anv: Rework CCS memory handling on TGL-LP
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_down_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return v & ~(a - 1);
244 }
245
246 static inline uint64_t
247 align_u64(uint64_t v, uint64_t a)
248 {
249 return align_down_u64(v + a - 1, a);
250 }
251
252 static inline int32_t
253 align_i32(int32_t v, int32_t a)
254 {
255 assert(a != 0 && a == (a & -a));
256 return (v + a - 1) & ~(a - 1);
257 }
258
259 /** Alignment must be a power of 2. */
260 static inline bool
261 anv_is_aligned(uintmax_t n, uintmax_t a)
262 {
263 assert(a == (a & -a));
264 return (n & (a - 1)) == 0;
265 }
266
267 static inline uint32_t
268 anv_minify(uint32_t n, uint32_t levels)
269 {
270 if (unlikely(n == 0))
271 return 0;
272 else
273 return MAX2(n >> levels, 1);
274 }
275
276 static inline float
277 anv_clamp_f(float f, float min, float max)
278 {
279 assert(min < max);
280
281 if (f > max)
282 return max;
283 else if (f < min)
284 return min;
285 else
286 return f;
287 }
288
289 static inline bool
290 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
291 {
292 if (*inout_mask & clear_mask) {
293 *inout_mask &= ~clear_mask;
294 return true;
295 } else {
296 return false;
297 }
298 }
299
300 static inline union isl_color_value
301 vk_to_isl_color(VkClearColorValue color)
302 {
303 return (union isl_color_value) {
304 .u32 = {
305 color.uint32[0],
306 color.uint32[1],
307 color.uint32[2],
308 color.uint32[3],
309 },
310 };
311 }
312
313 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
314 {
315 uintptr_t mask = (1ull << bits) - 1;
316 *flags = ptr & mask;
317 return (void *) (ptr & ~mask);
318 }
319
320 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
321 {
322 uintptr_t value = (uintptr_t) ptr;
323 uintptr_t mask = (1ull << bits) - 1;
324 return value | (mask & flags);
325 }
326
327 #define for_each_bit(b, dword) \
328 for (uint32_t __dword = (dword); \
329 (b) = __builtin_ffs(__dword) - 1, __dword; \
330 __dword &= ~(1 << (b)))
331
332 #define typed_memcpy(dest, src, count) ({ \
333 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
334 memcpy((dest), (src), (count) * sizeof(*(src))); \
335 })
336
337 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
338 * to be added here in order to utilize mapping in debug/error/perf macros.
339 */
340 #define REPORT_OBJECT_TYPE(o) \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), void*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
434 /* The void expression results in a compile-time error \
435 when assigning the result to something. */ \
436 (void)0)))))))))))))))))))))))))))))))
437
438 /* Whenever we generate an error, pass it through this function. Useful for
439 * debugging, where we can break on it. Only call at error site, not when
440 * propagating errors. Might be useful to plug in a stack trace here.
441 */
442
443 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
444 VkDebugReportObjectTypeEXT type, VkResult error,
445 const char *file, int line, const char *format,
446 va_list args);
447
448 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
449 VkDebugReportObjectTypeEXT type, VkResult error,
450 const char *file, int line, const char *format, ...)
451 anv_printflike(7, 8);
452
453 #ifdef DEBUG
454 #define vk_error(error) __vk_errorf(NULL, NULL,\
455 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
456 error, __FILE__, __LINE__, NULL)
457 #define vk_errorfi(instance, obj, error, format, ...)\
458 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
459 __FILE__, __LINE__, format, ## __VA_ARGS__)
460 #define vk_errorf(device, obj, error, format, ...)\
461 vk_errorfi(anv_device_instance_or_null(device),\
462 obj, error, format, ## __VA_ARGS__)
463 #else
464 #define vk_error(error) error
465 #define vk_errorfi(instance, obj, error, format, ...) error
466 #define vk_errorf(device, obj, error, format, ...) error
467 #endif
468
469 /**
470 * Warn on ignored extension structs.
471 *
472 * The Vulkan spec requires us to ignore unsupported or unknown structs in
473 * a pNext chain. In debug mode, emitting warnings for ignored structs may
474 * help us discover structs that we should not have ignored.
475 *
476 *
477 * From the Vulkan 1.0.38 spec:
478 *
479 * Any component of the implementation (the loader, any enabled layers,
480 * and drivers) must skip over, without processing (other than reading the
481 * sType and pNext members) any chained structures with sType values not
482 * defined by extensions supported by that component.
483 */
484 #define anv_debug_ignored_stype(sType) \
485 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
486
487 void __anv_perf_warn(struct anv_device *device, const void *object,
488 VkDebugReportObjectTypeEXT type, const char *file,
489 int line, const char *format, ...)
490 anv_printflike(6, 7);
491 void anv_loge(const char *format, ...) anv_printflike(1, 2);
492 void anv_loge_v(const char *format, va_list va);
493
494 /**
495 * Print a FINISHME message, including its source location.
496 */
497 #define anv_finishme(format, ...) \
498 do { \
499 static bool reported = false; \
500 if (!reported) { \
501 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
502 ##__VA_ARGS__); \
503 reported = true; \
504 } \
505 } while (0)
506
507 /**
508 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
509 */
510 #define anv_perf_warn(instance, obj, format, ...) \
511 do { \
512 static bool reported = false; \
513 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
514 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
515 format, ##__VA_ARGS__); \
516 reported = true; \
517 } \
518 } while (0)
519
520 /* A non-fatal assert. Useful for debugging. */
521 #ifdef DEBUG
522 #define anv_assert(x) ({ \
523 if (unlikely(!(x))) \
524 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
525 })
526 #else
527 #define anv_assert(x)
528 #endif
529
530 /* A multi-pointer allocator
531 *
532 * When copying data structures from the user (such as a render pass), it's
533 * common to need to allocate data for a bunch of different things. Instead
534 * of doing several allocations and having to handle all of the error checking
535 * that entails, it can be easier to do a single allocation. This struct
536 * helps facilitate that. The intended usage looks like this:
537 *
538 * ANV_MULTIALLOC(ma)
539 * anv_multialloc_add(&ma, &main_ptr, 1);
540 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
541 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
542 *
543 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
544 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
545 */
546 struct anv_multialloc {
547 size_t size;
548 size_t align;
549
550 uint32_t ptr_count;
551 void **ptrs[8];
552 };
553
554 #define ANV_MULTIALLOC_INIT \
555 ((struct anv_multialloc) { 0, })
556
557 #define ANV_MULTIALLOC(_name) \
558 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
559
560 __attribute__((always_inline))
561 static inline void
562 _anv_multialloc_add(struct anv_multialloc *ma,
563 void **ptr, size_t size, size_t align)
564 {
565 size_t offset = align_u64(ma->size, align);
566 ma->size = offset + size;
567 ma->align = MAX2(ma->align, align);
568
569 /* Store the offset in the pointer. */
570 *ptr = (void *)(uintptr_t)offset;
571
572 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
573 ma->ptrs[ma->ptr_count++] = ptr;
574 }
575
576 #define anv_multialloc_add_size(_ma, _ptr, _size) \
577 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
578
579 #define anv_multialloc_add(_ma, _ptr, _count) \
580 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
581
582 __attribute__((always_inline))
583 static inline void *
584 anv_multialloc_alloc(struct anv_multialloc *ma,
585 const VkAllocationCallbacks *alloc,
586 VkSystemAllocationScope scope)
587 {
588 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
589 if (!ptr)
590 return NULL;
591
592 /* Fill out each of the pointers with their final value.
593 *
594 * for (uint32_t i = 0; i < ma->ptr_count; i++)
595 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
596 *
597 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
598 * constant, GCC is incapable of figuring this out and unrolling the loop
599 * so we have to give it a little help.
600 */
601 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
602 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
603 if ((_i) < ma->ptr_count) \
604 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
605 _ANV_MULTIALLOC_UPDATE_POINTER(0);
606 _ANV_MULTIALLOC_UPDATE_POINTER(1);
607 _ANV_MULTIALLOC_UPDATE_POINTER(2);
608 _ANV_MULTIALLOC_UPDATE_POINTER(3);
609 _ANV_MULTIALLOC_UPDATE_POINTER(4);
610 _ANV_MULTIALLOC_UPDATE_POINTER(5);
611 _ANV_MULTIALLOC_UPDATE_POINTER(6);
612 _ANV_MULTIALLOC_UPDATE_POINTER(7);
613 #undef _ANV_MULTIALLOC_UPDATE_POINTER
614
615 return ptr;
616 }
617
618 __attribute__((always_inline))
619 static inline void *
620 anv_multialloc_alloc2(struct anv_multialloc *ma,
621 const VkAllocationCallbacks *parent_alloc,
622 const VkAllocationCallbacks *alloc,
623 VkSystemAllocationScope scope)
624 {
625 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
626 }
627
628 struct anv_bo {
629 uint32_t gem_handle;
630
631 uint32_t refcount;
632
633 /* Index into the current validation list. This is used by the
634 * validation list building alrogithm to track which buffers are already
635 * in the validation list so that we can ensure uniqueness.
636 */
637 uint32_t index;
638
639 /* Index for use with util_sparse_array_free_list */
640 uint32_t free_index;
641
642 /* Last known offset. This value is provided by the kernel when we
643 * execbuf and is used as the presumed offset for the next bunch of
644 * relocations.
645 */
646 uint64_t offset;
647
648 /** Size of the buffer not including implicit aux */
649 uint64_t size;
650
651 /* Map for internally mapped BOs.
652 *
653 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
654 */
655 void *map;
656
657 /** Size of the implicit CCS range at the end of the buffer
658 *
659 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
660 * page of main surface data maps to a 256B chunk of CCS data and that
661 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
662 * addresses in the main surface to virtual memory addresses for CCS data.
663 *
664 * Because we can't change these maps around easily and because Vulkan
665 * allows two VkImages to be bound to overlapping memory regions (as long
666 * as the app is careful), it's not feasible to make this mapping part of
667 * the image. (On Gen11 and earlier, the mapping was provided via
668 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
669 * Instead, we attach the CCS data directly to the buffer object and setup
670 * the AUX table mapping at BO creation time.
671 *
672 * This field is for internal tracking use by the BO allocator only and
673 * should not be touched by other parts of the code. If something wants to
674 * know if a BO has implicit CCS data, it should instead look at the
675 * has_implicit_ccs boolean below.
676 *
677 * This data is not included in maps of this buffer.
678 */
679 uint32_t _ccs_size;
680
681 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
682 uint32_t flags;
683
684 /** True if this BO may be shared with other processes */
685 bool is_external:1;
686
687 /** True if this BO is a wrapper
688 *
689 * When set to true, none of the fields in this BO are meaningful except
690 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
691 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
692 * is set in the physical device.
693 */
694 bool is_wrapper:1;
695
696 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
697 bool has_fixed_address:1;
698
699 /** True if this BO wraps a host pointer */
700 bool from_host_ptr:1;
701
702 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
703 bool has_client_visible_address:1;
704
705 /** True if this BO has implicit CCS data attached to it */
706 bool has_implicit_ccs:1;
707 };
708
709 static inline struct anv_bo *
710 anv_bo_ref(struct anv_bo *bo)
711 {
712 p_atomic_inc(&bo->refcount);
713 return bo;
714 }
715
716 static inline struct anv_bo *
717 anv_bo_unwrap(struct anv_bo *bo)
718 {
719 while (bo->is_wrapper)
720 bo = bo->map;
721 return bo;
722 }
723
724 /* Represents a lock-free linked list of "free" things. This is used by
725 * both the block pool and the state pools. Unfortunately, in order to
726 * solve the ABA problem, we can't use a single uint32_t head.
727 */
728 union anv_free_list {
729 struct {
730 uint32_t offset;
731
732 /* A simple count that is incremented every time the head changes. */
733 uint32_t count;
734 };
735 /* Make sure it's aligned to 64 bits. This will make atomic operations
736 * faster on 32 bit platforms.
737 */
738 uint64_t u64 __attribute__ ((aligned (8)));
739 };
740
741 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
742
743 struct anv_block_state {
744 union {
745 struct {
746 uint32_t next;
747 uint32_t end;
748 };
749 /* Make sure it's aligned to 64 bits. This will make atomic operations
750 * faster on 32 bit platforms.
751 */
752 uint64_t u64 __attribute__ ((aligned (8)));
753 };
754 };
755
756 #define anv_block_pool_foreach_bo(bo, pool) \
757 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
758 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
759 _pp_bo++)
760
761 #define ANV_MAX_BLOCK_POOL_BOS 20
762
763 struct anv_block_pool {
764 struct anv_device *device;
765 bool use_softpin;
766
767 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
768 * around the actual BO so that we grow the pool after the wrapper BO has
769 * been put in a relocation list. This is only used in the non-softpin
770 * case.
771 */
772 struct anv_bo wrapper_bo;
773
774 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
775 struct anv_bo *bo;
776 uint32_t nbos;
777
778 uint64_t size;
779
780 /* The address where the start of the pool is pinned. The various bos that
781 * are created as the pool grows will have addresses in the range
782 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
783 */
784 uint64_t start_address;
785
786 /* The offset from the start of the bo to the "center" of the block
787 * pool. Pointers to allocated blocks are given by
788 * bo.map + center_bo_offset + offsets.
789 */
790 uint32_t center_bo_offset;
791
792 /* Current memory map of the block pool. This pointer may or may not
793 * point to the actual beginning of the block pool memory. If
794 * anv_block_pool_alloc_back has ever been called, then this pointer
795 * will point to the "center" position of the buffer and all offsets
796 * (negative or positive) given out by the block pool alloc functions
797 * will be valid relative to this pointer.
798 *
799 * In particular, map == bo.map + center_offset
800 *
801 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
802 * since it will handle the softpin case as well, where this points to NULL.
803 */
804 void *map;
805 int fd;
806
807 /**
808 * Array of mmaps and gem handles owned by the block pool, reclaimed when
809 * the block pool is destroyed.
810 */
811 struct u_vector mmap_cleanups;
812
813 struct anv_block_state state;
814
815 struct anv_block_state back_state;
816 };
817
818 /* Block pools are backed by a fixed-size 1GB memfd */
819 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
820
821 /* The center of the block pool is also the middle of the memfd. This may
822 * change in the future if we decide differently for some reason.
823 */
824 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
825
826 static inline uint32_t
827 anv_block_pool_size(struct anv_block_pool *pool)
828 {
829 return pool->state.end + pool->back_state.end;
830 }
831
832 struct anv_state {
833 int32_t offset;
834 uint32_t alloc_size;
835 void *map;
836 uint32_t idx;
837 };
838
839 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
840
841 struct anv_fixed_size_state_pool {
842 union anv_free_list free_list;
843 struct anv_block_state block;
844 };
845
846 #define ANV_MIN_STATE_SIZE_LOG2 6
847 #define ANV_MAX_STATE_SIZE_LOG2 21
848
849 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
850
851 struct anv_free_entry {
852 uint32_t next;
853 struct anv_state state;
854 };
855
856 struct anv_state_table {
857 struct anv_device *device;
858 int fd;
859 struct anv_free_entry *map;
860 uint32_t size;
861 struct anv_block_state state;
862 struct u_vector cleanups;
863 };
864
865 struct anv_state_pool {
866 struct anv_block_pool block_pool;
867
868 struct anv_state_table table;
869
870 /* The size of blocks which will be allocated from the block pool */
871 uint32_t block_size;
872
873 /** Free list for "back" allocations */
874 union anv_free_list back_alloc_free_list;
875
876 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
877 };
878
879 struct anv_state_stream_block;
880
881 struct anv_state_stream {
882 struct anv_state_pool *state_pool;
883
884 /* The size of blocks to allocate from the state pool */
885 uint32_t block_size;
886
887 /* Current block we're allocating from */
888 struct anv_state block;
889
890 /* Offset into the current block at which to allocate the next state */
891 uint32_t next;
892
893 /* List of all blocks allocated from this pool */
894 struct anv_state_stream_block *block_list;
895 };
896
897 /* The block_pool functions exported for testing only. The block pool should
898 * only be used via a state pool (see below).
899 */
900 VkResult anv_block_pool_init(struct anv_block_pool *pool,
901 struct anv_device *device,
902 uint64_t start_address,
903 uint32_t initial_size);
904 void anv_block_pool_finish(struct anv_block_pool *pool);
905 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
906 uint32_t block_size, uint32_t *padding);
907 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
908 uint32_t block_size);
909 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
910
911 VkResult anv_state_pool_init(struct anv_state_pool *pool,
912 struct anv_device *device,
913 uint64_t start_address,
914 uint32_t block_size);
915 void anv_state_pool_finish(struct anv_state_pool *pool);
916 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
917 uint32_t state_size, uint32_t alignment);
918 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
919 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
920 void anv_state_stream_init(struct anv_state_stream *stream,
921 struct anv_state_pool *state_pool,
922 uint32_t block_size);
923 void anv_state_stream_finish(struct anv_state_stream *stream);
924 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
925 uint32_t size, uint32_t alignment);
926
927 VkResult anv_state_table_init(struct anv_state_table *table,
928 struct anv_device *device,
929 uint32_t initial_entries);
930 void anv_state_table_finish(struct anv_state_table *table);
931 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
932 uint32_t count);
933 void anv_free_list_push(union anv_free_list *list,
934 struct anv_state_table *table,
935 uint32_t idx, uint32_t count);
936 struct anv_state* anv_free_list_pop(union anv_free_list *list,
937 struct anv_state_table *table);
938
939
940 static inline struct anv_state *
941 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
942 {
943 return &table->map[idx].state;
944 }
945 /**
946 * Implements a pool of re-usable BOs. The interface is identical to that
947 * of block_pool except that each block is its own BO.
948 */
949 struct anv_bo_pool {
950 struct anv_device *device;
951
952 struct util_sparse_array_free_list free_list[16];
953 };
954
955 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
956 void anv_bo_pool_finish(struct anv_bo_pool *pool);
957 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
958 struct anv_bo **bo_out);
959 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
960
961 struct anv_scratch_pool {
962 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
963 struct anv_bo *bos[16][MESA_SHADER_STAGES];
964 };
965
966 void anv_scratch_pool_init(struct anv_device *device,
967 struct anv_scratch_pool *pool);
968 void anv_scratch_pool_finish(struct anv_device *device,
969 struct anv_scratch_pool *pool);
970 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
971 struct anv_scratch_pool *pool,
972 gl_shader_stage stage,
973 unsigned per_thread_scratch);
974
975 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
976 struct anv_bo_cache {
977 struct util_sparse_array bo_map;
978 pthread_mutex_t mutex;
979 };
980
981 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
982 void anv_bo_cache_finish(struct anv_bo_cache *cache);
983
984 struct anv_memory_type {
985 /* Standard bits passed on to the client */
986 VkMemoryPropertyFlags propertyFlags;
987 uint32_t heapIndex;
988 };
989
990 struct anv_memory_heap {
991 /* Standard bits passed on to the client */
992 VkDeviceSize size;
993 VkMemoryHeapFlags flags;
994
995 /* Driver-internal book-keeping */
996 VkDeviceSize used;
997 };
998
999 struct anv_physical_device {
1000 VK_LOADER_DATA _loader_data;
1001
1002 /* Link in anv_instance::physical_devices */
1003 struct list_head link;
1004
1005 struct anv_instance * instance;
1006 bool no_hw;
1007 char path[20];
1008 const char * name;
1009 struct {
1010 uint16_t domain;
1011 uint8_t bus;
1012 uint8_t device;
1013 uint8_t function;
1014 } pci_info;
1015 struct gen_device_info info;
1016 /** Amount of "GPU memory" we want to advertise
1017 *
1018 * Clearly, this value is bogus since Intel is a UMA architecture. On
1019 * gen7 platforms, we are limited by GTT size unless we want to implement
1020 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1021 * practically unlimited. However, we will never report more than 3/4 of
1022 * the total system ram to try and avoid running out of RAM.
1023 */
1024 bool supports_48bit_addresses;
1025 struct brw_compiler * compiler;
1026 struct isl_device isl_dev;
1027 struct gen_perf_config * perf;
1028 int cmd_parser_version;
1029 bool has_softpin;
1030 bool has_exec_async;
1031 bool has_exec_capture;
1032 bool has_exec_fence;
1033 bool has_syncobj;
1034 bool has_syncobj_wait;
1035 bool has_context_priority;
1036 bool has_context_isolation;
1037 bool has_mem_available;
1038 uint64_t gtt_size;
1039
1040 bool use_softpin;
1041 bool always_use_bindless;
1042
1043 /** True if we can access buffers using A64 messages */
1044 bool has_a64_buffer_access;
1045 /** True if we can use bindless access for images */
1046 bool has_bindless_images;
1047 /** True if we can use bindless access for samplers */
1048 bool has_bindless_samplers;
1049
1050 /** True if this device has implicit AUX
1051 *
1052 * If true, CCS is handled as an implicit attachment to the BO rather than
1053 * as an explicitly bound surface.
1054 */
1055 bool has_implicit_ccs;
1056
1057 bool always_flush_cache;
1058
1059 struct anv_device_extension_table supported_extensions;
1060
1061 uint32_t eu_total;
1062 uint32_t subslice_total;
1063
1064 struct {
1065 uint32_t type_count;
1066 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1067 uint32_t heap_count;
1068 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1069 } memory;
1070
1071 uint8_t driver_build_sha1[20];
1072 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1073 uint8_t driver_uuid[VK_UUID_SIZE];
1074 uint8_t device_uuid[VK_UUID_SIZE];
1075
1076 struct disk_cache * disk_cache;
1077
1078 struct wsi_device wsi_device;
1079 int local_fd;
1080 int master_fd;
1081 };
1082
1083 struct anv_app_info {
1084 const char* app_name;
1085 uint32_t app_version;
1086 const char* engine_name;
1087 uint32_t engine_version;
1088 uint32_t api_version;
1089 };
1090
1091 struct anv_instance {
1092 VK_LOADER_DATA _loader_data;
1093
1094 VkAllocationCallbacks alloc;
1095
1096 struct anv_app_info app_info;
1097
1098 struct anv_instance_extension_table enabled_extensions;
1099 struct anv_instance_dispatch_table dispatch;
1100 struct anv_physical_device_dispatch_table physical_device_dispatch;
1101 struct anv_device_dispatch_table device_dispatch;
1102
1103 bool physical_devices_enumerated;
1104 struct list_head physical_devices;
1105
1106 bool pipeline_cache_enabled;
1107
1108 struct vk_debug_report_instance debug_report_callbacks;
1109
1110 struct driOptionCache dri_options;
1111 struct driOptionCache available_dri_options;
1112 };
1113
1114 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1115 void anv_finish_wsi(struct anv_physical_device *physical_device);
1116
1117 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1118 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1119 const char *name);
1120
1121 struct anv_queue_submit {
1122 struct anv_cmd_buffer * cmd_buffer;
1123
1124 uint32_t fence_count;
1125 uint32_t fence_array_length;
1126 struct drm_i915_gem_exec_fence * fences;
1127
1128 uint32_t temporary_semaphore_count;
1129 uint32_t temporary_semaphore_array_length;
1130 struct anv_semaphore_impl * temporary_semaphores;
1131
1132 /* Semaphores to be signaled with a SYNC_FD. */
1133 struct anv_semaphore ** sync_fd_semaphores;
1134 uint32_t sync_fd_semaphore_count;
1135 uint32_t sync_fd_semaphore_array_length;
1136
1137 /* Allocated only with non shareable timelines. */
1138 struct anv_timeline ** wait_timelines;
1139 uint32_t wait_timeline_count;
1140 uint32_t wait_timeline_array_length;
1141 uint64_t * wait_timeline_values;
1142
1143 struct anv_timeline ** signal_timelines;
1144 uint32_t signal_timeline_count;
1145 uint32_t signal_timeline_array_length;
1146 uint64_t * signal_timeline_values;
1147
1148 int in_fence;
1149 bool need_out_fence;
1150 int out_fence;
1151
1152 uint32_t fence_bo_count;
1153 uint32_t fence_bo_array_length;
1154 /* An array of struct anv_bo pointers with lower bit used as a flag to
1155 * signal we will wait on that BO (see anv_(un)pack_ptr).
1156 */
1157 uintptr_t * fence_bos;
1158
1159 const VkAllocationCallbacks * alloc;
1160 VkSystemAllocationScope alloc_scope;
1161
1162 struct anv_bo * simple_bo;
1163 uint32_t simple_bo_size;
1164
1165 struct list_head link;
1166 };
1167
1168 struct anv_queue {
1169 VK_LOADER_DATA _loader_data;
1170
1171 struct anv_device * device;
1172
1173 /*
1174 * A list of struct anv_queue_submit to be submitted to i915.
1175 */
1176 struct list_head queued_submits;
1177
1178 VkDeviceQueueCreateFlags flags;
1179 };
1180
1181 struct anv_pipeline_cache {
1182 struct anv_device * device;
1183 pthread_mutex_t mutex;
1184
1185 struct hash_table * nir_cache;
1186
1187 struct hash_table * cache;
1188 };
1189
1190 struct nir_xfb_info;
1191 struct anv_pipeline_bind_map;
1192
1193 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1194 struct anv_device *device,
1195 bool cache_enabled);
1196 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1197
1198 struct anv_shader_bin *
1199 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1200 const void *key, uint32_t key_size);
1201 struct anv_shader_bin *
1202 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1203 const void *key_data, uint32_t key_size,
1204 const void *kernel_data, uint32_t kernel_size,
1205 const void *constant_data,
1206 uint32_t constant_data_size,
1207 const struct brw_stage_prog_data *prog_data,
1208 uint32_t prog_data_size,
1209 const struct brw_compile_stats *stats,
1210 uint32_t num_stats,
1211 const struct nir_xfb_info *xfb_info,
1212 const struct anv_pipeline_bind_map *bind_map);
1213
1214 struct anv_shader_bin *
1215 anv_device_search_for_kernel(struct anv_device *device,
1216 struct anv_pipeline_cache *cache,
1217 const void *key_data, uint32_t key_size,
1218 bool *user_cache_bit);
1219
1220 struct anv_shader_bin *
1221 anv_device_upload_kernel(struct anv_device *device,
1222 struct anv_pipeline_cache *cache,
1223 const void *key_data, uint32_t key_size,
1224 const void *kernel_data, uint32_t kernel_size,
1225 const void *constant_data,
1226 uint32_t constant_data_size,
1227 const struct brw_stage_prog_data *prog_data,
1228 uint32_t prog_data_size,
1229 const struct brw_compile_stats *stats,
1230 uint32_t num_stats,
1231 const struct nir_xfb_info *xfb_info,
1232 const struct anv_pipeline_bind_map *bind_map);
1233
1234 struct nir_shader;
1235 struct nir_shader_compiler_options;
1236
1237 struct nir_shader *
1238 anv_device_search_for_nir(struct anv_device *device,
1239 struct anv_pipeline_cache *cache,
1240 const struct nir_shader_compiler_options *nir_options,
1241 unsigned char sha1_key[20],
1242 void *mem_ctx);
1243
1244 void
1245 anv_device_upload_nir(struct anv_device *device,
1246 struct anv_pipeline_cache *cache,
1247 const struct nir_shader *nir,
1248 unsigned char sha1_key[20]);
1249
1250 struct anv_device {
1251 VK_LOADER_DATA _loader_data;
1252
1253 VkAllocationCallbacks alloc;
1254
1255 struct anv_physical_device * physical;
1256 bool no_hw;
1257 struct gen_device_info info;
1258 struct isl_device isl_dev;
1259 int context_id;
1260 int fd;
1261 bool can_chain_batches;
1262 bool robust_buffer_access;
1263 struct anv_device_extension_table enabled_extensions;
1264 struct anv_device_dispatch_table dispatch;
1265
1266 pthread_mutex_t vma_mutex;
1267 struct util_vma_heap vma_lo;
1268 struct util_vma_heap vma_cva;
1269 struct util_vma_heap vma_hi;
1270
1271 /** List of all anv_device_memory objects */
1272 struct list_head memory_objects;
1273
1274 struct anv_bo_pool batch_bo_pool;
1275
1276 struct anv_bo_cache bo_cache;
1277
1278 struct anv_state_pool dynamic_state_pool;
1279 struct anv_state_pool instruction_state_pool;
1280 struct anv_state_pool binding_table_pool;
1281 struct anv_state_pool surface_state_pool;
1282
1283 struct anv_bo * workaround_bo;
1284 struct anv_bo * trivial_batch_bo;
1285 struct anv_bo * hiz_clear_bo;
1286
1287 struct anv_pipeline_cache default_pipeline_cache;
1288 struct blorp_context blorp;
1289
1290 struct anv_state border_colors;
1291
1292 struct anv_state slice_hash;
1293
1294 struct anv_queue queue;
1295
1296 struct anv_scratch_pool scratch_pool;
1297
1298 pthread_mutex_t mutex;
1299 pthread_cond_t queue_submit;
1300 int _lost;
1301
1302 struct gen_batch_decode_ctx decoder_ctx;
1303 /*
1304 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1305 * the cmd_buffer's list.
1306 */
1307 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1308
1309 int perf_fd; /* -1 if no opened */
1310 uint64_t perf_metric; /* 0 if unset */
1311
1312 struct gen_aux_map_context *aux_map_ctx;
1313 };
1314
1315 static inline struct anv_instance *
1316 anv_device_instance_or_null(const struct anv_device *device)
1317 {
1318 return device ? device->physical->instance : NULL;
1319 }
1320
1321 static inline struct anv_state_pool *
1322 anv_binding_table_pool(struct anv_device *device)
1323 {
1324 if (device->physical->use_softpin)
1325 return &device->binding_table_pool;
1326 else
1327 return &device->surface_state_pool;
1328 }
1329
1330 static inline struct anv_state
1331 anv_binding_table_pool_alloc(struct anv_device *device) {
1332 if (device->physical->use_softpin)
1333 return anv_state_pool_alloc(&device->binding_table_pool,
1334 device->binding_table_pool.block_size, 0);
1335 else
1336 return anv_state_pool_alloc_back(&device->surface_state_pool);
1337 }
1338
1339 static inline void
1340 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1341 anv_state_pool_free(anv_binding_table_pool(device), state);
1342 }
1343
1344 static inline uint32_t
1345 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1346 {
1347 if (bo->is_external)
1348 return device->isl_dev.mocs.external;
1349 else
1350 return device->isl_dev.mocs.internal;
1351 }
1352
1353 void anv_device_init_blorp(struct anv_device *device);
1354 void anv_device_finish_blorp(struct anv_device *device);
1355
1356 void _anv_device_set_all_queue_lost(struct anv_device *device);
1357 VkResult _anv_device_set_lost(struct anv_device *device,
1358 const char *file, int line,
1359 const char *msg, ...)
1360 anv_printflike(4, 5);
1361 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1362 const char *file, int line,
1363 const char *msg, ...)
1364 anv_printflike(4, 5);
1365 #define anv_device_set_lost(dev, ...) \
1366 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1367 #define anv_queue_set_lost(queue, ...) \
1368 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1369
1370 static inline bool
1371 anv_device_is_lost(struct anv_device *device)
1372 {
1373 return unlikely(p_atomic_read(&device->_lost));
1374 }
1375
1376 VkResult anv_device_query_status(struct anv_device *device);
1377
1378
1379 enum anv_bo_alloc_flags {
1380 /** Specifies that the BO must have a 32-bit address
1381 *
1382 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1383 */
1384 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1385
1386 /** Specifies that the BO may be shared externally */
1387 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1388
1389 /** Specifies that the BO should be mapped */
1390 ANV_BO_ALLOC_MAPPED = (1 << 2),
1391
1392 /** Specifies that the BO should be snooped so we get coherency */
1393 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1394
1395 /** Specifies that the BO should be captured in error states */
1396 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1397
1398 /** Specifies that the BO will have an address assigned by the caller
1399 *
1400 * Such BOs do not exist in any VMA heap.
1401 */
1402 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1403
1404 /** Enables implicit synchronization on the BO
1405 *
1406 * This is the opposite of EXEC_OBJECT_ASYNC.
1407 */
1408 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1409
1410 /** Enables implicit synchronization on the BO
1411 *
1412 * This is equivalent to EXEC_OBJECT_WRITE.
1413 */
1414 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1415
1416 /** Has an address which is visible to the client */
1417 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1418
1419 /** This buffer has implicit CCS data attached to it */
1420 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1421 };
1422
1423 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1424 enum anv_bo_alloc_flags alloc_flags,
1425 uint64_t explicit_address,
1426 struct anv_bo **bo);
1427 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1428 void *host_ptr, uint32_t size,
1429 enum anv_bo_alloc_flags alloc_flags,
1430 uint64_t client_address,
1431 struct anv_bo **bo_out);
1432 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1433 enum anv_bo_alloc_flags alloc_flags,
1434 uint64_t client_address,
1435 struct anv_bo **bo);
1436 VkResult anv_device_export_bo(struct anv_device *device,
1437 struct anv_bo *bo, int *fd_out);
1438 void anv_device_release_bo(struct anv_device *device,
1439 struct anv_bo *bo);
1440
1441 static inline struct anv_bo *
1442 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1443 {
1444 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1445 }
1446
1447 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1448 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1449 int64_t timeout);
1450
1451 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1452 void anv_queue_finish(struct anv_queue *queue);
1453
1454 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1455 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1456 struct anv_batch *batch);
1457
1458 uint64_t anv_gettime_ns(void);
1459 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1460
1461 void* anv_gem_mmap(struct anv_device *device,
1462 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1463 void anv_gem_munmap(void *p, uint64_t size);
1464 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1465 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1466 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1467 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1468 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1469 int anv_gem_execbuffer(struct anv_device *device,
1470 struct drm_i915_gem_execbuffer2 *execbuf);
1471 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1472 uint32_t stride, uint32_t tiling);
1473 int anv_gem_create_context(struct anv_device *device);
1474 bool anv_gem_has_context_priority(int fd);
1475 int anv_gem_destroy_context(struct anv_device *device, int context);
1476 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1477 uint64_t value);
1478 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1479 uint64_t *value);
1480 int anv_gem_get_param(int fd, uint32_t param);
1481 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1482 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1483 int anv_gem_get_aperture(int fd, uint64_t *size);
1484 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1485 uint32_t *active, uint32_t *pending);
1486 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1487 int anv_gem_reg_read(struct anv_device *device,
1488 uint32_t offset, uint64_t *result);
1489 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1490 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1491 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1492 uint32_t read_domains, uint32_t write_domain);
1493 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1494 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1495 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1496 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1497 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1498 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1499 uint32_t handle);
1500 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1501 uint32_t handle, int fd);
1502 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1503 bool anv_gem_supports_syncobj_wait(int fd);
1504 int anv_gem_syncobj_wait(struct anv_device *device,
1505 uint32_t *handles, uint32_t num_handles,
1506 int64_t abs_timeout_ns, bool wait_all);
1507
1508 uint64_t anv_vma_alloc(struct anv_device *device,
1509 uint64_t size, uint64_t align,
1510 enum anv_bo_alloc_flags alloc_flags,
1511 uint64_t client_address);
1512 void anv_vma_free(struct anv_device *device,
1513 uint64_t address, uint64_t size);
1514
1515 struct anv_reloc_list {
1516 uint32_t num_relocs;
1517 uint32_t array_length;
1518 struct drm_i915_gem_relocation_entry * relocs;
1519 struct anv_bo ** reloc_bos;
1520 uint32_t dep_words;
1521 BITSET_WORD * deps;
1522 };
1523
1524 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1525 const VkAllocationCallbacks *alloc);
1526 void anv_reloc_list_finish(struct anv_reloc_list *list,
1527 const VkAllocationCallbacks *alloc);
1528
1529 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1530 const VkAllocationCallbacks *alloc,
1531 uint32_t offset, struct anv_bo *target_bo,
1532 uint32_t delta, uint64_t *address_u64_out);
1533
1534 struct anv_batch_bo {
1535 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1536 struct list_head link;
1537
1538 struct anv_bo * bo;
1539
1540 /* Bytes actually consumed in this batch BO */
1541 uint32_t length;
1542
1543 struct anv_reloc_list relocs;
1544 };
1545
1546 struct anv_batch {
1547 const VkAllocationCallbacks * alloc;
1548
1549 void * start;
1550 void * end;
1551 void * next;
1552
1553 struct anv_reloc_list * relocs;
1554
1555 /* This callback is called (with the associated user data) in the event
1556 * that the batch runs out of space.
1557 */
1558 VkResult (*extend_cb)(struct anv_batch *, void *);
1559 void * user_data;
1560
1561 /**
1562 * Current error status of the command buffer. Used to track inconsistent
1563 * or incomplete command buffer states that are the consequence of run-time
1564 * errors such as out of memory scenarios. We want to track this in the
1565 * batch because the command buffer object is not visible to some parts
1566 * of the driver.
1567 */
1568 VkResult status;
1569 };
1570
1571 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1572 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1573 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1574 void *location, struct anv_bo *bo, uint32_t offset);
1575
1576 static inline VkResult
1577 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1578 {
1579 assert(error != VK_SUCCESS);
1580 if (batch->status == VK_SUCCESS)
1581 batch->status = error;
1582 return batch->status;
1583 }
1584
1585 static inline bool
1586 anv_batch_has_error(struct anv_batch *batch)
1587 {
1588 return batch->status != VK_SUCCESS;
1589 }
1590
1591 struct anv_address {
1592 struct anv_bo *bo;
1593 uint32_t offset;
1594 };
1595
1596 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1597
1598 static inline bool
1599 anv_address_is_null(struct anv_address addr)
1600 {
1601 return addr.bo == NULL && addr.offset == 0;
1602 }
1603
1604 static inline uint64_t
1605 anv_address_physical(struct anv_address addr)
1606 {
1607 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1608 return gen_canonical_address(addr.bo->offset + addr.offset);
1609 else
1610 return gen_canonical_address(addr.offset);
1611 }
1612
1613 static inline struct anv_address
1614 anv_address_add(struct anv_address addr, uint64_t offset)
1615 {
1616 addr.offset += offset;
1617 return addr;
1618 }
1619
1620 static inline void
1621 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1622 {
1623 unsigned reloc_size = 0;
1624 if (device->info.gen >= 8) {
1625 reloc_size = sizeof(uint64_t);
1626 *(uint64_t *)p = gen_canonical_address(v);
1627 } else {
1628 reloc_size = sizeof(uint32_t);
1629 *(uint32_t *)p = v;
1630 }
1631
1632 if (flush && !device->info.has_llc)
1633 gen_flush_range(p, reloc_size);
1634 }
1635
1636 static inline uint64_t
1637 _anv_combine_address(struct anv_batch *batch, void *location,
1638 const struct anv_address address, uint32_t delta)
1639 {
1640 if (address.bo == NULL) {
1641 return address.offset + delta;
1642 } else {
1643 assert(batch->start <= location && location < batch->end);
1644
1645 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1646 }
1647 }
1648
1649 #define __gen_address_type struct anv_address
1650 #define __gen_user_data struct anv_batch
1651 #define __gen_combine_address _anv_combine_address
1652
1653 /* Wrapper macros needed to work around preprocessor argument issues. In
1654 * particular, arguments don't get pre-evaluated if they are concatenated.
1655 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1656 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1657 * We can work around this easily enough with these helpers.
1658 */
1659 #define __anv_cmd_length(cmd) cmd ## _length
1660 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1661 #define __anv_cmd_header(cmd) cmd ## _header
1662 #define __anv_cmd_pack(cmd) cmd ## _pack
1663 #define __anv_reg_num(reg) reg ## _num
1664
1665 #define anv_pack_struct(dst, struc, ...) do { \
1666 struct struc __template = { \
1667 __VA_ARGS__ \
1668 }; \
1669 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1670 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1671 } while (0)
1672
1673 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1674 void *__dst = anv_batch_emit_dwords(batch, n); \
1675 if (__dst) { \
1676 struct cmd __template = { \
1677 __anv_cmd_header(cmd), \
1678 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1679 __VA_ARGS__ \
1680 }; \
1681 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1682 } \
1683 __dst; \
1684 })
1685
1686 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1687 do { \
1688 uint32_t *dw; \
1689 \
1690 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1691 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1692 if (!dw) \
1693 break; \
1694 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1695 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1696 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1697 } while (0)
1698
1699 #define anv_batch_emit(batch, cmd, name) \
1700 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1701 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1702 __builtin_expect(_dst != NULL, 1); \
1703 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1704 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1705 _dst = NULL; \
1706 }))
1707
1708 struct anv_device_memory {
1709 struct list_head link;
1710
1711 struct anv_bo * bo;
1712 struct anv_memory_type * type;
1713 VkDeviceSize map_size;
1714 void * map;
1715
1716 /* If set, we are holding reference to AHardwareBuffer
1717 * which we must release when memory is freed.
1718 */
1719 struct AHardwareBuffer * ahw;
1720
1721 /* If set, this memory comes from a host pointer. */
1722 void * host_ptr;
1723 };
1724
1725 /**
1726 * Header for Vertex URB Entry (VUE)
1727 */
1728 struct anv_vue_header {
1729 uint32_t Reserved;
1730 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1731 uint32_t ViewportIndex;
1732 float PointWidth;
1733 };
1734
1735 /** Struct representing a sampled image descriptor
1736 *
1737 * This descriptor layout is used for sampled images, bare sampler, and
1738 * combined image/sampler descriptors.
1739 */
1740 struct anv_sampled_image_descriptor {
1741 /** Bindless image handle
1742 *
1743 * This is expected to already be shifted such that the 20-bit
1744 * SURFACE_STATE table index is in the top 20 bits.
1745 */
1746 uint32_t image;
1747
1748 /** Bindless sampler handle
1749 *
1750 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1751 * to the dynamic state base address.
1752 */
1753 uint32_t sampler;
1754 };
1755
1756 struct anv_texture_swizzle_descriptor {
1757 /** Texture swizzle
1758 *
1759 * See also nir_intrinsic_channel_select_intel
1760 */
1761 uint8_t swizzle[4];
1762
1763 /** Unused padding to ensure the struct is a multiple of 64 bits */
1764 uint32_t _pad;
1765 };
1766
1767 /** Struct representing a storage image descriptor */
1768 struct anv_storage_image_descriptor {
1769 /** Bindless image handles
1770 *
1771 * These are expected to already be shifted such that the 20-bit
1772 * SURFACE_STATE table index is in the top 20 bits.
1773 */
1774 uint32_t read_write;
1775 uint32_t write_only;
1776 };
1777
1778 /** Struct representing a address/range descriptor
1779 *
1780 * The fields of this struct correspond directly to the data layout of
1781 * nir_address_format_64bit_bounded_global addresses. The last field is the
1782 * offset in the NIR address so it must be zero so that when you load the
1783 * descriptor you get a pointer to the start of the range.
1784 */
1785 struct anv_address_range_descriptor {
1786 uint64_t address;
1787 uint32_t range;
1788 uint32_t zero;
1789 };
1790
1791 enum anv_descriptor_data {
1792 /** The descriptor contains a BTI reference to a surface state */
1793 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1794 /** The descriptor contains a BTI reference to a sampler state */
1795 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1796 /** The descriptor contains an actual buffer view */
1797 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1798 /** The descriptor contains auxiliary image layout data */
1799 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1800 /** The descriptor contains auxiliary image layout data */
1801 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1802 /** anv_address_range_descriptor with a buffer address and range */
1803 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1804 /** Bindless surface handle */
1805 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1806 /** Storage image handles */
1807 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1808 /** Storage image handles */
1809 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1810 };
1811
1812 struct anv_descriptor_set_binding_layout {
1813 #ifndef NDEBUG
1814 /* The type of the descriptors in this binding */
1815 VkDescriptorType type;
1816 #endif
1817
1818 /* Flags provided when this binding was created */
1819 VkDescriptorBindingFlagsEXT flags;
1820
1821 /* Bitfield representing the type of data this descriptor contains */
1822 enum anv_descriptor_data data;
1823
1824 /* Maximum number of YCbCr texture/sampler planes */
1825 uint8_t max_plane_count;
1826
1827 /* Number of array elements in this binding (or size in bytes for inline
1828 * uniform data)
1829 */
1830 uint16_t array_size;
1831
1832 /* Index into the flattend descriptor set */
1833 uint16_t descriptor_index;
1834
1835 /* Index into the dynamic state array for a dynamic buffer */
1836 int16_t dynamic_offset_index;
1837
1838 /* Index into the descriptor set buffer views */
1839 int16_t buffer_view_index;
1840
1841 /* Offset into the descriptor buffer where this descriptor lives */
1842 uint32_t descriptor_offset;
1843
1844 /* Immutable samplers (or NULL if no immutable samplers) */
1845 struct anv_sampler **immutable_samplers;
1846 };
1847
1848 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1849
1850 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1851 VkDescriptorType type);
1852
1853 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1854 const struct anv_descriptor_set_binding_layout *binding,
1855 bool sampler);
1856
1857 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1858 const struct anv_descriptor_set_binding_layout *binding,
1859 bool sampler);
1860
1861 struct anv_descriptor_set_layout {
1862 /* Descriptor set layouts can be destroyed at almost any time */
1863 uint32_t ref_cnt;
1864
1865 /* Number of bindings in this descriptor set */
1866 uint16_t binding_count;
1867
1868 /* Total size of the descriptor set with room for all array entries */
1869 uint16_t size;
1870
1871 /* Shader stages affected by this descriptor set */
1872 uint16_t shader_stages;
1873
1874 /* Number of buffer views in this descriptor set */
1875 uint16_t buffer_view_count;
1876
1877 /* Number of dynamic offsets used by this descriptor set */
1878 uint16_t dynamic_offset_count;
1879
1880 /* For each shader stage, which offsets apply to that stage */
1881 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1882
1883 /* Size of the descriptor buffer for this descriptor set */
1884 uint32_t descriptor_buffer_size;
1885
1886 /* Bindings in this descriptor set */
1887 struct anv_descriptor_set_binding_layout binding[0];
1888 };
1889
1890 static inline void
1891 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1892 {
1893 assert(layout && layout->ref_cnt >= 1);
1894 p_atomic_inc(&layout->ref_cnt);
1895 }
1896
1897 static inline void
1898 anv_descriptor_set_layout_unref(struct anv_device *device,
1899 struct anv_descriptor_set_layout *layout)
1900 {
1901 assert(layout && layout->ref_cnt >= 1);
1902 if (p_atomic_dec_zero(&layout->ref_cnt))
1903 vk_free(&device->alloc, layout);
1904 }
1905
1906 struct anv_descriptor {
1907 VkDescriptorType type;
1908
1909 union {
1910 struct {
1911 VkImageLayout layout;
1912 struct anv_image_view *image_view;
1913 struct anv_sampler *sampler;
1914 };
1915
1916 struct {
1917 struct anv_buffer *buffer;
1918 uint64_t offset;
1919 uint64_t range;
1920 };
1921
1922 struct anv_buffer_view *buffer_view;
1923 };
1924 };
1925
1926 struct anv_descriptor_set {
1927 struct anv_descriptor_pool *pool;
1928 struct anv_descriptor_set_layout *layout;
1929 uint32_t size;
1930
1931 /* State relative to anv_descriptor_pool::bo */
1932 struct anv_state desc_mem;
1933 /* Surface state for the descriptor buffer */
1934 struct anv_state desc_surface_state;
1935
1936 uint32_t buffer_view_count;
1937 struct anv_buffer_view *buffer_views;
1938
1939 /* Link to descriptor pool's desc_sets list . */
1940 struct list_head pool_link;
1941
1942 struct anv_descriptor descriptors[0];
1943 };
1944
1945 struct anv_buffer_view {
1946 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1947 uint64_t range; /**< VkBufferViewCreateInfo::range */
1948
1949 struct anv_address address;
1950
1951 struct anv_state surface_state;
1952 struct anv_state storage_surface_state;
1953 struct anv_state writeonly_storage_surface_state;
1954
1955 struct brw_image_param storage_image_param;
1956 };
1957
1958 struct anv_push_descriptor_set {
1959 struct anv_descriptor_set set;
1960
1961 /* Put this field right behind anv_descriptor_set so it fills up the
1962 * descriptors[0] field. */
1963 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1964
1965 /** True if the descriptor set buffer has been referenced by a draw or
1966 * dispatch command.
1967 */
1968 bool set_used_on_gpu;
1969
1970 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1971 };
1972
1973 struct anv_descriptor_pool {
1974 uint32_t size;
1975 uint32_t next;
1976 uint32_t free_list;
1977
1978 struct anv_bo *bo;
1979 struct util_vma_heap bo_heap;
1980
1981 struct anv_state_stream surface_state_stream;
1982 void *surface_state_free_list;
1983
1984 struct list_head desc_sets;
1985
1986 char data[0];
1987 };
1988
1989 enum anv_descriptor_template_entry_type {
1990 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1991 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1992 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1993 };
1994
1995 struct anv_descriptor_template_entry {
1996 /* The type of descriptor in this entry */
1997 VkDescriptorType type;
1998
1999 /* Binding in the descriptor set */
2000 uint32_t binding;
2001
2002 /* Offset at which to write into the descriptor set binding */
2003 uint32_t array_element;
2004
2005 /* Number of elements to write into the descriptor set binding */
2006 uint32_t array_count;
2007
2008 /* Offset into the user provided data */
2009 size_t offset;
2010
2011 /* Stride between elements into the user provided data */
2012 size_t stride;
2013 };
2014
2015 struct anv_descriptor_update_template {
2016 VkPipelineBindPoint bind_point;
2017
2018 /* The descriptor set this template corresponds to. This value is only
2019 * valid if the template was created with the templateType
2020 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2021 */
2022 uint8_t set;
2023
2024 /* Number of entries in this template */
2025 uint32_t entry_count;
2026
2027 /* Entries of the template */
2028 struct anv_descriptor_template_entry entries[0];
2029 };
2030
2031 size_t
2032 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2033
2034 void
2035 anv_descriptor_set_write_image_view(struct anv_device *device,
2036 struct anv_descriptor_set *set,
2037 const VkDescriptorImageInfo * const info,
2038 VkDescriptorType type,
2039 uint32_t binding,
2040 uint32_t element);
2041
2042 void
2043 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2044 struct anv_descriptor_set *set,
2045 VkDescriptorType type,
2046 struct anv_buffer_view *buffer_view,
2047 uint32_t binding,
2048 uint32_t element);
2049
2050 void
2051 anv_descriptor_set_write_buffer(struct anv_device *device,
2052 struct anv_descriptor_set *set,
2053 struct anv_state_stream *alloc_stream,
2054 VkDescriptorType type,
2055 struct anv_buffer *buffer,
2056 uint32_t binding,
2057 uint32_t element,
2058 VkDeviceSize offset,
2059 VkDeviceSize range);
2060 void
2061 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2062 struct anv_descriptor_set *set,
2063 uint32_t binding,
2064 const void *data,
2065 size_t offset,
2066 size_t size);
2067
2068 void
2069 anv_descriptor_set_write_template(struct anv_device *device,
2070 struct anv_descriptor_set *set,
2071 struct anv_state_stream *alloc_stream,
2072 const struct anv_descriptor_update_template *template,
2073 const void *data);
2074
2075 VkResult
2076 anv_descriptor_set_create(struct anv_device *device,
2077 struct anv_descriptor_pool *pool,
2078 struct anv_descriptor_set_layout *layout,
2079 struct anv_descriptor_set **out_set);
2080
2081 void
2082 anv_descriptor_set_destroy(struct anv_device *device,
2083 struct anv_descriptor_pool *pool,
2084 struct anv_descriptor_set *set);
2085
2086 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2087 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2088 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2089 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2090 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2091 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2092
2093 struct anv_pipeline_binding {
2094 /** Index in the descriptor set
2095 *
2096 * This is a flattened index; the descriptor set layout is already taken
2097 * into account.
2098 */
2099 uint32_t index;
2100
2101 /** The descriptor set this surface corresponds to.
2102 *
2103 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2104 * binding is not a normal descriptor set but something else.
2105 */
2106 uint8_t set;
2107
2108 union {
2109 /** Plane in the binding index for images */
2110 uint8_t plane;
2111
2112 /** Input attachment index (relative to the subpass) */
2113 uint8_t input_attachment_index;
2114
2115 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2116 uint8_t dynamic_offset_index;
2117 };
2118
2119 /** For a storage image, whether it is write-only */
2120 uint8_t write_only;
2121
2122 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2123 * assuming POD zero-initialization.
2124 */
2125 uint8_t pad;
2126 };
2127
2128 struct anv_push_range {
2129 /** Index in the descriptor set */
2130 uint32_t index;
2131
2132 /** Descriptor set index */
2133 uint8_t set;
2134
2135 /** Dynamic offset index (for dynamic UBOs) */
2136 uint8_t dynamic_offset_index;
2137
2138 /** Start offset in units of 32B */
2139 uint8_t start;
2140
2141 /** Range in units of 32B */
2142 uint8_t length;
2143 };
2144
2145 struct anv_pipeline_layout {
2146 struct {
2147 struct anv_descriptor_set_layout *layout;
2148 uint32_t dynamic_offset_start;
2149 } set[MAX_SETS];
2150
2151 uint32_t num_sets;
2152
2153 unsigned char sha1[20];
2154 };
2155
2156 struct anv_buffer {
2157 struct anv_device * device;
2158 VkDeviceSize size;
2159
2160 VkBufferUsageFlags usage;
2161
2162 /* Set when bound */
2163 struct anv_address address;
2164 };
2165
2166 static inline uint64_t
2167 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2168 {
2169 assert(offset <= buffer->size);
2170 if (range == VK_WHOLE_SIZE) {
2171 return buffer->size - offset;
2172 } else {
2173 assert(range + offset >= range);
2174 assert(range + offset <= buffer->size);
2175 return range;
2176 }
2177 }
2178
2179 enum anv_cmd_dirty_bits {
2180 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2181 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2182 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2183 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2184 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2185 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2186 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2187 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2188 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2189 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2190 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2191 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2192 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2193 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2194 };
2195 typedef uint32_t anv_cmd_dirty_mask_t;
2196
2197 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2198 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2199 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2200 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2201 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2202 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2203 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2204 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2205 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2206 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2207 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2208
2209 static inline enum anv_cmd_dirty_bits
2210 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2211 {
2212 switch (vk_state) {
2213 case VK_DYNAMIC_STATE_VIEWPORT:
2214 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2215 case VK_DYNAMIC_STATE_SCISSOR:
2216 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2217 case VK_DYNAMIC_STATE_LINE_WIDTH:
2218 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2219 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2220 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2221 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2222 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2223 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2224 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2225 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2226 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2227 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2228 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2229 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2230 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2231 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2232 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2233 default:
2234 assert(!"Unsupported dynamic state");
2235 return 0;
2236 }
2237 }
2238
2239
2240 enum anv_pipe_bits {
2241 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2242 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2243 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2244 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2245 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2246 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2247 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2248 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2249 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2250 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2251 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2252 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2253
2254 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2255 * a flush has happened but not a CS stall. The next time we do any sort
2256 * of invalidation we need to insert a CS stall at that time. Otherwise,
2257 * we would have to CS stall on every flush which could be bad.
2258 */
2259 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2260
2261 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2262 * target operations related to transfer commands with VkBuffer as
2263 * destination are ongoing. Some operations like copies on the command
2264 * streamer might need to be aware of this to trigger the appropriate stall
2265 * before they can proceed with the copy.
2266 */
2267 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2268
2269 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2270 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2271 * done by writing the AUX-TT register.
2272 */
2273 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 23),
2274 };
2275
2276 #define ANV_PIPE_FLUSH_BITS ( \
2277 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2278 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2279 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2280 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2281
2282 #define ANV_PIPE_STALL_BITS ( \
2283 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2284 ANV_PIPE_DEPTH_STALL_BIT | \
2285 ANV_PIPE_CS_STALL_BIT)
2286
2287 #define ANV_PIPE_INVALIDATE_BITS ( \
2288 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2289 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2290 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2291 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2292 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2293 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2294 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2295
2296 static inline enum anv_pipe_bits
2297 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2298 {
2299 enum anv_pipe_bits pipe_bits = 0;
2300
2301 unsigned b;
2302 for_each_bit(b, flags) {
2303 switch ((VkAccessFlagBits)(1 << b)) {
2304 case VK_ACCESS_SHADER_WRITE_BIT:
2305 /* We're transitioning a buffer that was previously used as write
2306 * destination through the data port. To make its content available
2307 * to future operations, flush the data cache.
2308 */
2309 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2310 break;
2311 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2312 /* We're transitioning a buffer that was previously used as render
2313 * target. To make its content available to future operations, flush
2314 * the render target cache.
2315 */
2316 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2317 break;
2318 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2319 /* We're transitioning a buffer that was previously used as depth
2320 * buffer. To make its content available to future operations, flush
2321 * the depth cache.
2322 */
2323 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2324 break;
2325 case VK_ACCESS_TRANSFER_WRITE_BIT:
2326 /* We're transitioning a buffer that was previously used as a
2327 * transfer write destination. Generic write operations include color
2328 * & depth operations as well as buffer operations like :
2329 * - vkCmdClearColorImage()
2330 * - vkCmdClearDepthStencilImage()
2331 * - vkCmdBlitImage()
2332 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2333 *
2334 * Most of these operations are implemented using Blorp which writes
2335 * through the render target, so flush that cache to make it visible
2336 * to future operations. And for depth related operations we also
2337 * need to flush the depth cache.
2338 */
2339 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2340 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2341 break;
2342 case VK_ACCESS_MEMORY_WRITE_BIT:
2343 /* We're transitioning a buffer for generic write operations. Flush
2344 * all the caches.
2345 */
2346 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2347 break;
2348 default:
2349 break; /* Nothing to do */
2350 }
2351 }
2352
2353 return pipe_bits;
2354 }
2355
2356 static inline enum anv_pipe_bits
2357 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2358 {
2359 enum anv_pipe_bits pipe_bits = 0;
2360
2361 unsigned b;
2362 for_each_bit(b, flags) {
2363 switch ((VkAccessFlagBits)(1 << b)) {
2364 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2365 /* Indirect draw commands take a buffer as input that we're going to
2366 * read from the command streamer to load some of the HW registers
2367 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2368 * command streamer stall so that all the cache flushes have
2369 * completed before the command streamer loads from memory.
2370 */
2371 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2372 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2373 * through a vertex buffer, so invalidate that cache.
2374 */
2375 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2376 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2377 * UBO from the buffer, so we need to invalidate constant cache.
2378 */
2379 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2380 break;
2381 case VK_ACCESS_INDEX_READ_BIT:
2382 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2383 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2384 * commands, so we invalidate the VF cache to make sure there is no
2385 * stale data when we start rendering.
2386 */
2387 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2388 break;
2389 case VK_ACCESS_UNIFORM_READ_BIT:
2390 /* We transitioning a buffer to be used as uniform data. Because
2391 * uniform is accessed through the data port & sampler, we need to
2392 * invalidate the texture cache (sampler) & constant cache (data
2393 * port) to avoid stale data.
2394 */
2395 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2396 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2397 break;
2398 case VK_ACCESS_SHADER_READ_BIT:
2399 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2400 case VK_ACCESS_TRANSFER_READ_BIT:
2401 /* Transitioning a buffer to be read through the sampler, so
2402 * invalidate the texture cache, we don't want any stale data.
2403 */
2404 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2405 break;
2406 case VK_ACCESS_MEMORY_READ_BIT:
2407 /* Transitioning a buffer for generic read, invalidate all the
2408 * caches.
2409 */
2410 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2411 break;
2412 case VK_ACCESS_MEMORY_WRITE_BIT:
2413 /* Generic write, make sure all previously written things land in
2414 * memory.
2415 */
2416 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2417 break;
2418 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2419 /* Transitioning a buffer for conditional rendering. We'll load the
2420 * content of this buffer into HW registers using the command
2421 * streamer, so we need to stall the command streamer to make sure
2422 * any in-flight flush operations have completed.
2423 */
2424 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2425 break;
2426 default:
2427 break; /* Nothing to do */
2428 }
2429 }
2430
2431 return pipe_bits;
2432 }
2433
2434 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2435 VK_IMAGE_ASPECT_COLOR_BIT | \
2436 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2437 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2438 VK_IMAGE_ASPECT_PLANE_2_BIT)
2439 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2440 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2441 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2442 VK_IMAGE_ASPECT_PLANE_2_BIT)
2443
2444 struct anv_vertex_binding {
2445 struct anv_buffer * buffer;
2446 VkDeviceSize offset;
2447 };
2448
2449 struct anv_xfb_binding {
2450 struct anv_buffer * buffer;
2451 VkDeviceSize offset;
2452 VkDeviceSize size;
2453 };
2454
2455 struct anv_push_constants {
2456 /** Push constant data provided by the client through vkPushConstants */
2457 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2458
2459 /** Dynamic offsets for dynamic UBOs and SSBOs */
2460 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2461
2462 struct {
2463 /** Base workgroup ID
2464 *
2465 * Used for vkCmdDispatchBase.
2466 */
2467 uint32_t base_work_group_id[3];
2468
2469 /** Subgroup ID
2470 *
2471 * This is never set by software but is implicitly filled out when
2472 * uploading the push constants for compute shaders.
2473 */
2474 uint32_t subgroup_id;
2475
2476 /** Pad out to a multiple of 32 bytes */
2477 uint32_t pad[4];
2478 } cs;
2479 };
2480
2481 struct anv_dynamic_state {
2482 struct {
2483 uint32_t count;
2484 VkViewport viewports[MAX_VIEWPORTS];
2485 } viewport;
2486
2487 struct {
2488 uint32_t count;
2489 VkRect2D scissors[MAX_SCISSORS];
2490 } scissor;
2491
2492 float line_width;
2493
2494 struct {
2495 float bias;
2496 float clamp;
2497 float slope;
2498 } depth_bias;
2499
2500 float blend_constants[4];
2501
2502 struct {
2503 float min;
2504 float max;
2505 } depth_bounds;
2506
2507 struct {
2508 uint32_t front;
2509 uint32_t back;
2510 } stencil_compare_mask;
2511
2512 struct {
2513 uint32_t front;
2514 uint32_t back;
2515 } stencil_write_mask;
2516
2517 struct {
2518 uint32_t front;
2519 uint32_t back;
2520 } stencil_reference;
2521
2522 struct {
2523 uint32_t factor;
2524 uint16_t pattern;
2525 } line_stipple;
2526 };
2527
2528 extern const struct anv_dynamic_state default_dynamic_state;
2529
2530 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2531 const struct anv_dynamic_state *src,
2532 uint32_t copy_mask);
2533
2534 struct anv_surface_state {
2535 struct anv_state state;
2536 /** Address of the surface referred to by this state
2537 *
2538 * This address is relative to the start of the BO.
2539 */
2540 struct anv_address address;
2541 /* Address of the aux surface, if any
2542 *
2543 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2544 *
2545 * With the exception of gen8, the bottom 12 bits of this address' offset
2546 * include extra aux information.
2547 */
2548 struct anv_address aux_address;
2549 /* Address of the clear color, if any
2550 *
2551 * This address is relative to the start of the BO.
2552 */
2553 struct anv_address clear_address;
2554 };
2555
2556 /**
2557 * Attachment state when recording a renderpass instance.
2558 *
2559 * The clear value is valid only if there exists a pending clear.
2560 */
2561 struct anv_attachment_state {
2562 enum isl_aux_usage aux_usage;
2563 enum isl_aux_usage input_aux_usage;
2564 struct anv_surface_state color;
2565 struct anv_surface_state input;
2566
2567 VkImageLayout current_layout;
2568 VkImageLayout current_stencil_layout;
2569 VkImageAspectFlags pending_clear_aspects;
2570 VkImageAspectFlags pending_load_aspects;
2571 bool fast_clear;
2572 VkClearValue clear_value;
2573 bool clear_color_is_zero_one;
2574 bool clear_color_is_zero;
2575
2576 /* When multiview is active, attachments with a renderpass clear
2577 * operation have their respective layers cleared on the first
2578 * subpass that uses them, and only in that subpass. We keep track
2579 * of this using a bitfield to indicate which layers of an attachment
2580 * have not been cleared yet when multiview is active.
2581 */
2582 uint32_t pending_clear_views;
2583 struct anv_image_view * image_view;
2584 };
2585
2586 /** State tracking for vertex buffer flushes
2587 *
2588 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2589 * addresses. If you happen to have two vertex buffers which get placed
2590 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2591 * collisions. In order to solve this problem, we track vertex address ranges
2592 * which are live in the cache and invalidate the cache if one ever exceeds 32
2593 * bits.
2594 */
2595 struct anv_vb_cache_range {
2596 /* Virtual address at which the live vertex buffer cache range starts for
2597 * this vertex buffer index.
2598 */
2599 uint64_t start;
2600
2601 /* Virtual address of the byte after where vertex buffer cache range ends.
2602 * This is exclusive such that end - start is the size of the range.
2603 */
2604 uint64_t end;
2605 };
2606
2607 /** State tracking for particular pipeline bind point
2608 *
2609 * This struct is the base struct for anv_cmd_graphics_state and
2610 * anv_cmd_compute_state. These are used to track state which is bound to a
2611 * particular type of pipeline. Generic state that applies per-stage such as
2612 * binding table offsets and push constants is tracked generically with a
2613 * per-stage array in anv_cmd_state.
2614 */
2615 struct anv_cmd_pipeline_state {
2616 struct anv_pipeline *pipeline;
2617
2618 struct anv_descriptor_set *descriptors[MAX_SETS];
2619 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2620 };
2621
2622 /** State tracking for graphics pipeline
2623 *
2624 * This has anv_cmd_pipeline_state as a base struct to track things which get
2625 * bound to a graphics pipeline. Along with general pipeline bind point state
2626 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2627 * state which is graphics-specific.
2628 */
2629 struct anv_cmd_graphics_state {
2630 struct anv_cmd_pipeline_state base;
2631
2632 anv_cmd_dirty_mask_t dirty;
2633 uint32_t vb_dirty;
2634
2635 struct anv_vb_cache_range ib_bound_range;
2636 struct anv_vb_cache_range ib_dirty_range;
2637 struct anv_vb_cache_range vb_bound_ranges[33];
2638 struct anv_vb_cache_range vb_dirty_ranges[33];
2639
2640 struct anv_dynamic_state dynamic;
2641
2642 struct {
2643 struct anv_buffer *index_buffer;
2644 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2645 uint32_t index_offset;
2646 } gen7;
2647 };
2648
2649 /** State tracking for compute pipeline
2650 *
2651 * This has anv_cmd_pipeline_state as a base struct to track things which get
2652 * bound to a compute pipeline. Along with general pipeline bind point state
2653 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2654 * state which is compute-specific.
2655 */
2656 struct anv_cmd_compute_state {
2657 struct anv_cmd_pipeline_state base;
2658
2659 bool pipeline_dirty;
2660
2661 struct anv_address num_workgroups;
2662 };
2663
2664 /** State required while building cmd buffer */
2665 struct anv_cmd_state {
2666 /* PIPELINE_SELECT.PipelineSelection */
2667 uint32_t current_pipeline;
2668 const struct gen_l3_config * current_l3_config;
2669 uint32_t last_aux_map_state;
2670
2671 struct anv_cmd_graphics_state gfx;
2672 struct anv_cmd_compute_state compute;
2673
2674 enum anv_pipe_bits pending_pipe_bits;
2675 VkShaderStageFlags descriptors_dirty;
2676 VkShaderStageFlags push_constants_dirty;
2677
2678 struct anv_framebuffer * framebuffer;
2679 struct anv_render_pass * pass;
2680 struct anv_subpass * subpass;
2681 VkRect2D render_area;
2682 uint32_t restart_index;
2683 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2684 bool xfb_enabled;
2685 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2686 VkShaderStageFlags push_constant_stages;
2687 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2688 struct anv_state binding_tables[MESA_SHADER_STAGES];
2689 struct anv_state samplers[MESA_SHADER_STAGES];
2690
2691 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2692 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2693 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2694
2695 /**
2696 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2697 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2698 * and before invoking the secondary in ExecuteCommands.
2699 */
2700 bool pma_fix_enabled;
2701
2702 /**
2703 * Whether or not we know for certain that HiZ is enabled for the current
2704 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2705 * enabled or not, this will be false.
2706 */
2707 bool hiz_enabled;
2708
2709 bool conditional_render_enabled;
2710
2711 /**
2712 * Last rendering scale argument provided to
2713 * genX(cmd_buffer_emit_hashing_mode)().
2714 */
2715 unsigned current_hash_scale;
2716
2717 /**
2718 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2719 * valid only when recording a render pass instance.
2720 */
2721 struct anv_attachment_state * attachments;
2722
2723 /**
2724 * Surface states for color render targets. These are stored in a single
2725 * flat array. For depth-stencil attachments, the surface state is simply
2726 * left blank.
2727 */
2728 struct anv_state render_pass_states;
2729
2730 /**
2731 * A null surface state of the right size to match the framebuffer. This
2732 * is one of the states in render_pass_states.
2733 */
2734 struct anv_state null_surface_state;
2735 };
2736
2737 struct anv_cmd_pool {
2738 VkAllocationCallbacks alloc;
2739 struct list_head cmd_buffers;
2740 };
2741
2742 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2743
2744 enum anv_cmd_buffer_exec_mode {
2745 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2746 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2747 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2748 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2749 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2750 };
2751
2752 struct anv_cmd_buffer {
2753 VK_LOADER_DATA _loader_data;
2754
2755 struct anv_device * device;
2756
2757 struct anv_cmd_pool * pool;
2758 struct list_head pool_link;
2759
2760 struct anv_batch batch;
2761
2762 /* Fields required for the actual chain of anv_batch_bo's.
2763 *
2764 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2765 */
2766 struct list_head batch_bos;
2767 enum anv_cmd_buffer_exec_mode exec_mode;
2768
2769 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2770 * referenced by this command buffer
2771 *
2772 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2773 */
2774 struct u_vector seen_bbos;
2775
2776 /* A vector of int32_t's for every block of binding tables.
2777 *
2778 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2779 */
2780 struct u_vector bt_block_states;
2781 struct anv_state bt_next;
2782
2783 struct anv_reloc_list surface_relocs;
2784 /** Last seen surface state block pool center bo offset */
2785 uint32_t last_ss_pool_center;
2786
2787 /* Serial for tracking buffer completion */
2788 uint32_t serial;
2789
2790 /* Stream objects for storing temporary data */
2791 struct anv_state_stream surface_state_stream;
2792 struct anv_state_stream dynamic_state_stream;
2793
2794 VkCommandBufferUsageFlags usage_flags;
2795 VkCommandBufferLevel level;
2796
2797 struct anv_cmd_state state;
2798
2799 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2800 uint64_t intel_perf_marker;
2801 };
2802
2803 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2804 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2805 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2806 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2807 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2808 struct anv_cmd_buffer *secondary);
2809 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2810 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2811 struct anv_cmd_buffer *cmd_buffer,
2812 const VkSemaphore *in_semaphores,
2813 const uint64_t *in_wait_values,
2814 uint32_t num_in_semaphores,
2815 const VkSemaphore *out_semaphores,
2816 const uint64_t *out_signal_values,
2817 uint32_t num_out_semaphores,
2818 VkFence fence);
2819
2820 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2821
2822 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2823 const void *data, uint32_t size, uint32_t alignment);
2824 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2825 uint32_t *a, uint32_t *b,
2826 uint32_t dwords, uint32_t alignment);
2827
2828 struct anv_address
2829 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2830 struct anv_state
2831 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2832 uint32_t entries, uint32_t *state_offset);
2833 struct anv_state
2834 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2835 struct anv_state
2836 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2837 uint32_t size, uint32_t alignment);
2838
2839 VkResult
2840 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2841
2842 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2843 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2844 bool depth_clamp_enable);
2845 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2846
2847 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2848 struct anv_render_pass *pass,
2849 struct anv_framebuffer *framebuffer,
2850 const VkClearValue *clear_values);
2851
2852 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2853
2854 struct anv_state
2855 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2856 gl_shader_stage stage);
2857 struct anv_state
2858 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2859
2860 const struct anv_image_view *
2861 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2862
2863 VkResult
2864 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2865 uint32_t num_entries,
2866 uint32_t *state_offset,
2867 struct anv_state *bt_state);
2868
2869 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2870
2871 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2872
2873 enum anv_fence_type {
2874 ANV_FENCE_TYPE_NONE = 0,
2875 ANV_FENCE_TYPE_BO,
2876 ANV_FENCE_TYPE_WSI_BO,
2877 ANV_FENCE_TYPE_SYNCOBJ,
2878 ANV_FENCE_TYPE_WSI,
2879 };
2880
2881 enum anv_bo_fence_state {
2882 /** Indicates that this is a new (or newly reset fence) */
2883 ANV_BO_FENCE_STATE_RESET,
2884
2885 /** Indicates that this fence has been submitted to the GPU but is still
2886 * (as far as we know) in use by the GPU.
2887 */
2888 ANV_BO_FENCE_STATE_SUBMITTED,
2889
2890 ANV_BO_FENCE_STATE_SIGNALED,
2891 };
2892
2893 struct anv_fence_impl {
2894 enum anv_fence_type type;
2895
2896 union {
2897 /** Fence implementation for BO fences
2898 *
2899 * These fences use a BO and a set of CPU-tracked state flags. The BO
2900 * is added to the object list of the last execbuf call in a QueueSubmit
2901 * and is marked EXEC_WRITE. The state flags track when the BO has been
2902 * submitted to the kernel. We need to do this because Vulkan lets you
2903 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2904 * will say it's idle in this case.
2905 */
2906 struct {
2907 struct anv_bo *bo;
2908 enum anv_bo_fence_state state;
2909 } bo;
2910
2911 /** DRM syncobj handle for syncobj-based fences */
2912 uint32_t syncobj;
2913
2914 /** WSI fence */
2915 struct wsi_fence *fence_wsi;
2916 };
2917 };
2918
2919 struct anv_fence {
2920 /* Permanent fence state. Every fence has some form of permanent state
2921 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2922 * cross-process fences) or it could just be a dummy for use internally.
2923 */
2924 struct anv_fence_impl permanent;
2925
2926 /* Temporary fence state. A fence *may* have temporary state. That state
2927 * is added to the fence by an import operation and is reset back to
2928 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2929 * state cannot be signaled because the fence must already be signaled
2930 * before the temporary state can be exported from the fence in the other
2931 * process and imported here.
2932 */
2933 struct anv_fence_impl temporary;
2934 };
2935
2936 void anv_fence_reset_temporary(struct anv_device *device,
2937 struct anv_fence *fence);
2938
2939 struct anv_event {
2940 uint64_t semaphore;
2941 struct anv_state state;
2942 };
2943
2944 enum anv_semaphore_type {
2945 ANV_SEMAPHORE_TYPE_NONE = 0,
2946 ANV_SEMAPHORE_TYPE_DUMMY,
2947 ANV_SEMAPHORE_TYPE_BO,
2948 ANV_SEMAPHORE_TYPE_WSI_BO,
2949 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2950 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2951 ANV_SEMAPHORE_TYPE_TIMELINE,
2952 };
2953
2954 struct anv_timeline_point {
2955 struct list_head link;
2956
2957 uint64_t serial;
2958
2959 /* Number of waiter on this point, when > 0 the point should not be garbage
2960 * collected.
2961 */
2962 int waiting;
2963
2964 /* BO used for synchronization. */
2965 struct anv_bo *bo;
2966 };
2967
2968 struct anv_timeline {
2969 pthread_mutex_t mutex;
2970 pthread_cond_t cond;
2971
2972 uint64_t highest_past;
2973 uint64_t highest_pending;
2974
2975 struct list_head points;
2976 struct list_head free_points;
2977 };
2978
2979 struct anv_semaphore_impl {
2980 enum anv_semaphore_type type;
2981
2982 union {
2983 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2984 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2985 * object list on any execbuf2 calls for which this semaphore is used as
2986 * a wait or signal fence. When used as a signal fence or when type ==
2987 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2988 */
2989 struct anv_bo *bo;
2990
2991 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2992 * If the semaphore is in the unsignaled state due to either just being
2993 * created or because it has been used for a wait, fd will be -1.
2994 */
2995 int fd;
2996
2997 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2998 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2999 * import so we don't need to bother with a userspace cache.
3000 */
3001 uint32_t syncobj;
3002
3003 /* Non shareable timeline semaphore
3004 *
3005 * Used when kernel don't have support for timeline semaphores.
3006 */
3007 struct anv_timeline timeline;
3008 };
3009 };
3010
3011 struct anv_semaphore {
3012 uint32_t refcount;
3013
3014 /* Permanent semaphore state. Every semaphore has some form of permanent
3015 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3016 * (for cross-process semaphores0 or it could just be a dummy for use
3017 * internally.
3018 */
3019 struct anv_semaphore_impl permanent;
3020
3021 /* Temporary semaphore state. A semaphore *may* have temporary state.
3022 * That state is added to the semaphore by an import operation and is reset
3023 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3024 * semaphore with temporary state cannot be signaled because the semaphore
3025 * must already be signaled before the temporary state can be exported from
3026 * the semaphore in the other process and imported here.
3027 */
3028 struct anv_semaphore_impl temporary;
3029 };
3030
3031 void anv_semaphore_reset_temporary(struct anv_device *device,
3032 struct anv_semaphore *semaphore);
3033
3034 struct anv_shader_module {
3035 unsigned char sha1[20];
3036 uint32_t size;
3037 char data[0];
3038 };
3039
3040 static inline gl_shader_stage
3041 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3042 {
3043 assert(__builtin_popcount(vk_stage) == 1);
3044 return ffs(vk_stage) - 1;
3045 }
3046
3047 static inline VkShaderStageFlagBits
3048 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3049 {
3050 return (1 << mesa_stage);
3051 }
3052
3053 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3054
3055 #define anv_foreach_stage(stage, stage_bits) \
3056 for (gl_shader_stage stage, \
3057 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3058 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3059 __tmp &= ~(1 << (stage)))
3060
3061 struct anv_pipeline_bind_map {
3062 unsigned char surface_sha1[20];
3063 unsigned char sampler_sha1[20];
3064 unsigned char push_sha1[20];
3065
3066 uint32_t surface_count;
3067 uint32_t sampler_count;
3068
3069 struct anv_pipeline_binding * surface_to_descriptor;
3070 struct anv_pipeline_binding * sampler_to_descriptor;
3071
3072 struct anv_push_range push_ranges[4];
3073 };
3074
3075 struct anv_shader_bin_key {
3076 uint32_t size;
3077 uint8_t data[0];
3078 };
3079
3080 struct anv_shader_bin {
3081 uint32_t ref_cnt;
3082
3083 const struct anv_shader_bin_key *key;
3084
3085 struct anv_state kernel;
3086 uint32_t kernel_size;
3087
3088 struct anv_state constant_data;
3089 uint32_t constant_data_size;
3090
3091 const struct brw_stage_prog_data *prog_data;
3092 uint32_t prog_data_size;
3093
3094 struct brw_compile_stats stats[3];
3095 uint32_t num_stats;
3096
3097 struct nir_xfb_info *xfb_info;
3098
3099 struct anv_pipeline_bind_map bind_map;
3100 };
3101
3102 struct anv_shader_bin *
3103 anv_shader_bin_create(struct anv_device *device,
3104 const void *key, uint32_t key_size,
3105 const void *kernel, uint32_t kernel_size,
3106 const void *constant_data, uint32_t constant_data_size,
3107 const struct brw_stage_prog_data *prog_data,
3108 uint32_t prog_data_size, const void *prog_data_param,
3109 const struct brw_compile_stats *stats, uint32_t num_stats,
3110 const struct nir_xfb_info *xfb_info,
3111 const struct anv_pipeline_bind_map *bind_map);
3112
3113 void
3114 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3115
3116 static inline void
3117 anv_shader_bin_ref(struct anv_shader_bin *shader)
3118 {
3119 assert(shader && shader->ref_cnt >= 1);
3120 p_atomic_inc(&shader->ref_cnt);
3121 }
3122
3123 static inline void
3124 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3125 {
3126 assert(shader && shader->ref_cnt >= 1);
3127 if (p_atomic_dec_zero(&shader->ref_cnt))
3128 anv_shader_bin_destroy(device, shader);
3129 }
3130
3131 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3132 #define MAX_PIPELINE_EXECUTABLES 7
3133
3134 struct anv_pipeline_executable {
3135 gl_shader_stage stage;
3136
3137 struct brw_compile_stats stats;
3138
3139 char *nir;
3140 char *disasm;
3141 };
3142
3143 struct anv_pipeline {
3144 struct anv_device * device;
3145 struct anv_batch batch;
3146 uint32_t batch_data[512];
3147 struct anv_reloc_list batch_relocs;
3148 anv_cmd_dirty_mask_t dynamic_state_mask;
3149 struct anv_dynamic_state dynamic_state;
3150
3151 void * mem_ctx;
3152
3153 VkPipelineCreateFlags flags;
3154 struct anv_subpass * subpass;
3155
3156 bool needs_data_cache;
3157
3158 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3159
3160 uint32_t num_executables;
3161 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3162
3163 struct {
3164 const struct gen_l3_config * l3_config;
3165 uint32_t total_size;
3166 } urb;
3167
3168 VkShaderStageFlags active_stages;
3169 struct anv_state blend_state;
3170
3171 uint32_t vb_used;
3172 struct anv_pipeline_vertex_binding {
3173 uint32_t stride;
3174 bool instanced;
3175 uint32_t instance_divisor;
3176 } vb[MAX_VBS];
3177
3178 uint8_t xfb_used;
3179
3180 bool primitive_restart;
3181 uint32_t topology;
3182
3183 uint32_t cs_right_mask;
3184
3185 bool writes_depth;
3186 bool depth_test_enable;
3187 bool writes_stencil;
3188 bool stencil_test_enable;
3189 bool depth_clamp_enable;
3190 bool depth_clip_enable;
3191 bool sample_shading_enable;
3192 bool kill_pixel;
3193 bool depth_bounds_test_enable;
3194
3195 struct {
3196 uint32_t sf[7];
3197 uint32_t depth_stencil_state[3];
3198 } gen7;
3199
3200 struct {
3201 uint32_t sf[4];
3202 uint32_t raster[5];
3203 uint32_t wm_depth_stencil[3];
3204 } gen8;
3205
3206 struct {
3207 uint32_t wm_depth_stencil[4];
3208 } gen9;
3209
3210 uint32_t interface_descriptor_data[8];
3211 };
3212
3213 static inline bool
3214 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3215 gl_shader_stage stage)
3216 {
3217 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3218 }
3219
3220 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3221 static inline const struct brw_##prefix##_prog_data * \
3222 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3223 { \
3224 if (anv_pipeline_has_stage(pipeline, stage)) { \
3225 return (const struct brw_##prefix##_prog_data *) \
3226 pipeline->shaders[stage]->prog_data; \
3227 } else { \
3228 return NULL; \
3229 } \
3230 }
3231
3232 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3233 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3234 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3235 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3236 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3237 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3238
3239 static inline const struct brw_vue_prog_data *
3240 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3241 {
3242 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3243 return &get_gs_prog_data(pipeline)->base;
3244 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3245 return &get_tes_prog_data(pipeline)->base;
3246 else
3247 return &get_vs_prog_data(pipeline)->base;
3248 }
3249
3250 VkResult
3251 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3252 struct anv_pipeline_cache *cache,
3253 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3254 const VkAllocationCallbacks *alloc);
3255
3256 VkResult
3257 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3258 struct anv_pipeline_cache *cache,
3259 const VkComputePipelineCreateInfo *info,
3260 const struct anv_shader_module *module,
3261 const char *entrypoint,
3262 const VkSpecializationInfo *spec_info);
3263
3264 struct anv_format_plane {
3265 enum isl_format isl_format:16;
3266 struct isl_swizzle swizzle;
3267
3268 /* Whether this plane contains chroma channels */
3269 bool has_chroma;
3270
3271 /* For downscaling of YUV planes */
3272 uint8_t denominator_scales[2];
3273
3274 /* How to map sampled ycbcr planes to a single 4 component element. */
3275 struct isl_swizzle ycbcr_swizzle;
3276
3277 /* What aspect is associated to this plane */
3278 VkImageAspectFlags aspect;
3279 };
3280
3281
3282 struct anv_format {
3283 struct anv_format_plane planes[3];
3284 VkFormat vk_format;
3285 uint8_t n_planes;
3286 bool can_ycbcr;
3287 };
3288
3289 static inline uint32_t
3290 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3291 VkImageAspectFlags aspect_mask)
3292 {
3293 switch (aspect_mask) {
3294 case VK_IMAGE_ASPECT_COLOR_BIT:
3295 case VK_IMAGE_ASPECT_DEPTH_BIT:
3296 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3297 return 0;
3298 case VK_IMAGE_ASPECT_STENCIL_BIT:
3299 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3300 return 0;
3301 /* Fall-through */
3302 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3303 return 1;
3304 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3305 return 2;
3306 default:
3307 /* Purposefully assert with depth/stencil aspects. */
3308 unreachable("invalid image aspect");
3309 }
3310 }
3311
3312 static inline VkImageAspectFlags
3313 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3314 uint32_t plane)
3315 {
3316 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3317 if (util_bitcount(image_aspects) > 1)
3318 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3319 return VK_IMAGE_ASPECT_COLOR_BIT;
3320 }
3321 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3322 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3323 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3324 return VK_IMAGE_ASPECT_STENCIL_BIT;
3325 }
3326
3327 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3328 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3329
3330 const struct anv_format *
3331 anv_get_format(VkFormat format);
3332
3333 static inline uint32_t
3334 anv_get_format_planes(VkFormat vk_format)
3335 {
3336 const struct anv_format *format = anv_get_format(vk_format);
3337
3338 return format != NULL ? format->n_planes : 0;
3339 }
3340
3341 struct anv_format_plane
3342 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3343 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3344
3345 static inline enum isl_format
3346 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3347 VkImageAspectFlags aspect, VkImageTiling tiling)
3348 {
3349 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3350 }
3351
3352 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3353 VkImageCreateFlags create_flags,
3354 VkFormat vk_format,
3355 VkImageTiling vk_tiling,
3356 const VkImageFormatListCreateInfoKHR *fmt_list);
3357
3358 static inline struct isl_swizzle
3359 anv_swizzle_for_render(struct isl_swizzle swizzle)
3360 {
3361 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3362 * RGB as RGBA for texturing
3363 */
3364 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3365 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3366
3367 /* But it doesn't matter what we render to that channel */
3368 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3369
3370 return swizzle;
3371 }
3372
3373 void
3374 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3375
3376 /**
3377 * Subsurface of an anv_image.
3378 */
3379 struct anv_surface {
3380 /** Valid only if isl_surf::size_B > 0. */
3381 struct isl_surf isl;
3382
3383 /**
3384 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3385 */
3386 uint32_t offset;
3387 };
3388
3389 struct anv_image {
3390 VkImageType type; /**< VkImageCreateInfo::imageType */
3391 /* The original VkFormat provided by the client. This may not match any
3392 * of the actual surface formats.
3393 */
3394 VkFormat vk_format;
3395 const struct anv_format *format;
3396
3397 VkImageAspectFlags aspects;
3398 VkExtent3D extent;
3399 uint32_t levels;
3400 uint32_t array_size;
3401 uint32_t samples; /**< VkImageCreateInfo::samples */
3402 uint32_t n_planes;
3403 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3404 VkImageUsageFlags stencil_usage;
3405 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3406 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3407
3408 /** True if this is needs to be bound to an appropriately tiled BO.
3409 *
3410 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3411 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3412 * we require a dedicated allocation so that we can know to allocate a
3413 * tiled buffer.
3414 */
3415 bool needs_set_tiling;
3416
3417 /**
3418 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3419 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3420 */
3421 uint64_t drm_format_mod;
3422
3423 VkDeviceSize size;
3424 uint32_t alignment;
3425
3426 /* Whether the image is made of several underlying buffer objects rather a
3427 * single one with different offsets.
3428 */
3429 bool disjoint;
3430
3431 /* All the formats that can be used when creating views of this image
3432 * are CCS_E compatible.
3433 */
3434 bool ccs_e_compatible;
3435
3436 /* Image was created with external format. */
3437 bool external_format;
3438
3439 /**
3440 * Image subsurfaces
3441 *
3442 * For each foo, anv_image::planes[x].surface is valid if and only if
3443 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3444 * to figure the number associated with a given aspect.
3445 *
3446 * The hardware requires that the depth buffer and stencil buffer be
3447 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3448 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3449 * allocate the depth and stencil buffers as separate surfaces in the same
3450 * bo.
3451 *
3452 * Memory layout :
3453 *
3454 * -----------------------
3455 * | surface0 | /|\
3456 * ----------------------- |
3457 * | shadow surface0 | |
3458 * ----------------------- | Plane 0
3459 * | aux surface0 | |
3460 * ----------------------- |
3461 * | fast clear colors0 | \|/
3462 * -----------------------
3463 * | surface1 | /|\
3464 * ----------------------- |
3465 * | shadow surface1 | |
3466 * ----------------------- | Plane 1
3467 * | aux surface1 | |
3468 * ----------------------- |
3469 * | fast clear colors1 | \|/
3470 * -----------------------
3471 * | ... |
3472 * | |
3473 * -----------------------
3474 */
3475 struct {
3476 /**
3477 * Offset of the entire plane (whenever the image is disjoint this is
3478 * set to 0).
3479 */
3480 uint32_t offset;
3481
3482 VkDeviceSize size;
3483 uint32_t alignment;
3484
3485 struct anv_surface surface;
3486
3487 /**
3488 * A surface which shadows the main surface and may have different
3489 * tiling. This is used for sampling using a tiling that isn't supported
3490 * for other operations.
3491 */
3492 struct anv_surface shadow_surface;
3493
3494 /**
3495 * The base aux usage for this image. For color images, this can be
3496 * either CCS_E or CCS_D depending on whether or not we can reliably
3497 * leave CCS on all the time.
3498 */
3499 enum isl_aux_usage aux_usage;
3500
3501 struct anv_surface aux_surface;
3502
3503 /**
3504 * Offset of the fast clear state (used to compute the
3505 * fast_clear_state_offset of the following planes).
3506 */
3507 uint32_t fast_clear_state_offset;
3508
3509 /**
3510 * BO associated with this plane, set when bound.
3511 */
3512 struct anv_address address;
3513
3514 /**
3515 * When destroying the image, also free the bo.
3516 * */
3517 bool bo_is_owned;
3518 } planes[3];
3519 };
3520
3521 /* The ordering of this enum is important */
3522 enum anv_fast_clear_type {
3523 /** Image does not have/support any fast-clear blocks */
3524 ANV_FAST_CLEAR_NONE = 0,
3525 /** Image has/supports fast-clear but only to the default value */
3526 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3527 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3528 ANV_FAST_CLEAR_ANY = 2,
3529 };
3530
3531 /* Returns the number of auxiliary buffer levels attached to an image. */
3532 static inline uint8_t
3533 anv_image_aux_levels(const struct anv_image * const image,
3534 VkImageAspectFlagBits aspect)
3535 {
3536 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3537 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3538 return 0;
3539
3540 /* The Gen12 CCS aux surface is represented with only one level. */
3541 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3542 image->planes[plane].surface.isl.levels :
3543 image->planes[plane].aux_surface.isl.levels;
3544 }
3545
3546 /* Returns the number of auxiliary buffer layers attached to an image. */
3547 static inline uint32_t
3548 anv_image_aux_layers(const struct anv_image * const image,
3549 VkImageAspectFlagBits aspect,
3550 const uint8_t miplevel)
3551 {
3552 assert(image);
3553
3554 /* The miplevel must exist in the main buffer. */
3555 assert(miplevel < image->levels);
3556
3557 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3558 /* There are no layers with auxiliary data because the miplevel has no
3559 * auxiliary data.
3560 */
3561 return 0;
3562 } else {
3563 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3564
3565 /* The Gen12 CCS aux surface is represented with only one layer. */
3566 const struct isl_extent4d *aux_logical_level0_px =
3567 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3568 &image->planes[plane].surface.isl.logical_level0_px :
3569 &image->planes[plane].aux_surface.isl.logical_level0_px;
3570
3571 return MAX2(aux_logical_level0_px->array_len,
3572 aux_logical_level0_px->depth >> miplevel);
3573 }
3574 }
3575
3576 static inline struct anv_address
3577 anv_image_get_clear_color_addr(const struct anv_device *device,
3578 const struct anv_image *image,
3579 VkImageAspectFlagBits aspect)
3580 {
3581 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3582
3583 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3584 return anv_address_add(image->planes[plane].address,
3585 image->planes[plane].fast_clear_state_offset);
3586 }
3587
3588 static inline struct anv_address
3589 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3590 const struct anv_image *image,
3591 VkImageAspectFlagBits aspect)
3592 {
3593 struct anv_address addr =
3594 anv_image_get_clear_color_addr(device, image, aspect);
3595
3596 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3597 device->isl_dev.ss.clear_color_state_size :
3598 device->isl_dev.ss.clear_value_size;
3599 return anv_address_add(addr, clear_color_state_size);
3600 }
3601
3602 static inline struct anv_address
3603 anv_image_get_compression_state_addr(const struct anv_device *device,
3604 const struct anv_image *image,
3605 VkImageAspectFlagBits aspect,
3606 uint32_t level, uint32_t array_layer)
3607 {
3608 assert(level < anv_image_aux_levels(image, aspect));
3609 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3610 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3611 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3612
3613 struct anv_address addr =
3614 anv_image_get_fast_clear_type_addr(device, image, aspect);
3615 addr.offset += 4; /* Go past the fast clear type */
3616
3617 if (image->type == VK_IMAGE_TYPE_3D) {
3618 for (uint32_t l = 0; l < level; l++)
3619 addr.offset += anv_minify(image->extent.depth, l) * 4;
3620 } else {
3621 addr.offset += level * image->array_size * 4;
3622 }
3623 addr.offset += array_layer * 4;
3624
3625 assert(addr.offset <
3626 image->planes[plane].address.offset + image->planes[plane].size);
3627 return addr;
3628 }
3629
3630 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3631 static inline bool
3632 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3633 const struct anv_image *image)
3634 {
3635 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3636 return false;
3637
3638 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3639 * struct. There's documentation which suggests that this feature actually
3640 * reduces performance on BDW, but it has only been observed to help so
3641 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3642 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3643 */
3644 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3645 return false;
3646
3647 return image->samples == 1;
3648 }
3649
3650 static inline bool
3651 anv_image_plane_uses_aux_map(const struct anv_device *device,
3652 const struct anv_image *image,
3653 uint32_t plane)
3654 {
3655 return device->info.has_aux_map &&
3656 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3657 }
3658
3659 void
3660 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3661 const struct anv_image *image,
3662 VkImageAspectFlagBits aspect,
3663 enum isl_aux_usage aux_usage,
3664 uint32_t level,
3665 uint32_t base_layer,
3666 uint32_t layer_count);
3667
3668 void
3669 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3670 const struct anv_image *image,
3671 VkImageAspectFlagBits aspect,
3672 enum isl_aux_usage aux_usage,
3673 enum isl_format format, struct isl_swizzle swizzle,
3674 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3675 VkRect2D area, union isl_color_value clear_color);
3676 void
3677 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3678 const struct anv_image *image,
3679 VkImageAspectFlags aspects,
3680 enum isl_aux_usage depth_aux_usage,
3681 uint32_t level,
3682 uint32_t base_layer, uint32_t layer_count,
3683 VkRect2D area,
3684 float depth_value, uint8_t stencil_value);
3685 void
3686 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3687 const struct anv_image *src_image,
3688 enum isl_aux_usage src_aux_usage,
3689 uint32_t src_level, uint32_t src_base_layer,
3690 const struct anv_image *dst_image,
3691 enum isl_aux_usage dst_aux_usage,
3692 uint32_t dst_level, uint32_t dst_base_layer,
3693 VkImageAspectFlagBits aspect,
3694 uint32_t src_x, uint32_t src_y,
3695 uint32_t dst_x, uint32_t dst_y,
3696 uint32_t width, uint32_t height,
3697 uint32_t layer_count,
3698 enum blorp_filter filter);
3699 void
3700 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3701 const struct anv_image *image,
3702 VkImageAspectFlagBits aspect, uint32_t level,
3703 uint32_t base_layer, uint32_t layer_count,
3704 enum isl_aux_op hiz_op);
3705 void
3706 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3707 const struct anv_image *image,
3708 VkImageAspectFlags aspects,
3709 uint32_t level,
3710 uint32_t base_layer, uint32_t layer_count,
3711 VkRect2D area, uint8_t stencil_value);
3712 void
3713 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3714 const struct anv_image *image,
3715 enum isl_format format,
3716 VkImageAspectFlagBits aspect,
3717 uint32_t base_layer, uint32_t layer_count,
3718 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3719 bool predicate);
3720 void
3721 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3722 const struct anv_image *image,
3723 enum isl_format format,
3724 VkImageAspectFlagBits aspect, uint32_t level,
3725 uint32_t base_layer, uint32_t layer_count,
3726 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3727 bool predicate);
3728
3729 void
3730 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3731 const struct anv_image *image,
3732 VkImageAspectFlagBits aspect,
3733 uint32_t base_level, uint32_t level_count,
3734 uint32_t base_layer, uint32_t layer_count);
3735
3736 enum isl_aux_state
3737 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3738 const struct anv_image *image,
3739 const VkImageAspectFlagBits aspect,
3740 const VkImageLayout layout);
3741
3742 enum isl_aux_usage
3743 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3744 const struct anv_image *image,
3745 const VkImageAspectFlagBits aspect,
3746 const VkImageUsageFlagBits usage,
3747 const VkImageLayout layout);
3748
3749 enum anv_fast_clear_type
3750 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3751 const struct anv_image * const image,
3752 const VkImageAspectFlagBits aspect,
3753 const VkImageLayout layout);
3754
3755 /* This is defined as a macro so that it works for both
3756 * VkImageSubresourceRange and VkImageSubresourceLayers
3757 */
3758 #define anv_get_layerCount(_image, _range) \
3759 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3760 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3761
3762 static inline uint32_t
3763 anv_get_levelCount(const struct anv_image *image,
3764 const VkImageSubresourceRange *range)
3765 {
3766 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3767 image->levels - range->baseMipLevel : range->levelCount;
3768 }
3769
3770 static inline VkImageAspectFlags
3771 anv_image_expand_aspects(const struct anv_image *image,
3772 VkImageAspectFlags aspects)
3773 {
3774 /* If the underlying image has color plane aspects and
3775 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3776 * the underlying image. */
3777 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3778 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3779 return image->aspects;
3780
3781 return aspects;
3782 }
3783
3784 static inline bool
3785 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3786 VkImageAspectFlags aspects2)
3787 {
3788 if (aspects1 == aspects2)
3789 return true;
3790
3791 /* Only 1 color aspects are compatibles. */
3792 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3793 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3794 util_bitcount(aspects1) == util_bitcount(aspects2))
3795 return true;
3796
3797 return false;
3798 }
3799
3800 struct anv_image_view {
3801 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3802
3803 VkImageAspectFlags aspect_mask;
3804 VkFormat vk_format;
3805 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3806
3807 unsigned n_planes;
3808 struct {
3809 uint32_t image_plane;
3810
3811 struct isl_view isl;
3812
3813 /**
3814 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3815 * image layout of SHADER_READ_ONLY_OPTIMAL or
3816 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3817 */
3818 struct anv_surface_state optimal_sampler_surface_state;
3819
3820 /**
3821 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3822 * image layout of GENERAL.
3823 */
3824 struct anv_surface_state general_sampler_surface_state;
3825
3826 /**
3827 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3828 * states for write-only and readable, using the real format for
3829 * write-only and the lowered format for readable.
3830 */
3831 struct anv_surface_state storage_surface_state;
3832 struct anv_surface_state writeonly_storage_surface_state;
3833
3834 struct brw_image_param storage_image_param;
3835 } planes[3];
3836 };
3837
3838 enum anv_image_view_state_flags {
3839 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3840 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3841 };
3842
3843 void anv_image_fill_surface_state(struct anv_device *device,
3844 const struct anv_image *image,
3845 VkImageAspectFlagBits aspect,
3846 const struct isl_view *view,
3847 isl_surf_usage_flags_t view_usage,
3848 enum isl_aux_usage aux_usage,
3849 const union isl_color_value *clear_color,
3850 enum anv_image_view_state_flags flags,
3851 struct anv_surface_state *state_inout,
3852 struct brw_image_param *image_param_out);
3853
3854 struct anv_image_create_info {
3855 const VkImageCreateInfo *vk_info;
3856
3857 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3858 isl_tiling_flags_t isl_tiling_flags;
3859
3860 /** These flags will be added to any derived from VkImageCreateInfo. */
3861 isl_surf_usage_flags_t isl_extra_usage_flags;
3862
3863 uint32_t stride;
3864 bool external_format;
3865 };
3866
3867 VkResult anv_image_create(VkDevice _device,
3868 const struct anv_image_create_info *info,
3869 const VkAllocationCallbacks* alloc,
3870 VkImage *pImage);
3871
3872 const struct anv_surface *
3873 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3874 VkImageAspectFlags aspect_mask);
3875
3876 enum isl_format
3877 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3878
3879 static inline VkExtent3D
3880 anv_sanitize_image_extent(const VkImageType imageType,
3881 const VkExtent3D imageExtent)
3882 {
3883 switch (imageType) {
3884 case VK_IMAGE_TYPE_1D:
3885 return (VkExtent3D) { imageExtent.width, 1, 1 };
3886 case VK_IMAGE_TYPE_2D:
3887 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3888 case VK_IMAGE_TYPE_3D:
3889 return imageExtent;
3890 default:
3891 unreachable("invalid image type");
3892 }
3893 }
3894
3895 static inline VkOffset3D
3896 anv_sanitize_image_offset(const VkImageType imageType,
3897 const VkOffset3D imageOffset)
3898 {
3899 switch (imageType) {
3900 case VK_IMAGE_TYPE_1D:
3901 return (VkOffset3D) { imageOffset.x, 0, 0 };
3902 case VK_IMAGE_TYPE_2D:
3903 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3904 case VK_IMAGE_TYPE_3D:
3905 return imageOffset;
3906 default:
3907 unreachable("invalid image type");
3908 }
3909 }
3910
3911 VkFormatFeatureFlags
3912 anv_get_image_format_features(const struct gen_device_info *devinfo,
3913 VkFormat vk_format,
3914 const struct anv_format *anv_format,
3915 VkImageTiling vk_tiling);
3916
3917 void anv_fill_buffer_surface_state(struct anv_device *device,
3918 struct anv_state state,
3919 enum isl_format format,
3920 struct anv_address address,
3921 uint32_t range, uint32_t stride);
3922
3923 static inline void
3924 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3925 const struct anv_attachment_state *att_state,
3926 const struct anv_image_view *iview)
3927 {
3928 const struct isl_format_layout *view_fmtl =
3929 isl_format_get_layout(iview->planes[0].isl.format);
3930
3931 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3932 if (view_fmtl->channels.c.bits) \
3933 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3934
3935 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3936 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3937 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3938 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3939
3940 #undef COPY_CLEAR_COLOR_CHANNEL
3941 }
3942
3943
3944 struct anv_ycbcr_conversion {
3945 const struct anv_format * format;
3946 VkSamplerYcbcrModelConversion ycbcr_model;
3947 VkSamplerYcbcrRange ycbcr_range;
3948 VkComponentSwizzle mapping[4];
3949 VkChromaLocation chroma_offsets[2];
3950 VkFilter chroma_filter;
3951 bool chroma_reconstruction;
3952 };
3953
3954 struct anv_sampler {
3955 uint32_t state[3][4];
3956 uint32_t n_planes;
3957 struct anv_ycbcr_conversion *conversion;
3958
3959 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3960 * and with a 32-byte stride for use as bindless samplers.
3961 */
3962 struct anv_state bindless_state;
3963 };
3964
3965 struct anv_framebuffer {
3966 uint32_t width;
3967 uint32_t height;
3968 uint32_t layers;
3969
3970 uint32_t attachment_count;
3971 struct anv_image_view * attachments[0];
3972 };
3973
3974 struct anv_subpass_attachment {
3975 VkImageUsageFlagBits usage;
3976 uint32_t attachment;
3977 VkImageLayout layout;
3978
3979 /* Used only with attachment containing stencil data. */
3980 VkImageLayout stencil_layout;
3981 };
3982
3983 struct anv_subpass {
3984 uint32_t attachment_count;
3985
3986 /**
3987 * A pointer to all attachment references used in this subpass.
3988 * Only valid if ::attachment_count > 0.
3989 */
3990 struct anv_subpass_attachment * attachments;
3991 uint32_t input_count;
3992 struct anv_subpass_attachment * input_attachments;
3993 uint32_t color_count;
3994 struct anv_subpass_attachment * color_attachments;
3995 struct anv_subpass_attachment * resolve_attachments;
3996
3997 struct anv_subpass_attachment * depth_stencil_attachment;
3998 struct anv_subpass_attachment * ds_resolve_attachment;
3999 VkResolveModeFlagBitsKHR depth_resolve_mode;
4000 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4001
4002 uint32_t view_mask;
4003
4004 /** Subpass has a depth/stencil self-dependency */
4005 bool has_ds_self_dep;
4006
4007 /** Subpass has at least one color resolve attachment */
4008 bool has_color_resolve;
4009 };
4010
4011 static inline unsigned
4012 anv_subpass_view_count(const struct anv_subpass *subpass)
4013 {
4014 return MAX2(1, util_bitcount(subpass->view_mask));
4015 }
4016
4017 struct anv_render_pass_attachment {
4018 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4019 * its members individually.
4020 */
4021 VkFormat format;
4022 uint32_t samples;
4023 VkImageUsageFlags usage;
4024 VkAttachmentLoadOp load_op;
4025 VkAttachmentStoreOp store_op;
4026 VkAttachmentLoadOp stencil_load_op;
4027 VkImageLayout initial_layout;
4028 VkImageLayout final_layout;
4029 VkImageLayout first_subpass_layout;
4030
4031 VkImageLayout stencil_initial_layout;
4032 VkImageLayout stencil_final_layout;
4033
4034 /* The subpass id in which the attachment will be used last. */
4035 uint32_t last_subpass_idx;
4036 };
4037
4038 struct anv_render_pass {
4039 uint32_t attachment_count;
4040 uint32_t subpass_count;
4041 /* An array of subpass_count+1 flushes, one per subpass boundary */
4042 enum anv_pipe_bits * subpass_flushes;
4043 struct anv_render_pass_attachment * attachments;
4044 struct anv_subpass subpasses[0];
4045 };
4046
4047 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4048
4049 struct anv_query_pool {
4050 VkQueryType type;
4051 VkQueryPipelineStatisticFlags pipeline_statistics;
4052 /** Stride between slots, in bytes */
4053 uint32_t stride;
4054 /** Number of slots in this query pool */
4055 uint32_t slots;
4056 struct anv_bo * bo;
4057 };
4058
4059 int anv_get_instance_entrypoint_index(const char *name);
4060 int anv_get_device_entrypoint_index(const char *name);
4061 int anv_get_physical_device_entrypoint_index(const char *name);
4062
4063 const char *anv_get_instance_entry_name(int index);
4064 const char *anv_get_physical_device_entry_name(int index);
4065 const char *anv_get_device_entry_name(int index);
4066
4067 bool
4068 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4069 const struct anv_instance_extension_table *instance);
4070 bool
4071 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4072 const struct anv_instance_extension_table *instance);
4073 bool
4074 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4075 const struct anv_instance_extension_table *instance,
4076 const struct anv_device_extension_table *device);
4077
4078 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4079 const char *name);
4080
4081 void anv_dump_image_to_ppm(struct anv_device *device,
4082 struct anv_image *image, unsigned miplevel,
4083 unsigned array_layer, VkImageAspectFlagBits aspect,
4084 const char *filename);
4085
4086 enum anv_dump_action {
4087 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4088 };
4089
4090 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4091 void anv_dump_finish(void);
4092
4093 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4094
4095 static inline uint32_t
4096 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4097 {
4098 /* This function must be called from within a subpass. */
4099 assert(cmd_state->pass && cmd_state->subpass);
4100
4101 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4102
4103 /* The id of this subpass shouldn't exceed the number of subpasses in this
4104 * render pass minus 1.
4105 */
4106 assert(subpass_id < cmd_state->pass->subpass_count);
4107 return subpass_id;
4108 }
4109
4110 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4111 void anv_device_perf_init(struct anv_device *device);
4112
4113 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4114 \
4115 static inline struct __anv_type * \
4116 __anv_type ## _from_handle(__VkType _handle) \
4117 { \
4118 return (struct __anv_type *) _handle; \
4119 } \
4120 \
4121 static inline __VkType \
4122 __anv_type ## _to_handle(struct __anv_type *_obj) \
4123 { \
4124 return (__VkType) _obj; \
4125 }
4126
4127 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4128 \
4129 static inline struct __anv_type * \
4130 __anv_type ## _from_handle(__VkType _handle) \
4131 { \
4132 return (struct __anv_type *)(uintptr_t) _handle; \
4133 } \
4134 \
4135 static inline __VkType \
4136 __anv_type ## _to_handle(struct __anv_type *_obj) \
4137 { \
4138 return (__VkType)(uintptr_t) _obj; \
4139 }
4140
4141 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4142 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4143
4144 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4145 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4146 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4147 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4148 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4149
4150 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4151 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4152 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4153 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4154 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4155 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4156 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4157 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4158 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4159 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4160 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4161 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4162 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4163 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4164 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4165 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4166 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4167 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4168 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4169 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4170 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4171 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4172 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4173
4174 /* Gen-specific function declarations */
4175 #ifdef genX
4176 # include "anv_genX.h"
4177 #else
4178 # define genX(x) gen7_##x
4179 # include "anv_genX.h"
4180 # undef genX
4181 # define genX(x) gen75_##x
4182 # include "anv_genX.h"
4183 # undef genX
4184 # define genX(x) gen8_##x
4185 # include "anv_genX.h"
4186 # undef genX
4187 # define genX(x) gen9_##x
4188 # include "anv_genX.h"
4189 # undef genX
4190 # define genX(x) gen10_##x
4191 # include "anv_genX.h"
4192 # undef genX
4193 # define genX(x) gen11_##x
4194 # include "anv_genX.h"
4195 # undef genX
4196 # define genX(x) gen12_##x
4197 # include "anv_genX.h"
4198 # undef genX
4199 #endif
4200
4201 #endif /* ANV_PRIVATE_H */