_info);
3052
3053 struct anv_format_plane {
3054 enum isl_format isl_format:16;
3055 struct isl_swizzle swizzle;
3056
3057 /* Whether this plane contains chroma channels */
3058 bool has_chroma;
3059
3060 /* For downscaling of YUV planes */
3061 uint8_t denominator_scales[2];
3062
3063 /* How to map sampled ycbcr planes to a single 4 component element. */
3064 struct isl_swizzle ycbcr_swizzle;
3065
3066 /* What aspect is associated to this plane */
3067 VkImageAspectFlags aspect;
3068 };
3069
3070
3071 struct anv_format {
3072 struct anv_format_plane planes[3];
3073 VkFormat vk_format;
3074 uint8_t n_planes;
3075 bool can_ycbcr;
3076 };
3077
3078 static inline uint32_t
3079 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3080 VkImageAspectFlags aspect_mask)
3081 {
3082 switch (aspect_mask) {
3083 case VK_IMAGE_ASPECT_COLOR_BIT:
3084 case VK_IMAGE_ASPECT_DEPTH_BIT:
3085 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3086 return 0;
3087 case VK_IMAGE_ASPECT_STENCIL_BIT:
3088 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3089 return 0;
3090 /* Fall-through */
3091 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3092 return 1;
3093 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3094 return 2;
3095 default:
3096 /* Purposefully assert with depth/stencil aspects. */
3097 unreachable("invalid image aspect");
3098 }
3099 }
3100
3101 static inline VkImageAspectFlags
3102 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3103 uint32_t plane)
3104 {
3105 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3106 if (util_bitcount(image_aspects) > 1)
3107 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3108 return VK_IMAGE_ASPECT_COLOR_BIT;
3109 }
3110 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3111 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3112 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3113 return VK_IMAGE_ASPECT_STENCIL_BIT;
3114 }
3115
3116 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3117 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3118
3119 const struct anv_format *
3120 anv_get_format(VkFormat format);
3121
3122 static inline uint32_t
3123 anv_get_format_planes(VkFormat vk_format)
3124 {
3125 const struct anv_format *format = anv_get_format(vk_format);
3126
3127 return format != NULL ? format->n_planes : 0;
3128 }
3129
3130 struct anv_format_plane
3131 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3132 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3133
3134 static inline enum isl_format
3135 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3136 VkImageAspectFlags aspect, VkImageTiling tiling)
3137 {
3138 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3139 }
3140
3141 static inline struct isl_swizzle
3142 anv_swizzle_for_render(struct isl_swizzle swizzle)
3143 {
3144 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3145 * RGB as RGBA for texturing
3146 */
3147 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3148 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3149
3150 /* But it doesn't matter what we render to that channel */
3151 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3152
3153 return swizzle;
3154 }
3155
3156 void
3157 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3158
3159 /**
3160 * Subsurface of an anv_image.
3161 */
3162 struct anv_surface {
3163 /** Valid only if isl_surf::size_B > 0. */
3164 struct isl_surf isl;
3165
3166 /**
3167 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3168 */
3169 uint32_t offset;
3170 };
3171
3172 struct anv_image {
3173 VkImageType type; /**< VkImageCreateInfo::imageType */
3174 /* The original VkFormat provided by the client. This may not match any
3175 * of the actual surface formats.
3176 */
3177 VkFormat vk_format;
3178 const struct anv_format *format;
3179
3180 VkImageAspectFlags aspects;
3181 VkExtent3D extent;
3182 uint32_t levels;
3183 uint32_t array_size;
3184 uint32_t samples; /**< VkImageCreateInfo::samples */
3185 uint32_t n_planes;
3186 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3187 VkImageUsageFlags stencil_usage;
3188 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3189 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3190
3191 /** True if this is needs to be bound to an appropriately tiled BO.
3192 *
3193 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3194 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3195 * we require a dedicated allocation so that we can know to allocate a
3196 * tiled buffer.
3197 */
3198 bool needs_set_tiling;
3199
3200 /**
3201 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3202 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3203 */
3204 uint64_t drm_format_mod;
3205
3206 VkDeviceSize size;
3207 uint32_t alignment;
3208
3209 /* Whether the image is made of several underlying buffer objects rather a
3210 * single one with different offsets.
3211 */
3212 bool disjoint;
3213
3214 /* All the formats that can be used when creating views of this image
3215 * are CCS_E compatible.
3216 */
3217 bool ccs_e_compatible;
3218
3219 /* Image was created with external format. */
3220 bool external_format;
3221
3222 /**
3223 * Image subsurfaces
3224 *
3225 * For each foo, anv_image::planes[x].surface is valid if and only if
3226 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3227 * to figure the number associated with a given aspect.
3228 *
3229 * The hardware requires that the depth buffer and stencil buffer be
3230 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3231 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3232 * allocate the depth and stencil buffers as separate surfaces in the same
3233 * bo.
3234 *
3235 * Memory layout :
3236 *
3237 * -----------------------
3238 * | surface0 | /|\
3239 * ----------------------- |
3240 * | shadow surface0 | |
3241 * ----------------------- | Plane 0
3242 * | aux surface0 | |
3243 * ----------------------- |
3244 * | fast clear colors0 | \|/
3245 * -----------------------
3246 * | surface1 | /|\
3247 * ----------------------- |
3248 * | shadow surface1 | |
3249 * ----------------------- | Plane 1
3250 * | aux surface1 | |
3251 * ----------------------- |
3252 * | fast clear colors1 | \|/
3253 * -----------------------
3254 * | ... |
3255 * | |
3256 * -----------------------
3257 */
3258 struct {
3259 /**
3260 * Offset of the entire plane (whenever the image is disjoint this is
3261 * set to 0).
3262 */
3263 uint32_t offset;
3264
3265 VkDeviceSize size;
3266 uint32_t alignment;
3267
3268 struct anv_surface surface;
3269
3270 /**
3271 * A surface which shadows the main surface and may have different
3272 * tiling. This is used for sampling using a tiling that isn't supported
3273 * for other operations.
3274 */
3275 struct anv_surface shadow_surface;
3276
3277 /**
3278 * For color images, this is the aux usage for this image when not used
3279 * as a color attachment.
3280 *
3281 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3282 * image has a HiZ buffer.
3283 */
3284 enum isl_aux_usage aux_usage;
3285
3286 struct anv_surface aux_surface;
3287
3288 /**
3289 * Offset of the fast clear state (used to compute the
3290 * fast_clear_state_offset of the following planes).
3291 */
3292 uint32_t fast_clear_state_offset;
3293
3294 /**
3295 * BO associated with this plane, set when bound.
3296 */
3297 struct anv_address address;
3298
3299 /**
3300 * Address of the main surface used to fill the aux map table. This is
3301 * used at destruction of the image since the Vulkan spec does not
3302 * guarantee that the address.bo field we still be valid at destruction.
3303 */
3304 uint64_t aux_map_surface_address;
3305
3306 /**
3307 * When destroying the image, also free the bo.
3308 * */
3309 bool bo_is_owned;
3310 } planes[3];
3311 };
3312
3313 /* The ordering of this enum is important */
3314 enum anv_fast_clear_type {
3315 /** Image does not have/support any fast-clear blocks */
3316 ANV_FAST_CLEAR_NONE = 0,
3317 /** Image has/supports fast-clear but only to the default value */
3318 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3319 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3320 ANV_FAST_CLEAR_ANY = 2,
3321 };
3322
3323 /* Returns the number of auxiliary buffer levels attached to an image. */
3324 static inline uint8_t
3325 anv_image_aux_levels(const struct anv_image * const image,
3326 VkImageAspectFlagBits aspect)
3327 {
3328 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3329
3330 /* The Gen12 CCS aux surface is represented with only one level. */
3331 const uint8_t aux_logical_levels =
3332 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3333 image->planes[plane].surface.isl.levels :
3334 image->planes[plane].aux_surface.isl.levels;
3335
3336 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3337 aux_logical_levels : 0;
3338 }
3339
3340 /* Returns the number of auxiliary buffer layers attached to an image. */
3341 static inline uint32_t
3342 anv_image_aux_layers(const struct anv_image * const image,
3343 VkImageAspectFlagBits aspect,
3344 const uint8_t miplevel)
3345 {
3346 assert(image);
3347
3348 /* The miplevel must exist in the main buffer. */
3349 assert(miplevel < image->levels);
3350
3351 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3352 /* There are no layers with auxiliary data because the miplevel has no
3353 * auxiliary data.
3354 */
3355 return 0;
3356 } else {
3357 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3358
3359 /* The Gen12 CCS aux surface is represented with only one layer. */
3360 const struct isl_extent4d *aux_logical_level0_px =
3361 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3362 &image->planes[plane].surface.isl.logical_level0_px :
3363 &image->planes[plane].aux_surface.isl.logical_level0_px;
3364
3365 return MAX2(aux_logical_level0_px->array_len,
3366 aux_logical_level0_px->depth >> miplevel);
3367 }
3368 }
3369
3370 static inline struct anv_address
3371 anv_image_get_clear_color_addr(const struct anv_device *device,
3372 const struct anv_image *image,
3373 VkImageAspectFlagBits aspect)
3374 {
3375 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3376
3377 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3378 return anv_address_add(image->planes[plane].address,
3379 image->planes[plane].fast_clear_state_offset);
3380 }
3381
3382 static inline struct anv_address
3383 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3384 const struct anv_image *image,
3385 VkImageAspectFlagBits aspect)
3386 {
3387 struct anv_address addr =
3388 anv_image_get_clear_color_addr(device, image, aspect);
3389
3390 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3391 device->isl_dev.ss.clear_color_state_size :
3392 device->isl_dev.ss.clear_value_size;
3393 return anv_address_add(addr, clear_color_state_size);
3394 }
3395
3396 static inline struct anv_address
3397 anv_image_get_compression_state_addr(const struct anv_device *device,
3398 const struct anv_image *image,
3399 VkImageAspectFlagBits aspect,
3400 uint32_t level, uint32_t array_layer)
3401 {
3402 assert(level < anv_image_aux_levels(image, aspect));
3403 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3404 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3405 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3406
3407 struct anv_address addr =
3408 anv_image_get_fast_clear_type_addr(device, image, aspect);
3409 addr.offset += 4; /* Go past the fast clear type */
3410
3411 if (image->type == VK_IMAGE_TYPE_3D) {
3412 for (uint32_t l = 0; l < level; l++)
3413 addr.offset += anv_minify(image->extent.depth, l) * 4;
3414 } else {
3415 addr.offset += level * image->array_size * 4;
3416 }
3417 addr.offset += array_layer * 4;
3418
3419 assert(addr.offset <
3420 image->planes[plane].address.offset + image->planes[plane].size);
3421 return addr;
3422 }
3423
3424 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3425 static inline bool
3426 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3427 const struct anv_image *image)
3428 {
3429 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3430 return false;
3431
3432 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3433 * struct. There's documentation which suggests that this feature actually
3434 * reduces performance on BDW, but it has only been observed to help so
3435 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3436 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3437 */
3438 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3439 return false;
3440
3441 return image->samples == 1;
3442 }
3443
3444 static inline bool
3445 anv_image_plane_uses_aux_map(const struct anv_device *device,
3446 const struct anv_image *image,
3447 uint32_t plane)
3448 {
3449 return device->info.has_aux_map &&
3450 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3451 }
3452
3453 void
3454 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3455 const struct anv_image *image,
3456 VkImageAspectFlagBits aspect,
3457 enum isl_aux_usage aux_usage,
3458 uint32_t level,
3459 uint32_t base_layer,
3460 uint32_t layer_count);
3461
3462 void
3463 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3464 const struct anv_image *image,
3465 VkImageAspectFlagBits aspect,
3466 enum isl_aux_usage aux_usage,
3467 enum isl_format format, struct isl_swizzle swizzle,
3468 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3469 VkRect2D area, union isl_color_value clear_color);
3470 void
3471 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3472 const struct anv_image *image,
3473 VkImageAspectFlags aspects,
3474 enum isl_aux_usage depth_aux_usage,
3475 uint32_t level,
3476 uint32_t base_layer, uint32_t layer_count,
3477 VkRect2D area,
3478 float depth_value, uint8_t stencil_value);
3479 void
3480 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3481 const struct anv_image *src_image,
3482 enum isl_aux_usage src_aux_usage,
3483 uint32_t src_level, uint32_t src_base_layer,
3484 const struct anv_image *dst_image,
3485 enum isl_aux_usage dst_aux_usage,
3486 uint32_t dst_level, uint32_t dst_base_layer,
3487 VkImageAspectFlagBits aspect,
3488 uint32_t src_x, uint32_t src_y,
3489 uint32_t dst_x, uint32_t dst_y,
3490 uint32_t width, uint32_t height,
3491 uint32_t layer_count,
3492 enum blorp_filter filter);
3493 void
3494 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3495 const struct anv_image *image,
3496 VkImageAspectFlagBits aspect, uint32_t level,
3497 uint32_t base_layer, uint32_t layer_count,
3498 enum isl_aux_op hiz_op);
3499 void
3500 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3501 const struct anv_image *image,
3502 VkImageAspectFlags aspects,
3503 uint32_t level,
3504 uint32_t base_layer, uint32_t layer_count,
3505 VkRect2D area, uint8_t stencil_value);
3506 void
3507 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3508 const struct anv_image *image,
3509 enum isl_format format,
3510 VkImageAspectFlagBits aspect,
3511 uint32_t base_layer, uint32_t layer_count,
3512 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3513 bool predicate);
3514 void
3515 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3516 const struct anv_image *image,
3517 enum isl_format format,
3518 VkImageAspectFlagBits aspect, uint32_t level,
3519 uint32_t base_layer, uint32_t layer_count,
3520 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3521 bool predicate);
3522
3523 void
3524 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3525 const struct anv_image *image,
3526 VkImageAspectFlagBits aspect,
3527 uint32_t base_level, uint32_t level_count,
3528 uint32_t base_layer, uint32_t layer_count);
3529
3530 enum isl_aux_usage
3531 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3532 const struct anv_image *image,
3533 const VkImageAspectFlagBits aspect,
3534 const VkImageLayout layout);
3535
3536 enum anv_fast_clear_type
3537 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3538 const struct anv_image * const image,
3539 const VkImageAspectFlagBits aspect,
3540 const VkImageLayout layout);
3541
3542 /* This is defined as a macro so that it works for both
3543 * VkImageSubresourceRange and VkImageSubresourceLayers
3544 */
3545 #define anv_get_layerCount(_image, _range) \
3546 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3547 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3548
3549 static inline uint32_t
3550 anv_get_levelCount(const struct anv_image *image,
3551 const VkImageSubresourceRange *range)
3552 {
3553 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3554 image->levels - range->baseMipLevel : range->levelCount;
3555 }
3556
3557 static inline VkImageAspectFlags
3558 anv_image_expand_aspects(const struct anv_image *image,
3559 VkImageAspectFlags aspects)
3560 {
3561 /* If the underlying image has color plane aspects and
3562 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3563 * the underlying image. */
3564 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3565 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3566 return image->aspects;
3567
3568 return aspects;
3569 }
3570
3571 static inline bool
3572 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3573 VkImageAspectFlags aspects2)
3574 {
3575 if (aspects1 == aspects2)
3576 return true;
3577
3578 /* Only 1 color aspects are compatibles. */
3579 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3580 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3581 util_bitcount(aspects1) == util_bitcount(aspects2))
3582 return true;
3583
3584 return false;
3585 }
3586
3587 struct anv_image_view {
3588 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3589
3590 VkImageAspectFlags aspect_mask;
3591 VkFormat vk_format;
3592 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3593
3594 unsigned n_planes;
3595 struct {
3596 uint32_t image_plane;
3597
3598 struct isl_view isl;
3599
3600 /**
3601 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3602 * image layout of SHADER_READ_ONLY_OPTIMAL or
3603 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3604 */
3605 struct anv_surface_state optimal_sampler_surface_state;
3606
3607 /**
3608 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3609 * image layout of GENERAL.
3610 */
3611 struct anv_surface_state general_sampler_surface_state;
3612
3613 /**
3614 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3615 * states for write-only and readable, using the real format for
3616 * write-only and the lowered format for readable.
3617 */
3618 struct anv_surface_state storage_surface_state;
3619 struct anv_surface_state writeonly_storage_surface_state;
3620
3621 struct brw_image_param storage_image_param;
3622 } planes[3];
3623 };
3624
3625 enum anv_image_view_state_flags {
3626 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3627 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3628 };
3629
3630 void anv_image_fill_surface_state(struct anv_device *device,
3631 const struct anv_image *image,
3632 VkImageAspectFlagBits aspect,
3633 const struct isl_view *view,
3634 isl_surf_usage_flags_t view_usage,
3635 enum isl_aux_usage aux_usage,
3636 const union isl_color_value *clear_color,
3637 enum anv_image_view_state_flags flags,
3638 struct anv_surface_state *state_inout,
3639 struct brw_image_param *image_param_out);
3640
3641 struct anv_image_create_info {
3642 const VkImageCreateInfo *vk_info;
3643
3644 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3645 isl_tiling_flags_t isl_tiling_flags;
3646
3647 /** These flags will be added to any derived from VkImageCreateInfo. */
3648 isl_surf_usage_flags_t isl_extra_usage_flags;
3649
3650 uint32_t stride;
3651 bool external_format;
3652 };
3653
3654 VkResult anv_image_create(VkDevice _device,
3655 const struct anv_image_create_info *info,
3656 const VkAllocationCallbacks* alloc,
3657 VkImage *pImage);
3658
3659 const struct anv_surface *
3660 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3661 VkImageAspectFlags aspect_mask);
3662
3663 enum isl_format
3664 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3665
3666 static inline struct VkExtent3D
3667 anv_sanitize_image_extent(const VkImageType imageType,
3668 const struct VkExtent3D imageExtent)
3669 {
3670 switch (imageType) {
3671 case VK_IMAGE_TYPE_1D:
3672 return (VkExtent3D) { imageExtent.width, 1, 1 };
3673 case VK_IMAGE_TYPE_2D:
3674 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3675 case VK_IMAGE_TYPE_3D:
3676 return imageExtent;
3677 default:
3678 unreachable("invalid image type");
3679 }
3680 }
3681
3682 static inline struct VkOffset3D
3683 anv_sanitize_image_offset(const VkImageType imageType,
3684 const struct VkOffset3D imageOffset)
3685 {
3686 switch (imageType) {
3687 case VK_IMAGE_TYPE_1D:
3688 return (VkOffset3D) { imageOffset.x, 0, 0 };
3689 case VK_IMAGE_TYPE_2D:
3690 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3691 case VK_IMAGE_TYPE_3D:
3692 return imageOffset;
3693 default:
3694 unreachable("invalid image type");
3695 }
3696 }
3697
3698 VkFormatFeatureFlags
3699 anv_get_image_format_features(const struct gen_device_info *devinfo,
3700 VkFormat vk_format,
3701 const struct anv_format *anv_format,
3702 VkImageTiling vk_tiling);
3703
3704 void anv_fill_buffer_surface_state(struct anv_device *device,
3705 struct anv_state state,
3706 enum isl_format format,
3707 struct anv_address address,
3708 uint32_t range, uint32_t stride);
3709
3710 static inline void
3711 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3712 const struct anv_attachment_state *att_state,
3713 const struct anv_image_view *iview)
3714 {
3715 const struct isl_format_layout *view_fmtl =
3716 isl_format_get_layout(iview->planes[0].isl.format);
3717
3718 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3719 if (view_fmtl->channels.c.bits) \
3720 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3721
3722 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3723 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3724 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3725 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3726
3727 #undef COPY_CLEAR_COLOR_CHANNEL
3728 }
3729
3730
3731 struct anv_ycbcr_conversion {
3732 const struct anv_format * format;
3733 VkSamplerYcbcrModelConversion ycbcr_model;
3734 VkSamplerYcbcrRange ycbcr_range;
3735 VkComponentSwizzle mapping[4];
3736 VkChromaLocation chroma_offsets[2];
3737 VkFilter chroma_filter;
3738 bool chroma_reconstruction;
3739 };
3740
3741 struct anv_sampler {
3742 uint32_t state[3][4];
3743 uint32_t n_planes;
3744 struct anv_ycbcr_conversion *conversion;
3745
3746 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3747 * and with a 32-byte stride for use as bindless samplers.
3748 */
3749 struct anv_state bindless_state;
3750 };
3751
3752 struct anv_framebuffer {
3753 uint32_t width;
3754 uint32_t height;
3755 uint32_t layers;
3756
3757 uint32_t attachment_count;
3758 struct anv_image_view * attachments[0];
3759 };
3760
3761 struct anv_subpass_attachment {
3762 VkImageUsageFlagBits usage;
3763 uint32_t attachment;
3764 VkImageLayout layout;
3765
3766 /* Used only with attachment containing stencil data. */
3767 VkImageLayout stencil_layout;
3768 };
3769
3770 struct anv_subpass {
3771 uint32_t attachment_count;
3772
3773 /**
3774 * A pointer to all attachment references used in this subpass.
3775 * Only valid if ::attachment_count > 0.
3776 */
3777 struct anv_subpass_attachment * attachments;
3778 uint32_t input_count;
3779 struct anv_subpass_attachment * input_attachments;
3780 uint32_t color_count;
3781 struct anv_subpass_attachment * color_attachments;
3782 struct anv_subpass_attachment * resolve_attachments;
3783
3784 struct anv_subpass_attachment * depth_stencil_attachment;
3785 struct anv_subpass_attachment * ds_resolve_attachment;
3786 VkResolveModeFlagBitsKHR depth_resolve_mode;
3787 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3788
3789 uint32_t view_mask;
3790
3791 /** Subpass has a depth/stencil self-dependency */
3792 bool has_ds_self_dep;
3793
3794 /** Subpass has at least one color resolve attachment */
3795 bool has_color_resolve;
3796 };
3797
3798 static inline unsigned
3799 anv_subpass_view_count(const struct anv_subpass *subpass)
3800 {
3801 return MAX2(1, util_bitcount(subpass->view_mask));
3802 }
3803
3804 struct anv_render_pass_attachment {
3805 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3806 * its members individually.
3807 */
3808 VkFormat format;
3809 uint32_t samples;
3810 VkImageUsageFlags usage;
3811 VkAttachmentLoadOp load_op;
3812 VkAttachmentStoreOp store_op;
3813 VkAttachmentLoadOp stencil_load_op;
3814 VkImageLayout initial_layout;
3815 VkImageLayout final_layout;
3816 VkImageLayout first_subpass_layout;
3817
3818 VkImageLayout stencil_initial_layout;
3819 VkImageLayout stencil_final_layout;
3820
3821 /* The subpass id in which the attachment will be used last. */
3822 uint32_t last_subpass_idx;
3823 };
3824
3825 struct anv_render_pass {
3826 uint32_t attachment_count;
3827 uint32_t subpass_count;
3828 /* An array of subpass_count+1 flushes, one per subpass boundary */
3829 enum anv_pipe_bits * subpass_flushes;
3830 struct anv_render_pass_attachment * attachments;
3831 struct anv_subpass subpasses[0];
3832 };
3833
3834 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3835
3836 struct anv_query_pool {
3837 VkQueryType type;
3838 VkQueryPipelineStatisticFlags pipeline_statistics;
3839 /** Stride between slots, in bytes */
3840 uint32_t stride;
3841 /** Number of slots in this query pool */
3842 uint32_t slots;
3843 struct anv_bo * bo;
3844 };
3845
3846 int anv_get_instance_entrypoint_index(const char *name);
3847 int anv_get_device_entrypoint_index(const char *name);
3848 int anv_get_physical_device_entrypoint_index(const char *name);
3849
3850 const char *anv_get_instance_entry_name(int index);
3851 const char *anv_get_physical_device_entry_name(int index);
3852 const char *anv_get_device_entry_name(int index);
3853
3854 bool
3855 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3856 const struct anv_instance_extension_table *instance);
3857 bool
3858 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3859 const struct anv_instance_extension_table *instance);
3860 bool
3861 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3862 const struct anv_instance_extension_table *instance,
3863 const struct anv_device_extension_table *device);
3864
3865 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3866 const char *name);
3867
3868 void anv_dump_image_to_ppm(struct anv_device *device,
3869 struct anv_image *image, unsigned miplevel,
3870 unsigned array_layer, VkImageAspectFlagBits aspect,
3871 const char *filename);
3872
3873 enum anv_dump_action {
3874 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3875 };
3876
3877 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3878 void anv_dump_finish(void);
3879
3880 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3881
3882 static inline uint32_t
3883 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3884 {
3885 /* This function must be called from within a subpass. */
3886 assert(cmd_state->pass && cmd_state->subpass);
3887
3888 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3889
3890 /* The id of this subpass shouldn't exceed the number of subpasses in this
3891 * render pass minus 1.
3892 */
3893 assert(subpass_id < cmd_state->pass->subpass_count);
3894 return subpass_id;
3895 }
3896
3897 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3898 void anv_device_perf_init(struct anv_device *device);
3899
3900 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3901 \
3902 static inline struct __anv_type * \
3903 __anv_type ## _from_handle(__VkType _handle) \
3904 { \
3905 return (struct __anv_type *) _handle; \
3906 } \
3907 \
3908 static inline __VkType \
3909 __anv_type ## _to_handle(struct __anv_type *_obj) \
3910 { \
3911 return (__VkType) _obj; \
3912 }
3913
3914 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3915 \
3916 static inline struct __anv_type * \
3917 __anv_type ## _from_handle(__VkType _handle) \
3918 { \
3919 return (struct __anv_type *)(uintptr_t) _handle; \
3920 } \
3921 \
3922 static inline __VkType \
3923 __anv_type ## _to_handle(struct __anv_type *_obj) \
3924 { \
3925 return (__VkType)(uintptr_t) _obj; \
3926 }
3927
3928 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3929 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3930
3931 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3932 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3933 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3934 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3935 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3936
3937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3950 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3951 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3952 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3953 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3954 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3955 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3956 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3957 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3958 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3959 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3960
3961 /* Gen-specific function declarations */
3962 #ifdef genX
3963 # include "anv_genX.h"
3964 #else
3965 # define genX(x) gen7_##x
3966 # include "anv_genX.h"
3967 # undef genX
3968 # define genX(x) gen75_##x
3969 # include "anv_genX.h"
3970 # undef genX
3971 # define genX(x) gen8_##x
3972 # include "anv_genX.h"
3973 # undef genX
3974 # define genX(x) gen9_##x
3975 # include "anv_genX.h"
3976 # undef genX
3977 # define genX(x) gen10_##x
3978 # include "anv_genX.h"
3979 # undef genX
3980 # define genX(x) gen11_##x
3981 # include "anv_genX.h"
3982 # undef genX
3983 # define genX(x) gen12_##x
3984 # include "anv_genX.h"
3985 # undef genX
3986 #endif
3987
3988 #endif /* ANV_PRIVATE_H */