anv: Respect the always_flush_cache driconf option
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131
132 #define LOW_HEAP_SIZE \
133 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
134 #define DYNAMIC_STATE_POOL_SIZE \
135 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
136 #define BINDING_TABLE_POOL_SIZE \
137 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
138 #define SURFACE_STATE_POOL_SIZE \
139 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
140 #define INSTRUCTION_STATE_POOL_SIZE \
141 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
142
143 /* Allowing different clear colors requires us to perform a depth resolve at
144 * the end of certain render passes. This is because while slow clears store
145 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
146 * See the PRMs for examples describing when additional resolves would be
147 * necessary. To enable fast clears without requiring extra resolves, we set
148 * the clear value to a globally-defined one. We could allow different values
149 * if the user doesn't expect coherent data during or after a render passes
150 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
151 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
152 * 1.0f seems to be the only value used. The only application that doesn't set
153 * this value does so through the usage of an seemingly uninitialized clear
154 * value.
155 */
156 #define ANV_HZ_FC_VAL 1.0f
157
158 #define MAX_VBS 28
159 #define MAX_XFB_BUFFERS 4
160 #define MAX_XFB_STREAMS 4
161 #define MAX_SETS 8
162 #define MAX_RTS 8
163 #define MAX_VIEWPORTS 16
164 #define MAX_SCISSORS 16
165 #define MAX_PUSH_CONSTANTS_SIZE 128
166 #define MAX_DYNAMIC_BUFFERS 16
167 #define MAX_IMAGES 64
168 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
169 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
170 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
171
172 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
173 *
174 * "The surface state model is used when a Binding Table Index (specified
175 * in the message descriptor) of less than 240 is specified. In this model,
176 * the Binding Table Index is used to index into the binding table, and the
177 * binding table entry contains a pointer to the SURFACE_STATE."
178 *
179 * Binding table values above 240 are used for various things in the hardware
180 * such as stateless, stateless with incoherent cache, SLM, and bindless.
181 */
182 #define MAX_BINDING_TABLE_SIZE 240
183
184 /* The kernel relocation API has a limitation of a 32-bit delta value
185 * applied to the address before it is written which, in spite of it being
186 * unsigned, is treated as signed . Because of the way that this maps to
187 * the Vulkan API, we cannot handle an offset into a buffer that does not
188 * fit into a signed 32 bits. The only mechanism we have for dealing with
189 * this at the moment is to limit all VkDeviceMemory objects to a maximum
190 * of 2GB each. The Vulkan spec allows us to do this:
191 *
192 * "Some platforms may have a limit on the maximum size of a single
193 * allocation. For example, certain systems may fail to create
194 * allocations with a size greater than or equal to 4GB. Such a limit is
195 * implementation-dependent, and if such a failure occurs then the error
196 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
197 *
198 * We don't use vk_error here because it's not an error so much as an
199 * indication to the application that the allocation is too large.
200 */
201 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
202
203 #define ANV_SVGS_VB_INDEX MAX_VBS
204 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
205
206 /* We reserve this MI ALU register for the purpose of handling predication.
207 * Other code which uses the MI ALU should leave it alone.
208 */
209 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
210
211 /* For gen12 we set the streamout buffers using 4 separate commands
212 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
213 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
214 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
215 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
216 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
217 * 3DSTATE_SO_BUFFER_INDEX_0.
218 */
219 #define SO_BUFFER_INDEX_0_CMD 0x60
220 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
221
222 static inline uint32_t
223 align_down_npot_u32(uint32_t v, uint32_t a)
224 {
225 return v - (v % a);
226 }
227
228 static inline uint32_t
229 align_u32(uint32_t v, uint32_t a)
230 {
231 assert(a != 0 && a == (a & -a));
232 return (v + a - 1) & ~(a - 1);
233 }
234
235 static inline uint64_t
236 align_u64(uint64_t v, uint64_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return (v + a - 1) & ~(a - 1);
240 }
241
242 static inline int32_t
243 align_i32(int32_t v, int32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return (v + a - 1) & ~(a - 1);
247 }
248
249 /** Alignment must be a power of 2. */
250 static inline bool
251 anv_is_aligned(uintmax_t n, uintmax_t a)
252 {
253 assert(a == (a & -a));
254 return (n & (a - 1)) == 0;
255 }
256
257 static inline uint32_t
258 anv_minify(uint32_t n, uint32_t levels)
259 {
260 if (unlikely(n == 0))
261 return 0;
262 else
263 return MAX2(n >> levels, 1);
264 }
265
266 static inline float
267 anv_clamp_f(float f, float min, float max)
268 {
269 assert(min < max);
270
271 if (f > max)
272 return max;
273 else if (f < min)
274 return min;
275 else
276 return f;
277 }
278
279 static inline bool
280 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
281 {
282 if (*inout_mask & clear_mask) {
283 *inout_mask &= ~clear_mask;
284 return true;
285 } else {
286 return false;
287 }
288 }
289
290 static inline union isl_color_value
291 vk_to_isl_color(VkClearColorValue color)
292 {
293 return (union isl_color_value) {
294 .u32 = {
295 color.uint32[0],
296 color.uint32[1],
297 color.uint32[2],
298 color.uint32[3],
299 },
300 };
301 }
302
303 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
304 {
305 uintptr_t mask = (1ull << bits) - 1;
306 *flags = ptr & mask;
307 return (void *) (ptr & ~mask);
308 }
309
310 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
311 {
312 uintptr_t value = (uintptr_t) ptr;
313 uintptr_t mask = (1ull << bits) - 1;
314 return value | (mask & flags);
315 }
316
317 #define for_each_bit(b, dword) \
318 for (uint32_t __dword = (dword); \
319 (b) = __builtin_ffs(__dword) - 1, __dword; \
320 __dword &= ~(1 << (b)))
321
322 #define typed_memcpy(dest, src, count) ({ \
323 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
324 memcpy((dest), (src), (count) * sizeof(*(src))); \
325 })
326
327 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
328 * to be added here in order to utilize mapping in debug/error/perf macros.
329 */
330 #define REPORT_OBJECT_TYPE(o) \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
394 __builtin_choose_expr ( \
395 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
396 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
397 __builtin_choose_expr ( \
398 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
399 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
400 __builtin_choose_expr ( \
401 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
402 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
403 __builtin_choose_expr ( \
404 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
405 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
406 __builtin_choose_expr ( \
407 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
408 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
409 __builtin_choose_expr ( \
410 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
411 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
412 __builtin_choose_expr ( \
413 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
414 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
415 __builtin_choose_expr ( \
416 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
417 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
418 __builtin_choose_expr ( \
419 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
420 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
421 __builtin_choose_expr ( \
422 __builtin_types_compatible_p (__typeof (o), void*), \
423 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
424 /* The void expression results in a compile-time error \
425 when assigning the result to something. */ \
426 (void)0)))))))))))))))))))))))))))))))
427
428 /* Whenever we generate an error, pass it through this function. Useful for
429 * debugging, where we can break on it. Only call at error site, not when
430 * propagating errors. Might be useful to plug in a stack trace here.
431 */
432
433 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
434 VkDebugReportObjectTypeEXT type, VkResult error,
435 const char *file, int line, const char *format,
436 va_list args);
437
438 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
439 VkDebugReportObjectTypeEXT type, VkResult error,
440 const char *file, int line, const char *format, ...)
441 anv_printflike(7, 8);
442
443 #ifdef DEBUG
444 #define vk_error(error) __vk_errorf(NULL, NULL,\
445 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
446 error, __FILE__, __LINE__, NULL)
447 #define vk_errorv(instance, obj, error, format, args)\
448 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
449 __FILE__, __LINE__, format, args)
450 #define vk_errorf(instance, obj, error, format, ...)\
451 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
452 __FILE__, __LINE__, format, ## __VA_ARGS__)
453 #else
454 #define vk_error(error) error
455 #define vk_errorf(instance, obj, error, format, ...) error
456 #endif
457
458 /**
459 * Warn on ignored extension structs.
460 *
461 * The Vulkan spec requires us to ignore unsupported or unknown structs in
462 * a pNext chain. In debug mode, emitting warnings for ignored structs may
463 * help us discover structs that we should not have ignored.
464 *
465 *
466 * From the Vulkan 1.0.38 spec:
467 *
468 * Any component of the implementation (the loader, any enabled layers,
469 * and drivers) must skip over, without processing (other than reading the
470 * sType and pNext members) any chained structures with sType values not
471 * defined by extensions supported by that component.
472 */
473 #define anv_debug_ignored_stype(sType) \
474 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
475
476 void __anv_perf_warn(struct anv_instance *instance, const void *object,
477 VkDebugReportObjectTypeEXT type, const char *file,
478 int line, const char *format, ...)
479 anv_printflike(6, 7);
480 void anv_loge(const char *format, ...) anv_printflike(1, 2);
481 void anv_loge_v(const char *format, va_list va);
482
483 /**
484 * Print a FINISHME message, including its source location.
485 */
486 #define anv_finishme(format, ...) \
487 do { \
488 static bool reported = false; \
489 if (!reported) { \
490 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
491 ##__VA_ARGS__); \
492 reported = true; \
493 } \
494 } while (0)
495
496 /**
497 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
498 */
499 #define anv_perf_warn(instance, obj, format, ...) \
500 do { \
501 static bool reported = false; \
502 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
503 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
504 format, ##__VA_ARGS__); \
505 reported = true; \
506 } \
507 } while (0)
508
509 /* A non-fatal assert. Useful for debugging. */
510 #ifdef DEBUG
511 #define anv_assert(x) ({ \
512 if (unlikely(!(x))) \
513 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
514 })
515 #else
516 #define anv_assert(x)
517 #endif
518
519 /* A multi-pointer allocator
520 *
521 * When copying data structures from the user (such as a render pass), it's
522 * common to need to allocate data for a bunch of different things. Instead
523 * of doing several allocations and having to handle all of the error checking
524 * that entails, it can be easier to do a single allocation. This struct
525 * helps facilitate that. The intended usage looks like this:
526 *
527 * ANV_MULTIALLOC(ma)
528 * anv_multialloc_add(&ma, &main_ptr, 1);
529 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
530 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
531 *
532 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
533 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
534 */
535 struct anv_multialloc {
536 size_t size;
537 size_t align;
538
539 uint32_t ptr_count;
540 void **ptrs[8];
541 };
542
543 #define ANV_MULTIALLOC_INIT \
544 ((struct anv_multialloc) { 0, })
545
546 #define ANV_MULTIALLOC(_name) \
547 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
548
549 __attribute__((always_inline))
550 static inline void
551 _anv_multialloc_add(struct anv_multialloc *ma,
552 void **ptr, size_t size, size_t align)
553 {
554 size_t offset = align_u64(ma->size, align);
555 ma->size = offset + size;
556 ma->align = MAX2(ma->align, align);
557
558 /* Store the offset in the pointer. */
559 *ptr = (void *)(uintptr_t)offset;
560
561 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
562 ma->ptrs[ma->ptr_count++] = ptr;
563 }
564
565 #define anv_multialloc_add_size(_ma, _ptr, _size) \
566 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
567
568 #define anv_multialloc_add(_ma, _ptr, _count) \
569 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
570
571 __attribute__((always_inline))
572 static inline void *
573 anv_multialloc_alloc(struct anv_multialloc *ma,
574 const VkAllocationCallbacks *alloc,
575 VkSystemAllocationScope scope)
576 {
577 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
578 if (!ptr)
579 return NULL;
580
581 /* Fill out each of the pointers with their final value.
582 *
583 * for (uint32_t i = 0; i < ma->ptr_count; i++)
584 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
585 *
586 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
587 * constant, GCC is incapable of figuring this out and unrolling the loop
588 * so we have to give it a little help.
589 */
590 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
591 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
592 if ((_i) < ma->ptr_count) \
593 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
594 _ANV_MULTIALLOC_UPDATE_POINTER(0);
595 _ANV_MULTIALLOC_UPDATE_POINTER(1);
596 _ANV_MULTIALLOC_UPDATE_POINTER(2);
597 _ANV_MULTIALLOC_UPDATE_POINTER(3);
598 _ANV_MULTIALLOC_UPDATE_POINTER(4);
599 _ANV_MULTIALLOC_UPDATE_POINTER(5);
600 _ANV_MULTIALLOC_UPDATE_POINTER(6);
601 _ANV_MULTIALLOC_UPDATE_POINTER(7);
602 #undef _ANV_MULTIALLOC_UPDATE_POINTER
603
604 return ptr;
605 }
606
607 __attribute__((always_inline))
608 static inline void *
609 anv_multialloc_alloc2(struct anv_multialloc *ma,
610 const VkAllocationCallbacks *parent_alloc,
611 const VkAllocationCallbacks *alloc,
612 VkSystemAllocationScope scope)
613 {
614 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
615 }
616
617 struct anv_bo {
618 uint32_t gem_handle;
619
620 uint32_t refcount;
621
622 /* Index into the current validation list. This is used by the
623 * validation list building alrogithm to track which buffers are already
624 * in the validation list so that we can ensure uniqueness.
625 */
626 uint32_t index;
627
628 /* Index for use with util_sparse_array_free_list */
629 uint32_t free_index;
630
631 /* Last known offset. This value is provided by the kernel when we
632 * execbuf and is used as the presumed offset for the next bunch of
633 * relocations.
634 */
635 uint64_t offset;
636
637 uint64_t size;
638
639 /* Map for internally mapped BOs.
640 *
641 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
642 */
643 void *map;
644
645 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
646 uint32_t flags;
647
648 /** True if this BO may be shared with other processes */
649 bool is_external:1;
650
651 /** True if this BO is a wrapper
652 *
653 * When set to true, none of the fields in this BO are meaningful except
654 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
655 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
656 * is set in the physical device.
657 */
658 bool is_wrapper:1;
659
660 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
661 bool has_fixed_address:1;
662
663 /** True if this BO wraps a host pointer */
664 bool from_host_ptr:1;
665 };
666
667 static inline struct anv_bo *
668 anv_bo_unwrap(struct anv_bo *bo)
669 {
670 while (bo->is_wrapper)
671 bo = bo->map;
672 return bo;
673 }
674
675 /* Represents a lock-free linked list of "free" things. This is used by
676 * both the block pool and the state pools. Unfortunately, in order to
677 * solve the ABA problem, we can't use a single uint32_t head.
678 */
679 union anv_free_list {
680 struct {
681 uint32_t offset;
682
683 /* A simple count that is incremented every time the head changes. */
684 uint32_t count;
685 };
686 /* Make sure it's aligned to 64 bits. This will make atomic operations
687 * faster on 32 bit platforms.
688 */
689 uint64_t u64 __attribute__ ((aligned (8)));
690 };
691
692 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
693
694 struct anv_block_state {
695 union {
696 struct {
697 uint32_t next;
698 uint32_t end;
699 };
700 /* Make sure it's aligned to 64 bits. This will make atomic operations
701 * faster on 32 bit platforms.
702 */
703 uint64_t u64 __attribute__ ((aligned (8)));
704 };
705 };
706
707 #define anv_block_pool_foreach_bo(bo, pool) \
708 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
709 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
710 _pp_bo++)
711
712 #define ANV_MAX_BLOCK_POOL_BOS 20
713
714 struct anv_block_pool {
715 struct anv_device *device;
716 bool use_softpin;
717
718 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
719 * around the actual BO so that we grow the pool after the wrapper BO has
720 * been put in a relocation list. This is only used in the non-softpin
721 * case.
722 */
723 struct anv_bo wrapper_bo;
724
725 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
726 struct anv_bo *bo;
727 uint32_t nbos;
728
729 uint64_t size;
730
731 /* The address where the start of the pool is pinned. The various bos that
732 * are created as the pool grows will have addresses in the range
733 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
734 */
735 uint64_t start_address;
736
737 /* The offset from the start of the bo to the "center" of the block
738 * pool. Pointers to allocated blocks are given by
739 * bo.map + center_bo_offset + offsets.
740 */
741 uint32_t center_bo_offset;
742
743 /* Current memory map of the block pool. This pointer may or may not
744 * point to the actual beginning of the block pool memory. If
745 * anv_block_pool_alloc_back has ever been called, then this pointer
746 * will point to the "center" position of the buffer and all offsets
747 * (negative or positive) given out by the block pool alloc functions
748 * will be valid relative to this pointer.
749 *
750 * In particular, map == bo.map + center_offset
751 *
752 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
753 * since it will handle the softpin case as well, where this points to NULL.
754 */
755 void *map;
756 int fd;
757
758 /**
759 * Array of mmaps and gem handles owned by the block pool, reclaimed when
760 * the block pool is destroyed.
761 */
762 struct u_vector mmap_cleanups;
763
764 struct anv_block_state state;
765
766 struct anv_block_state back_state;
767 };
768
769 /* Block pools are backed by a fixed-size 1GB memfd */
770 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
771
772 /* The center of the block pool is also the middle of the memfd. This may
773 * change in the future if we decide differently for some reason.
774 */
775 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
776
777 static inline uint32_t
778 anv_block_pool_size(struct anv_block_pool *pool)
779 {
780 return pool->state.end + pool->back_state.end;
781 }
782
783 struct anv_state {
784 int32_t offset;
785 uint32_t alloc_size;
786 void *map;
787 uint32_t idx;
788 };
789
790 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
791
792 struct anv_fixed_size_state_pool {
793 union anv_free_list free_list;
794 struct anv_block_state block;
795 };
796
797 #define ANV_MIN_STATE_SIZE_LOG2 6
798 #define ANV_MAX_STATE_SIZE_LOG2 21
799
800 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
801
802 struct anv_free_entry {
803 uint32_t next;
804 struct anv_state state;
805 };
806
807 struct anv_state_table {
808 struct anv_device *device;
809 int fd;
810 struct anv_free_entry *map;
811 uint32_t size;
812 struct anv_block_state state;
813 struct u_vector cleanups;
814 };
815
816 struct anv_state_pool {
817 struct anv_block_pool block_pool;
818
819 struct anv_state_table table;
820
821 /* The size of blocks which will be allocated from the block pool */
822 uint32_t block_size;
823
824 /** Free list for "back" allocations */
825 union anv_free_list back_alloc_free_list;
826
827 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
828 };
829
830 struct anv_state_stream_block;
831
832 struct anv_state_stream {
833 struct anv_state_pool *state_pool;
834
835 /* The size of blocks to allocate from the state pool */
836 uint32_t block_size;
837
838 /* Current block we're allocating from */
839 struct anv_state block;
840
841 /* Offset into the current block at which to allocate the next state */
842 uint32_t next;
843
844 /* List of all blocks allocated from this pool */
845 struct anv_state_stream_block *block_list;
846 };
847
848 /* The block_pool functions exported for testing only. The block pool should
849 * only be used via a state pool (see below).
850 */
851 VkResult anv_block_pool_init(struct anv_block_pool *pool,
852 struct anv_device *device,
853 uint64_t start_address,
854 uint32_t initial_size);
855 void anv_block_pool_finish(struct anv_block_pool *pool);
856 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
857 uint32_t block_size, uint32_t *padding);
858 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
859 uint32_t block_size);
860 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
861
862 VkResult anv_state_pool_init(struct anv_state_pool *pool,
863 struct anv_device *device,
864 uint64_t start_address,
865 uint32_t block_size);
866 void anv_state_pool_finish(struct anv_state_pool *pool);
867 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
868 uint32_t state_size, uint32_t alignment);
869 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
870 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
871 void anv_state_stream_init(struct anv_state_stream *stream,
872 struct anv_state_pool *state_pool,
873 uint32_t block_size);
874 void anv_state_stream_finish(struct anv_state_stream *stream);
875 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
876 uint32_t size, uint32_t alignment);
877
878 VkResult anv_state_table_init(struct anv_state_table *table,
879 struct anv_device *device,
880 uint32_t initial_entries);
881 void anv_state_table_finish(struct anv_state_table *table);
882 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
883 uint32_t count);
884 void anv_free_list_push(union anv_free_list *list,
885 struct anv_state_table *table,
886 uint32_t idx, uint32_t count);
887 struct anv_state* anv_free_list_pop(union anv_free_list *list,
888 struct anv_state_table *table);
889
890
891 static inline struct anv_state *
892 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
893 {
894 return &table->map[idx].state;
895 }
896 /**
897 * Implements a pool of re-usable BOs. The interface is identical to that
898 * of block_pool except that each block is its own BO.
899 */
900 struct anv_bo_pool {
901 struct anv_device *device;
902
903 uint64_t bo_flags;
904
905 struct util_sparse_array_free_list free_list[16];
906 };
907
908 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
909 uint64_t bo_flags);
910 void anv_bo_pool_finish(struct anv_bo_pool *pool);
911 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
912 struct anv_bo **bo_out);
913 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
914
915 struct anv_scratch_pool {
916 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
917 struct anv_bo *bos[16][MESA_SHADER_STAGES];
918 };
919
920 void anv_scratch_pool_init(struct anv_device *device,
921 struct anv_scratch_pool *pool);
922 void anv_scratch_pool_finish(struct anv_device *device,
923 struct anv_scratch_pool *pool);
924 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
925 struct anv_scratch_pool *pool,
926 gl_shader_stage stage,
927 unsigned per_thread_scratch);
928
929 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
930 struct anv_bo_cache {
931 struct util_sparse_array bo_map;
932 pthread_mutex_t mutex;
933 };
934
935 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
936 void anv_bo_cache_finish(struct anv_bo_cache *cache);
937
938 struct anv_memory_type {
939 /* Standard bits passed on to the client */
940 VkMemoryPropertyFlags propertyFlags;
941 uint32_t heapIndex;
942
943 /* Driver-internal book-keeping */
944 VkBufferUsageFlags valid_buffer_usage;
945 };
946
947 struct anv_memory_heap {
948 /* Standard bits passed on to the client */
949 VkDeviceSize size;
950 VkMemoryHeapFlags flags;
951
952 /* Driver-internal book-keeping */
953 uint64_t vma_start;
954 uint64_t vma_size;
955 bool supports_48bit_addresses;
956 VkDeviceSize used;
957 };
958
959 struct anv_physical_device {
960 VK_LOADER_DATA _loader_data;
961
962 struct anv_instance * instance;
963 uint32_t chipset_id;
964 bool no_hw;
965 char path[20];
966 const char * name;
967 struct {
968 uint16_t domain;
969 uint8_t bus;
970 uint8_t device;
971 uint8_t function;
972 } pci_info;
973 struct gen_device_info info;
974 /** Amount of "GPU memory" we want to advertise
975 *
976 * Clearly, this value is bogus since Intel is a UMA architecture. On
977 * gen7 platforms, we are limited by GTT size unless we want to implement
978 * fine-grained tracking and GTT splitting. On Broadwell and above we are
979 * practically unlimited. However, we will never report more than 3/4 of
980 * the total system ram to try and avoid running out of RAM.
981 */
982 bool supports_48bit_addresses;
983 struct brw_compiler * compiler;
984 struct isl_device isl_dev;
985 struct gen_perf_config * perf;
986 int cmd_parser_version;
987 bool has_exec_async;
988 bool has_exec_capture;
989 bool has_exec_fence;
990 bool has_syncobj;
991 bool has_syncobj_wait;
992 bool has_context_priority;
993 bool use_softpin;
994 bool has_context_isolation;
995 bool has_mem_available;
996 bool always_use_bindless;
997
998 /** True if we can access buffers using A64 messages */
999 bool has_a64_buffer_access;
1000 /** True if we can use bindless access for images */
1001 bool has_bindless_images;
1002 /** True if we can use bindless access for samplers */
1003 bool has_bindless_samplers;
1004
1005 bool always_flush_cache;
1006
1007 struct anv_device_extension_table supported_extensions;
1008 struct anv_physical_device_dispatch_table dispatch;
1009
1010 uint32_t eu_total;
1011 uint32_t subslice_total;
1012
1013 struct {
1014 uint32_t type_count;
1015 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1016 uint32_t heap_count;
1017 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1018 } memory;
1019
1020 uint8_t driver_build_sha1[20];
1021 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1022 uint8_t driver_uuid[VK_UUID_SIZE];
1023 uint8_t device_uuid[VK_UUID_SIZE];
1024
1025 struct disk_cache * disk_cache;
1026
1027 struct wsi_device wsi_device;
1028 int local_fd;
1029 int master_fd;
1030 };
1031
1032 struct anv_app_info {
1033 const char* app_name;
1034 uint32_t app_version;
1035 const char* engine_name;
1036 uint32_t engine_version;
1037 uint32_t api_version;
1038 };
1039
1040 struct anv_instance {
1041 VK_LOADER_DATA _loader_data;
1042
1043 VkAllocationCallbacks alloc;
1044
1045 struct anv_app_info app_info;
1046
1047 struct anv_instance_extension_table enabled_extensions;
1048 struct anv_instance_dispatch_table dispatch;
1049 struct anv_device_dispatch_table device_dispatch;
1050
1051 int physicalDeviceCount;
1052 struct anv_physical_device physicalDevice;
1053
1054 bool pipeline_cache_enabled;
1055
1056 struct vk_debug_report_instance debug_report_callbacks;
1057
1058 struct driOptionCache dri_options;
1059 struct driOptionCache available_dri_options;
1060 };
1061
1062 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1063 void anv_finish_wsi(struct anv_physical_device *physical_device);
1064
1065 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1066 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1067 const char *name);
1068
1069 struct anv_queue_submit {
1070 struct anv_cmd_buffer * cmd_buffer;
1071
1072 uint32_t fence_count;
1073 uint32_t fence_array_length;
1074 struct drm_i915_gem_exec_fence * fences;
1075
1076 uint32_t temporary_semaphore_count;
1077 uint32_t temporary_semaphore_array_length;
1078 struct anv_semaphore_impl * temporary_semaphores;
1079
1080 /* Semaphores to be signaled with a SYNC_FD. */
1081 struct anv_semaphore ** sync_fd_semaphores;
1082 uint32_t sync_fd_semaphore_count;
1083 uint32_t sync_fd_semaphore_array_length;
1084
1085 /* Allocated only with non shareable timelines. */
1086 struct anv_timeline ** wait_timelines;
1087 uint32_t wait_timeline_count;
1088 uint32_t wait_timeline_array_length;
1089 uint64_t * wait_timeline_values;
1090
1091 struct anv_timeline ** signal_timelines;
1092 uint32_t signal_timeline_count;
1093 uint32_t signal_timeline_array_length;
1094 uint64_t * signal_timeline_values;
1095
1096 int in_fence;
1097 bool need_out_fence;
1098 int out_fence;
1099
1100 uint32_t fence_bo_count;
1101 uint32_t fence_bo_array_length;
1102 /* An array of struct anv_bo pointers with lower bit used as a flag to
1103 * signal we will wait on that BO (see anv_(un)pack_ptr).
1104 */
1105 uintptr_t * fence_bos;
1106
1107 const VkAllocationCallbacks * alloc;
1108 VkSystemAllocationScope alloc_scope;
1109
1110 struct anv_bo * simple_bo;
1111 uint32_t simple_bo_size;
1112
1113 struct list_head link;
1114 };
1115
1116 struct anv_queue {
1117 VK_LOADER_DATA _loader_data;
1118
1119 struct anv_device * device;
1120
1121 /*
1122 * A list of struct anv_queue_submit to be submitted to i915.
1123 */
1124 struct list_head queued_submits;
1125
1126 VkDeviceQueueCreateFlags flags;
1127 };
1128
1129 struct anv_pipeline_cache {
1130 struct anv_device * device;
1131 pthread_mutex_t mutex;
1132
1133 struct hash_table * nir_cache;
1134
1135 struct hash_table * cache;
1136 };
1137
1138 struct nir_xfb_info;
1139 struct anv_pipeline_bind_map;
1140
1141 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1142 struct anv_device *device,
1143 bool cache_enabled);
1144 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1145
1146 struct anv_shader_bin *
1147 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1148 const void *key, uint32_t key_size);
1149 struct anv_shader_bin *
1150 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1151 const void *key_data, uint32_t key_size,
1152 const void *kernel_data, uint32_t kernel_size,
1153 const void *constant_data,
1154 uint32_t constant_data_size,
1155 const struct brw_stage_prog_data *prog_data,
1156 uint32_t prog_data_size,
1157 const struct brw_compile_stats *stats,
1158 uint32_t num_stats,
1159 const struct nir_xfb_info *xfb_info,
1160 const struct anv_pipeline_bind_map *bind_map);
1161
1162 struct anv_shader_bin *
1163 anv_device_search_for_kernel(struct anv_device *device,
1164 struct anv_pipeline_cache *cache,
1165 const void *key_data, uint32_t key_size,
1166 bool *user_cache_bit);
1167
1168 struct anv_shader_bin *
1169 anv_device_upload_kernel(struct anv_device *device,
1170 struct anv_pipeline_cache *cache,
1171 const void *key_data, uint32_t key_size,
1172 const void *kernel_data, uint32_t kernel_size,
1173 const void *constant_data,
1174 uint32_t constant_data_size,
1175 const struct brw_stage_prog_data *prog_data,
1176 uint32_t prog_data_size,
1177 const struct brw_compile_stats *stats,
1178 uint32_t num_stats,
1179 const struct nir_xfb_info *xfb_info,
1180 const struct anv_pipeline_bind_map *bind_map);
1181
1182 struct nir_shader;
1183 struct nir_shader_compiler_options;
1184
1185 struct nir_shader *
1186 anv_device_search_for_nir(struct anv_device *device,
1187 struct anv_pipeline_cache *cache,
1188 const struct nir_shader_compiler_options *nir_options,
1189 unsigned char sha1_key[20],
1190 void *mem_ctx);
1191
1192 void
1193 anv_device_upload_nir(struct anv_device *device,
1194 struct anv_pipeline_cache *cache,
1195 const struct nir_shader *nir,
1196 unsigned char sha1_key[20]);
1197
1198 struct anv_device {
1199 VK_LOADER_DATA _loader_data;
1200
1201 VkAllocationCallbacks alloc;
1202
1203 struct anv_instance * instance;
1204 uint32_t chipset_id;
1205 bool no_hw;
1206 struct gen_device_info info;
1207 struct isl_device isl_dev;
1208 int context_id;
1209 int fd;
1210 bool can_chain_batches;
1211 bool robust_buffer_access;
1212 struct anv_device_extension_table enabled_extensions;
1213 struct anv_device_dispatch_table dispatch;
1214
1215 pthread_mutex_t vma_mutex;
1216 struct util_vma_heap vma_lo;
1217 struct util_vma_heap vma_hi;
1218 uint64_t vma_lo_available;
1219 uint64_t vma_hi_available;
1220
1221 /** List of all anv_device_memory objects */
1222 struct list_head memory_objects;
1223
1224 struct anv_bo_pool batch_bo_pool;
1225
1226 struct anv_bo_cache bo_cache;
1227
1228 struct anv_state_pool dynamic_state_pool;
1229 struct anv_state_pool instruction_state_pool;
1230 struct anv_state_pool binding_table_pool;
1231 struct anv_state_pool surface_state_pool;
1232
1233 struct anv_bo * workaround_bo;
1234 struct anv_bo * trivial_batch_bo;
1235 struct anv_bo * hiz_clear_bo;
1236
1237 struct anv_pipeline_cache default_pipeline_cache;
1238 struct blorp_context blorp;
1239
1240 struct anv_state border_colors;
1241
1242 struct anv_state slice_hash;
1243
1244 struct anv_queue queue;
1245
1246 struct anv_scratch_pool scratch_pool;
1247
1248 pthread_mutex_t mutex;
1249 pthread_cond_t queue_submit;
1250 int _lost;
1251
1252 struct gen_batch_decode_ctx decoder_ctx;
1253 /*
1254 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1255 * the cmd_buffer's list.
1256 */
1257 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1258
1259 int perf_fd; /* -1 if no opened */
1260 uint64_t perf_metric; /* 0 if unset */
1261
1262 struct gen_aux_map_context *aux_map_ctx;
1263 };
1264
1265 static inline struct anv_state_pool *
1266 anv_binding_table_pool(struct anv_device *device)
1267 {
1268 if (device->instance->physicalDevice.use_softpin)
1269 return &device->binding_table_pool;
1270 else
1271 return &device->surface_state_pool;
1272 }
1273
1274 static inline struct anv_state
1275 anv_binding_table_pool_alloc(struct anv_device *device) {
1276 if (device->instance->physicalDevice.use_softpin)
1277 return anv_state_pool_alloc(&device->binding_table_pool,
1278 device->binding_table_pool.block_size, 0);
1279 else
1280 return anv_state_pool_alloc_back(&device->surface_state_pool);
1281 }
1282
1283 static inline void
1284 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1285 anv_state_pool_free(anv_binding_table_pool(device), state);
1286 }
1287
1288 static inline uint32_t
1289 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1290 {
1291 if (bo->is_external)
1292 return device->isl_dev.mocs.external;
1293 else
1294 return device->isl_dev.mocs.internal;
1295 }
1296
1297 void anv_device_init_blorp(struct anv_device *device);
1298 void anv_device_finish_blorp(struct anv_device *device);
1299
1300 void _anv_device_set_all_queue_lost(struct anv_device *device);
1301 VkResult _anv_device_set_lost(struct anv_device *device,
1302 const char *file, int line,
1303 const char *msg, ...)
1304 anv_printflike(4, 5);
1305 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1306 const char *file, int line,
1307 const char *msg, ...)
1308 anv_printflike(4, 5);
1309 #define anv_device_set_lost(dev, ...) \
1310 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1311 #define anv_queue_set_lost(queue, ...) \
1312 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1313
1314 static inline bool
1315 anv_device_is_lost(struct anv_device *device)
1316 {
1317 return unlikely(p_atomic_read(&device->_lost));
1318 }
1319
1320 VkResult anv_device_query_status(struct anv_device *device);
1321
1322
1323 enum anv_bo_alloc_flags {
1324 /** Specifies that the BO must have a 32-bit address
1325 *
1326 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1327 */
1328 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1329
1330 /** Specifies that the BO may be shared externally */
1331 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1332
1333 /** Specifies that the BO should be mapped */
1334 ANV_BO_ALLOC_MAPPED = (1 << 2),
1335
1336 /** Specifies that the BO should be snooped so we get coherency */
1337 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1338
1339 /** Specifies that the BO should be captured in error states */
1340 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1341
1342 /** Specifies that the BO will have an address assigned by the caller */
1343 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1344
1345 /** Enables implicit synchronization on the BO
1346 *
1347 * This is the opposite of EXEC_OBJECT_ASYNC.
1348 */
1349 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1350
1351 /** Enables implicit synchronization on the BO
1352 *
1353 * This is equivalent to EXEC_OBJECT_WRITE.
1354 */
1355 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1356 };
1357
1358 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1359 enum anv_bo_alloc_flags alloc_flags,
1360 struct anv_bo **bo);
1361 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1362 void *host_ptr, uint32_t size,
1363 enum anv_bo_alloc_flags alloc_flags,
1364 struct anv_bo **bo_out);
1365 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1366 enum anv_bo_alloc_flags alloc_flags,
1367 struct anv_bo **bo);
1368 VkResult anv_device_export_bo(struct anv_device *device,
1369 struct anv_bo *bo, int *fd_out);
1370 void anv_device_release_bo(struct anv_device *device,
1371 struct anv_bo *bo);
1372
1373 static inline struct anv_bo *
1374 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1375 {
1376 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1377 }
1378
1379 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1380 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1381 int64_t timeout);
1382
1383 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1384 void anv_queue_finish(struct anv_queue *queue);
1385
1386 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1387 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1388 struct anv_batch *batch);
1389
1390 uint64_t anv_gettime_ns(void);
1391 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1392
1393 void* anv_gem_mmap(struct anv_device *device,
1394 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1395 void anv_gem_munmap(void *p, uint64_t size);
1396 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1397 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1398 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1399 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1400 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1401 int anv_gem_execbuffer(struct anv_device *device,
1402 struct drm_i915_gem_execbuffer2 *execbuf);
1403 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1404 uint32_t stride, uint32_t tiling);
1405 int anv_gem_create_context(struct anv_device *device);
1406 bool anv_gem_has_context_priority(int fd);
1407 int anv_gem_destroy_context(struct anv_device *device, int context);
1408 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1409 uint64_t value);
1410 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1411 uint64_t *value);
1412 int anv_gem_get_param(int fd, uint32_t param);
1413 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1414 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1415 int anv_gem_get_aperture(int fd, uint64_t *size);
1416 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1417 uint32_t *active, uint32_t *pending);
1418 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1419 int anv_gem_reg_read(struct anv_device *device,
1420 uint32_t offset, uint64_t *result);
1421 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1422 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1423 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1424 uint32_t read_domains, uint32_t write_domain);
1425 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1426 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1427 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1428 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1429 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1430 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1431 uint32_t handle);
1432 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1433 uint32_t handle, int fd);
1434 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1435 bool anv_gem_supports_syncobj_wait(int fd);
1436 int anv_gem_syncobj_wait(struct anv_device *device,
1437 uint32_t *handles, uint32_t num_handles,
1438 int64_t abs_timeout_ns, bool wait_all);
1439
1440 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1441 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1442
1443 struct anv_reloc_list {
1444 uint32_t num_relocs;
1445 uint32_t array_length;
1446 struct drm_i915_gem_relocation_entry * relocs;
1447 struct anv_bo ** reloc_bos;
1448 uint32_t dep_words;
1449 BITSET_WORD * deps;
1450 };
1451
1452 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1453 const VkAllocationCallbacks *alloc);
1454 void anv_reloc_list_finish(struct anv_reloc_list *list,
1455 const VkAllocationCallbacks *alloc);
1456
1457 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1458 const VkAllocationCallbacks *alloc,
1459 uint32_t offset, struct anv_bo *target_bo,
1460 uint32_t delta, uint64_t *address_u64_out);
1461
1462 struct anv_batch_bo {
1463 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1464 struct list_head link;
1465
1466 struct anv_bo * bo;
1467
1468 /* Bytes actually consumed in this batch BO */
1469 uint32_t length;
1470
1471 struct anv_reloc_list relocs;
1472 };
1473
1474 struct anv_batch {
1475 const VkAllocationCallbacks * alloc;
1476
1477 void * start;
1478 void * end;
1479 void * next;
1480
1481 struct anv_reloc_list * relocs;
1482
1483 /* This callback is called (with the associated user data) in the event
1484 * that the batch runs out of space.
1485 */
1486 VkResult (*extend_cb)(struct anv_batch *, void *);
1487 void * user_data;
1488
1489 /**
1490 * Current error status of the command buffer. Used to track inconsistent
1491 * or incomplete command buffer states that are the consequence of run-time
1492 * errors such as out of memory scenarios. We want to track this in the
1493 * batch because the command buffer object is not visible to some parts
1494 * of the driver.
1495 */
1496 VkResult status;
1497 };
1498
1499 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1500 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1501 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1502 void *location, struct anv_bo *bo, uint32_t offset);
1503
1504 static inline VkResult
1505 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1506 {
1507 assert(error != VK_SUCCESS);
1508 if (batch->status == VK_SUCCESS)
1509 batch->status = error;
1510 return batch->status;
1511 }
1512
1513 static inline bool
1514 anv_batch_has_error(struct anv_batch *batch)
1515 {
1516 return batch->status != VK_SUCCESS;
1517 }
1518
1519 struct anv_address {
1520 struct anv_bo *bo;
1521 uint32_t offset;
1522 };
1523
1524 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1525
1526 static inline bool
1527 anv_address_is_null(struct anv_address addr)
1528 {
1529 return addr.bo == NULL && addr.offset == 0;
1530 }
1531
1532 static inline uint64_t
1533 anv_address_physical(struct anv_address addr)
1534 {
1535 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1536 return gen_canonical_address(addr.bo->offset + addr.offset);
1537 else
1538 return gen_canonical_address(addr.offset);
1539 }
1540
1541 static inline struct anv_address
1542 anv_address_add(struct anv_address addr, uint64_t offset)
1543 {
1544 addr.offset += offset;
1545 return addr;
1546 }
1547
1548 static inline void
1549 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1550 {
1551 unsigned reloc_size = 0;
1552 if (device->info.gen >= 8) {
1553 reloc_size = sizeof(uint64_t);
1554 *(uint64_t *)p = gen_canonical_address(v);
1555 } else {
1556 reloc_size = sizeof(uint32_t);
1557 *(uint32_t *)p = v;
1558 }
1559
1560 if (flush && !device->info.has_llc)
1561 gen_flush_range(p, reloc_size);
1562 }
1563
1564 static inline uint64_t
1565 _anv_combine_address(struct anv_batch *batch, void *location,
1566 const struct anv_address address, uint32_t delta)
1567 {
1568 if (address.bo == NULL) {
1569 return address.offset + delta;
1570 } else {
1571 assert(batch->start <= location && location < batch->end);
1572
1573 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1574 }
1575 }
1576
1577 #define __gen_address_type struct anv_address
1578 #define __gen_user_data struct anv_batch
1579 #define __gen_combine_address _anv_combine_address
1580
1581 /* Wrapper macros needed to work around preprocessor argument issues. In
1582 * particular, arguments don't get pre-evaluated if they are concatenated.
1583 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1584 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1585 * We can work around this easily enough with these helpers.
1586 */
1587 #define __anv_cmd_length(cmd) cmd ## _length
1588 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1589 #define __anv_cmd_header(cmd) cmd ## _header
1590 #define __anv_cmd_pack(cmd) cmd ## _pack
1591 #define __anv_reg_num(reg) reg ## _num
1592
1593 #define anv_pack_struct(dst, struc, ...) do { \
1594 struct struc __template = { \
1595 __VA_ARGS__ \
1596 }; \
1597 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1598 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1599 } while (0)
1600
1601 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1602 void *__dst = anv_batch_emit_dwords(batch, n); \
1603 if (__dst) { \
1604 struct cmd __template = { \
1605 __anv_cmd_header(cmd), \
1606 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1607 __VA_ARGS__ \
1608 }; \
1609 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1610 } \
1611 __dst; \
1612 })
1613
1614 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1615 do { \
1616 uint32_t *dw; \
1617 \
1618 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1619 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1620 if (!dw) \
1621 break; \
1622 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1623 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1624 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1625 } while (0)
1626
1627 #define anv_batch_emit(batch, cmd, name) \
1628 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1629 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1630 __builtin_expect(_dst != NULL, 1); \
1631 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1632 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1633 _dst = NULL; \
1634 }))
1635
1636 struct anv_device_memory {
1637 struct list_head link;
1638
1639 struct anv_bo * bo;
1640 struct anv_memory_type * type;
1641 VkDeviceSize map_size;
1642 void * map;
1643
1644 /* If set, we are holding reference to AHardwareBuffer
1645 * which we must release when memory is freed.
1646 */
1647 struct AHardwareBuffer * ahw;
1648
1649 /* If set, this memory comes from a host pointer. */
1650 void * host_ptr;
1651 };
1652
1653 /**
1654 * Header for Vertex URB Entry (VUE)
1655 */
1656 struct anv_vue_header {
1657 uint32_t Reserved;
1658 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1659 uint32_t ViewportIndex;
1660 float PointWidth;
1661 };
1662
1663 /** Struct representing a sampled image descriptor
1664 *
1665 * This descriptor layout is used for sampled images, bare sampler, and
1666 * combined image/sampler descriptors.
1667 */
1668 struct anv_sampled_image_descriptor {
1669 /** Bindless image handle
1670 *
1671 * This is expected to already be shifted such that the 20-bit
1672 * SURFACE_STATE table index is in the top 20 bits.
1673 */
1674 uint32_t image;
1675
1676 /** Bindless sampler handle
1677 *
1678 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1679 * to the dynamic state base address.
1680 */
1681 uint32_t sampler;
1682 };
1683
1684 struct anv_texture_swizzle_descriptor {
1685 /** Texture swizzle
1686 *
1687 * See also nir_intrinsic_channel_select_intel
1688 */
1689 uint8_t swizzle[4];
1690
1691 /** Unused padding to ensure the struct is a multiple of 64 bits */
1692 uint32_t _pad;
1693 };
1694
1695 /** Struct representing a storage image descriptor */
1696 struct anv_storage_image_descriptor {
1697 /** Bindless image handles
1698 *
1699 * These are expected to already be shifted such that the 20-bit
1700 * SURFACE_STATE table index is in the top 20 bits.
1701 */
1702 uint32_t read_write;
1703 uint32_t write_only;
1704 };
1705
1706 /** Struct representing a address/range descriptor
1707 *
1708 * The fields of this struct correspond directly to the data layout of
1709 * nir_address_format_64bit_bounded_global addresses. The last field is the
1710 * offset in the NIR address so it must be zero so that when you load the
1711 * descriptor you get a pointer to the start of the range.
1712 */
1713 struct anv_address_range_descriptor {
1714 uint64_t address;
1715 uint32_t range;
1716 uint32_t zero;
1717 };
1718
1719 enum anv_descriptor_data {
1720 /** The descriptor contains a BTI reference to a surface state */
1721 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1722 /** The descriptor contains a BTI reference to a sampler state */
1723 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1724 /** The descriptor contains an actual buffer view */
1725 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1726 /** The descriptor contains auxiliary image layout data */
1727 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1728 /** The descriptor contains auxiliary image layout data */
1729 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1730 /** anv_address_range_descriptor with a buffer address and range */
1731 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1732 /** Bindless surface handle */
1733 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1734 /** Storage image handles */
1735 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1736 /** Storage image handles */
1737 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1738 };
1739
1740 struct anv_descriptor_set_binding_layout {
1741 #ifndef NDEBUG
1742 /* The type of the descriptors in this binding */
1743 VkDescriptorType type;
1744 #endif
1745
1746 /* Flags provided when this binding was created */
1747 VkDescriptorBindingFlagsEXT flags;
1748
1749 /* Bitfield representing the type of data this descriptor contains */
1750 enum anv_descriptor_data data;
1751
1752 /* Maximum number of YCbCr texture/sampler planes */
1753 uint8_t max_plane_count;
1754
1755 /* Number of array elements in this binding (or size in bytes for inline
1756 * uniform data)
1757 */
1758 uint16_t array_size;
1759
1760 /* Index into the flattend descriptor set */
1761 uint16_t descriptor_index;
1762
1763 /* Index into the dynamic state array for a dynamic buffer */
1764 int16_t dynamic_offset_index;
1765
1766 /* Index into the descriptor set buffer views */
1767 int16_t buffer_view_index;
1768
1769 /* Offset into the descriptor buffer where this descriptor lives */
1770 uint32_t descriptor_offset;
1771
1772 /* Immutable samplers (or NULL if no immutable samplers) */
1773 struct anv_sampler **immutable_samplers;
1774 };
1775
1776 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1777
1778 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1779 VkDescriptorType type);
1780
1781 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1782 const struct anv_descriptor_set_binding_layout *binding,
1783 bool sampler);
1784
1785 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1786 const struct anv_descriptor_set_binding_layout *binding,
1787 bool sampler);
1788
1789 struct anv_descriptor_set_layout {
1790 /* Descriptor set layouts can be destroyed at almost any time */
1791 uint32_t ref_cnt;
1792
1793 /* Number of bindings in this descriptor set */
1794 uint16_t binding_count;
1795
1796 /* Total size of the descriptor set with room for all array entries */
1797 uint16_t size;
1798
1799 /* Shader stages affected by this descriptor set */
1800 uint16_t shader_stages;
1801
1802 /* Number of buffer views in this descriptor set */
1803 uint16_t buffer_view_count;
1804
1805 /* Number of dynamic offsets used by this descriptor set */
1806 uint16_t dynamic_offset_count;
1807
1808 /* For each shader stage, which offsets apply to that stage */
1809 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1810
1811 /* Size of the descriptor buffer for this descriptor set */
1812 uint32_t descriptor_buffer_size;
1813
1814 /* Bindings in this descriptor set */
1815 struct anv_descriptor_set_binding_layout binding[0];
1816 };
1817
1818 static inline void
1819 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1820 {
1821 assert(layout && layout->ref_cnt >= 1);
1822 p_atomic_inc(&layout->ref_cnt);
1823 }
1824
1825 static inline void
1826 anv_descriptor_set_layout_unref(struct anv_device *device,
1827 struct anv_descriptor_set_layout *layout)
1828 {
1829 assert(layout && layout->ref_cnt >= 1);
1830 if (p_atomic_dec_zero(&layout->ref_cnt))
1831 vk_free(&device->alloc, layout);
1832 }
1833
1834 struct anv_descriptor {
1835 VkDescriptorType type;
1836
1837 union {
1838 struct {
1839 VkImageLayout layout;
1840 struct anv_image_view *image_view;
1841 struct anv_sampler *sampler;
1842 };
1843
1844 struct {
1845 struct anv_buffer *buffer;
1846 uint64_t offset;
1847 uint64_t range;
1848 };
1849
1850 struct anv_buffer_view *buffer_view;
1851 };
1852 };
1853
1854 struct anv_descriptor_set {
1855 struct anv_descriptor_pool *pool;
1856 struct anv_descriptor_set_layout *layout;
1857 uint32_t size;
1858
1859 /* State relative to anv_descriptor_pool::bo */
1860 struct anv_state desc_mem;
1861 /* Surface state for the descriptor buffer */
1862 struct anv_state desc_surface_state;
1863
1864 uint32_t buffer_view_count;
1865 struct anv_buffer_view *buffer_views;
1866
1867 /* Link to descriptor pool's desc_sets list . */
1868 struct list_head pool_link;
1869
1870 struct anv_descriptor descriptors[0];
1871 };
1872
1873 struct anv_buffer_view {
1874 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1875 uint64_t range; /**< VkBufferViewCreateInfo::range */
1876
1877 struct anv_address address;
1878
1879 struct anv_state surface_state;
1880 struct anv_state storage_surface_state;
1881 struct anv_state writeonly_storage_surface_state;
1882
1883 struct brw_image_param storage_image_param;
1884 };
1885
1886 struct anv_push_descriptor_set {
1887 struct anv_descriptor_set set;
1888
1889 /* Put this field right behind anv_descriptor_set so it fills up the
1890 * descriptors[0] field. */
1891 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1892
1893 /** True if the descriptor set buffer has been referenced by a draw or
1894 * dispatch command.
1895 */
1896 bool set_used_on_gpu;
1897
1898 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1899 };
1900
1901 struct anv_descriptor_pool {
1902 uint32_t size;
1903 uint32_t next;
1904 uint32_t free_list;
1905
1906 struct anv_bo *bo;
1907 struct util_vma_heap bo_heap;
1908
1909 struct anv_state_stream surface_state_stream;
1910 void *surface_state_free_list;
1911
1912 struct list_head desc_sets;
1913
1914 char data[0];
1915 };
1916
1917 enum anv_descriptor_template_entry_type {
1918 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1919 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1920 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1921 };
1922
1923 struct anv_descriptor_template_entry {
1924 /* The type of descriptor in this entry */
1925 VkDescriptorType type;
1926
1927 /* Binding in the descriptor set */
1928 uint32_t binding;
1929
1930 /* Offset at which to write into the descriptor set binding */
1931 uint32_t array_element;
1932
1933 /* Number of elements to write into the descriptor set binding */
1934 uint32_t array_count;
1935
1936 /* Offset into the user provided data */
1937 size_t offset;
1938
1939 /* Stride between elements into the user provided data */
1940 size_t stride;
1941 };
1942
1943 struct anv_descriptor_update_template {
1944 VkPipelineBindPoint bind_point;
1945
1946 /* The descriptor set this template corresponds to. This value is only
1947 * valid if the template was created with the templateType
1948 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1949 */
1950 uint8_t set;
1951
1952 /* Number of entries in this template */
1953 uint32_t entry_count;
1954
1955 /* Entries of the template */
1956 struct anv_descriptor_template_entry entries[0];
1957 };
1958
1959 size_t
1960 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1961
1962 void
1963 anv_descriptor_set_write_image_view(struct anv_device *device,
1964 struct anv_descriptor_set *set,
1965 const VkDescriptorImageInfo * const info,
1966 VkDescriptorType type,
1967 uint32_t binding,
1968 uint32_t element);
1969
1970 void
1971 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1972 struct anv_descriptor_set *set,
1973 VkDescriptorType type,
1974 struct anv_buffer_view *buffer_view,
1975 uint32_t binding,
1976 uint32_t element);
1977
1978 void
1979 anv_descriptor_set_write_buffer(struct anv_device *device,
1980 struct anv_descriptor_set *set,
1981 struct anv_state_stream *alloc_stream,
1982 VkDescriptorType type,
1983 struct anv_buffer *buffer,
1984 uint32_t binding,
1985 uint32_t element,
1986 VkDeviceSize offset,
1987 VkDeviceSize range);
1988 void
1989 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
1990 struct anv_descriptor_set *set,
1991 uint32_t binding,
1992 const void *data,
1993 size_t offset,
1994 size_t size);
1995
1996 void
1997 anv_descriptor_set_write_template(struct anv_device *device,
1998 struct anv_descriptor_set *set,
1999 struct anv_state_stream *alloc_stream,
2000 const struct anv_descriptor_update_template *template,
2001 const void *data);
2002
2003 VkResult
2004 anv_descriptor_set_create(struct anv_device *device,
2005 struct anv_descriptor_pool *pool,
2006 struct anv_descriptor_set_layout *layout,
2007 struct anv_descriptor_set **out_set);
2008
2009 void
2010 anv_descriptor_set_destroy(struct anv_device *device,
2011 struct anv_descriptor_pool *pool,
2012 struct anv_descriptor_set *set);
2013
2014 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2015 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2016 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2017 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2018 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2019 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2020
2021 struct anv_pipeline_binding {
2022 /** Index in the descriptor set
2023 *
2024 * This is a flattened index; the descriptor set layout is already taken
2025 * into account.
2026 */
2027 uint32_t index;
2028
2029 /** The descriptor set this surface corresponds to.
2030 *
2031 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2032 * binding is not a normal descriptor set but something else.
2033 */
2034 uint8_t set;
2035
2036 union {
2037 /** Plane in the binding index for images */
2038 uint8_t plane;
2039
2040 /** Input attachment index (relative to the subpass) */
2041 uint8_t input_attachment_index;
2042
2043 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2044 uint8_t dynamic_offset_index;
2045 };
2046
2047 /** For a storage image, whether it is write-only */
2048 uint8_t write_only;
2049
2050 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2051 * assuming POD zero-initialization.
2052 */
2053 uint8_t pad;
2054 };
2055
2056 struct anv_push_range {
2057 /** Index in the descriptor set */
2058 uint32_t index;
2059
2060 /** Descriptor set index */
2061 uint8_t set;
2062
2063 /** Dynamic offset index (for dynamic UBOs) */
2064 uint8_t dynamic_offset_index;
2065
2066 /** Start offset in units of 32B */
2067 uint8_t start;
2068
2069 /** Range in units of 32B */
2070 uint8_t length;
2071 };
2072
2073 struct anv_pipeline_layout {
2074 struct {
2075 struct anv_descriptor_set_layout *layout;
2076 uint32_t dynamic_offset_start;
2077 } set[MAX_SETS];
2078
2079 uint32_t num_sets;
2080
2081 unsigned char sha1[20];
2082 };
2083
2084 struct anv_buffer {
2085 struct anv_device * device;
2086 VkDeviceSize size;
2087
2088 VkBufferUsageFlags usage;
2089
2090 /* Set when bound */
2091 struct anv_address address;
2092 };
2093
2094 static inline uint64_t
2095 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2096 {
2097 assert(offset <= buffer->size);
2098 if (range == VK_WHOLE_SIZE) {
2099 return buffer->size - offset;
2100 } else {
2101 assert(range + offset >= range);
2102 assert(range + offset <= buffer->size);
2103 return range;
2104 }
2105 }
2106
2107 enum anv_cmd_dirty_bits {
2108 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2109 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2110 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2111 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2112 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2113 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2114 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2115 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2116 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2117 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2118 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2119 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2120 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2121 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2122 };
2123 typedef uint32_t anv_cmd_dirty_mask_t;
2124
2125 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2126 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2127 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2128 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2129 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2130 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2131 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2132 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2133 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2134 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2135 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2136
2137 static inline enum anv_cmd_dirty_bits
2138 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2139 {
2140 switch (vk_state) {
2141 case VK_DYNAMIC_STATE_VIEWPORT:
2142 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2143 case VK_DYNAMIC_STATE_SCISSOR:
2144 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2145 case VK_DYNAMIC_STATE_LINE_WIDTH:
2146 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2147 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2148 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2149 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2150 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2151 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2152 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2153 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2154 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2155 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2156 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2157 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2158 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2159 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2160 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2161 default:
2162 assert(!"Unsupported dynamic state");
2163 return 0;
2164 }
2165 }
2166
2167
2168 enum anv_pipe_bits {
2169 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2170 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2171 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2172 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2173 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2174 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2175 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2176 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2177 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2178 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2179 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2180 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2181
2182 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2183 * a flush has happened but not a CS stall. The next time we do any sort
2184 * of invalidation we need to insert a CS stall at that time. Otherwise,
2185 * we would have to CS stall on every flush which could be bad.
2186 */
2187 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2188
2189 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2190 * target operations related to transfer commands with VkBuffer as
2191 * destination are ongoing. Some operations like copies on the command
2192 * streamer might need to be aware of this to trigger the appropriate stall
2193 * before they can proceed with the copy.
2194 */
2195 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2196 };
2197
2198 #define ANV_PIPE_FLUSH_BITS ( \
2199 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2200 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2201 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2202 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2203
2204 #define ANV_PIPE_STALL_BITS ( \
2205 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2206 ANV_PIPE_DEPTH_STALL_BIT | \
2207 ANV_PIPE_CS_STALL_BIT)
2208
2209 #define ANV_PIPE_INVALIDATE_BITS ( \
2210 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2211 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2212 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2213 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2214 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2215 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2216
2217 static inline enum anv_pipe_bits
2218 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2219 {
2220 enum anv_pipe_bits pipe_bits = 0;
2221
2222 unsigned b;
2223 for_each_bit(b, flags) {
2224 switch ((VkAccessFlagBits)(1 << b)) {
2225 case VK_ACCESS_SHADER_WRITE_BIT:
2226 /* We're transitioning a buffer that was previously used as write
2227 * destination through the data port. To make its content available
2228 * to future operations, flush the data cache.
2229 */
2230 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2231 break;
2232 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2233 /* We're transitioning a buffer that was previously used as render
2234 * target. To make its content available to future operations, flush
2235 * the render target cache.
2236 */
2237 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2238 break;
2239 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2240 /* We're transitioning a buffer that was previously used as depth
2241 * buffer. To make its content available to future operations, flush
2242 * the depth cache.
2243 */
2244 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2245 break;
2246 case VK_ACCESS_TRANSFER_WRITE_BIT:
2247 /* We're transitioning a buffer that was previously used as a
2248 * transfer write destination. Generic write operations include color
2249 * & depth operations as well as buffer operations like :
2250 * - vkCmdClearColorImage()
2251 * - vkCmdClearDepthStencilImage()
2252 * - vkCmdBlitImage()
2253 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2254 *
2255 * Most of these operations are implemented using Blorp which writes
2256 * through the render target, so flush that cache to make it visible
2257 * to future operations. And for depth related operations we also
2258 * need to flush the depth cache.
2259 */
2260 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2261 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2262 break;
2263 case VK_ACCESS_MEMORY_WRITE_BIT:
2264 /* We're transitioning a buffer for generic write operations. Flush
2265 * all the caches.
2266 */
2267 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2268 break;
2269 default:
2270 break; /* Nothing to do */
2271 }
2272 }
2273
2274 return pipe_bits;
2275 }
2276
2277 static inline enum anv_pipe_bits
2278 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2279 {
2280 enum anv_pipe_bits pipe_bits = 0;
2281
2282 unsigned b;
2283 for_each_bit(b, flags) {
2284 switch ((VkAccessFlagBits)(1 << b)) {
2285 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2286 /* Indirect draw commands take a buffer as input that we're going to
2287 * read from the command streamer to load some of the HW registers
2288 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2289 * command streamer stall so that all the cache flushes have
2290 * completed before the command streamer loads from memory.
2291 */
2292 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2293 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2294 * through a vertex buffer, so invalidate that cache.
2295 */
2296 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2297 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2298 * UBO from the buffer, so we need to invalidate constant cache.
2299 */
2300 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2301 break;
2302 case VK_ACCESS_INDEX_READ_BIT:
2303 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2304 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2305 * commands, so we invalidate the VF cache to make sure there is no
2306 * stale data when we start rendering.
2307 */
2308 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2309 break;
2310 case VK_ACCESS_UNIFORM_READ_BIT:
2311 /* We transitioning a buffer to be used as uniform data. Because
2312 * uniform is accessed through the data port & sampler, we need to
2313 * invalidate the texture cache (sampler) & constant cache (data
2314 * port) to avoid stale data.
2315 */
2316 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2317 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2318 break;
2319 case VK_ACCESS_SHADER_READ_BIT:
2320 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2321 case VK_ACCESS_TRANSFER_READ_BIT:
2322 /* Transitioning a buffer to be read through the sampler, so
2323 * invalidate the texture cache, we don't want any stale data.
2324 */
2325 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2326 break;
2327 case VK_ACCESS_MEMORY_READ_BIT:
2328 /* Transitioning a buffer for generic read, invalidate all the
2329 * caches.
2330 */
2331 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2332 break;
2333 case VK_ACCESS_MEMORY_WRITE_BIT:
2334 /* Generic write, make sure all previously written things land in
2335 * memory.
2336 */
2337 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2338 break;
2339 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2340 /* Transitioning a buffer for conditional rendering. We'll load the
2341 * content of this buffer into HW registers using the command
2342 * streamer, so we need to stall the command streamer to make sure
2343 * any in-flight flush operations have completed.
2344 */
2345 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2346 break;
2347 default:
2348 break; /* Nothing to do */
2349 }
2350 }
2351
2352 return pipe_bits;
2353 }
2354
2355 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2356 VK_IMAGE_ASPECT_COLOR_BIT | \
2357 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2358 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2359 VK_IMAGE_ASPECT_PLANE_2_BIT)
2360 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2361 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2362 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2363 VK_IMAGE_ASPECT_PLANE_2_BIT)
2364
2365 struct anv_vertex_binding {
2366 struct anv_buffer * buffer;
2367 VkDeviceSize offset;
2368 };
2369
2370 struct anv_xfb_binding {
2371 struct anv_buffer * buffer;
2372 VkDeviceSize offset;
2373 VkDeviceSize size;
2374 };
2375
2376 struct anv_push_constants {
2377 /** Push constant data provided by the client through vkPushConstants */
2378 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2379
2380 /** Dynamic offsets for dynamic UBOs and SSBOs */
2381 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2382
2383 struct {
2384 /** Base workgroup ID
2385 *
2386 * Used for vkCmdDispatchBase.
2387 */
2388 uint32_t base_work_group_id[3];
2389
2390 /** Subgroup ID
2391 *
2392 * This is never set by software but is implicitly filled out when
2393 * uploading the push constants for compute shaders.
2394 */
2395 uint32_t subgroup_id;
2396
2397 /** Pad out to a multiple of 32 bytes */
2398 uint32_t pad[4];
2399 } cs;
2400 };
2401
2402 struct anv_dynamic_state {
2403 struct {
2404 uint32_t count;
2405 VkViewport viewports[MAX_VIEWPORTS];
2406 } viewport;
2407
2408 struct {
2409 uint32_t count;
2410 VkRect2D scissors[MAX_SCISSORS];
2411 } scissor;
2412
2413 float line_width;
2414
2415 struct {
2416 float bias;
2417 float clamp;
2418 float slope;
2419 } depth_bias;
2420
2421 float blend_constants[4];
2422
2423 struct {
2424 float min;
2425 float max;
2426 } depth_bounds;
2427
2428 struct {
2429 uint32_t front;
2430 uint32_t back;
2431 } stencil_compare_mask;
2432
2433 struct {
2434 uint32_t front;
2435 uint32_t back;
2436 } stencil_write_mask;
2437
2438 struct {
2439 uint32_t front;
2440 uint32_t back;
2441 } stencil_reference;
2442
2443 struct {
2444 uint32_t factor;
2445 uint16_t pattern;
2446 } line_stipple;
2447 };
2448
2449 extern const struct anv_dynamic_state default_dynamic_state;
2450
2451 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2452 const struct anv_dynamic_state *src,
2453 uint32_t copy_mask);
2454
2455 struct anv_surface_state {
2456 struct anv_state state;
2457 /** Address of the surface referred to by this state
2458 *
2459 * This address is relative to the start of the BO.
2460 */
2461 struct anv_address address;
2462 /* Address of the aux surface, if any
2463 *
2464 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2465 *
2466 * With the exception of gen8, the bottom 12 bits of this address' offset
2467 * include extra aux information.
2468 */
2469 struct anv_address aux_address;
2470 /* Address of the clear color, if any
2471 *
2472 * This address is relative to the start of the BO.
2473 */
2474 struct anv_address clear_address;
2475 };
2476
2477 /**
2478 * Attachment state when recording a renderpass instance.
2479 *
2480 * The clear value is valid only if there exists a pending clear.
2481 */
2482 struct anv_attachment_state {
2483 enum isl_aux_usage aux_usage;
2484 enum isl_aux_usage input_aux_usage;
2485 struct anv_surface_state color;
2486 struct anv_surface_state input;
2487
2488 VkImageLayout current_layout;
2489 VkImageLayout current_stencil_layout;
2490 VkImageAspectFlags pending_clear_aspects;
2491 VkImageAspectFlags pending_load_aspects;
2492 bool fast_clear;
2493 VkClearValue clear_value;
2494 bool clear_color_is_zero_one;
2495 bool clear_color_is_zero;
2496
2497 /* When multiview is active, attachments with a renderpass clear
2498 * operation have their respective layers cleared on the first
2499 * subpass that uses them, and only in that subpass. We keep track
2500 * of this using a bitfield to indicate which layers of an attachment
2501 * have not been cleared yet when multiview is active.
2502 */
2503 uint32_t pending_clear_views;
2504 struct anv_image_view * image_view;
2505 };
2506
2507 /** State tracking for particular pipeline bind point
2508 *
2509 * This struct is the base struct for anv_cmd_graphics_state and
2510 * anv_cmd_compute_state. These are used to track state which is bound to a
2511 * particular type of pipeline. Generic state that applies per-stage such as
2512 * binding table offsets and push constants is tracked generically with a
2513 * per-stage array in anv_cmd_state.
2514 */
2515 struct anv_cmd_pipeline_state {
2516 struct anv_pipeline *pipeline;
2517
2518 struct anv_descriptor_set *descriptors[MAX_SETS];
2519 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2520 };
2521
2522 /** State tracking for graphics pipeline
2523 *
2524 * This has anv_cmd_pipeline_state as a base struct to track things which get
2525 * bound to a graphics pipeline. Along with general pipeline bind point state
2526 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2527 * state which is graphics-specific.
2528 */
2529 struct anv_cmd_graphics_state {
2530 struct anv_cmd_pipeline_state base;
2531
2532 anv_cmd_dirty_mask_t dirty;
2533 uint32_t vb_dirty;
2534
2535 struct anv_dynamic_state dynamic;
2536
2537 struct {
2538 struct anv_buffer *index_buffer;
2539 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2540 uint32_t index_offset;
2541 } gen7;
2542 };
2543
2544 /** State tracking for compute pipeline
2545 *
2546 * This has anv_cmd_pipeline_state as a base struct to track things which get
2547 * bound to a compute pipeline. Along with general pipeline bind point state
2548 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2549 * state which is compute-specific.
2550 */
2551 struct anv_cmd_compute_state {
2552 struct anv_cmd_pipeline_state base;
2553
2554 bool pipeline_dirty;
2555
2556 struct anv_address num_workgroups;
2557 };
2558
2559 /** State required while building cmd buffer */
2560 struct anv_cmd_state {
2561 /* PIPELINE_SELECT.PipelineSelection */
2562 uint32_t current_pipeline;
2563 const struct gen_l3_config * current_l3_config;
2564 uint32_t last_aux_map_state;
2565
2566 struct anv_cmd_graphics_state gfx;
2567 struct anv_cmd_compute_state compute;
2568
2569 enum anv_pipe_bits pending_pipe_bits;
2570 VkShaderStageFlags descriptors_dirty;
2571 VkShaderStageFlags push_constants_dirty;
2572
2573 struct anv_framebuffer * framebuffer;
2574 struct anv_render_pass * pass;
2575 struct anv_subpass * subpass;
2576 VkRect2D render_area;
2577 uint32_t restart_index;
2578 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2579 bool xfb_enabled;
2580 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2581 VkShaderStageFlags push_constant_stages;
2582 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2583 struct anv_state binding_tables[MESA_SHADER_STAGES];
2584 struct anv_state samplers[MESA_SHADER_STAGES];
2585
2586 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2587 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2588 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2589
2590 /**
2591 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2592 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2593 * and before invoking the secondary in ExecuteCommands.
2594 */
2595 bool pma_fix_enabled;
2596
2597 /**
2598 * Whether or not we know for certain that HiZ is enabled for the current
2599 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2600 * enabled or not, this will be false.
2601 */
2602 bool hiz_enabled;
2603
2604 bool conditional_render_enabled;
2605
2606 /**
2607 * Last rendering scale argument provided to
2608 * genX(cmd_buffer_emit_hashing_mode)().
2609 */
2610 unsigned current_hash_scale;
2611
2612 /**
2613 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2614 * valid only when recording a render pass instance.
2615 */
2616 struct anv_attachment_state * attachments;
2617
2618 /**
2619 * Surface states for color render targets. These are stored in a single
2620 * flat array. For depth-stencil attachments, the surface state is simply
2621 * left blank.
2622 */
2623 struct anv_state render_pass_states;
2624
2625 /**
2626 * A null surface state of the right size to match the framebuffer. This
2627 * is one of the states in render_pass_states.
2628 */
2629 struct anv_state null_surface_state;
2630 };
2631
2632 struct anv_cmd_pool {
2633 VkAllocationCallbacks alloc;
2634 struct list_head cmd_buffers;
2635 };
2636
2637 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2638
2639 enum anv_cmd_buffer_exec_mode {
2640 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2641 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2642 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2643 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2644 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2645 };
2646
2647 struct anv_cmd_buffer {
2648 VK_LOADER_DATA _loader_data;
2649
2650 struct anv_device * device;
2651
2652 struct anv_cmd_pool * pool;
2653 struct list_head pool_link;
2654
2655 struct anv_batch batch;
2656
2657 /* Fields required for the actual chain of anv_batch_bo's.
2658 *
2659 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2660 */
2661 struct list_head batch_bos;
2662 enum anv_cmd_buffer_exec_mode exec_mode;
2663
2664 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2665 * referenced by this command buffer
2666 *
2667 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2668 */
2669 struct u_vector seen_bbos;
2670
2671 /* A vector of int32_t's for every block of binding tables.
2672 *
2673 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2674 */
2675 struct u_vector bt_block_states;
2676 struct anv_state bt_next;
2677
2678 struct anv_reloc_list surface_relocs;
2679 /** Last seen surface state block pool center bo offset */
2680 uint32_t last_ss_pool_center;
2681
2682 /* Serial for tracking buffer completion */
2683 uint32_t serial;
2684
2685 /* Stream objects for storing temporary data */
2686 struct anv_state_stream surface_state_stream;
2687 struct anv_state_stream dynamic_state_stream;
2688
2689 VkCommandBufferUsageFlags usage_flags;
2690 VkCommandBufferLevel level;
2691
2692 struct anv_cmd_state state;
2693
2694 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2695 uint64_t intel_perf_marker;
2696 };
2697
2698 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2699 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2700 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2701 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2702 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2703 struct anv_cmd_buffer *secondary);
2704 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2705 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2706 struct anv_cmd_buffer *cmd_buffer,
2707 const VkSemaphore *in_semaphores,
2708 const uint64_t *in_wait_values,
2709 uint32_t num_in_semaphores,
2710 const VkSemaphore *out_semaphores,
2711 const uint64_t *out_signal_values,
2712 uint32_t num_out_semaphores,
2713 VkFence fence);
2714
2715 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2716
2717 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2718 const void *data, uint32_t size, uint32_t alignment);
2719 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2720 uint32_t *a, uint32_t *b,
2721 uint32_t dwords, uint32_t alignment);
2722
2723 struct anv_address
2724 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2725 struct anv_state
2726 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2727 uint32_t entries, uint32_t *state_offset);
2728 struct anv_state
2729 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2730 struct anv_state
2731 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2732 uint32_t size, uint32_t alignment);
2733
2734 VkResult
2735 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2736
2737 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2738 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2739 bool depth_clamp_enable);
2740 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2741
2742 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2743 struct anv_render_pass *pass,
2744 struct anv_framebuffer *framebuffer,
2745 const VkClearValue *clear_values);
2746
2747 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2748
2749 struct anv_state
2750 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2751 gl_shader_stage stage);
2752 struct anv_state
2753 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2754
2755 const struct anv_image_view *
2756 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2757
2758 VkResult
2759 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2760 uint32_t num_entries,
2761 uint32_t *state_offset,
2762 struct anv_state *bt_state);
2763
2764 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2765
2766 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2767
2768 enum anv_fence_type {
2769 ANV_FENCE_TYPE_NONE = 0,
2770 ANV_FENCE_TYPE_BO,
2771 ANV_FENCE_TYPE_SYNCOBJ,
2772 ANV_FENCE_TYPE_WSI,
2773 };
2774
2775 enum anv_bo_fence_state {
2776 /** Indicates that this is a new (or newly reset fence) */
2777 ANV_BO_FENCE_STATE_RESET,
2778
2779 /** Indicates that this fence has been submitted to the GPU but is still
2780 * (as far as we know) in use by the GPU.
2781 */
2782 ANV_BO_FENCE_STATE_SUBMITTED,
2783
2784 ANV_BO_FENCE_STATE_SIGNALED,
2785 };
2786
2787 struct anv_fence_impl {
2788 enum anv_fence_type type;
2789
2790 union {
2791 /** Fence implementation for BO fences
2792 *
2793 * These fences use a BO and a set of CPU-tracked state flags. The BO
2794 * is added to the object list of the last execbuf call in a QueueSubmit
2795 * and is marked EXEC_WRITE. The state flags track when the BO has been
2796 * submitted to the kernel. We need to do this because Vulkan lets you
2797 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2798 * will say it's idle in this case.
2799 */
2800 struct {
2801 struct anv_bo *bo;
2802 enum anv_bo_fence_state state;
2803 } bo;
2804
2805 /** DRM syncobj handle for syncobj-based fences */
2806 uint32_t syncobj;
2807
2808 /** WSI fence */
2809 struct wsi_fence *fence_wsi;
2810 };
2811 };
2812
2813 struct anv_fence {
2814 /* Permanent fence state. Every fence has some form of permanent state
2815 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2816 * cross-process fences) or it could just be a dummy for use internally.
2817 */
2818 struct anv_fence_impl permanent;
2819
2820 /* Temporary fence state. A fence *may* have temporary state. That state
2821 * is added to the fence by an import operation and is reset back to
2822 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2823 * state cannot be signaled because the fence must already be signaled
2824 * before the temporary state can be exported from the fence in the other
2825 * process and imported here.
2826 */
2827 struct anv_fence_impl temporary;
2828 };
2829
2830 struct anv_event {
2831 uint64_t semaphore;
2832 struct anv_state state;
2833 };
2834
2835 enum anv_semaphore_type {
2836 ANV_SEMAPHORE_TYPE_NONE = 0,
2837 ANV_SEMAPHORE_TYPE_DUMMY,
2838 ANV_SEMAPHORE_TYPE_BO,
2839 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2840 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2841 ANV_SEMAPHORE_TYPE_TIMELINE,
2842 };
2843
2844 struct anv_timeline_point {
2845 struct list_head link;
2846
2847 uint64_t serial;
2848
2849 /* Number of waiter on this point, when > 0 the point should not be garbage
2850 * collected.
2851 */
2852 int waiting;
2853
2854 /* BO used for synchronization. */
2855 struct anv_bo *bo;
2856 };
2857
2858 struct anv_timeline {
2859 pthread_mutex_t mutex;
2860 pthread_cond_t cond;
2861
2862 uint64_t highest_past;
2863 uint64_t highest_pending;
2864
2865 struct list_head points;
2866 struct list_head free_points;
2867 };
2868
2869 struct anv_semaphore_impl {
2870 enum anv_semaphore_type type;
2871
2872 union {
2873 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2874 * This BO will be added to the object list on any execbuf2 calls for
2875 * which this semaphore is used as a wait or signal fence. When used as
2876 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2877 */
2878 struct anv_bo *bo;
2879
2880 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2881 * If the semaphore is in the unsignaled state due to either just being
2882 * created or because it has been used for a wait, fd will be -1.
2883 */
2884 int fd;
2885
2886 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2887 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2888 * import so we don't need to bother with a userspace cache.
2889 */
2890 uint32_t syncobj;
2891
2892 /* Non shareable timeline semaphore
2893 *
2894 * Used when kernel don't have support for timeline semaphores.
2895 */
2896 struct anv_timeline timeline;
2897 };
2898 };
2899
2900 struct anv_semaphore {
2901 uint32_t refcount;
2902
2903 /* Permanent semaphore state. Every semaphore has some form of permanent
2904 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2905 * (for cross-process semaphores0 or it could just be a dummy for use
2906 * internally.
2907 */
2908 struct anv_semaphore_impl permanent;
2909
2910 /* Temporary semaphore state. A semaphore *may* have temporary state.
2911 * That state is added to the semaphore by an import operation and is reset
2912 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2913 * semaphore with temporary state cannot be signaled because the semaphore
2914 * must already be signaled before the temporary state can be exported from
2915 * the semaphore in the other process and imported here.
2916 */
2917 struct anv_semaphore_impl temporary;
2918 };
2919
2920 void anv_semaphore_reset_temporary(struct anv_device *device,
2921 struct anv_semaphore *semaphore);
2922
2923 struct anv_shader_module {
2924 unsigned char sha1[20];
2925 uint32_t size;
2926 char data[0];
2927 };
2928
2929 static inline gl_shader_stage
2930 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2931 {
2932 assert(__builtin_popcount(vk_stage) == 1);
2933 return ffs(vk_stage) - 1;
2934 }
2935
2936 static inline VkShaderStageFlagBits
2937 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2938 {
2939 return (1 << mesa_stage);
2940 }
2941
2942 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2943
2944 #define anv_foreach_stage(stage, stage_bits) \
2945 for (gl_shader_stage stage, \
2946 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2947 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2948 __tmp &= ~(1 << (stage)))
2949
2950 struct anv_pipeline_bind_map {
2951 unsigned char surface_sha1[20];
2952 unsigned char sampler_sha1[20];
2953 unsigned char push_sha1[20];
2954
2955 uint32_t surface_count;
2956 uint32_t sampler_count;
2957
2958 struct anv_pipeline_binding * surface_to_descriptor;
2959 struct anv_pipeline_binding * sampler_to_descriptor;
2960
2961 struct anv_push_range push_ranges[4];
2962 };
2963
2964 struct anv_shader_bin_key {
2965 uint32_t size;
2966 uint8_t data[0];
2967 };
2968
2969 struct anv_shader_bin {
2970 uint32_t ref_cnt;
2971
2972 const struct anv_shader_bin_key *key;
2973
2974 struct anv_state kernel;
2975 uint32_t kernel_size;
2976
2977 struct anv_state constant_data;
2978 uint32_t constant_data_size;
2979
2980 const struct brw_stage_prog_data *prog_data;
2981 uint32_t prog_data_size;
2982
2983 struct brw_compile_stats stats[3];
2984 uint32_t num_stats;
2985
2986 struct nir_xfb_info *xfb_info;
2987
2988 struct anv_pipeline_bind_map bind_map;
2989 };
2990
2991 struct anv_shader_bin *
2992 anv_shader_bin_create(struct anv_device *device,
2993 const void *key, uint32_t key_size,
2994 const void *kernel, uint32_t kernel_size,
2995 const void *constant_data, uint32_t constant_data_size,
2996 const struct brw_stage_prog_data *prog_data,
2997 uint32_t prog_data_size, const void *prog_data_param,
2998 const struct brw_compile_stats *stats, uint32_t num_stats,
2999 const struct nir_xfb_info *xfb_info,
3000 const struct anv_pipeline_bind_map *bind_map);
3001
3002 void
3003 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3004
3005 static inline void
3006 anv_shader_bin_ref(struct anv_shader_bin *shader)
3007 {
3008 assert(shader && shader->ref_cnt >= 1);
3009 p_atomic_inc(&shader->ref_cnt);
3010 }
3011
3012 static inline void
3013 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3014 {
3015 assert(shader && shader->ref_cnt >= 1);
3016 if (p_atomic_dec_zero(&shader->ref_cnt))
3017 anv_shader_bin_destroy(device, shader);
3018 }
3019
3020 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3021 #define MAX_PIPELINE_EXECUTABLES 7
3022
3023 struct anv_pipeline_executable {
3024 gl_shader_stage stage;
3025
3026 struct brw_compile_stats stats;
3027
3028 char *nir;
3029 char *disasm;
3030 };
3031
3032 struct anv_pipeline {
3033 struct anv_device * device;
3034 struct anv_batch batch;
3035 uint32_t batch_data[512];
3036 struct anv_reloc_list batch_relocs;
3037 anv_cmd_dirty_mask_t dynamic_state_mask;
3038 struct anv_dynamic_state dynamic_state;
3039
3040 void * mem_ctx;
3041
3042 VkPipelineCreateFlags flags;
3043 struct anv_subpass * subpass;
3044
3045 bool needs_data_cache;
3046
3047 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3048
3049 uint32_t num_executables;
3050 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3051
3052 struct {
3053 const struct gen_l3_config * l3_config;
3054 uint32_t total_size;
3055 } urb;
3056
3057 VkShaderStageFlags active_stages;
3058 struct anv_state blend_state;
3059
3060 uint32_t vb_used;
3061 struct anv_pipeline_vertex_binding {
3062 uint32_t stride;
3063 bool instanced;
3064 uint32_t instance_divisor;
3065 } vb[MAX_VBS];
3066
3067 uint8_t xfb_used;
3068
3069 bool primitive_restart;
3070 uint32_t topology;
3071
3072 uint32_t cs_right_mask;
3073
3074 bool writes_depth;
3075 bool depth_test_enable;
3076 bool writes_stencil;
3077 bool stencil_test_enable;
3078 bool depth_clamp_enable;
3079 bool depth_clip_enable;
3080 bool sample_shading_enable;
3081 bool kill_pixel;
3082 bool depth_bounds_test_enable;
3083
3084 struct {
3085 uint32_t sf[7];
3086 uint32_t depth_stencil_state[3];
3087 } gen7;
3088
3089 struct {
3090 uint32_t sf[4];
3091 uint32_t raster[5];
3092 uint32_t wm_depth_stencil[3];
3093 } gen8;
3094
3095 struct {
3096 uint32_t wm_depth_stencil[4];
3097 } gen9;
3098
3099 uint32_t interface_descriptor_data[8];
3100 };
3101
3102 static inline bool
3103 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3104 gl_shader_stage stage)
3105 {
3106 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3107 }
3108
3109 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3110 static inline const struct brw_##prefix##_prog_data * \
3111 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3112 { \
3113 if (anv_pipeline_has_stage(pipeline, stage)) { \
3114 return (const struct brw_##prefix##_prog_data *) \
3115 pipeline->shaders[stage]->prog_data; \
3116 } else { \
3117 return NULL; \
3118 } \
3119 }
3120
3121 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3122 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3123 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3124 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3125 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3126 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3127
3128 static inline const struct brw_vue_prog_data *
3129 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3130 {
3131 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3132 return &get_gs_prog_data(pipeline)->base;
3133 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3134 return &get_tes_prog_data(pipeline)->base;
3135 else
3136 return &get_vs_prog_data(pipeline)->base;
3137 }
3138
3139 VkResult
3140 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3141 struct anv_pipeline_cache *cache,
3142 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3143 const VkAllocationCallbacks *alloc);
3144
3145 VkResult
3146 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3147 struct anv_pipeline_cache *cache,
3148 const VkComputePipelineCreateInfo *info,
3149 const struct anv_shader_module *module,
3150 const char *entrypoint,
3151 const VkSpecializationInfo *spec_info);
3152
3153 struct anv_format_plane {
3154 enum isl_format isl_format:16;
3155 struct isl_swizzle swizzle;
3156
3157 /* Whether this plane contains chroma channels */
3158 bool has_chroma;
3159
3160 /* For downscaling of YUV planes */
3161 uint8_t denominator_scales[2];
3162
3163 /* How to map sampled ycbcr planes to a single 4 component element. */
3164 struct isl_swizzle ycbcr_swizzle;
3165
3166 /* What aspect is associated to this plane */
3167 VkImageAspectFlags aspect;
3168 };
3169
3170
3171 struct anv_format {
3172 struct anv_format_plane planes[3];
3173 VkFormat vk_format;
3174 uint8_t n_planes;
3175 bool can_ycbcr;
3176 };
3177
3178 static inline uint32_t
3179 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3180 VkImageAspectFlags aspect_mask)
3181 {
3182 switch (aspect_mask) {
3183 case VK_IMAGE_ASPECT_COLOR_BIT:
3184 case VK_IMAGE_ASPECT_DEPTH_BIT:
3185 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3186 return 0;
3187 case VK_IMAGE_ASPECT_STENCIL_BIT:
3188 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3189 return 0;
3190 /* Fall-through */
3191 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3192 return 1;
3193 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3194 return 2;
3195 default:
3196 /* Purposefully assert with depth/stencil aspects. */
3197 unreachable("invalid image aspect");
3198 }
3199 }
3200
3201 static inline VkImageAspectFlags
3202 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3203 uint32_t plane)
3204 {
3205 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3206 if (util_bitcount(image_aspects) > 1)
3207 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3208 return VK_IMAGE_ASPECT_COLOR_BIT;
3209 }
3210 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3211 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3212 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3213 return VK_IMAGE_ASPECT_STENCIL_BIT;
3214 }
3215
3216 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3217 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3218
3219 const struct anv_format *
3220 anv_get_format(VkFormat format);
3221
3222 static inline uint32_t
3223 anv_get_format_planes(VkFormat vk_format)
3224 {
3225 const struct anv_format *format = anv_get_format(vk_format);
3226
3227 return format != NULL ? format->n_planes : 0;
3228 }
3229
3230 struct anv_format_plane
3231 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3232 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3233
3234 static inline enum isl_format
3235 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3236 VkImageAspectFlags aspect, VkImageTiling tiling)
3237 {
3238 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3239 }
3240
3241 static inline struct isl_swizzle
3242 anv_swizzle_for_render(struct isl_swizzle swizzle)
3243 {
3244 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3245 * RGB as RGBA for texturing
3246 */
3247 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3248 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3249
3250 /* But it doesn't matter what we render to that channel */
3251 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3252
3253 return swizzle;
3254 }
3255
3256 void
3257 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3258
3259 /**
3260 * Subsurface of an anv_image.
3261 */
3262 struct anv_surface {
3263 /** Valid only if isl_surf::size_B > 0. */
3264 struct isl_surf isl;
3265
3266 /**
3267 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3268 */
3269 uint32_t offset;
3270 };
3271
3272 struct anv_image {
3273 VkImageType type; /**< VkImageCreateInfo::imageType */
3274 /* The original VkFormat provided by the client. This may not match any
3275 * of the actual surface formats.
3276 */
3277 VkFormat vk_format;
3278 const struct anv_format *format;
3279
3280 VkImageAspectFlags aspects;
3281 VkExtent3D extent;
3282 uint32_t levels;
3283 uint32_t array_size;
3284 uint32_t samples; /**< VkImageCreateInfo::samples */
3285 uint32_t n_planes;
3286 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3287 VkImageUsageFlags stencil_usage;
3288 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3289 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3290
3291 /** True if this is needs to be bound to an appropriately tiled BO.
3292 *
3293 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3294 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3295 * we require a dedicated allocation so that we can know to allocate a
3296 * tiled buffer.
3297 */
3298 bool needs_set_tiling;
3299
3300 /**
3301 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3302 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3303 */
3304 uint64_t drm_format_mod;
3305
3306 VkDeviceSize size;
3307 uint32_t alignment;
3308
3309 /* Whether the image is made of several underlying buffer objects rather a
3310 * single one with different offsets.
3311 */
3312 bool disjoint;
3313
3314 /* All the formats that can be used when creating views of this image
3315 * are CCS_E compatible.
3316 */
3317 bool ccs_e_compatible;
3318
3319 /* Image was created with external format. */
3320 bool external_format;
3321
3322 /**
3323 * Image subsurfaces
3324 *
3325 * For each foo, anv_image::planes[x].surface is valid if and only if
3326 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3327 * to figure the number associated with a given aspect.
3328 *
3329 * The hardware requires that the depth buffer and stencil buffer be
3330 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3331 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3332 * allocate the depth and stencil buffers as separate surfaces in the same
3333 * bo.
3334 *
3335 * Memory layout :
3336 *
3337 * -----------------------
3338 * | surface0 | /|\
3339 * ----------------------- |
3340 * | shadow surface0 | |
3341 * ----------------------- | Plane 0
3342 * | aux surface0 | |
3343 * ----------------------- |
3344 * | fast clear colors0 | \|/
3345 * -----------------------
3346 * | surface1 | /|\
3347 * ----------------------- |
3348 * | shadow surface1 | |
3349 * ----------------------- | Plane 1
3350 * | aux surface1 | |
3351 * ----------------------- |
3352 * | fast clear colors1 | \|/
3353 * -----------------------
3354 * | ... |
3355 * | |
3356 * -----------------------
3357 */
3358 struct {
3359 /**
3360 * Offset of the entire plane (whenever the image is disjoint this is
3361 * set to 0).
3362 */
3363 uint32_t offset;
3364
3365 VkDeviceSize size;
3366 uint32_t alignment;
3367
3368 struct anv_surface surface;
3369
3370 /**
3371 * A surface which shadows the main surface and may have different
3372 * tiling. This is used for sampling using a tiling that isn't supported
3373 * for other operations.
3374 */
3375 struct anv_surface shadow_surface;
3376
3377 /**
3378 * For color images, this is the aux usage for this image when not used
3379 * as a color attachment.
3380 *
3381 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3382 * image has a HiZ buffer.
3383 */
3384 enum isl_aux_usage aux_usage;
3385
3386 struct anv_surface aux_surface;
3387
3388 /**
3389 * Offset of the fast clear state (used to compute the
3390 * fast_clear_state_offset of the following planes).
3391 */
3392 uint32_t fast_clear_state_offset;
3393
3394 /**
3395 * BO associated with this plane, set when bound.
3396 */
3397 struct anv_address address;
3398
3399 /**
3400 * Address of the main surface used to fill the aux map table. This is
3401 * used at destruction of the image since the Vulkan spec does not
3402 * guarantee that the address.bo field we still be valid at destruction.
3403 */
3404 uint64_t aux_map_surface_address;
3405
3406 /**
3407 * When destroying the image, also free the bo.
3408 * */
3409 bool bo_is_owned;
3410 } planes[3];
3411 };
3412
3413 /* The ordering of this enum is important */
3414 enum anv_fast_clear_type {
3415 /** Image does not have/support any fast-clear blocks */
3416 ANV_FAST_CLEAR_NONE = 0,
3417 /** Image has/supports fast-clear but only to the default value */
3418 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3419 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3420 ANV_FAST_CLEAR_ANY = 2,
3421 };
3422
3423 /* Returns the number of auxiliary buffer levels attached to an image. */
3424 static inline uint8_t
3425 anv_image_aux_levels(const struct anv_image * const image,
3426 VkImageAspectFlagBits aspect)
3427 {
3428 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3429
3430 /* The Gen12 CCS aux surface is represented with only one level. */
3431 const uint8_t aux_logical_levels =
3432 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3433 image->planes[plane].surface.isl.levels :
3434 image->planes[plane].aux_surface.isl.levels;
3435
3436 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3437 aux_logical_levels : 0;
3438 }
3439
3440 /* Returns the number of auxiliary buffer layers attached to an image. */
3441 static inline uint32_t
3442 anv_image_aux_layers(const struct anv_image * const image,
3443 VkImageAspectFlagBits aspect,
3444 const uint8_t miplevel)
3445 {
3446 assert(image);
3447
3448 /* The miplevel must exist in the main buffer. */
3449 assert(miplevel < image->levels);
3450
3451 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3452 /* There are no layers with auxiliary data because the miplevel has no
3453 * auxiliary data.
3454 */
3455 return 0;
3456 } else {
3457 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3458
3459 /* The Gen12 CCS aux surface is represented with only one layer. */
3460 const struct isl_extent4d *aux_logical_level0_px =
3461 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3462 &image->planes[plane].surface.isl.logical_level0_px :
3463 &image->planes[plane].aux_surface.isl.logical_level0_px;
3464
3465 return MAX2(aux_logical_level0_px->array_len,
3466 aux_logical_level0_px->depth >> miplevel);
3467 }
3468 }
3469
3470 static inline struct anv_address
3471 anv_image_get_clear_color_addr(const struct anv_device *device,
3472 const struct anv_image *image,
3473 VkImageAspectFlagBits aspect)
3474 {
3475 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3476
3477 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3478 return anv_address_add(image->planes[plane].address,
3479 image->planes[plane].fast_clear_state_offset);
3480 }
3481
3482 static inline struct anv_address
3483 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3484 const struct anv_image *image,
3485 VkImageAspectFlagBits aspect)
3486 {
3487 struct anv_address addr =
3488 anv_image_get_clear_color_addr(device, image, aspect);
3489
3490 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3491 device->isl_dev.ss.clear_color_state_size :
3492 device->isl_dev.ss.clear_value_size;
3493 return anv_address_add(addr, clear_color_state_size);
3494 }
3495
3496 static inline struct anv_address
3497 anv_image_get_compression_state_addr(const struct anv_device *device,
3498 const struct anv_image *image,
3499 VkImageAspectFlagBits aspect,
3500 uint32_t level, uint32_t array_layer)
3501 {
3502 assert(level < anv_image_aux_levels(image, aspect));
3503 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3504 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3505 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3506
3507 struct anv_address addr =
3508 anv_image_get_fast_clear_type_addr(device, image, aspect);
3509 addr.offset += 4; /* Go past the fast clear type */
3510
3511 if (image->type == VK_IMAGE_TYPE_3D) {
3512 for (uint32_t l = 0; l < level; l++)
3513 addr.offset += anv_minify(image->extent.depth, l) * 4;
3514 } else {
3515 addr.offset += level * image->array_size * 4;
3516 }
3517 addr.offset += array_layer * 4;
3518
3519 assert(addr.offset <
3520 image->planes[plane].address.offset + image->planes[plane].size);
3521 return addr;
3522 }
3523
3524 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3525 static inline bool
3526 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3527 const struct anv_image *image)
3528 {
3529 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3530 return false;
3531
3532 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3533 * struct. There's documentation which suggests that this feature actually
3534 * reduces performance on BDW, but it has only been observed to help so
3535 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3536 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3537 */
3538 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3539 return false;
3540
3541 return image->samples == 1;
3542 }
3543
3544 static inline bool
3545 anv_image_plane_uses_aux_map(const struct anv_device *device,
3546 const struct anv_image *image,
3547 uint32_t plane)
3548 {
3549 return device->info.has_aux_map &&
3550 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3551 }
3552
3553 void
3554 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3555 const struct anv_image *image,
3556 VkImageAspectFlagBits aspect,
3557 enum isl_aux_usage aux_usage,
3558 uint32_t level,
3559 uint32_t base_layer,
3560 uint32_t layer_count);
3561
3562 void
3563 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3564 const struct anv_image *image,
3565 VkImageAspectFlagBits aspect,
3566 enum isl_aux_usage aux_usage,
3567 enum isl_format format, struct isl_swizzle swizzle,
3568 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3569 VkRect2D area, union isl_color_value clear_color);
3570 void
3571 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3572 const struct anv_image *image,
3573 VkImageAspectFlags aspects,
3574 enum isl_aux_usage depth_aux_usage,
3575 uint32_t level,
3576 uint32_t base_layer, uint32_t layer_count,
3577 VkRect2D area,
3578 float depth_value, uint8_t stencil_value);
3579 void
3580 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3581 const struct anv_image *src_image,
3582 enum isl_aux_usage src_aux_usage,
3583 uint32_t src_level, uint32_t src_base_layer,
3584 const struct anv_image *dst_image,
3585 enum isl_aux_usage dst_aux_usage,
3586 uint32_t dst_level, uint32_t dst_base_layer,
3587 VkImageAspectFlagBits aspect,
3588 uint32_t src_x, uint32_t src_y,
3589 uint32_t dst_x, uint32_t dst_y,
3590 uint32_t width, uint32_t height,
3591 uint32_t layer_count,
3592 enum blorp_filter filter);
3593 void
3594 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3595 const struct anv_image *image,
3596 VkImageAspectFlagBits aspect, uint32_t level,
3597 uint32_t base_layer, uint32_t layer_count,
3598 enum isl_aux_op hiz_op);
3599 void
3600 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3601 const struct anv_image *image,
3602 VkImageAspectFlags aspects,
3603 uint32_t level,
3604 uint32_t base_layer, uint32_t layer_count,
3605 VkRect2D area, uint8_t stencil_value);
3606 void
3607 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3608 const struct anv_image *image,
3609 enum isl_format format,
3610 VkImageAspectFlagBits aspect,
3611 uint32_t base_layer, uint32_t layer_count,
3612 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3613 bool predicate);
3614 void
3615 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3616 const struct anv_image *image,
3617 enum isl_format format,
3618 VkImageAspectFlagBits aspect, uint32_t level,
3619 uint32_t base_layer, uint32_t layer_count,
3620 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3621 bool predicate);
3622
3623 void
3624 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3625 const struct anv_image *image,
3626 VkImageAspectFlagBits aspect,
3627 uint32_t base_level, uint32_t level_count,
3628 uint32_t base_layer, uint32_t layer_count);
3629
3630 enum isl_aux_usage
3631 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3632 const struct anv_image *image,
3633 const VkImageAspectFlagBits aspect,
3634 const VkImageLayout layout);
3635
3636 enum anv_fast_clear_type
3637 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3638 const struct anv_image * const image,
3639 const VkImageAspectFlagBits aspect,
3640 const VkImageLayout layout);
3641
3642 /* This is defined as a macro so that it works for both
3643 * VkImageSubresourceRange and VkImageSubresourceLayers
3644 */
3645 #define anv_get_layerCount(_image, _range) \
3646 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3647 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3648
3649 static inline uint32_t
3650 anv_get_levelCount(const struct anv_image *image,
3651 const VkImageSubresourceRange *range)
3652 {
3653 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3654 image->levels - range->baseMipLevel : range->levelCount;
3655 }
3656
3657 static inline VkImageAspectFlags
3658 anv_image_expand_aspects(const struct anv_image *image,
3659 VkImageAspectFlags aspects)
3660 {
3661 /* If the underlying image has color plane aspects and
3662 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3663 * the underlying image. */
3664 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3665 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3666 return image->aspects;
3667
3668 return aspects;
3669 }
3670
3671 static inline bool
3672 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3673 VkImageAspectFlags aspects2)
3674 {
3675 if (aspects1 == aspects2)
3676 return true;
3677
3678 /* Only 1 color aspects are compatibles. */
3679 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3680 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3681 util_bitcount(aspects1) == util_bitcount(aspects2))
3682 return true;
3683
3684 return false;
3685 }
3686
3687 struct anv_image_view {
3688 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3689
3690 VkImageAspectFlags aspect_mask;
3691 VkFormat vk_format;
3692 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3693
3694 unsigned n_planes;
3695 struct {
3696 uint32_t image_plane;
3697
3698 struct isl_view isl;
3699
3700 /**
3701 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3702 * image layout of SHADER_READ_ONLY_OPTIMAL or
3703 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3704 */
3705 struct anv_surface_state optimal_sampler_surface_state;
3706
3707 /**
3708 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3709 * image layout of GENERAL.
3710 */
3711 struct anv_surface_state general_sampler_surface_state;
3712
3713 /**
3714 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3715 * states for write-only and readable, using the real format for
3716 * write-only and the lowered format for readable.
3717 */
3718 struct anv_surface_state storage_surface_state;
3719 struct anv_surface_state writeonly_storage_surface_state;
3720
3721 struct brw_image_param storage_image_param;
3722 } planes[3];
3723 };
3724
3725 enum anv_image_view_state_flags {
3726 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3727 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3728 };
3729
3730 void anv_image_fill_surface_state(struct anv_device *device,
3731 const struct anv_image *image,
3732 VkImageAspectFlagBits aspect,
3733 const struct isl_view *view,
3734 isl_surf_usage_flags_t view_usage,
3735 enum isl_aux_usage aux_usage,
3736 const union isl_color_value *clear_color,
3737 enum anv_image_view_state_flags flags,
3738 struct anv_surface_state *state_inout,
3739 struct brw_image_param *image_param_out);
3740
3741 struct anv_image_create_info {
3742 const VkImageCreateInfo *vk_info;
3743
3744 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3745 isl_tiling_flags_t isl_tiling_flags;
3746
3747 /** These flags will be added to any derived from VkImageCreateInfo. */
3748 isl_surf_usage_flags_t isl_extra_usage_flags;
3749
3750 uint32_t stride;
3751 bool external_format;
3752 };
3753
3754 VkResult anv_image_create(VkDevice _device,
3755 const struct anv_image_create_info *info,
3756 const VkAllocationCallbacks* alloc,
3757 VkImage *pImage);
3758
3759 const struct anv_surface *
3760 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3761 VkImageAspectFlags aspect_mask);
3762
3763 enum isl_format
3764 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3765
3766 static inline struct VkExtent3D
3767 anv_sanitize_image_extent(const VkImageType imageType,
3768 const struct VkExtent3D imageExtent)
3769 {
3770 switch (imageType) {
3771 case VK_IMAGE_TYPE_1D:
3772 return (VkExtent3D) { imageExtent.width, 1, 1 };
3773 case VK_IMAGE_TYPE_2D:
3774 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3775 case VK_IMAGE_TYPE_3D:
3776 return imageExtent;
3777 default:
3778 unreachable("invalid image type");
3779 }
3780 }
3781
3782 static inline struct VkOffset3D
3783 anv_sanitize_image_offset(const VkImageType imageType,
3784 const struct VkOffset3D imageOffset)
3785 {
3786 switch (imageType) {
3787 case VK_IMAGE_TYPE_1D:
3788 return (VkOffset3D) { imageOffset.x, 0, 0 };
3789 case VK_IMAGE_TYPE_2D:
3790 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3791 case VK_IMAGE_TYPE_3D:
3792 return imageOffset;
3793 default:
3794 unreachable("invalid image type");
3795 }
3796 }
3797
3798 VkFormatFeatureFlags
3799 anv_get_image_format_features(const struct gen_device_info *devinfo,
3800 VkFormat vk_format,
3801 const struct anv_format *anv_format,
3802 VkImageTiling vk_tiling);
3803
3804 void anv_fill_buffer_surface_state(struct anv_device *device,
3805 struct anv_state state,
3806 enum isl_format format,
3807 struct anv_address address,
3808 uint32_t range, uint32_t stride);
3809
3810 static inline void
3811 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3812 const struct anv_attachment_state *att_state,
3813 const struct anv_image_view *iview)
3814 {
3815 const struct isl_format_layout *view_fmtl =
3816 isl_format_get_layout(iview->planes[0].isl.format);
3817
3818 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3819 if (view_fmtl->channels.c.bits) \
3820 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3821
3822 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3823 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3824 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3825 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3826
3827 #undef COPY_CLEAR_COLOR_CHANNEL
3828 }
3829
3830
3831 struct anv_ycbcr_conversion {
3832 const struct anv_format * format;
3833 VkSamplerYcbcrModelConversion ycbcr_model;
3834 VkSamplerYcbcrRange ycbcr_range;
3835 VkComponentSwizzle mapping[4];
3836 VkChromaLocation chroma_offsets[2];
3837 VkFilter chroma_filter;
3838 bool chroma_reconstruction;
3839 };
3840
3841 struct anv_sampler {
3842 uint32_t state[3][4];
3843 uint32_t n_planes;
3844 struct anv_ycbcr_conversion *conversion;
3845
3846 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3847 * and with a 32-byte stride for use as bindless samplers.
3848 */
3849 struct anv_state bindless_state;
3850 };
3851
3852 struct anv_framebuffer {
3853 uint32_t width;
3854 uint32_t height;
3855 uint32_t layers;
3856
3857 uint32_t attachment_count;
3858 struct anv_image_view * attachments[0];
3859 };
3860
3861 struct anv_subpass_attachment {
3862 VkImageUsageFlagBits usage;
3863 uint32_t attachment;
3864 VkImageLayout layout;
3865
3866 /* Used only with attachment containing stencil data. */
3867 VkImageLayout stencil_layout;
3868 };
3869
3870 struct anv_subpass {
3871 uint32_t attachment_count;
3872
3873 /**
3874 * A pointer to all attachment references used in this subpass.
3875 * Only valid if ::attachment_count > 0.
3876 */
3877 struct anv_subpass_attachment * attachments;
3878 uint32_t input_count;
3879 struct anv_subpass_attachment * input_attachments;
3880 uint32_t color_count;
3881 struct anv_subpass_attachment * color_attachments;
3882 struct anv_subpass_attachment * resolve_attachments;
3883
3884 struct anv_subpass_attachment * depth_stencil_attachment;
3885 struct anv_subpass_attachment * ds_resolve_attachment;
3886 VkResolveModeFlagBitsKHR depth_resolve_mode;
3887 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3888
3889 uint32_t view_mask;
3890
3891 /** Subpass has a depth/stencil self-dependency */
3892 bool has_ds_self_dep;
3893
3894 /** Subpass has at least one color resolve attachment */
3895 bool has_color_resolve;
3896 };
3897
3898 static inline unsigned
3899 anv_subpass_view_count(const struct anv_subpass *subpass)
3900 {
3901 return MAX2(1, util_bitcount(subpass->view_mask));
3902 }
3903
3904 struct anv_render_pass_attachment {
3905 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3906 * its members individually.
3907 */
3908 VkFormat format;
3909 uint32_t samples;
3910 VkImageUsageFlags usage;
3911 VkAttachmentLoadOp load_op;
3912 VkAttachmentStoreOp store_op;
3913 VkAttachmentLoadOp stencil_load_op;
3914 VkImageLayout initial_layout;
3915 VkImageLayout final_layout;
3916 VkImageLayout first_subpass_layout;
3917
3918 VkImageLayout stencil_initial_layout;
3919 VkImageLayout stencil_final_layout;
3920
3921 /* The subpass id in which the attachment will be used last. */
3922 uint32_t last_subpass_idx;
3923 };
3924
3925 struct anv_render_pass {
3926 uint32_t attachment_count;
3927 uint32_t subpass_count;
3928 /* An array of subpass_count+1 flushes, one per subpass boundary */
3929 enum anv_pipe_bits * subpass_flushes;
3930 struct anv_render_pass_attachment * attachments;
3931 struct anv_subpass subpasses[0];
3932 };
3933
3934 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3935
3936 struct anv_query_pool {
3937 VkQueryType type;
3938 VkQueryPipelineStatisticFlags pipeline_statistics;
3939 /** Stride between slots, in bytes */
3940 uint32_t stride;
3941 /** Number of slots in this query pool */
3942 uint32_t slots;
3943 struct anv_bo * bo;
3944 };
3945
3946 int anv_get_instance_entrypoint_index(const char *name);
3947 int anv_get_device_entrypoint_index(const char *name);
3948 int anv_get_physical_device_entrypoint_index(const char *name);
3949
3950 const char *anv_get_instance_entry_name(int index);
3951 const char *anv_get_physical_device_entry_name(int index);
3952 const char *anv_get_device_entry_name(int index);
3953
3954 bool
3955 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3956 const struct anv_instance_extension_table *instance);
3957 bool
3958 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3959 const struct anv_instance_extension_table *instance);
3960 bool
3961 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3962 const struct anv_instance_extension_table *instance,
3963 const struct anv_device_extension_table *device);
3964
3965 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3966 const char *name);
3967
3968 void anv_dump_image_to_ppm(struct anv_device *device,
3969 struct anv_image *image, unsigned miplevel,
3970 unsigned array_layer, VkImageAspectFlagBits aspect,
3971 const char *filename);
3972
3973 enum anv_dump_action {
3974 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3975 };
3976
3977 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3978 void anv_dump_finish(void);
3979
3980 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3981
3982 static inline uint32_t
3983 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3984 {
3985 /* This function must be called from within a subpass. */
3986 assert(cmd_state->pass && cmd_state->subpass);
3987
3988 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3989
3990 /* The id of this subpass shouldn't exceed the number of subpasses in this
3991 * render pass minus 1.
3992 */
3993 assert(subpass_id < cmd_state->pass->subpass_count);
3994 return subpass_id;
3995 }
3996
3997 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3998 void anv_device_perf_init(struct anv_device *device);
3999
4000 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4001 \
4002 static inline struct __anv_type * \
4003 __anv_type ## _from_handle(__VkType _handle) \
4004 { \
4005 return (struct __anv_type *) _handle; \
4006 } \
4007 \
4008 static inline __VkType \
4009 __anv_type ## _to_handle(struct __anv_type *_obj) \
4010 { \
4011 return (__VkType) _obj; \
4012 }
4013
4014 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4015 \
4016 static inline struct __anv_type * \
4017 __anv_type ## _from_handle(__VkType _handle) \
4018 { \
4019 return (struct __anv_type *)(uintptr_t) _handle; \
4020 } \
4021 \
4022 static inline __VkType \
4023 __anv_type ## _to_handle(struct __anv_type *_obj) \
4024 { \
4025 return (__VkType)(uintptr_t) _obj; \
4026 }
4027
4028 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4029 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4030
4031 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4032 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4033 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4034 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4035 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4036
4037 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4038 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4039 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4040 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4041 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4042 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4043 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4044 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4045 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4046 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4047 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4048 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4049 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4050 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4051 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4052 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4053 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4054 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4055 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4056 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4057 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4058 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4059 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4060
4061 /* Gen-specific function declarations */
4062 #ifdef genX
4063 # include "anv_genX.h"
4064 #else
4065 # define genX(x) gen7_##x
4066 # include "anv_genX.h"
4067 # undef genX
4068 # define genX(x) gen75_##x
4069 # include "anv_genX.h"
4070 # undef genX
4071 # define genX(x) gen8_##x
4072 # include "anv_genX.h"
4073 # undef genX
4074 # define genX(x) gen9_##x
4075 # include "anv_genX.h"
4076 # undef genX
4077 # define genX(x) gen10_##x
4078 # include "anv_genX.h"
4079 # undef genX
4080 # define genX(x) gen11_##x
4081 # include "anv_genX.h"
4082 # undef genX
4083 # define genX(x) gen12_##x
4084 # include "anv_genX.h"
4085 # undef genX
4086 #endif
4087
4088 #endif /* ANV_PRIVATE_H */