anv: descriptors: extract writing of descriptors elements
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct anv_buffer;
60 struct anv_buffer_view;
61 struct anv_image_view;
62
63 struct gen_l3_config;
64
65 #include <vulkan/vulkan.h>
66 #include <vulkan/vulkan_intel.h>
67 #include <vulkan/vk_icd.h>
68
69 #include "anv_entrypoints.h"
70 #include "brw_context.h"
71 #include "isl/isl.h"
72
73 #include "wsi_common.h"
74
75 /* Allowing different clear colors requires us to perform a depth resolve at
76 * the end of certain render passes. This is because while slow clears store
77 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
78 * See the PRMs for examples describing when additional resolves would be
79 * necessary. To enable fast clears without requiring extra resolves, we set
80 * the clear value to a globally-defined one. We could allow different values
81 * if the user doesn't expect coherent data during or after a render passes
82 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
83 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
84 * 1.0f seems to be the only value used. The only application that doesn't set
85 * this value does so through the usage of an seemingly uninitialized clear
86 * value.
87 */
88 #define ANV_HZ_FC_VAL 1.0f
89
90 #define MAX_VBS 31
91 #define MAX_SETS 8
92 #define MAX_RTS 8
93 #define MAX_VIEWPORTS 16
94 #define MAX_SCISSORS 16
95 #define MAX_PUSH_CONSTANTS_SIZE 128
96 #define MAX_DYNAMIC_BUFFERS 16
97 #define MAX_IMAGES 8
98
99 #define ANV_SVGS_VB_INDEX MAX_VBS
100 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
101
102 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
103
104 static inline uint32_t
105 align_down_npot_u32(uint32_t v, uint32_t a)
106 {
107 return v - (v % a);
108 }
109
110 static inline uint32_t
111 align_u32(uint32_t v, uint32_t a)
112 {
113 assert(a != 0 && a == (a & -a));
114 return (v + a - 1) & ~(a - 1);
115 }
116
117 static inline uint64_t
118 align_u64(uint64_t v, uint64_t a)
119 {
120 assert(a != 0 && a == (a & -a));
121 return (v + a - 1) & ~(a - 1);
122 }
123
124 static inline int32_t
125 align_i32(int32_t v, int32_t a)
126 {
127 assert(a != 0 && a == (a & -a));
128 return (v + a - 1) & ~(a - 1);
129 }
130
131 /** Alignment must be a power of 2. */
132 static inline bool
133 anv_is_aligned(uintmax_t n, uintmax_t a)
134 {
135 assert(a == (a & -a));
136 return (n & (a - 1)) == 0;
137 }
138
139 static inline uint32_t
140 anv_minify(uint32_t n, uint32_t levels)
141 {
142 if (unlikely(n == 0))
143 return 0;
144 else
145 return MAX2(n >> levels, 1);
146 }
147
148 static inline float
149 anv_clamp_f(float f, float min, float max)
150 {
151 assert(min < max);
152
153 if (f > max)
154 return max;
155 else if (f < min)
156 return min;
157 else
158 return f;
159 }
160
161 static inline bool
162 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
163 {
164 if (*inout_mask & clear_mask) {
165 *inout_mask &= ~clear_mask;
166 return true;
167 } else {
168 return false;
169 }
170 }
171
172 static inline union isl_color_value
173 vk_to_isl_color(VkClearColorValue color)
174 {
175 return (union isl_color_value) {
176 .u32 = {
177 color.uint32[0],
178 color.uint32[1],
179 color.uint32[2],
180 color.uint32[3],
181 },
182 };
183 }
184
185 #define for_each_bit(b, dword) \
186 for (uint32_t __dword = (dword); \
187 (b) = __builtin_ffs(__dword) - 1, __dword; \
188 __dword &= ~(1 << (b)))
189
190 #define typed_memcpy(dest, src, count) ({ \
191 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
192 memcpy((dest), (src), (count) * sizeof(*(src))); \
193 })
194
195 /* Whenever we generate an error, pass it through this function. Useful for
196 * debugging, where we can break on it. Only call at error site, not when
197 * propagating errors. Might be useful to plug in a stack trace here.
198 */
199
200 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
201
202 #ifdef DEBUG
203 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
204 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
205 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
206 #else
207 #define vk_error(error) error
208 #define vk_errorf(error, format, ...) error
209 #define anv_debug(format, ...)
210 #endif
211
212 /**
213 * Warn on ignored extension structs.
214 *
215 * The Vulkan spec requires us to ignore unsupported or unknown structs in
216 * a pNext chain. In debug mode, emitting warnings for ignored structs may
217 * help us discover structs that we should not have ignored.
218 *
219 *
220 * From the Vulkan 1.0.38 spec:
221 *
222 * Any component of the implementation (the loader, any enabled layers,
223 * and drivers) must skip over, without processing (other than reading the
224 * sType and pNext members) any chained structures with sType values not
225 * defined by extensions supported by that component.
226 */
227 #define anv_debug_ignored_stype(sType) \
228 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
229
230 void __anv_finishme(const char *file, int line, const char *format, ...)
231 anv_printflike(3, 4);
232 void anv_loge(const char *format, ...) anv_printflike(1, 2);
233 void anv_loge_v(const char *format, va_list va);
234
235 /**
236 * Print a FINISHME message, including its source location.
237 */
238 #define anv_finishme(format, ...) \
239 do { \
240 static bool reported = false; \
241 if (!reported) { \
242 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
243 reported = true; \
244 } \
245 } while (0)
246
247 /* A non-fatal assert. Useful for debugging. */
248 #ifdef DEBUG
249 #define anv_assert(x) ({ \
250 if (unlikely(!(x))) \
251 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
252 })
253 #else
254 #define anv_assert(x)
255 #endif
256
257 /**
258 * If a block of code is annotated with anv_validate, then the block runs only
259 * in debug builds.
260 */
261 #ifdef DEBUG
262 #define anv_validate if (1)
263 #else
264 #define anv_validate if (0)
265 #endif
266
267 #define stub_return(v) \
268 do { \
269 anv_finishme("stub %s", __func__); \
270 return (v); \
271 } while (0)
272
273 #define stub() \
274 do { \
275 anv_finishme("stub %s", __func__); \
276 return; \
277 } while (0)
278
279 /**
280 * A dynamically growable, circular buffer. Elements are added at head and
281 * removed from tail. head and tail are free-running uint32_t indices and we
282 * only compute the modulo with size when accessing the array. This way,
283 * number of bytes in the queue is always head - tail, even in case of
284 * wraparound.
285 */
286
287 struct anv_bo {
288 uint32_t gem_handle;
289
290 /* Index into the current validation list. This is used by the
291 * validation list building alrogithm to track which buffers are already
292 * in the validation list so that we can ensure uniqueness.
293 */
294 uint32_t index;
295
296 /* Last known offset. This value is provided by the kernel when we
297 * execbuf and is used as the presumed offset for the next bunch of
298 * relocations.
299 */
300 uint64_t offset;
301
302 uint64_t size;
303 void *map;
304
305 /* We need to set the WRITE flag on winsys bos so GEM will know we're
306 * writing to them and synchronize uses on other rings (eg if the display
307 * server uses the blitter ring).
308 */
309 bool is_winsys_bo;
310 };
311
312 static inline void
313 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
314 {
315 bo->gem_handle = gem_handle;
316 bo->index = 0;
317 bo->offset = -1;
318 bo->size = size;
319 bo->map = NULL;
320 bo->is_winsys_bo = false;
321 }
322
323 /* Represents a lock-free linked list of "free" things. This is used by
324 * both the block pool and the state pools. Unfortunately, in order to
325 * solve the ABA problem, we can't use a single uint32_t head.
326 */
327 union anv_free_list {
328 struct {
329 int32_t offset;
330
331 /* A simple count that is incremented every time the head changes. */
332 uint32_t count;
333 };
334 uint64_t u64;
335 };
336
337 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
338
339 struct anv_block_state {
340 union {
341 struct {
342 uint32_t next;
343 uint32_t end;
344 };
345 uint64_t u64;
346 };
347 };
348
349 struct anv_block_pool {
350 struct anv_device *device;
351
352 struct anv_bo bo;
353
354 /* The offset from the start of the bo to the "center" of the block
355 * pool. Pointers to allocated blocks are given by
356 * bo.map + center_bo_offset + offsets.
357 */
358 uint32_t center_bo_offset;
359
360 /* Current memory map of the block pool. This pointer may or may not
361 * point to the actual beginning of the block pool memory. If
362 * anv_block_pool_alloc_back has ever been called, then this pointer
363 * will point to the "center" position of the buffer and all offsets
364 * (negative or positive) given out by the block pool alloc functions
365 * will be valid relative to this pointer.
366 *
367 * In particular, map == bo.map + center_offset
368 */
369 void *map;
370 int fd;
371
372 /**
373 * Array of mmaps and gem handles owned by the block pool, reclaimed when
374 * the block pool is destroyed.
375 */
376 struct u_vector mmap_cleanups;
377
378 uint32_t block_size;
379
380 union anv_free_list free_list;
381 struct anv_block_state state;
382
383 union anv_free_list back_free_list;
384 struct anv_block_state back_state;
385 };
386
387 /* Block pools are backed by a fixed-size 2GB memfd */
388 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
389
390 /* The center of the block pool is also the middle of the memfd. This may
391 * change in the future if we decide differently for some reason.
392 */
393 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
394
395 static inline uint32_t
396 anv_block_pool_size(struct anv_block_pool *pool)
397 {
398 return pool->state.end + pool->back_state.end;
399 }
400
401 struct anv_state {
402 int32_t offset;
403 uint32_t alloc_size;
404 void *map;
405 };
406
407 struct anv_fixed_size_state_pool {
408 size_t state_size;
409 union anv_free_list free_list;
410 struct anv_block_state block;
411 };
412
413 #define ANV_MIN_STATE_SIZE_LOG2 6
414 #define ANV_MAX_STATE_SIZE_LOG2 20
415
416 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
417
418 struct anv_state_pool {
419 struct anv_block_pool *block_pool;
420 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
421 };
422
423 struct anv_state_stream_block;
424
425 struct anv_state_stream {
426 struct anv_block_pool *block_pool;
427
428 /* The current working block */
429 struct anv_state_stream_block *block;
430
431 /* Offset at which the current block starts */
432 uint32_t start;
433 /* Offset at which to allocate the next state */
434 uint32_t next;
435 /* Offset at which the current block ends */
436 uint32_t end;
437 };
438
439 #define CACHELINE_SIZE 64
440 #define CACHELINE_MASK 63
441
442 static inline void
443 anv_clflush_range(void *start, size_t size)
444 {
445 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
446 void *end = start + size;
447
448 while (p < end) {
449 __builtin_ia32_clflush(p);
450 p += CACHELINE_SIZE;
451 }
452 }
453
454 static inline void
455 anv_flush_range(void *start, size_t size)
456 {
457 __builtin_ia32_mfence();
458 anv_clflush_range(start, size);
459 }
460
461 static inline void
462 anv_invalidate_range(void *start, size_t size)
463 {
464 anv_clflush_range(start, size);
465 __builtin_ia32_mfence();
466 }
467
468 VkResult anv_block_pool_init(struct anv_block_pool *pool,
469 struct anv_device *device, uint32_t block_size);
470 void anv_block_pool_finish(struct anv_block_pool *pool);
471 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
472 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
473 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
474 void anv_state_pool_init(struct anv_state_pool *pool,
475 struct anv_block_pool *block_pool);
476 void anv_state_pool_finish(struct anv_state_pool *pool);
477 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
478 size_t state_size, size_t alignment);
479 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
480 void anv_state_stream_init(struct anv_state_stream *stream,
481 struct anv_block_pool *block_pool);
482 void anv_state_stream_finish(struct anv_state_stream *stream);
483 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
484 uint32_t size, uint32_t alignment);
485
486 /**
487 * Implements a pool of re-usable BOs. The interface is identical to that
488 * of block_pool except that each block is its own BO.
489 */
490 struct anv_bo_pool {
491 struct anv_device *device;
492
493 void *free_list[16];
494 };
495
496 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
497 void anv_bo_pool_finish(struct anv_bo_pool *pool);
498 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
499 uint32_t size);
500 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
501
502 struct anv_scratch_bo {
503 bool exists;
504 struct anv_bo bo;
505 };
506
507 struct anv_scratch_pool {
508 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
509 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
510 };
511
512 void anv_scratch_pool_init(struct anv_device *device,
513 struct anv_scratch_pool *pool);
514 void anv_scratch_pool_finish(struct anv_device *device,
515 struct anv_scratch_pool *pool);
516 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
517 struct anv_scratch_pool *pool,
518 gl_shader_stage stage,
519 unsigned per_thread_scratch);
520
521 struct anv_physical_device {
522 VK_LOADER_DATA _loader_data;
523
524 struct anv_instance * instance;
525 uint32_t chipset_id;
526 char path[20];
527 const char * name;
528 struct gen_device_info info;
529 uint64_t aperture_size;
530 struct brw_compiler * compiler;
531 struct isl_device isl_dev;
532 int cmd_parser_version;
533
534 uint32_t eu_total;
535 uint32_t subslice_total;
536
537 uint8_t uuid[VK_UUID_SIZE];
538
539 struct wsi_device wsi_device;
540 int local_fd;
541 };
542
543 struct anv_instance {
544 VK_LOADER_DATA _loader_data;
545
546 VkAllocationCallbacks alloc;
547
548 uint32_t apiVersion;
549 int physicalDeviceCount;
550 struct anv_physical_device physicalDevice;
551 };
552
553 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
554 void anv_finish_wsi(struct anv_physical_device *physical_device);
555
556 struct anv_queue {
557 VK_LOADER_DATA _loader_data;
558
559 struct anv_device * device;
560
561 struct anv_state_pool * pool;
562 };
563
564 struct anv_pipeline_cache {
565 struct anv_device * device;
566 pthread_mutex_t mutex;
567
568 struct hash_table * cache;
569 };
570
571 struct anv_pipeline_bind_map;
572
573 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
574 struct anv_device *device,
575 bool cache_enabled);
576 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
577
578 struct anv_shader_bin *
579 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
580 const void *key, uint32_t key_size);
581 struct anv_shader_bin *
582 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
583 const void *key_data, uint32_t key_size,
584 const void *kernel_data, uint32_t kernel_size,
585 const struct brw_stage_prog_data *prog_data,
586 uint32_t prog_data_size,
587 const struct anv_pipeline_bind_map *bind_map);
588
589 struct anv_device {
590 VK_LOADER_DATA _loader_data;
591
592 VkAllocationCallbacks alloc;
593
594 struct anv_instance * instance;
595 uint32_t chipset_id;
596 struct gen_device_info info;
597 struct isl_device isl_dev;
598 int context_id;
599 int fd;
600 bool can_chain_batches;
601 bool robust_buffer_access;
602
603 struct anv_bo_pool batch_bo_pool;
604
605 struct anv_block_pool dynamic_state_block_pool;
606 struct anv_state_pool dynamic_state_pool;
607
608 struct anv_block_pool instruction_block_pool;
609 struct anv_state_pool instruction_state_pool;
610
611 struct anv_block_pool surface_state_block_pool;
612 struct anv_state_pool surface_state_pool;
613
614 struct anv_bo workaround_bo;
615
616 struct anv_pipeline_cache blorp_shader_cache;
617 struct blorp_context blorp;
618
619 struct anv_state border_colors;
620
621 struct anv_queue queue;
622
623 struct anv_scratch_pool scratch_pool;
624
625 uint32_t default_mocs;
626
627 pthread_mutex_t mutex;
628 pthread_cond_t queue_submit;
629 };
630
631 static void inline
632 anv_state_flush(struct anv_device *device, struct anv_state state)
633 {
634 if (device->info.has_llc)
635 return;
636
637 anv_flush_range(state.map, state.alloc_size);
638 }
639
640 void anv_device_init_blorp(struct anv_device *device);
641 void anv_device_finish_blorp(struct anv_device *device);
642
643 VkResult anv_device_execbuf(struct anv_device *device,
644 struct drm_i915_gem_execbuffer2 *execbuf,
645 struct anv_bo **execbuf_bos);
646
647 void* anv_gem_mmap(struct anv_device *device,
648 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
649 void anv_gem_munmap(void *p, uint64_t size);
650 uint32_t anv_gem_create(struct anv_device *device, size_t size);
651 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
652 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
653 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
654 int anv_gem_execbuffer(struct anv_device *device,
655 struct drm_i915_gem_execbuffer2 *execbuf);
656 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
657 uint32_t stride, uint32_t tiling);
658 int anv_gem_create_context(struct anv_device *device);
659 int anv_gem_destroy_context(struct anv_device *device, int context);
660 int anv_gem_get_param(int fd, uint32_t param);
661 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
662 int anv_gem_get_aperture(int fd, uint64_t *size);
663 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
664 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
665 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
666 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
667 uint32_t read_domains, uint32_t write_domain);
668
669 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
670
671 struct anv_reloc_list {
672 size_t num_relocs;
673 size_t array_length;
674 struct drm_i915_gem_relocation_entry * relocs;
675 struct anv_bo ** reloc_bos;
676 };
677
678 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
679 const VkAllocationCallbacks *alloc);
680 void anv_reloc_list_finish(struct anv_reloc_list *list,
681 const VkAllocationCallbacks *alloc);
682
683 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
684 const VkAllocationCallbacks *alloc,
685 uint32_t offset, struct anv_bo *target_bo,
686 uint32_t delta);
687
688 struct anv_batch_bo {
689 /* Link in the anv_cmd_buffer.owned_batch_bos list */
690 struct list_head link;
691
692 struct anv_bo bo;
693
694 /* Bytes actually consumed in this batch BO */
695 size_t length;
696
697 struct anv_reloc_list relocs;
698 };
699
700 struct anv_batch {
701 const VkAllocationCallbacks * alloc;
702
703 void * start;
704 void * end;
705 void * next;
706
707 struct anv_reloc_list * relocs;
708
709 /* This callback is called (with the associated user data) in the event
710 * that the batch runs out of space.
711 */
712 VkResult (*extend_cb)(struct anv_batch *, void *);
713 void * user_data;
714 };
715
716 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
717 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
718 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
719 void *location, struct anv_bo *bo, uint32_t offset);
720 VkResult anv_device_submit_simple_batch(struct anv_device *device,
721 struct anv_batch *batch);
722
723 struct anv_address {
724 struct anv_bo *bo;
725 uint32_t offset;
726 };
727
728 static inline uint64_t
729 _anv_combine_address(struct anv_batch *batch, void *location,
730 const struct anv_address address, uint32_t delta)
731 {
732 if (address.bo == NULL) {
733 return address.offset + delta;
734 } else {
735 assert(batch->start <= location && location < batch->end);
736
737 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
738 }
739 }
740
741 #define __gen_address_type struct anv_address
742 #define __gen_user_data struct anv_batch
743 #define __gen_combine_address _anv_combine_address
744
745 /* Wrapper macros needed to work around preprocessor argument issues. In
746 * particular, arguments don't get pre-evaluated if they are concatenated.
747 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
748 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
749 * We can work around this easily enough with these helpers.
750 */
751 #define __anv_cmd_length(cmd) cmd ## _length
752 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
753 #define __anv_cmd_header(cmd) cmd ## _header
754 #define __anv_cmd_pack(cmd) cmd ## _pack
755 #define __anv_reg_num(reg) reg ## _num
756
757 #define anv_pack_struct(dst, struc, ...) do { \
758 struct struc __template = { \
759 __VA_ARGS__ \
760 }; \
761 __anv_cmd_pack(struc)(NULL, dst, &__template); \
762 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
763 } while (0)
764
765 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
766 void *__dst = anv_batch_emit_dwords(batch, n); \
767 struct cmd __template = { \
768 __anv_cmd_header(cmd), \
769 .DWordLength = n - __anv_cmd_length_bias(cmd), \
770 __VA_ARGS__ \
771 }; \
772 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
773 __dst; \
774 })
775
776 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
777 do { \
778 uint32_t *dw; \
779 \
780 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
781 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
782 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
783 dw[i] = (dwords0)[i] | (dwords1)[i]; \
784 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
785 } while (0)
786
787 #define anv_batch_emit(batch, cmd, name) \
788 for (struct cmd name = { __anv_cmd_header(cmd) }, \
789 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
790 __builtin_expect(_dst != NULL, 1); \
791 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
792 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
793 _dst = NULL; \
794 }))
795
796 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
797 .GraphicsDataTypeGFDT = 0, \
798 .LLCCacheabilityControlLLCCC = 0, \
799 .L3CacheabilityControlL3CC = 1, \
800 }
801
802 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
803 .LLCeLLCCacheabilityControlLLCCC = 0, \
804 .L3CacheabilityControlL3CC = 1, \
805 }
806
807 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
808 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
809 .TargetCache = L3DefertoPATforLLCeLLCselection, \
810 .AgeforQUADLRU = 0 \
811 }
812
813 /* Skylake: MOCS is now an index into an array of 62 different caching
814 * configurations programmed by the kernel.
815 */
816
817 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
818 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
819 .IndextoMOCSTables = 2 \
820 }
821
822 #define GEN9_MOCS_PTE { \
823 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
824 .IndextoMOCSTables = 1 \
825 }
826
827 struct anv_device_memory {
828 struct anv_bo bo;
829 uint32_t type_index;
830 VkDeviceSize map_size;
831 void * map;
832 };
833
834 /**
835 * Header for Vertex URB Entry (VUE)
836 */
837 struct anv_vue_header {
838 uint32_t Reserved;
839 uint32_t RTAIndex; /* RenderTargetArrayIndex */
840 uint32_t ViewportIndex;
841 float PointWidth;
842 };
843
844 struct anv_descriptor_set_binding_layout {
845 #ifndef NDEBUG
846 /* The type of the descriptors in this binding */
847 VkDescriptorType type;
848 #endif
849
850 /* Number of array elements in this binding */
851 uint16_t array_size;
852
853 /* Index into the flattend descriptor set */
854 uint16_t descriptor_index;
855
856 /* Index into the dynamic state array for a dynamic buffer */
857 int16_t dynamic_offset_index;
858
859 /* Index into the descriptor set buffer views */
860 int16_t buffer_index;
861
862 struct {
863 /* Index into the binding table for the associated surface */
864 int16_t surface_index;
865
866 /* Index into the sampler table for the associated sampler */
867 int16_t sampler_index;
868
869 /* Index into the image table for the associated image */
870 int16_t image_index;
871 } stage[MESA_SHADER_STAGES];
872
873 /* Immutable samplers (or NULL if no immutable samplers) */
874 struct anv_sampler **immutable_samplers;
875 };
876
877 struct anv_descriptor_set_layout {
878 /* Number of bindings in this descriptor set */
879 uint16_t binding_count;
880
881 /* Total size of the descriptor set with room for all array entries */
882 uint16_t size;
883
884 /* Shader stages affected by this descriptor set */
885 uint16_t shader_stages;
886
887 /* Number of buffers in this descriptor set */
888 uint16_t buffer_count;
889
890 /* Number of dynamic offsets used by this descriptor set */
891 uint16_t dynamic_offset_count;
892
893 /* Bindings in this descriptor set */
894 struct anv_descriptor_set_binding_layout binding[0];
895 };
896
897 struct anv_descriptor {
898 VkDescriptorType type;
899
900 union {
901 struct {
902 struct anv_image_view *image_view;
903 struct anv_sampler *sampler;
904 };
905
906 struct anv_buffer_view *buffer_view;
907 };
908 };
909
910 struct anv_descriptor_set {
911 const struct anv_descriptor_set_layout *layout;
912 uint32_t size;
913 uint32_t buffer_count;
914 struct anv_buffer_view *buffer_views;
915 struct anv_descriptor descriptors[0];
916 };
917
918 struct anv_buffer_view {
919 enum isl_format format; /**< VkBufferViewCreateInfo::format */
920 struct anv_bo *bo;
921 uint32_t offset; /**< Offset into bo. */
922 uint64_t range; /**< VkBufferViewCreateInfo::range */
923
924 struct anv_state surface_state;
925 struct anv_state storage_surface_state;
926 struct anv_state writeonly_storage_surface_state;
927
928 struct brw_image_param storage_image_param;
929 };
930
931 struct anv_descriptor_pool {
932 uint32_t size;
933 uint32_t next;
934 uint32_t free_list;
935
936 struct anv_state_stream surface_state_stream;
937 void *surface_state_free_list;
938
939 char data[0];
940 };
941
942 size_t
943 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
944
945 void
946 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
947 VkDescriptorType type,
948 VkImageView _image_view,
949 VkSampler _sampler,
950 uint32_t binding,
951 uint32_t element);
952
953 void
954 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
955 VkDescriptorType type,
956 struct anv_buffer_view *buffer_view,
957 uint32_t binding,
958 uint32_t element);
959
960 void
961 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
962 struct anv_device *device,
963 VkDescriptorType type,
964 struct anv_buffer *buffer,
965 uint32_t binding,
966 uint32_t element,
967 VkDeviceSize offset,
968 VkDeviceSize range);
969
970 VkResult
971 anv_descriptor_set_create(struct anv_device *device,
972 struct anv_descriptor_pool *pool,
973 const struct anv_descriptor_set_layout *layout,
974 struct anv_descriptor_set **out_set);
975
976 void
977 anv_descriptor_set_destroy(struct anv_device *device,
978 struct anv_descriptor_pool *pool,
979 struct anv_descriptor_set *set);
980
981 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
982
983 struct anv_pipeline_binding {
984 /* The descriptor set this surface corresponds to. The special value of
985 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
986 * to a color attachment and not a regular descriptor.
987 */
988 uint8_t set;
989
990 /* Binding in the descriptor set */
991 uint8_t binding;
992
993 /* Index in the binding */
994 uint8_t index;
995
996 /* Input attachment index (relative to the subpass) */
997 uint8_t input_attachment_index;
998
999 /* For a storage image, whether it is write-only */
1000 bool write_only;
1001 };
1002
1003 struct anv_pipeline_layout {
1004 struct {
1005 struct anv_descriptor_set_layout *layout;
1006 uint32_t dynamic_offset_start;
1007 } set[MAX_SETS];
1008
1009 uint32_t num_sets;
1010
1011 struct {
1012 bool has_dynamic_offsets;
1013 } stage[MESA_SHADER_STAGES];
1014
1015 unsigned char sha1[20];
1016 };
1017
1018 struct anv_buffer {
1019 struct anv_device * device;
1020 VkDeviceSize size;
1021
1022 VkBufferUsageFlags usage;
1023
1024 /* Set when bound */
1025 struct anv_bo * bo;
1026 VkDeviceSize offset;
1027 };
1028
1029 enum anv_cmd_dirty_bits {
1030 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1031 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1032 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1033 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1034 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1035 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1036 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1037 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1038 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1039 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1040 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1041 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1042 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1043 };
1044 typedef uint32_t anv_cmd_dirty_mask_t;
1045
1046 enum anv_pipe_bits {
1047 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1048 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1049 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1050 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1051 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1052 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1053 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1054 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1055 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1056 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1057 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1058
1059 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1060 * a flush has happened but not a CS stall. The next time we do any sort
1061 * of invalidation we need to insert a CS stall at that time. Otherwise,
1062 * we would have to CS stall on every flush which could be bad.
1063 */
1064 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1065 };
1066
1067 #define ANV_PIPE_FLUSH_BITS ( \
1068 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1069 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1070 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1071
1072 #define ANV_PIPE_STALL_BITS ( \
1073 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1074 ANV_PIPE_DEPTH_STALL_BIT | \
1075 ANV_PIPE_CS_STALL_BIT)
1076
1077 #define ANV_PIPE_INVALIDATE_BITS ( \
1078 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1079 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1080 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1081 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1082 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1083 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1084
1085 struct anv_vertex_binding {
1086 struct anv_buffer * buffer;
1087 VkDeviceSize offset;
1088 };
1089
1090 struct anv_push_constants {
1091 /* Current allocated size of this push constants data structure.
1092 * Because a decent chunk of it may not be used (images on SKL, for
1093 * instance), we won't actually allocate the entire structure up-front.
1094 */
1095 uint32_t size;
1096
1097 /* Push constant data provided by the client through vkPushConstants */
1098 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1099
1100 /* Our hardware only provides zero-based vertex and instance id so, in
1101 * order to satisfy the vulkan requirements, we may have to push one or
1102 * both of these into the shader.
1103 */
1104 uint32_t base_vertex;
1105 uint32_t base_instance;
1106
1107 /* Offsets and ranges for dynamically bound buffers */
1108 struct {
1109 uint32_t offset;
1110 uint32_t range;
1111 } dynamic[MAX_DYNAMIC_BUFFERS];
1112
1113 /* Image data for image_load_store on pre-SKL */
1114 struct brw_image_param images[MAX_IMAGES];
1115 };
1116
1117 struct anv_dynamic_state {
1118 struct {
1119 uint32_t count;
1120 VkViewport viewports[MAX_VIEWPORTS];
1121 } viewport;
1122
1123 struct {
1124 uint32_t count;
1125 VkRect2D scissors[MAX_SCISSORS];
1126 } scissor;
1127
1128 float line_width;
1129
1130 struct {
1131 float bias;
1132 float clamp;
1133 float slope;
1134 } depth_bias;
1135
1136 float blend_constants[4];
1137
1138 struct {
1139 float min;
1140 float max;
1141 } depth_bounds;
1142
1143 struct {
1144 uint32_t front;
1145 uint32_t back;
1146 } stencil_compare_mask;
1147
1148 struct {
1149 uint32_t front;
1150 uint32_t back;
1151 } stencil_write_mask;
1152
1153 struct {
1154 uint32_t front;
1155 uint32_t back;
1156 } stencil_reference;
1157 };
1158
1159 extern const struct anv_dynamic_state default_dynamic_state;
1160
1161 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1162 const struct anv_dynamic_state *src,
1163 uint32_t copy_mask);
1164
1165 /**
1166 * Attachment state when recording a renderpass instance.
1167 *
1168 * The clear value is valid only if there exists a pending clear.
1169 */
1170 struct anv_attachment_state {
1171 enum isl_aux_usage aux_usage;
1172 enum isl_aux_usage input_aux_usage;
1173 struct anv_state color_rt_state;
1174 struct anv_state input_att_state;
1175
1176 VkImageLayout current_layout;
1177 VkImageAspectFlags pending_clear_aspects;
1178 bool fast_clear;
1179 VkClearValue clear_value;
1180 bool clear_color_is_zero_one;
1181 };
1182
1183 /** State required while building cmd buffer */
1184 struct anv_cmd_state {
1185 /* PIPELINE_SELECT.PipelineSelection */
1186 uint32_t current_pipeline;
1187 const struct gen_l3_config * current_l3_config;
1188 uint32_t vb_dirty;
1189 anv_cmd_dirty_mask_t dirty;
1190 anv_cmd_dirty_mask_t compute_dirty;
1191 enum anv_pipe_bits pending_pipe_bits;
1192 uint32_t num_workgroups_offset;
1193 struct anv_bo *num_workgroups_bo;
1194 VkShaderStageFlags descriptors_dirty;
1195 VkShaderStageFlags push_constants_dirty;
1196 uint32_t scratch_size;
1197 struct anv_pipeline * pipeline;
1198 struct anv_pipeline * compute_pipeline;
1199 struct anv_framebuffer * framebuffer;
1200 struct anv_render_pass * pass;
1201 struct anv_subpass * subpass;
1202 VkRect2D render_area;
1203 uint32_t restart_index;
1204 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1205 struct anv_descriptor_set * descriptors[MAX_SETS];
1206 VkShaderStageFlags push_constant_stages;
1207 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1208 struct anv_state binding_tables[MESA_SHADER_STAGES];
1209 struct anv_state samplers[MESA_SHADER_STAGES];
1210 struct anv_dynamic_state dynamic;
1211 bool need_query_wa;
1212
1213 /**
1214 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1215 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1216 * and before invoking the secondary in ExecuteCommands.
1217 */
1218 bool pma_fix_enabled;
1219
1220 /**
1221 * Whether or not we know for certain that HiZ is enabled for the current
1222 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1223 * enabled or not, this will be false.
1224 */
1225 bool hiz_enabled;
1226
1227 /**
1228 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1229 * valid only when recording a render pass instance.
1230 */
1231 struct anv_attachment_state * attachments;
1232
1233 /**
1234 * Surface states for color render targets. These are stored in a single
1235 * flat array. For depth-stencil attachments, the surface state is simply
1236 * left blank.
1237 */
1238 struct anv_state render_pass_states;
1239
1240 /**
1241 * A null surface state of the right size to match the framebuffer. This
1242 * is one of the states in render_pass_states.
1243 */
1244 struct anv_state null_surface_state;
1245
1246 struct {
1247 struct anv_buffer * index_buffer;
1248 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1249 uint32_t index_offset;
1250 } gen7;
1251 };
1252
1253 struct anv_cmd_pool {
1254 VkAllocationCallbacks alloc;
1255 struct list_head cmd_buffers;
1256 };
1257
1258 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1259
1260 enum anv_cmd_buffer_exec_mode {
1261 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1262 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1263 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1264 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1265 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1266 };
1267
1268 struct anv_cmd_buffer {
1269 VK_LOADER_DATA _loader_data;
1270
1271 struct anv_device * device;
1272
1273 struct anv_cmd_pool * pool;
1274 struct list_head pool_link;
1275
1276 struct anv_batch batch;
1277
1278 /* Fields required for the actual chain of anv_batch_bo's.
1279 *
1280 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1281 */
1282 struct list_head batch_bos;
1283 enum anv_cmd_buffer_exec_mode exec_mode;
1284
1285 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1286 * referenced by this command buffer
1287 *
1288 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1289 */
1290 struct u_vector seen_bbos;
1291
1292 /* A vector of int32_t's for every block of binding tables.
1293 *
1294 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1295 */
1296 struct u_vector bt_blocks;
1297 uint32_t bt_next;
1298
1299 struct anv_reloc_list surface_relocs;
1300 /** Last seen surface state block pool center bo offset */
1301 uint32_t last_ss_pool_center;
1302
1303 /* Serial for tracking buffer completion */
1304 uint32_t serial;
1305
1306 /* Stream objects for storing temporary data */
1307 struct anv_state_stream surface_state_stream;
1308 struct anv_state_stream dynamic_state_stream;
1309
1310 VkCommandBufferUsageFlags usage_flags;
1311 VkCommandBufferLevel level;
1312
1313 struct anv_cmd_state state;
1314 };
1315
1316 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1317 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1318 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1319 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1320 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1321 struct anv_cmd_buffer *secondary);
1322 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1323 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1324 struct anv_cmd_buffer *cmd_buffer);
1325
1326 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1327
1328 VkResult
1329 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1330 gl_shader_stage stage, uint32_t size);
1331 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1332 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1333 (offsetof(struct anv_push_constants, field) + \
1334 sizeof(cmd_buffer->state.push_constants[0]->field)))
1335
1336 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1337 const void *data, uint32_t size, uint32_t alignment);
1338 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1339 uint32_t *a, uint32_t *b,
1340 uint32_t dwords, uint32_t alignment);
1341
1342 struct anv_address
1343 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1344 struct anv_state
1345 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1346 uint32_t entries, uint32_t *state_offset);
1347 struct anv_state
1348 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1349 struct anv_state
1350 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1351 uint32_t size, uint32_t alignment);
1352
1353 VkResult
1354 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1355
1356 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1357 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1358 bool depth_clamp_enable);
1359 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1360
1361 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 struct anv_framebuffer *framebuffer,
1364 const VkClearValue *clear_values);
1365
1366 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1367
1368 struct anv_state
1369 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1370 gl_shader_stage stage);
1371 struct anv_state
1372 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1373
1374 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1375 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1376
1377 const struct anv_image_view *
1378 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1379
1380 struct anv_state
1381 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1382 uint32_t num_entries,
1383 uint32_t *state_offset);
1384
1385 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1386
1387 enum anv_fence_state {
1388 /** Indicates that this is a new (or newly reset fence) */
1389 ANV_FENCE_STATE_RESET,
1390
1391 /** Indicates that this fence has been submitted to the GPU but is still
1392 * (as far as we know) in use by the GPU.
1393 */
1394 ANV_FENCE_STATE_SUBMITTED,
1395
1396 ANV_FENCE_STATE_SIGNALED,
1397 };
1398
1399 struct anv_fence {
1400 struct anv_bo bo;
1401 struct drm_i915_gem_execbuffer2 execbuf;
1402 struct drm_i915_gem_exec_object2 exec2_objects[1];
1403 enum anv_fence_state state;
1404 };
1405
1406 struct anv_event {
1407 uint64_t semaphore;
1408 struct anv_state state;
1409 };
1410
1411 struct anv_shader_module {
1412 unsigned char sha1[20];
1413 uint32_t size;
1414 char data[0];
1415 };
1416
1417 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1418 struct anv_shader_module *module,
1419 const char *entrypoint,
1420 const struct anv_pipeline_layout *pipeline_layout,
1421 const VkSpecializationInfo *spec_info);
1422
1423 static inline gl_shader_stage
1424 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1425 {
1426 assert(__builtin_popcount(vk_stage) == 1);
1427 return ffs(vk_stage) - 1;
1428 }
1429
1430 static inline VkShaderStageFlagBits
1431 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1432 {
1433 return (1 << mesa_stage);
1434 }
1435
1436 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1437
1438 #define anv_foreach_stage(stage, stage_bits) \
1439 for (gl_shader_stage stage, \
1440 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1441 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1442 __tmp &= ~(1 << (stage)))
1443
1444 struct anv_pipeline_bind_map {
1445 uint32_t surface_count;
1446 uint32_t sampler_count;
1447 uint32_t image_count;
1448
1449 struct anv_pipeline_binding * surface_to_descriptor;
1450 struct anv_pipeline_binding * sampler_to_descriptor;
1451 };
1452
1453 struct anv_shader_bin_key {
1454 uint32_t size;
1455 uint8_t data[0];
1456 };
1457
1458 struct anv_shader_bin {
1459 uint32_t ref_cnt;
1460
1461 const struct anv_shader_bin_key *key;
1462
1463 struct anv_state kernel;
1464 uint32_t kernel_size;
1465
1466 const struct brw_stage_prog_data *prog_data;
1467 uint32_t prog_data_size;
1468
1469 struct anv_pipeline_bind_map bind_map;
1470
1471 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1472 };
1473
1474 struct anv_shader_bin *
1475 anv_shader_bin_create(struct anv_device *device,
1476 const void *key, uint32_t key_size,
1477 const void *kernel, uint32_t kernel_size,
1478 const struct brw_stage_prog_data *prog_data,
1479 uint32_t prog_data_size, const void *prog_data_param,
1480 const struct anv_pipeline_bind_map *bind_map);
1481
1482 void
1483 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1484
1485 static inline void
1486 anv_shader_bin_ref(struct anv_shader_bin *shader)
1487 {
1488 assert(shader->ref_cnt >= 1);
1489 __sync_fetch_and_add(&shader->ref_cnt, 1);
1490 }
1491
1492 static inline void
1493 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1494 {
1495 assert(shader->ref_cnt >= 1);
1496 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1497 anv_shader_bin_destroy(device, shader);
1498 }
1499
1500 struct anv_pipeline {
1501 struct anv_device * device;
1502 struct anv_batch batch;
1503 uint32_t batch_data[512];
1504 struct anv_reloc_list batch_relocs;
1505 uint32_t dynamic_state_mask;
1506 struct anv_dynamic_state dynamic_state;
1507
1508 struct anv_pipeline_layout * layout;
1509
1510 bool needs_data_cache;
1511
1512 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1513
1514 struct {
1515 const struct gen_l3_config * l3_config;
1516 uint32_t total_size;
1517 } urb;
1518
1519 VkShaderStageFlags active_stages;
1520 struct anv_state blend_state;
1521
1522 uint32_t vb_used;
1523 uint32_t binding_stride[MAX_VBS];
1524 bool instancing_enable[MAX_VBS];
1525 bool primitive_restart;
1526 uint32_t topology;
1527
1528 uint32_t cs_right_mask;
1529
1530 bool writes_depth;
1531 bool depth_test_enable;
1532 bool writes_stencil;
1533 bool stencil_test_enable;
1534 bool depth_clamp_enable;
1535 bool kill_pixel;
1536
1537 struct {
1538 uint32_t sf[7];
1539 uint32_t depth_stencil_state[3];
1540 } gen7;
1541
1542 struct {
1543 uint32_t sf[4];
1544 uint32_t raster[5];
1545 uint32_t wm_depth_stencil[3];
1546 } gen8;
1547
1548 struct {
1549 uint32_t wm_depth_stencil[4];
1550 } gen9;
1551
1552 uint32_t interface_descriptor_data[8];
1553 };
1554
1555 static inline bool
1556 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1557 gl_shader_stage stage)
1558 {
1559 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1560 }
1561
1562 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1563 static inline const struct brw_##prefix##_prog_data * \
1564 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1565 { \
1566 if (anv_pipeline_has_stage(pipeline, stage)) { \
1567 return (const struct brw_##prefix##_prog_data *) \
1568 pipeline->shaders[stage]->prog_data; \
1569 } else { \
1570 return NULL; \
1571 } \
1572 }
1573
1574 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1575 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1576 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1577 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1578 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1579 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1580
1581 static inline const struct brw_vue_prog_data *
1582 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1583 {
1584 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1585 return &get_gs_prog_data(pipeline)->base;
1586 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1587 return &get_tes_prog_data(pipeline)->base;
1588 else
1589 return &get_vs_prog_data(pipeline)->base;
1590 }
1591
1592 VkResult
1593 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1594 struct anv_pipeline_cache *cache,
1595 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1596 const VkAllocationCallbacks *alloc);
1597
1598 VkResult
1599 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1600 struct anv_pipeline_cache *cache,
1601 const VkComputePipelineCreateInfo *info,
1602 struct anv_shader_module *module,
1603 const char *entrypoint,
1604 const VkSpecializationInfo *spec_info);
1605
1606 struct anv_format {
1607 enum isl_format isl_format:16;
1608 struct isl_swizzle swizzle;
1609 };
1610
1611 struct anv_format
1612 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1613 VkImageAspectFlags aspect, VkImageTiling tiling);
1614
1615 static inline enum isl_format
1616 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1617 VkImageAspectFlags aspect, VkImageTiling tiling)
1618 {
1619 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1620 }
1621
1622 static inline struct isl_swizzle
1623 anv_swizzle_for_render(struct isl_swizzle swizzle)
1624 {
1625 /* Sometimes the swizzle will have alpha map to one. We do this to fake
1626 * RGB as RGBA for texturing
1627 */
1628 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
1629 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
1630
1631 /* But it doesn't matter what we render to that channel */
1632 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
1633
1634 return swizzle;
1635 }
1636
1637 void
1638 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1639
1640 /**
1641 * Subsurface of an anv_image.
1642 */
1643 struct anv_surface {
1644 /** Valid only if isl_surf::size > 0. */
1645 struct isl_surf isl;
1646
1647 /**
1648 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1649 */
1650 uint32_t offset;
1651 };
1652
1653 struct anv_image {
1654 VkImageType type;
1655 /* The original VkFormat provided by the client. This may not match any
1656 * of the actual surface formats.
1657 */
1658 VkFormat vk_format;
1659 VkImageAspectFlags aspects;
1660 VkExtent3D extent;
1661 uint32_t levels;
1662 uint32_t array_size;
1663 uint32_t samples; /**< VkImageCreateInfo::samples */
1664 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1665 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1666
1667 VkDeviceSize size;
1668 uint32_t alignment;
1669
1670 /* Set when bound */
1671 struct anv_bo *bo;
1672 VkDeviceSize offset;
1673
1674 /**
1675 * Image subsurfaces
1676 *
1677 * For each foo, anv_image::foo_surface is valid if and only if
1678 * anv_image::aspects has a foo aspect.
1679 *
1680 * The hardware requires that the depth buffer and stencil buffer be
1681 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1682 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1683 * allocate the depth and stencil buffers as separate surfaces in the same
1684 * bo.
1685 */
1686 union {
1687 struct anv_surface color_surface;
1688
1689 struct {
1690 struct anv_surface depth_surface;
1691 struct anv_surface stencil_surface;
1692 };
1693 };
1694
1695 /**
1696 * For color images, this is the aux usage for this image when not used as a
1697 * color attachment.
1698 *
1699 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
1700 * has a HiZ buffer.
1701 */
1702 enum isl_aux_usage aux_usage;
1703
1704 struct anv_surface aux_surface;
1705 };
1706
1707 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
1708 static inline bool
1709 anv_can_sample_with_hiz(uint8_t gen, uint32_t samples)
1710 {
1711 return gen >= 8 && samples == 1;
1712 }
1713
1714 void
1715 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
1716 const struct anv_image *image,
1717 enum blorp_hiz_op op);
1718
1719 static inline uint32_t
1720 anv_get_layerCount(const struct anv_image *image,
1721 const VkImageSubresourceRange *range)
1722 {
1723 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1724 image->array_size - range->baseArrayLayer : range->layerCount;
1725 }
1726
1727 static inline uint32_t
1728 anv_get_levelCount(const struct anv_image *image,
1729 const VkImageSubresourceRange *range)
1730 {
1731 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1732 image->levels - range->baseMipLevel : range->levelCount;
1733 }
1734
1735
1736 struct anv_image_view {
1737 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1738 struct anv_bo *bo;
1739 uint32_t offset; /**< Offset into bo. */
1740
1741 struct isl_view isl;
1742
1743 VkImageAspectFlags aspect_mask;
1744 VkFormat vk_format;
1745 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1746
1747 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1748 struct anv_state sampler_surface_state;
1749
1750 /**
1751 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
1752 * for write-only and readable, using the real format for write-only and the
1753 * lowered format for readable.
1754 */
1755 struct anv_state storage_surface_state;
1756 struct anv_state writeonly_storage_surface_state;
1757
1758 struct brw_image_param storage_image_param;
1759 };
1760
1761 struct anv_image_create_info {
1762 const VkImageCreateInfo *vk_info;
1763
1764 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
1765 isl_tiling_flags_t isl_tiling_flags;
1766
1767 uint32_t stride;
1768 };
1769
1770 VkResult anv_image_create(VkDevice _device,
1771 const struct anv_image_create_info *info,
1772 const VkAllocationCallbacks* alloc,
1773 VkImage *pImage);
1774
1775 const struct anv_surface *
1776 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1777 VkImageAspectFlags aspect_mask);
1778
1779 enum isl_format
1780 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1781
1782 static inline struct VkExtent3D
1783 anv_sanitize_image_extent(const VkImageType imageType,
1784 const struct VkExtent3D imageExtent)
1785 {
1786 switch (imageType) {
1787 case VK_IMAGE_TYPE_1D:
1788 return (VkExtent3D) { imageExtent.width, 1, 1 };
1789 case VK_IMAGE_TYPE_2D:
1790 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1791 case VK_IMAGE_TYPE_3D:
1792 return imageExtent;
1793 default:
1794 unreachable("invalid image type");
1795 }
1796 }
1797
1798 static inline struct VkOffset3D
1799 anv_sanitize_image_offset(const VkImageType imageType,
1800 const struct VkOffset3D imageOffset)
1801 {
1802 switch (imageType) {
1803 case VK_IMAGE_TYPE_1D:
1804 return (VkOffset3D) { imageOffset.x, 0, 0 };
1805 case VK_IMAGE_TYPE_2D:
1806 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1807 case VK_IMAGE_TYPE_3D:
1808 return imageOffset;
1809 default:
1810 unreachable("invalid image type");
1811 }
1812 }
1813
1814
1815 void anv_fill_buffer_surface_state(struct anv_device *device,
1816 struct anv_state state,
1817 enum isl_format format,
1818 uint32_t offset, uint32_t range,
1819 uint32_t stride);
1820
1821 void anv_image_view_fill_image_param(struct anv_device *device,
1822 struct anv_image_view *view,
1823 struct brw_image_param *param);
1824 void anv_buffer_view_fill_image_param(struct anv_device *device,
1825 struct anv_buffer_view *view,
1826 struct brw_image_param *param);
1827
1828 struct anv_sampler {
1829 uint32_t state[4];
1830 };
1831
1832 struct anv_framebuffer {
1833 uint32_t width;
1834 uint32_t height;
1835 uint32_t layers;
1836
1837 uint32_t attachment_count;
1838 struct anv_image_view * attachments[0];
1839 };
1840
1841 struct anv_subpass {
1842 uint32_t input_count;
1843 uint32_t * input_attachments;
1844 uint32_t color_count;
1845 uint32_t * color_attachments;
1846 uint32_t * resolve_attachments;
1847
1848 /* TODO: Consider storing the depth/stencil VkAttachmentReference
1849 * instead of its two structure members (below) individually.
1850 */
1851 uint32_t depth_stencil_attachment;
1852 VkImageLayout depth_stencil_layout;
1853
1854 /** Subpass has a depth/stencil self-dependency */
1855 bool has_ds_self_dep;
1856
1857 /** Subpass has at least one resolve attachment */
1858 bool has_resolve;
1859 };
1860
1861 enum anv_subpass_usage {
1862 ANV_SUBPASS_USAGE_DRAW = (1 << 0),
1863 ANV_SUBPASS_USAGE_INPUT = (1 << 1),
1864 ANV_SUBPASS_USAGE_RESOLVE_SRC = (1 << 2),
1865 ANV_SUBPASS_USAGE_RESOLVE_DST = (1 << 3),
1866 };
1867
1868 struct anv_render_pass_attachment {
1869 /* TODO: Consider using VkAttachmentDescription instead of storing each of
1870 * its members individually.
1871 */
1872 VkFormat format;
1873 uint32_t samples;
1874 VkImageUsageFlags usage;
1875 VkAttachmentLoadOp load_op;
1876 VkAttachmentStoreOp store_op;
1877 VkAttachmentLoadOp stencil_load_op;
1878 VkImageLayout initial_layout;
1879 VkImageLayout final_layout;
1880
1881 /* An array, indexed by subpass id, of how the attachment will be used. */
1882 enum anv_subpass_usage * subpass_usage;
1883
1884 /* The subpass id in which the attachment will be used last. */
1885 uint32_t last_subpass_idx;
1886 };
1887
1888 struct anv_render_pass {
1889 uint32_t attachment_count;
1890 uint32_t subpass_count;
1891 uint32_t * subpass_attachments;
1892 enum anv_subpass_usage * subpass_usages;
1893 struct anv_render_pass_attachment * attachments;
1894 struct anv_subpass subpasses[0];
1895 };
1896
1897 struct anv_query_pool_slot {
1898 uint64_t begin;
1899 uint64_t end;
1900 uint64_t available;
1901 };
1902
1903 struct anv_query_pool {
1904 VkQueryType type;
1905 uint32_t slots;
1906 struct anv_bo bo;
1907 };
1908
1909 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
1910 const char *name);
1911
1912 void anv_dump_image_to_ppm(struct anv_device *device,
1913 struct anv_image *image, unsigned miplevel,
1914 unsigned array_layer, VkImageAspectFlagBits aspect,
1915 const char *filename);
1916
1917 enum anv_dump_action {
1918 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
1919 };
1920
1921 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
1922 void anv_dump_finish(void);
1923
1924 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
1925 struct anv_framebuffer *fb);
1926
1927 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1928 \
1929 static inline struct __anv_type * \
1930 __anv_type ## _from_handle(__VkType _handle) \
1931 { \
1932 return (struct __anv_type *) _handle; \
1933 } \
1934 \
1935 static inline __VkType \
1936 __anv_type ## _to_handle(struct __anv_type *_obj) \
1937 { \
1938 return (__VkType) _obj; \
1939 }
1940
1941 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1942 \
1943 static inline struct __anv_type * \
1944 __anv_type ## _from_handle(__VkType _handle) \
1945 { \
1946 return (struct __anv_type *)(uintptr_t) _handle; \
1947 } \
1948 \
1949 static inline __VkType \
1950 __anv_type ## _to_handle(struct __anv_type *_obj) \
1951 { \
1952 return (__VkType)(uintptr_t) _obj; \
1953 }
1954
1955 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1956 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1957
1958 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1959 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1960 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1961 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1962 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1963
1964 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1965 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1966 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1967 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1968 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1969 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1970 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1971 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1972 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1973 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1974 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1975 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1976 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1977 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1978 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1979 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1980 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1981 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1982 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1983
1984 /* Gen-specific function declarations */
1985 #ifdef genX
1986 # include "anv_genX.h"
1987 #else
1988 # define genX(x) gen7_##x
1989 # include "anv_genX.h"
1990 # undef genX
1991 # define genX(x) gen75_##x
1992 # include "anv_genX.h"
1993 # undef genX
1994 # define genX(x) gen8_##x
1995 # include "anv_genX.h"
1996 # undef genX
1997 # define genX(x) gen9_##x
1998 # include "anv_genX.h"
1999 # undef genX
2000 #endif
2001
2002 #endif /* ANV_PRIVATE_H */