anv: Add support for shader constant data to the pipeline cache
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_gem.h"
48 #include "dev/gen_device_info.h"
49 #include "blorp/blorp.h"
50 #include "compiler/brw_compiler.h"
51 #include "util/macros.h"
52 #include "util/hash_table.h"
53 #include "util/list.h"
54 #include "util/set.h"
55 #include "util/u_atomic.h"
56 #include "util/u_vector.h"
57 #include "util/vma.h"
58 #include "vk_alloc.h"
59 #include "vk_debug_report.h"
60
61 /* Pre-declarations needed for WSI entrypoints */
62 struct wl_surface;
63 struct wl_display;
64 typedef struct xcb_connection_t xcb_connection_t;
65 typedef uint32_t xcb_visualid_t;
66 typedef uint32_t xcb_window_t;
67
68 struct anv_buffer;
69 struct anv_buffer_view;
70 struct anv_image_view;
71 struct anv_instance;
72
73 struct gen_l3_config;
74
75 #include <vulkan/vulkan.h>
76 #include <vulkan/vulkan_intel.h>
77 #include <vulkan/vk_icd.h>
78 #include <vulkan/vk_android_native_buffer.h>
79
80 #include "anv_entrypoints.h"
81 #include "anv_extensions.h"
82 #include "isl/isl.h"
83
84 #include "common/gen_debug.h"
85 #include "common/intel_log.h"
86 #include "wsi_common.h"
87
88 /* anv Virtual Memory Layout
89 * =========================
90 *
91 * When the anv driver is determining the virtual graphics addresses of memory
92 * objects itself using the softpin mechanism, the following memory ranges
93 * will be used.
94 *
95 * Three special considerations to notice:
96 *
97 * (1) the dynamic state pool is located within the same 4 GiB as the low
98 * heap. This is to work around a VF cache issue described in a comment in
99 * anv_physical_device_init_heaps.
100 *
101 * (2) the binding table pool is located at lower addresses than the surface
102 * state pool, within a 4 GiB range. This allows surface state base addresses
103 * to cover both binding tables (16 bit offsets) and surface states (32 bit
104 * offsets).
105 *
106 * (3) the last 4 GiB of the address space is withheld from the high
107 * heap. Various hardware units will read past the end of an object for
108 * various reasons. This healthy margin prevents reads from wrapping around
109 * 48-bit addresses.
110 */
111 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
112 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
113 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
114 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
115 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
116 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
117 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
118 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
119 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
120 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
121 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
122 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
123
124 #define LOW_HEAP_SIZE \
125 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
126 #define HIGH_HEAP_SIZE \
127 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
128 #define DYNAMIC_STATE_POOL_SIZE \
129 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
130 #define BINDING_TABLE_POOL_SIZE \
131 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
132 #define SURFACE_STATE_POOL_SIZE \
133 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
134 #define INSTRUCTION_STATE_POOL_SIZE \
135 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
136
137 /* Allowing different clear colors requires us to perform a depth resolve at
138 * the end of certain render passes. This is because while slow clears store
139 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
140 * See the PRMs for examples describing when additional resolves would be
141 * necessary. To enable fast clears without requiring extra resolves, we set
142 * the clear value to a globally-defined one. We could allow different values
143 * if the user doesn't expect coherent data during or after a render passes
144 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
145 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
146 * 1.0f seems to be the only value used. The only application that doesn't set
147 * this value does so through the usage of an seemingly uninitialized clear
148 * value.
149 */
150 #define ANV_HZ_FC_VAL 1.0f
151
152 #define MAX_VBS 28
153 #define MAX_SETS 8
154 #define MAX_RTS 8
155 #define MAX_VIEWPORTS 16
156 #define MAX_SCISSORS 16
157 #define MAX_PUSH_CONSTANTS_SIZE 128
158 #define MAX_DYNAMIC_BUFFERS 16
159 #define MAX_IMAGES 8
160 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
161
162 /* The kernel relocation API has a limitation of a 32-bit delta value
163 * applied to the address before it is written which, in spite of it being
164 * unsigned, is treated as signed . Because of the way that this maps to
165 * the Vulkan API, we cannot handle an offset into a buffer that does not
166 * fit into a signed 32 bits. The only mechanism we have for dealing with
167 * this at the moment is to limit all VkDeviceMemory objects to a maximum
168 * of 2GB each. The Vulkan spec allows us to do this:
169 *
170 * "Some platforms may have a limit on the maximum size of a single
171 * allocation. For example, certain systems may fail to create
172 * allocations with a size greater than or equal to 4GB. Such a limit is
173 * implementation-dependent, and if such a failure occurs then the error
174 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
175 *
176 * We don't use vk_error here because it's not an error so much as an
177 * indication to the application that the allocation is too large.
178 */
179 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
180
181 #define ANV_SVGS_VB_INDEX MAX_VBS
182 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
183
184 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
185
186 static inline uint32_t
187 align_down_npot_u32(uint32_t v, uint32_t a)
188 {
189 return v - (v % a);
190 }
191
192 static inline uint32_t
193 align_u32(uint32_t v, uint32_t a)
194 {
195 assert(a != 0 && a == (a & -a));
196 return (v + a - 1) & ~(a - 1);
197 }
198
199 static inline uint64_t
200 align_u64(uint64_t v, uint64_t a)
201 {
202 assert(a != 0 && a == (a & -a));
203 return (v + a - 1) & ~(a - 1);
204 }
205
206 static inline int32_t
207 align_i32(int32_t v, int32_t a)
208 {
209 assert(a != 0 && a == (a & -a));
210 return (v + a - 1) & ~(a - 1);
211 }
212
213 /** Alignment must be a power of 2. */
214 static inline bool
215 anv_is_aligned(uintmax_t n, uintmax_t a)
216 {
217 assert(a == (a & -a));
218 return (n & (a - 1)) == 0;
219 }
220
221 static inline uint32_t
222 anv_minify(uint32_t n, uint32_t levels)
223 {
224 if (unlikely(n == 0))
225 return 0;
226 else
227 return MAX2(n >> levels, 1);
228 }
229
230 static inline float
231 anv_clamp_f(float f, float min, float max)
232 {
233 assert(min < max);
234
235 if (f > max)
236 return max;
237 else if (f < min)
238 return min;
239 else
240 return f;
241 }
242
243 static inline bool
244 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
245 {
246 if (*inout_mask & clear_mask) {
247 *inout_mask &= ~clear_mask;
248 return true;
249 } else {
250 return false;
251 }
252 }
253
254 static inline union isl_color_value
255 vk_to_isl_color(VkClearColorValue color)
256 {
257 return (union isl_color_value) {
258 .u32 = {
259 color.uint32[0],
260 color.uint32[1],
261 color.uint32[2],
262 color.uint32[3],
263 },
264 };
265 }
266
267 #define for_each_bit(b, dword) \
268 for (uint32_t __dword = (dword); \
269 (b) = __builtin_ffs(__dword) - 1, __dword; \
270 __dword &= ~(1 << (b)))
271
272 #define typed_memcpy(dest, src, count) ({ \
273 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
274 memcpy((dest), (src), (count) * sizeof(*(src))); \
275 })
276
277 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
278 * to be added here in order to utilize mapping in debug/error/perf macros.
279 */
280 #define REPORT_OBJECT_TYPE(o) \
281 __builtin_choose_expr ( \
282 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
283 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
284 __builtin_choose_expr ( \
285 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
286 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
287 __builtin_choose_expr ( \
288 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
289 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
290 __builtin_choose_expr ( \
291 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
292 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
293 __builtin_choose_expr ( \
294 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
295 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
296 __builtin_choose_expr ( \
297 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
298 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
299 __builtin_choose_expr ( \
300 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
301 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
302 __builtin_choose_expr ( \
303 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
304 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
305 __builtin_choose_expr ( \
306 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
307 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
308 __builtin_choose_expr ( \
309 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
310 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
311 __builtin_choose_expr ( \
312 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
313 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), void*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
374 /* The void expression results in a compile-time error \
375 when assigning the result to something. */ \
376 (void)0)))))))))))))))))))))))))))))))
377
378 /* Whenever we generate an error, pass it through this function. Useful for
379 * debugging, where we can break on it. Only call at error site, not when
380 * propagating errors. Might be useful to plug in a stack trace here.
381 */
382
383 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
384 VkDebugReportObjectTypeEXT type, VkResult error,
385 const char *file, int line, const char *format, ...);
386
387 #ifdef DEBUG
388 #define vk_error(error) __vk_errorf(NULL, NULL,\
389 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
390 error, __FILE__, __LINE__, NULL)
391 #define vk_errorf(instance, obj, error, format, ...)\
392 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
393 __FILE__, __LINE__, format, ## __VA_ARGS__)
394 #else
395 #define vk_error(error) error
396 #define vk_errorf(instance, obj, error, format, ...) error
397 #endif
398
399 /**
400 * Warn on ignored extension structs.
401 *
402 * The Vulkan spec requires us to ignore unsupported or unknown structs in
403 * a pNext chain. In debug mode, emitting warnings for ignored structs may
404 * help us discover structs that we should not have ignored.
405 *
406 *
407 * From the Vulkan 1.0.38 spec:
408 *
409 * Any component of the implementation (the loader, any enabled layers,
410 * and drivers) must skip over, without processing (other than reading the
411 * sType and pNext members) any chained structures with sType values not
412 * defined by extensions supported by that component.
413 */
414 #define anv_debug_ignored_stype(sType) \
415 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
416
417 void __anv_perf_warn(struct anv_instance *instance, const void *object,
418 VkDebugReportObjectTypeEXT type, const char *file,
419 int line, const char *format, ...)
420 anv_printflike(6, 7);
421 void anv_loge(const char *format, ...) anv_printflike(1, 2);
422 void anv_loge_v(const char *format, va_list va);
423
424 /**
425 * Print a FINISHME message, including its source location.
426 */
427 #define anv_finishme(format, ...) \
428 do { \
429 static bool reported = false; \
430 if (!reported) { \
431 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
432 ##__VA_ARGS__); \
433 reported = true; \
434 } \
435 } while (0)
436
437 /**
438 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
439 */
440 #define anv_perf_warn(instance, obj, format, ...) \
441 do { \
442 static bool reported = false; \
443 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
444 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
445 format, ##__VA_ARGS__); \
446 reported = true; \
447 } \
448 } while (0)
449
450 /* A non-fatal assert. Useful for debugging. */
451 #ifdef DEBUG
452 #define anv_assert(x) ({ \
453 if (unlikely(!(x))) \
454 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
455 })
456 #else
457 #define anv_assert(x)
458 #endif
459
460 /* A multi-pointer allocator
461 *
462 * When copying data structures from the user (such as a render pass), it's
463 * common to need to allocate data for a bunch of different things. Instead
464 * of doing several allocations and having to handle all of the error checking
465 * that entails, it can be easier to do a single allocation. This struct
466 * helps facilitate that. The intended usage looks like this:
467 *
468 * ANV_MULTIALLOC(ma)
469 * anv_multialloc_add(&ma, &main_ptr, 1);
470 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
471 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
472 *
473 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
474 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
475 */
476 struct anv_multialloc {
477 size_t size;
478 size_t align;
479
480 uint32_t ptr_count;
481 void **ptrs[8];
482 };
483
484 #define ANV_MULTIALLOC_INIT \
485 ((struct anv_multialloc) { 0, })
486
487 #define ANV_MULTIALLOC(_name) \
488 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
489
490 __attribute__((always_inline))
491 static inline void
492 _anv_multialloc_add(struct anv_multialloc *ma,
493 void **ptr, size_t size, size_t align)
494 {
495 size_t offset = align_u64(ma->size, align);
496 ma->size = offset + size;
497 ma->align = MAX2(ma->align, align);
498
499 /* Store the offset in the pointer. */
500 *ptr = (void *)(uintptr_t)offset;
501
502 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
503 ma->ptrs[ma->ptr_count++] = ptr;
504 }
505
506 #define anv_multialloc_add_size(_ma, _ptr, _size) \
507 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
508
509 #define anv_multialloc_add(_ma, _ptr, _count) \
510 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
511
512 __attribute__((always_inline))
513 static inline void *
514 anv_multialloc_alloc(struct anv_multialloc *ma,
515 const VkAllocationCallbacks *alloc,
516 VkSystemAllocationScope scope)
517 {
518 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
519 if (!ptr)
520 return NULL;
521
522 /* Fill out each of the pointers with their final value.
523 *
524 * for (uint32_t i = 0; i < ma->ptr_count; i++)
525 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
526 *
527 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
528 * constant, GCC is incapable of figuring this out and unrolling the loop
529 * so we have to give it a little help.
530 */
531 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
532 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
533 if ((_i) < ma->ptr_count) \
534 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
535 _ANV_MULTIALLOC_UPDATE_POINTER(0);
536 _ANV_MULTIALLOC_UPDATE_POINTER(1);
537 _ANV_MULTIALLOC_UPDATE_POINTER(2);
538 _ANV_MULTIALLOC_UPDATE_POINTER(3);
539 _ANV_MULTIALLOC_UPDATE_POINTER(4);
540 _ANV_MULTIALLOC_UPDATE_POINTER(5);
541 _ANV_MULTIALLOC_UPDATE_POINTER(6);
542 _ANV_MULTIALLOC_UPDATE_POINTER(7);
543 #undef _ANV_MULTIALLOC_UPDATE_POINTER
544
545 return ptr;
546 }
547
548 __attribute__((always_inline))
549 static inline void *
550 anv_multialloc_alloc2(struct anv_multialloc *ma,
551 const VkAllocationCallbacks *parent_alloc,
552 const VkAllocationCallbacks *alloc,
553 VkSystemAllocationScope scope)
554 {
555 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
556 }
557
558 struct anv_bo {
559 uint32_t gem_handle;
560
561 /* Index into the current validation list. This is used by the
562 * validation list building alrogithm to track which buffers are already
563 * in the validation list so that we can ensure uniqueness.
564 */
565 uint32_t index;
566
567 /* Last known offset. This value is provided by the kernel when we
568 * execbuf and is used as the presumed offset for the next bunch of
569 * relocations.
570 */
571 uint64_t offset;
572
573 uint64_t size;
574 void *map;
575
576 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
577 uint32_t flags;
578 };
579
580 static inline void
581 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
582 {
583 bo->gem_handle = gem_handle;
584 bo->index = 0;
585 bo->offset = -1;
586 bo->size = size;
587 bo->map = NULL;
588 bo->flags = 0;
589 }
590
591 /* Represents a lock-free linked list of "free" things. This is used by
592 * both the block pool and the state pools. Unfortunately, in order to
593 * solve the ABA problem, we can't use a single uint32_t head.
594 */
595 union anv_free_list {
596 struct {
597 int32_t offset;
598
599 /* A simple count that is incremented every time the head changes. */
600 uint32_t count;
601 };
602 uint64_t u64;
603 };
604
605 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
606
607 struct anv_block_state {
608 union {
609 struct {
610 uint32_t next;
611 uint32_t end;
612 };
613 uint64_t u64;
614 };
615 };
616
617 struct anv_block_pool {
618 struct anv_device *device;
619
620 uint64_t bo_flags;
621
622 struct anv_bo bo;
623
624 /* The address where the start of the pool is pinned. The various bos that
625 * are created as the pool grows will have addresses in the range
626 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
627 */
628 uint64_t start_address;
629
630 /* The offset from the start of the bo to the "center" of the block
631 * pool. Pointers to allocated blocks are given by
632 * bo.map + center_bo_offset + offsets.
633 */
634 uint32_t center_bo_offset;
635
636 /* Current memory map of the block pool. This pointer may or may not
637 * point to the actual beginning of the block pool memory. If
638 * anv_block_pool_alloc_back has ever been called, then this pointer
639 * will point to the "center" position of the buffer and all offsets
640 * (negative or positive) given out by the block pool alloc functions
641 * will be valid relative to this pointer.
642 *
643 * In particular, map == bo.map + center_offset
644 */
645 void *map;
646 int fd;
647
648 /**
649 * Array of mmaps and gem handles owned by the block pool, reclaimed when
650 * the block pool is destroyed.
651 */
652 struct u_vector mmap_cleanups;
653
654 struct anv_block_state state;
655
656 struct anv_block_state back_state;
657 };
658
659 /* Block pools are backed by a fixed-size 1GB memfd */
660 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
661
662 /* The center of the block pool is also the middle of the memfd. This may
663 * change in the future if we decide differently for some reason.
664 */
665 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
666
667 static inline uint32_t
668 anv_block_pool_size(struct anv_block_pool *pool)
669 {
670 return pool->state.end + pool->back_state.end;
671 }
672
673 struct anv_state {
674 int32_t offset;
675 uint32_t alloc_size;
676 void *map;
677 };
678
679 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
680
681 struct anv_fixed_size_state_pool {
682 union anv_free_list free_list;
683 struct anv_block_state block;
684 };
685
686 #define ANV_MIN_STATE_SIZE_LOG2 6
687 #define ANV_MAX_STATE_SIZE_LOG2 20
688
689 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
690
691 struct anv_state_pool {
692 struct anv_block_pool block_pool;
693
694 /* The size of blocks which will be allocated from the block pool */
695 uint32_t block_size;
696
697 /** Free list for "back" allocations */
698 union anv_free_list back_alloc_free_list;
699
700 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
701 };
702
703 struct anv_state_stream_block;
704
705 struct anv_state_stream {
706 struct anv_state_pool *state_pool;
707
708 /* The size of blocks to allocate from the state pool */
709 uint32_t block_size;
710
711 /* Current block we're allocating from */
712 struct anv_state block;
713
714 /* Offset into the current block at which to allocate the next state */
715 uint32_t next;
716
717 /* List of all blocks allocated from this pool */
718 struct anv_state_stream_block *block_list;
719 };
720
721 /* The block_pool functions exported for testing only. The block pool should
722 * only be used via a state pool (see below).
723 */
724 VkResult anv_block_pool_init(struct anv_block_pool *pool,
725 struct anv_device *device,
726 uint64_t start_address,
727 uint32_t initial_size,
728 uint64_t bo_flags);
729 void anv_block_pool_finish(struct anv_block_pool *pool);
730 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
731 uint32_t block_size);
732 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
733 uint32_t block_size);
734
735 VkResult anv_state_pool_init(struct anv_state_pool *pool,
736 struct anv_device *device,
737 uint64_t start_address,
738 uint32_t block_size,
739 uint64_t bo_flags);
740 void anv_state_pool_finish(struct anv_state_pool *pool);
741 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
742 uint32_t state_size, uint32_t alignment);
743 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
744 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
745 void anv_state_stream_init(struct anv_state_stream *stream,
746 struct anv_state_pool *state_pool,
747 uint32_t block_size);
748 void anv_state_stream_finish(struct anv_state_stream *stream);
749 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
750 uint32_t size, uint32_t alignment);
751
752 /**
753 * Implements a pool of re-usable BOs. The interface is identical to that
754 * of block_pool except that each block is its own BO.
755 */
756 struct anv_bo_pool {
757 struct anv_device *device;
758
759 uint64_t bo_flags;
760
761 void *free_list[16];
762 };
763
764 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
765 uint64_t bo_flags);
766 void anv_bo_pool_finish(struct anv_bo_pool *pool);
767 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
768 uint32_t size);
769 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
770
771 struct anv_scratch_bo {
772 bool exists;
773 struct anv_bo bo;
774 };
775
776 struct anv_scratch_pool {
777 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
778 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
779 };
780
781 void anv_scratch_pool_init(struct anv_device *device,
782 struct anv_scratch_pool *pool);
783 void anv_scratch_pool_finish(struct anv_device *device,
784 struct anv_scratch_pool *pool);
785 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
786 struct anv_scratch_pool *pool,
787 gl_shader_stage stage,
788 unsigned per_thread_scratch);
789
790 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
791 struct anv_bo_cache {
792 struct hash_table *bo_map;
793 pthread_mutex_t mutex;
794 };
795
796 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
797 void anv_bo_cache_finish(struct anv_bo_cache *cache);
798 VkResult anv_bo_cache_alloc(struct anv_device *device,
799 struct anv_bo_cache *cache,
800 uint64_t size, uint64_t bo_flags,
801 struct anv_bo **bo);
802 VkResult anv_bo_cache_import(struct anv_device *device,
803 struct anv_bo_cache *cache,
804 int fd, uint64_t bo_flags,
805 struct anv_bo **bo);
806 VkResult anv_bo_cache_export(struct anv_device *device,
807 struct anv_bo_cache *cache,
808 struct anv_bo *bo_in, int *fd_out);
809 void anv_bo_cache_release(struct anv_device *device,
810 struct anv_bo_cache *cache,
811 struct anv_bo *bo);
812
813 struct anv_memory_type {
814 /* Standard bits passed on to the client */
815 VkMemoryPropertyFlags propertyFlags;
816 uint32_t heapIndex;
817
818 /* Driver-internal book-keeping */
819 VkBufferUsageFlags valid_buffer_usage;
820 };
821
822 struct anv_memory_heap {
823 /* Standard bits passed on to the client */
824 VkDeviceSize size;
825 VkMemoryHeapFlags flags;
826
827 /* Driver-internal book-keeping */
828 bool supports_48bit_addresses;
829 };
830
831 struct anv_physical_device {
832 VK_LOADER_DATA _loader_data;
833
834 struct anv_instance * instance;
835 uint32_t chipset_id;
836 bool no_hw;
837 char path[20];
838 const char * name;
839 struct gen_device_info info;
840 /** Amount of "GPU memory" we want to advertise
841 *
842 * Clearly, this value is bogus since Intel is a UMA architecture. On
843 * gen7 platforms, we are limited by GTT size unless we want to implement
844 * fine-grained tracking and GTT splitting. On Broadwell and above we are
845 * practically unlimited. However, we will never report more than 3/4 of
846 * the total system ram to try and avoid running out of RAM.
847 */
848 bool supports_48bit_addresses;
849 struct brw_compiler * compiler;
850 struct isl_device isl_dev;
851 int cmd_parser_version;
852 bool has_exec_async;
853 bool has_exec_capture;
854 bool has_exec_fence;
855 bool has_syncobj;
856 bool has_syncobj_wait;
857 bool has_context_priority;
858 bool use_softpin;
859 bool has_context_isolation;
860
861 struct anv_device_extension_table supported_extensions;
862
863 uint32_t eu_total;
864 uint32_t subslice_total;
865
866 struct {
867 uint32_t type_count;
868 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
869 uint32_t heap_count;
870 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
871 } memory;
872
873 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
874 uint8_t driver_uuid[VK_UUID_SIZE];
875 uint8_t device_uuid[VK_UUID_SIZE];
876
877 struct wsi_device wsi_device;
878 int local_fd;
879 int master_fd;
880 };
881
882 struct anv_instance {
883 VK_LOADER_DATA _loader_data;
884
885 VkAllocationCallbacks alloc;
886
887 uint32_t apiVersion;
888 struct anv_instance_extension_table enabled_extensions;
889 struct anv_dispatch_table dispatch;
890
891 int physicalDeviceCount;
892 struct anv_physical_device physicalDevice;
893
894 struct vk_debug_report_instance debug_report_callbacks;
895 };
896
897 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
898 void anv_finish_wsi(struct anv_physical_device *physical_device);
899
900 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
901 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
902 const char *name);
903
904 struct anv_queue {
905 VK_LOADER_DATA _loader_data;
906
907 struct anv_device * device;
908
909 VkDeviceQueueCreateFlags flags;
910 };
911
912 struct anv_pipeline_cache {
913 struct anv_device * device;
914 pthread_mutex_t mutex;
915
916 struct hash_table * cache;
917 };
918
919 struct anv_pipeline_bind_map;
920
921 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
922 struct anv_device *device,
923 bool cache_enabled);
924 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
925
926 struct anv_shader_bin *
927 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
928 const void *key, uint32_t key_size);
929 struct anv_shader_bin *
930 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
931 const void *key_data, uint32_t key_size,
932 const void *kernel_data, uint32_t kernel_size,
933 const void *constant_data,
934 uint32_t constant_data_size,
935 const struct brw_stage_prog_data *prog_data,
936 uint32_t prog_data_size,
937 const struct anv_pipeline_bind_map *bind_map);
938
939 struct anv_device {
940 VK_LOADER_DATA _loader_data;
941
942 VkAllocationCallbacks alloc;
943
944 struct anv_instance * instance;
945 uint32_t chipset_id;
946 bool no_hw;
947 struct gen_device_info info;
948 struct isl_device isl_dev;
949 int context_id;
950 int fd;
951 bool can_chain_batches;
952 bool robust_buffer_access;
953 struct anv_device_extension_table enabled_extensions;
954 struct anv_dispatch_table dispatch;
955
956 pthread_mutex_t vma_mutex;
957 struct util_vma_heap vma_lo;
958 struct util_vma_heap vma_hi;
959 uint64_t vma_lo_available;
960 uint64_t vma_hi_available;
961
962 struct anv_bo_pool batch_bo_pool;
963
964 struct anv_bo_cache bo_cache;
965
966 struct anv_state_pool dynamic_state_pool;
967 struct anv_state_pool instruction_state_pool;
968 struct anv_state_pool binding_table_pool;
969 struct anv_state_pool surface_state_pool;
970
971 struct anv_bo workaround_bo;
972 struct anv_bo trivial_batch_bo;
973 struct anv_bo hiz_clear_bo;
974
975 struct anv_pipeline_cache blorp_shader_cache;
976 struct blorp_context blorp;
977
978 struct anv_state border_colors;
979
980 struct anv_queue queue;
981
982 struct anv_scratch_pool scratch_pool;
983
984 uint32_t default_mocs;
985
986 pthread_mutex_t mutex;
987 pthread_cond_t queue_submit;
988 bool lost;
989 };
990
991 static inline struct anv_state_pool *
992 anv_binding_table_pool(struct anv_device *device)
993 {
994 if (device->instance->physicalDevice.use_softpin)
995 return &device->binding_table_pool;
996 else
997 return &device->surface_state_pool;
998 }
999
1000 static inline struct anv_state
1001 anv_binding_table_pool_alloc(struct anv_device *device) {
1002 if (device->instance->physicalDevice.use_softpin)
1003 return anv_state_pool_alloc(&device->binding_table_pool,
1004 device->binding_table_pool.block_size, 0);
1005 else
1006 return anv_state_pool_alloc_back(&device->surface_state_pool);
1007 }
1008
1009 static inline void
1010 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1011 anv_state_pool_free(anv_binding_table_pool(device), state);
1012 }
1013
1014 static void inline
1015 anv_state_flush(struct anv_device *device, struct anv_state state)
1016 {
1017 if (device->info.has_llc)
1018 return;
1019
1020 gen_flush_range(state.map, state.alloc_size);
1021 }
1022
1023 void anv_device_init_blorp(struct anv_device *device);
1024 void anv_device_finish_blorp(struct anv_device *device);
1025
1026 VkResult anv_device_execbuf(struct anv_device *device,
1027 struct drm_i915_gem_execbuffer2 *execbuf,
1028 struct anv_bo **execbuf_bos);
1029 VkResult anv_device_query_status(struct anv_device *device);
1030 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1031 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1032 int64_t timeout);
1033
1034 void* anv_gem_mmap(struct anv_device *device,
1035 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1036 void anv_gem_munmap(void *p, uint64_t size);
1037 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1038 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1039 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1040 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1041 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1042 int anv_gem_execbuffer(struct anv_device *device,
1043 struct drm_i915_gem_execbuffer2 *execbuf);
1044 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1045 uint32_t stride, uint32_t tiling);
1046 int anv_gem_create_context(struct anv_device *device);
1047 bool anv_gem_has_context_priority(int fd);
1048 int anv_gem_destroy_context(struct anv_device *device, int context);
1049 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1050 uint64_t value);
1051 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1052 uint64_t *value);
1053 int anv_gem_get_param(int fd, uint32_t param);
1054 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1055 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1056 int anv_gem_get_aperture(int fd, uint64_t *size);
1057 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1058 uint32_t *active, uint32_t *pending);
1059 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1060 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1061 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1062 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1063 uint32_t read_domains, uint32_t write_domain);
1064 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1065 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1066 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1067 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1068 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1069 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1070 uint32_t handle);
1071 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1072 uint32_t handle, int fd);
1073 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1074 bool anv_gem_supports_syncobj_wait(int fd);
1075 int anv_gem_syncobj_wait(struct anv_device *device,
1076 uint32_t *handles, uint32_t num_handles,
1077 int64_t abs_timeout_ns, bool wait_all);
1078
1079 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1080 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1081
1082 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1083
1084 struct anv_reloc_list {
1085 uint32_t num_relocs;
1086 uint32_t array_length;
1087 struct drm_i915_gem_relocation_entry * relocs;
1088 struct anv_bo ** reloc_bos;
1089 struct set * deps;
1090 };
1091
1092 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1093 const VkAllocationCallbacks *alloc);
1094 void anv_reloc_list_finish(struct anv_reloc_list *list,
1095 const VkAllocationCallbacks *alloc);
1096
1097 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1098 const VkAllocationCallbacks *alloc,
1099 uint32_t offset, struct anv_bo *target_bo,
1100 uint32_t delta);
1101
1102 struct anv_batch_bo {
1103 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1104 struct list_head link;
1105
1106 struct anv_bo bo;
1107
1108 /* Bytes actually consumed in this batch BO */
1109 uint32_t length;
1110
1111 struct anv_reloc_list relocs;
1112 };
1113
1114 struct anv_batch {
1115 const VkAllocationCallbacks * alloc;
1116
1117 void * start;
1118 void * end;
1119 void * next;
1120
1121 struct anv_reloc_list * relocs;
1122
1123 /* This callback is called (with the associated user data) in the event
1124 * that the batch runs out of space.
1125 */
1126 VkResult (*extend_cb)(struct anv_batch *, void *);
1127 void * user_data;
1128
1129 /**
1130 * Current error status of the command buffer. Used to track inconsistent
1131 * or incomplete command buffer states that are the consequence of run-time
1132 * errors such as out of memory scenarios. We want to track this in the
1133 * batch because the command buffer object is not visible to some parts
1134 * of the driver.
1135 */
1136 VkResult status;
1137 };
1138
1139 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1140 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1141 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1142 void *location, struct anv_bo *bo, uint32_t offset);
1143 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1144 struct anv_batch *batch);
1145
1146 static inline VkResult
1147 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1148 {
1149 assert(error != VK_SUCCESS);
1150 if (batch->status == VK_SUCCESS)
1151 batch->status = error;
1152 return batch->status;
1153 }
1154
1155 static inline bool
1156 anv_batch_has_error(struct anv_batch *batch)
1157 {
1158 return batch->status != VK_SUCCESS;
1159 }
1160
1161 struct anv_address {
1162 struct anv_bo *bo;
1163 uint32_t offset;
1164 };
1165
1166 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1167
1168 static inline bool
1169 anv_address_is_null(struct anv_address addr)
1170 {
1171 return addr.bo == NULL && addr.offset == 0;
1172 }
1173
1174 static inline uint64_t
1175 anv_address_physical(struct anv_address addr)
1176 {
1177 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1178 return gen_canonical_address(addr.bo->offset + addr.offset);
1179 else
1180 return gen_canonical_address(addr.offset);
1181 }
1182
1183 static inline struct anv_address
1184 anv_address_add(struct anv_address addr, uint64_t offset)
1185 {
1186 addr.offset += offset;
1187 return addr;
1188 }
1189
1190 static inline void
1191 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1192 {
1193 unsigned reloc_size = 0;
1194 if (device->info.gen >= 8) {
1195 reloc_size = sizeof(uint64_t);
1196 *(uint64_t *)p = gen_canonical_address(v);
1197 } else {
1198 reloc_size = sizeof(uint32_t);
1199 *(uint32_t *)p = v;
1200 }
1201
1202 if (flush && !device->info.has_llc)
1203 gen_flush_range(p, reloc_size);
1204 }
1205
1206 static inline uint64_t
1207 _anv_combine_address(struct anv_batch *batch, void *location,
1208 const struct anv_address address, uint32_t delta)
1209 {
1210 if (address.bo == NULL) {
1211 return address.offset + delta;
1212 } else {
1213 assert(batch->start <= location && location < batch->end);
1214
1215 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1216 }
1217 }
1218
1219 #define __gen_address_type struct anv_address
1220 #define __gen_user_data struct anv_batch
1221 #define __gen_combine_address _anv_combine_address
1222
1223 /* Wrapper macros needed to work around preprocessor argument issues. In
1224 * particular, arguments don't get pre-evaluated if they are concatenated.
1225 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1226 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1227 * We can work around this easily enough with these helpers.
1228 */
1229 #define __anv_cmd_length(cmd) cmd ## _length
1230 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1231 #define __anv_cmd_header(cmd) cmd ## _header
1232 #define __anv_cmd_pack(cmd) cmd ## _pack
1233 #define __anv_reg_num(reg) reg ## _num
1234
1235 #define anv_pack_struct(dst, struc, ...) do { \
1236 struct struc __template = { \
1237 __VA_ARGS__ \
1238 }; \
1239 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1240 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1241 } while (0)
1242
1243 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1244 void *__dst = anv_batch_emit_dwords(batch, n); \
1245 if (__dst) { \
1246 struct cmd __template = { \
1247 __anv_cmd_header(cmd), \
1248 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1249 __VA_ARGS__ \
1250 }; \
1251 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1252 } \
1253 __dst; \
1254 })
1255
1256 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1257 do { \
1258 uint32_t *dw; \
1259 \
1260 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1261 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1262 if (!dw) \
1263 break; \
1264 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1265 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1266 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1267 } while (0)
1268
1269 #define anv_batch_emit(batch, cmd, name) \
1270 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1271 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1272 __builtin_expect(_dst != NULL, 1); \
1273 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1274 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1275 _dst = NULL; \
1276 }))
1277
1278 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
1279 .GraphicsDataTypeGFDT = 0, \
1280 .LLCCacheabilityControlLLCCC = 0, \
1281 .L3CacheabilityControlL3CC = 1, \
1282 }
1283
1284 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
1285 .LLCeLLCCacheabilityControlLLCCC = 0, \
1286 .L3CacheabilityControlL3CC = 1, \
1287 }
1288
1289 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
1290 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
1291 .TargetCache = L3DefertoPATforLLCeLLCselection, \
1292 .AgeforQUADLRU = 0 \
1293 }
1294
1295 /* Skylake: MOCS is now an index into an array of 62 different caching
1296 * configurations programmed by the kernel.
1297 */
1298
1299 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
1300 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1301 .IndextoMOCSTables = 2 \
1302 }
1303
1304 #define GEN9_MOCS_PTE { \
1305 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1306 .IndextoMOCSTables = 1 \
1307 }
1308
1309 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1310 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1311 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1312 .IndextoMOCSTables = 2 \
1313 }
1314
1315 #define GEN10_MOCS_PTE { \
1316 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1317 .IndextoMOCSTables = 1 \
1318 }
1319
1320 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1321 #define GEN11_MOCS (struct GEN11_MEMORY_OBJECT_CONTROL_STATE) { \
1322 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1323 .IndextoMOCSTables = 2 \
1324 }
1325
1326 #define GEN11_MOCS_PTE { \
1327 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1328 .IndextoMOCSTables = 1 \
1329 }
1330
1331 struct anv_device_memory {
1332 struct anv_bo * bo;
1333 struct anv_memory_type * type;
1334 VkDeviceSize map_size;
1335 void * map;
1336 };
1337
1338 /**
1339 * Header for Vertex URB Entry (VUE)
1340 */
1341 struct anv_vue_header {
1342 uint32_t Reserved;
1343 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1344 uint32_t ViewportIndex;
1345 float PointWidth;
1346 };
1347
1348 struct anv_descriptor_set_binding_layout {
1349 #ifndef NDEBUG
1350 /* The type of the descriptors in this binding */
1351 VkDescriptorType type;
1352 #endif
1353
1354 /* Number of array elements in this binding */
1355 uint16_t array_size;
1356
1357 /* Index into the flattend descriptor set */
1358 uint16_t descriptor_index;
1359
1360 /* Index into the dynamic state array for a dynamic buffer */
1361 int16_t dynamic_offset_index;
1362
1363 /* Index into the descriptor set buffer views */
1364 int16_t buffer_index;
1365
1366 struct {
1367 /* Index into the binding table for the associated surface */
1368 int16_t surface_index;
1369
1370 /* Index into the sampler table for the associated sampler */
1371 int16_t sampler_index;
1372
1373 /* Index into the image table for the associated image */
1374 int16_t image_index;
1375 } stage[MESA_SHADER_STAGES];
1376
1377 /* Immutable samplers (or NULL if no immutable samplers) */
1378 struct anv_sampler **immutable_samplers;
1379 };
1380
1381 struct anv_descriptor_set_layout {
1382 /* Descriptor set layouts can be destroyed at almost any time */
1383 uint32_t ref_cnt;
1384
1385 /* Number of bindings in this descriptor set */
1386 uint16_t binding_count;
1387
1388 /* Total size of the descriptor set with room for all array entries */
1389 uint16_t size;
1390
1391 /* Shader stages affected by this descriptor set */
1392 uint16_t shader_stages;
1393
1394 /* Number of buffers in this descriptor set */
1395 uint16_t buffer_count;
1396
1397 /* Number of dynamic offsets used by this descriptor set */
1398 uint16_t dynamic_offset_count;
1399
1400 /* Bindings in this descriptor set */
1401 struct anv_descriptor_set_binding_layout binding[0];
1402 };
1403
1404 static inline void
1405 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1406 {
1407 assert(layout && layout->ref_cnt >= 1);
1408 p_atomic_inc(&layout->ref_cnt);
1409 }
1410
1411 static inline void
1412 anv_descriptor_set_layout_unref(struct anv_device *device,
1413 struct anv_descriptor_set_layout *layout)
1414 {
1415 assert(layout && layout->ref_cnt >= 1);
1416 if (p_atomic_dec_zero(&layout->ref_cnt))
1417 vk_free(&device->alloc, layout);
1418 }
1419
1420 struct anv_descriptor {
1421 VkDescriptorType type;
1422
1423 union {
1424 struct {
1425 VkImageLayout layout;
1426 struct anv_image_view *image_view;
1427 struct anv_sampler *sampler;
1428 };
1429
1430 struct {
1431 struct anv_buffer *buffer;
1432 uint64_t offset;
1433 uint64_t range;
1434 };
1435
1436 struct anv_buffer_view *buffer_view;
1437 };
1438 };
1439
1440 struct anv_descriptor_set {
1441 struct anv_descriptor_set_layout *layout;
1442 uint32_t size;
1443 uint32_t buffer_count;
1444 struct anv_buffer_view *buffer_views;
1445 struct anv_descriptor descriptors[0];
1446 };
1447
1448 struct anv_buffer_view {
1449 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1450 uint64_t range; /**< VkBufferViewCreateInfo::range */
1451
1452 struct anv_address address;
1453
1454 struct anv_state surface_state;
1455 struct anv_state storage_surface_state;
1456 struct anv_state writeonly_storage_surface_state;
1457
1458 struct brw_image_param storage_image_param;
1459 };
1460
1461 struct anv_push_descriptor_set {
1462 struct anv_descriptor_set set;
1463
1464 /* Put this field right behind anv_descriptor_set so it fills up the
1465 * descriptors[0] field. */
1466 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1467 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1468 };
1469
1470 struct anv_descriptor_pool {
1471 uint32_t size;
1472 uint32_t next;
1473 uint32_t free_list;
1474
1475 struct anv_state_stream surface_state_stream;
1476 void *surface_state_free_list;
1477
1478 char data[0];
1479 };
1480
1481 enum anv_descriptor_template_entry_type {
1482 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1483 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1484 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1485 };
1486
1487 struct anv_descriptor_template_entry {
1488 /* The type of descriptor in this entry */
1489 VkDescriptorType type;
1490
1491 /* Binding in the descriptor set */
1492 uint32_t binding;
1493
1494 /* Offset at which to write into the descriptor set binding */
1495 uint32_t array_element;
1496
1497 /* Number of elements to write into the descriptor set binding */
1498 uint32_t array_count;
1499
1500 /* Offset into the user provided data */
1501 size_t offset;
1502
1503 /* Stride between elements into the user provided data */
1504 size_t stride;
1505 };
1506
1507 struct anv_descriptor_update_template {
1508 VkPipelineBindPoint bind_point;
1509
1510 /* The descriptor set this template corresponds to. This value is only
1511 * valid if the template was created with the templateType
1512 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1513 */
1514 uint8_t set;
1515
1516 /* Number of entries in this template */
1517 uint32_t entry_count;
1518
1519 /* Entries of the template */
1520 struct anv_descriptor_template_entry entries[0];
1521 };
1522
1523 size_t
1524 anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding);
1525
1526 size_t
1527 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1528
1529 void
1530 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1531 const struct gen_device_info * const devinfo,
1532 const VkDescriptorImageInfo * const info,
1533 VkDescriptorType type,
1534 uint32_t binding,
1535 uint32_t element);
1536
1537 void
1538 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1539 VkDescriptorType type,
1540 struct anv_buffer_view *buffer_view,
1541 uint32_t binding,
1542 uint32_t element);
1543
1544 void
1545 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1546 struct anv_device *device,
1547 struct anv_state_stream *alloc_stream,
1548 VkDescriptorType type,
1549 struct anv_buffer *buffer,
1550 uint32_t binding,
1551 uint32_t element,
1552 VkDeviceSize offset,
1553 VkDeviceSize range);
1554
1555 void
1556 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1557 struct anv_device *device,
1558 struct anv_state_stream *alloc_stream,
1559 const struct anv_descriptor_update_template *template,
1560 const void *data);
1561
1562 VkResult
1563 anv_descriptor_set_create(struct anv_device *device,
1564 struct anv_descriptor_pool *pool,
1565 struct anv_descriptor_set_layout *layout,
1566 struct anv_descriptor_set **out_set);
1567
1568 void
1569 anv_descriptor_set_destroy(struct anv_device *device,
1570 struct anv_descriptor_pool *pool,
1571 struct anv_descriptor_set *set);
1572
1573 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1574
1575 struct anv_pipeline_binding {
1576 /* The descriptor set this surface corresponds to. The special value of
1577 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1578 * to a color attachment and not a regular descriptor.
1579 */
1580 uint8_t set;
1581
1582 /* Binding in the descriptor set */
1583 uint32_t binding;
1584
1585 /* Index in the binding */
1586 uint32_t index;
1587
1588 /* Plane in the binding index */
1589 uint8_t plane;
1590
1591 /* Input attachment index (relative to the subpass) */
1592 uint8_t input_attachment_index;
1593
1594 /* For a storage image, whether it is write-only */
1595 bool write_only;
1596 };
1597
1598 struct anv_pipeline_layout {
1599 struct {
1600 struct anv_descriptor_set_layout *layout;
1601 uint32_t dynamic_offset_start;
1602 } set[MAX_SETS];
1603
1604 uint32_t num_sets;
1605
1606 struct {
1607 bool has_dynamic_offsets;
1608 } stage[MESA_SHADER_STAGES];
1609
1610 unsigned char sha1[20];
1611 };
1612
1613 struct anv_buffer {
1614 struct anv_device * device;
1615 VkDeviceSize size;
1616
1617 VkBufferUsageFlags usage;
1618
1619 /* Set when bound */
1620 struct anv_address address;
1621 };
1622
1623 static inline uint64_t
1624 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1625 {
1626 assert(offset <= buffer->size);
1627 if (range == VK_WHOLE_SIZE) {
1628 return buffer->size - offset;
1629 } else {
1630 assert(range <= buffer->size);
1631 return range;
1632 }
1633 }
1634
1635 enum anv_cmd_dirty_bits {
1636 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1637 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1638 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1639 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1640 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1641 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1642 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1643 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1644 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1645 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1646 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1647 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1648 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1649 };
1650 typedef uint32_t anv_cmd_dirty_mask_t;
1651
1652 enum anv_pipe_bits {
1653 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1654 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1655 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1656 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1657 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1658 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1659 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1660 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1661 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1662 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1663 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1664
1665 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1666 * a flush has happened but not a CS stall. The next time we do any sort
1667 * of invalidation we need to insert a CS stall at that time. Otherwise,
1668 * we would have to CS stall on every flush which could be bad.
1669 */
1670 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1671 };
1672
1673 #define ANV_PIPE_FLUSH_BITS ( \
1674 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1675 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1676 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1677
1678 #define ANV_PIPE_STALL_BITS ( \
1679 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1680 ANV_PIPE_DEPTH_STALL_BIT | \
1681 ANV_PIPE_CS_STALL_BIT)
1682
1683 #define ANV_PIPE_INVALIDATE_BITS ( \
1684 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1685 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1686 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1687 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1688 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1689 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1690
1691 static inline enum anv_pipe_bits
1692 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1693 {
1694 enum anv_pipe_bits pipe_bits = 0;
1695
1696 unsigned b;
1697 for_each_bit(b, flags) {
1698 switch ((VkAccessFlagBits)(1 << b)) {
1699 case VK_ACCESS_SHADER_WRITE_BIT:
1700 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1701 break;
1702 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1703 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1704 break;
1705 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1706 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1707 break;
1708 case VK_ACCESS_TRANSFER_WRITE_BIT:
1709 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1710 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1711 break;
1712 default:
1713 break; /* Nothing to do */
1714 }
1715 }
1716
1717 return pipe_bits;
1718 }
1719
1720 static inline enum anv_pipe_bits
1721 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1722 {
1723 enum anv_pipe_bits pipe_bits = 0;
1724
1725 unsigned b;
1726 for_each_bit(b, flags) {
1727 switch ((VkAccessFlagBits)(1 << b)) {
1728 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1729 case VK_ACCESS_INDEX_READ_BIT:
1730 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1731 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1732 break;
1733 case VK_ACCESS_UNIFORM_READ_BIT:
1734 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1735 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1736 break;
1737 case VK_ACCESS_SHADER_READ_BIT:
1738 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1739 case VK_ACCESS_TRANSFER_READ_BIT:
1740 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1741 break;
1742 default:
1743 break; /* Nothing to do */
1744 }
1745 }
1746
1747 return pipe_bits;
1748 }
1749
1750 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1751 VK_IMAGE_ASPECT_COLOR_BIT | \
1752 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1753 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1754 VK_IMAGE_ASPECT_PLANE_2_BIT)
1755 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1756 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1757 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1758 VK_IMAGE_ASPECT_PLANE_2_BIT)
1759
1760 struct anv_vertex_binding {
1761 struct anv_buffer * buffer;
1762 VkDeviceSize offset;
1763 };
1764
1765 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
1766 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
1767
1768 struct anv_push_constants {
1769 /* Current allocated size of this push constants data structure.
1770 * Because a decent chunk of it may not be used (images on SKL, for
1771 * instance), we won't actually allocate the entire structure up-front.
1772 */
1773 uint32_t size;
1774
1775 /* Push constant data provided by the client through vkPushConstants */
1776 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1777
1778 /* Used for vkCmdDispatchBase */
1779 uint32_t base_work_group_id[3];
1780
1781 /* Image data for image_load_store on pre-SKL */
1782 struct brw_image_param images[MAX_IMAGES];
1783 };
1784
1785 struct anv_dynamic_state {
1786 struct {
1787 uint32_t count;
1788 VkViewport viewports[MAX_VIEWPORTS];
1789 } viewport;
1790
1791 struct {
1792 uint32_t count;
1793 VkRect2D scissors[MAX_SCISSORS];
1794 } scissor;
1795
1796 float line_width;
1797
1798 struct {
1799 float bias;
1800 float clamp;
1801 float slope;
1802 } depth_bias;
1803
1804 float blend_constants[4];
1805
1806 struct {
1807 float min;
1808 float max;
1809 } depth_bounds;
1810
1811 struct {
1812 uint32_t front;
1813 uint32_t back;
1814 } stencil_compare_mask;
1815
1816 struct {
1817 uint32_t front;
1818 uint32_t back;
1819 } stencil_write_mask;
1820
1821 struct {
1822 uint32_t front;
1823 uint32_t back;
1824 } stencil_reference;
1825 };
1826
1827 extern const struct anv_dynamic_state default_dynamic_state;
1828
1829 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1830 const struct anv_dynamic_state *src,
1831 uint32_t copy_mask);
1832
1833 struct anv_surface_state {
1834 struct anv_state state;
1835 /** Address of the surface referred to by this state
1836 *
1837 * This address is relative to the start of the BO.
1838 */
1839 struct anv_address address;
1840 /* Address of the aux surface, if any
1841 *
1842 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
1843 *
1844 * With the exception of gen8, the bottom 12 bits of this address' offset
1845 * include extra aux information.
1846 */
1847 struct anv_address aux_address;
1848 /* Address of the clear color, if any
1849 *
1850 * This address is relative to the start of the BO.
1851 */
1852 struct anv_address clear_address;
1853 };
1854
1855 /**
1856 * Attachment state when recording a renderpass instance.
1857 *
1858 * The clear value is valid only if there exists a pending clear.
1859 */
1860 struct anv_attachment_state {
1861 enum isl_aux_usage aux_usage;
1862 enum isl_aux_usage input_aux_usage;
1863 struct anv_surface_state color;
1864 struct anv_surface_state input;
1865
1866 VkImageLayout current_layout;
1867 VkImageAspectFlags pending_clear_aspects;
1868 VkImageAspectFlags pending_load_aspects;
1869 bool fast_clear;
1870 VkClearValue clear_value;
1871 bool clear_color_is_zero_one;
1872 bool clear_color_is_zero;
1873
1874 /* When multiview is active, attachments with a renderpass clear
1875 * operation have their respective layers cleared on the first
1876 * subpass that uses them, and only in that subpass. We keep track
1877 * of this using a bitfield to indicate which layers of an attachment
1878 * have not been cleared yet when multiview is active.
1879 */
1880 uint32_t pending_clear_views;
1881 };
1882
1883 /** State tracking for particular pipeline bind point
1884 *
1885 * This struct is the base struct for anv_cmd_graphics_state and
1886 * anv_cmd_compute_state. These are used to track state which is bound to a
1887 * particular type of pipeline. Generic state that applies per-stage such as
1888 * binding table offsets and push constants is tracked generically with a
1889 * per-stage array in anv_cmd_state.
1890 */
1891 struct anv_cmd_pipeline_state {
1892 struct anv_pipeline *pipeline;
1893 struct anv_pipeline_layout *layout;
1894
1895 struct anv_descriptor_set *descriptors[MAX_SETS];
1896 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1897
1898 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
1899 };
1900
1901 /** State tracking for graphics pipeline
1902 *
1903 * This has anv_cmd_pipeline_state as a base struct to track things which get
1904 * bound to a graphics pipeline. Along with general pipeline bind point state
1905 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1906 * state which is graphics-specific.
1907 */
1908 struct anv_cmd_graphics_state {
1909 struct anv_cmd_pipeline_state base;
1910
1911 anv_cmd_dirty_mask_t dirty;
1912 uint32_t vb_dirty;
1913
1914 struct anv_dynamic_state dynamic;
1915
1916 struct {
1917 struct anv_buffer *index_buffer;
1918 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1919 uint32_t index_offset;
1920 } gen7;
1921 };
1922
1923 /** State tracking for compute pipeline
1924 *
1925 * This has anv_cmd_pipeline_state as a base struct to track things which get
1926 * bound to a compute pipeline. Along with general pipeline bind point state
1927 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1928 * state which is compute-specific.
1929 */
1930 struct anv_cmd_compute_state {
1931 struct anv_cmd_pipeline_state base;
1932
1933 bool pipeline_dirty;
1934
1935 struct anv_address num_workgroups;
1936 };
1937
1938 /** State required while building cmd buffer */
1939 struct anv_cmd_state {
1940 /* PIPELINE_SELECT.PipelineSelection */
1941 uint32_t current_pipeline;
1942 const struct gen_l3_config * current_l3_config;
1943
1944 struct anv_cmd_graphics_state gfx;
1945 struct anv_cmd_compute_state compute;
1946
1947 enum anv_pipe_bits pending_pipe_bits;
1948 VkShaderStageFlags descriptors_dirty;
1949 VkShaderStageFlags push_constants_dirty;
1950
1951 struct anv_framebuffer * framebuffer;
1952 struct anv_render_pass * pass;
1953 struct anv_subpass * subpass;
1954 VkRect2D render_area;
1955 uint32_t restart_index;
1956 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1957 VkShaderStageFlags push_constant_stages;
1958 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1959 struct anv_state binding_tables[MESA_SHADER_STAGES];
1960 struct anv_state samplers[MESA_SHADER_STAGES];
1961
1962 /**
1963 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1964 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1965 * and before invoking the secondary in ExecuteCommands.
1966 */
1967 bool pma_fix_enabled;
1968
1969 /**
1970 * Whether or not we know for certain that HiZ is enabled for the current
1971 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1972 * enabled or not, this will be false.
1973 */
1974 bool hiz_enabled;
1975
1976 /**
1977 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1978 * valid only when recording a render pass instance.
1979 */
1980 struct anv_attachment_state * attachments;
1981
1982 /**
1983 * Surface states for color render targets. These are stored in a single
1984 * flat array. For depth-stencil attachments, the surface state is simply
1985 * left blank.
1986 */
1987 struct anv_state render_pass_states;
1988
1989 /**
1990 * A null surface state of the right size to match the framebuffer. This
1991 * is one of the states in render_pass_states.
1992 */
1993 struct anv_state null_surface_state;
1994 };
1995
1996 struct anv_cmd_pool {
1997 VkAllocationCallbacks alloc;
1998 struct list_head cmd_buffers;
1999 };
2000
2001 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2002
2003 enum anv_cmd_buffer_exec_mode {
2004 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2005 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2006 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2007 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2008 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2009 };
2010
2011 struct anv_cmd_buffer {
2012 VK_LOADER_DATA _loader_data;
2013
2014 struct anv_device * device;
2015
2016 struct anv_cmd_pool * pool;
2017 struct list_head pool_link;
2018
2019 struct anv_batch batch;
2020
2021 /* Fields required for the actual chain of anv_batch_bo's.
2022 *
2023 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2024 */
2025 struct list_head batch_bos;
2026 enum anv_cmd_buffer_exec_mode exec_mode;
2027
2028 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2029 * referenced by this command buffer
2030 *
2031 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2032 */
2033 struct u_vector seen_bbos;
2034
2035 /* A vector of int32_t's for every block of binding tables.
2036 *
2037 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2038 */
2039 struct u_vector bt_block_states;
2040 uint32_t bt_next;
2041
2042 struct anv_reloc_list surface_relocs;
2043 /** Last seen surface state block pool center bo offset */
2044 uint32_t last_ss_pool_center;
2045
2046 /* Serial for tracking buffer completion */
2047 uint32_t serial;
2048
2049 /* Stream objects for storing temporary data */
2050 struct anv_state_stream surface_state_stream;
2051 struct anv_state_stream dynamic_state_stream;
2052
2053 VkCommandBufferUsageFlags usage_flags;
2054 VkCommandBufferLevel level;
2055
2056 struct anv_cmd_state state;
2057 };
2058
2059 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2060 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2061 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2062 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2063 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2064 struct anv_cmd_buffer *secondary);
2065 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2066 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2067 struct anv_cmd_buffer *cmd_buffer,
2068 const VkSemaphore *in_semaphores,
2069 uint32_t num_in_semaphores,
2070 const VkSemaphore *out_semaphores,
2071 uint32_t num_out_semaphores,
2072 VkFence fence);
2073
2074 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2075
2076 VkResult
2077 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2078 gl_shader_stage stage, uint32_t size);
2079 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2080 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2081 (offsetof(struct anv_push_constants, field) + \
2082 sizeof(cmd_buffer->state.push_constants[0]->field)))
2083
2084 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2085 const void *data, uint32_t size, uint32_t alignment);
2086 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2087 uint32_t *a, uint32_t *b,
2088 uint32_t dwords, uint32_t alignment);
2089
2090 struct anv_address
2091 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2092 struct anv_state
2093 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2094 uint32_t entries, uint32_t *state_offset);
2095 struct anv_state
2096 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2097 struct anv_state
2098 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2099 uint32_t size, uint32_t alignment);
2100
2101 VkResult
2102 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2103
2104 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2105 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2106 bool depth_clamp_enable);
2107 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2108
2109 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2110 struct anv_render_pass *pass,
2111 struct anv_framebuffer *framebuffer,
2112 const VkClearValue *clear_values);
2113
2114 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2115
2116 struct anv_state
2117 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2118 gl_shader_stage stage);
2119 struct anv_state
2120 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2121
2122 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
2123
2124 const struct anv_image_view *
2125 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2126
2127 VkResult
2128 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2129 uint32_t num_entries,
2130 uint32_t *state_offset,
2131 struct anv_state *bt_state);
2132
2133 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2134
2135 enum anv_fence_type {
2136 ANV_FENCE_TYPE_NONE = 0,
2137 ANV_FENCE_TYPE_BO,
2138 ANV_FENCE_TYPE_SYNCOBJ,
2139 ANV_FENCE_TYPE_WSI,
2140 };
2141
2142 enum anv_bo_fence_state {
2143 /** Indicates that this is a new (or newly reset fence) */
2144 ANV_BO_FENCE_STATE_RESET,
2145
2146 /** Indicates that this fence has been submitted to the GPU but is still
2147 * (as far as we know) in use by the GPU.
2148 */
2149 ANV_BO_FENCE_STATE_SUBMITTED,
2150
2151 ANV_BO_FENCE_STATE_SIGNALED,
2152 };
2153
2154 struct anv_fence_impl {
2155 enum anv_fence_type type;
2156
2157 union {
2158 /** Fence implementation for BO fences
2159 *
2160 * These fences use a BO and a set of CPU-tracked state flags. The BO
2161 * is added to the object list of the last execbuf call in a QueueSubmit
2162 * and is marked EXEC_WRITE. The state flags track when the BO has been
2163 * submitted to the kernel. We need to do this because Vulkan lets you
2164 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2165 * will say it's idle in this case.
2166 */
2167 struct {
2168 struct anv_bo bo;
2169 enum anv_bo_fence_state state;
2170 } bo;
2171
2172 /** DRM syncobj handle for syncobj-based fences */
2173 uint32_t syncobj;
2174
2175 /** WSI fence */
2176 struct wsi_fence *fence_wsi;
2177 };
2178 };
2179
2180 struct anv_fence {
2181 /* Permanent fence state. Every fence has some form of permanent state
2182 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2183 * cross-process fences) or it could just be a dummy for use internally.
2184 */
2185 struct anv_fence_impl permanent;
2186
2187 /* Temporary fence state. A fence *may* have temporary state. That state
2188 * is added to the fence by an import operation and is reset back to
2189 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2190 * state cannot be signaled because the fence must already be signaled
2191 * before the temporary state can be exported from the fence in the other
2192 * process and imported here.
2193 */
2194 struct anv_fence_impl temporary;
2195 };
2196
2197 struct anv_event {
2198 uint64_t semaphore;
2199 struct anv_state state;
2200 };
2201
2202 enum anv_semaphore_type {
2203 ANV_SEMAPHORE_TYPE_NONE = 0,
2204 ANV_SEMAPHORE_TYPE_DUMMY,
2205 ANV_SEMAPHORE_TYPE_BO,
2206 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2207 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2208 };
2209
2210 struct anv_semaphore_impl {
2211 enum anv_semaphore_type type;
2212
2213 union {
2214 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2215 * This BO will be added to the object list on any execbuf2 calls for
2216 * which this semaphore is used as a wait or signal fence. When used as
2217 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2218 */
2219 struct anv_bo *bo;
2220
2221 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2222 * If the semaphore is in the unsignaled state due to either just being
2223 * created or because it has been used for a wait, fd will be -1.
2224 */
2225 int fd;
2226
2227 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2228 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2229 * import so we don't need to bother with a userspace cache.
2230 */
2231 uint32_t syncobj;
2232 };
2233 };
2234
2235 struct anv_semaphore {
2236 /* Permanent semaphore state. Every semaphore has some form of permanent
2237 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2238 * (for cross-process semaphores0 or it could just be a dummy for use
2239 * internally.
2240 */
2241 struct anv_semaphore_impl permanent;
2242
2243 /* Temporary semaphore state. A semaphore *may* have temporary state.
2244 * That state is added to the semaphore by an import operation and is reset
2245 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2246 * semaphore with temporary state cannot be signaled because the semaphore
2247 * must already be signaled before the temporary state can be exported from
2248 * the semaphore in the other process and imported here.
2249 */
2250 struct anv_semaphore_impl temporary;
2251 };
2252
2253 void anv_semaphore_reset_temporary(struct anv_device *device,
2254 struct anv_semaphore *semaphore);
2255
2256 struct anv_shader_module {
2257 unsigned char sha1[20];
2258 uint32_t size;
2259 char data[0];
2260 };
2261
2262 static inline gl_shader_stage
2263 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2264 {
2265 assert(__builtin_popcount(vk_stage) == 1);
2266 return ffs(vk_stage) - 1;
2267 }
2268
2269 static inline VkShaderStageFlagBits
2270 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2271 {
2272 return (1 << mesa_stage);
2273 }
2274
2275 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2276
2277 #define anv_foreach_stage(stage, stage_bits) \
2278 for (gl_shader_stage stage, \
2279 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2280 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2281 __tmp &= ~(1 << (stage)))
2282
2283 struct anv_pipeline_bind_map {
2284 uint32_t surface_count;
2285 uint32_t sampler_count;
2286 uint32_t image_count;
2287
2288 struct anv_pipeline_binding * surface_to_descriptor;
2289 struct anv_pipeline_binding * sampler_to_descriptor;
2290 };
2291
2292 struct anv_shader_bin_key {
2293 uint32_t size;
2294 uint8_t data[0];
2295 };
2296
2297 struct anv_shader_bin {
2298 uint32_t ref_cnt;
2299
2300 const struct anv_shader_bin_key *key;
2301
2302 struct anv_state kernel;
2303 uint32_t kernel_size;
2304
2305 struct anv_state constant_data;
2306 uint32_t constant_data_size;
2307
2308 const struct brw_stage_prog_data *prog_data;
2309 uint32_t prog_data_size;
2310
2311 struct anv_pipeline_bind_map bind_map;
2312 };
2313
2314 struct anv_shader_bin *
2315 anv_shader_bin_create(struct anv_device *device,
2316 const void *key, uint32_t key_size,
2317 const void *kernel, uint32_t kernel_size,
2318 const void *constant_data, uint32_t constant_data_size,
2319 const struct brw_stage_prog_data *prog_data,
2320 uint32_t prog_data_size, const void *prog_data_param,
2321 const struct anv_pipeline_bind_map *bind_map);
2322
2323 void
2324 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2325
2326 static inline void
2327 anv_shader_bin_ref(struct anv_shader_bin *shader)
2328 {
2329 assert(shader && shader->ref_cnt >= 1);
2330 p_atomic_inc(&shader->ref_cnt);
2331 }
2332
2333 static inline void
2334 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2335 {
2336 assert(shader && shader->ref_cnt >= 1);
2337 if (p_atomic_dec_zero(&shader->ref_cnt))
2338 anv_shader_bin_destroy(device, shader);
2339 }
2340
2341 struct anv_pipeline {
2342 struct anv_device * device;
2343 struct anv_batch batch;
2344 uint32_t batch_data[512];
2345 struct anv_reloc_list batch_relocs;
2346 uint32_t dynamic_state_mask;
2347 struct anv_dynamic_state dynamic_state;
2348
2349 struct anv_subpass * subpass;
2350
2351 bool needs_data_cache;
2352
2353 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2354
2355 struct {
2356 const struct gen_l3_config * l3_config;
2357 uint32_t total_size;
2358 } urb;
2359
2360 VkShaderStageFlags active_stages;
2361 struct anv_state blend_state;
2362
2363 uint32_t vb_used;
2364 uint32_t binding_stride[MAX_VBS];
2365 bool instancing_enable[MAX_VBS];
2366 bool primitive_restart;
2367 uint32_t topology;
2368
2369 uint32_t cs_right_mask;
2370
2371 bool writes_depth;
2372 bool depth_test_enable;
2373 bool writes_stencil;
2374 bool stencil_test_enable;
2375 bool depth_clamp_enable;
2376 bool sample_shading_enable;
2377 bool kill_pixel;
2378
2379 struct {
2380 uint32_t sf[7];
2381 uint32_t depth_stencil_state[3];
2382 } gen7;
2383
2384 struct {
2385 uint32_t sf[4];
2386 uint32_t raster[5];
2387 uint32_t wm_depth_stencil[3];
2388 } gen8;
2389
2390 struct {
2391 uint32_t wm_depth_stencil[4];
2392 } gen9;
2393
2394 uint32_t interface_descriptor_data[8];
2395 };
2396
2397 static inline bool
2398 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2399 gl_shader_stage stage)
2400 {
2401 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2402 }
2403
2404 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2405 static inline const struct brw_##prefix##_prog_data * \
2406 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2407 { \
2408 if (anv_pipeline_has_stage(pipeline, stage)) { \
2409 return (const struct brw_##prefix##_prog_data *) \
2410 pipeline->shaders[stage]->prog_data; \
2411 } else { \
2412 return NULL; \
2413 } \
2414 }
2415
2416 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2417 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2418 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2419 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2420 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2421 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2422
2423 static inline const struct brw_vue_prog_data *
2424 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2425 {
2426 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2427 return &get_gs_prog_data(pipeline)->base;
2428 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2429 return &get_tes_prog_data(pipeline)->base;
2430 else
2431 return &get_vs_prog_data(pipeline)->base;
2432 }
2433
2434 VkResult
2435 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2436 struct anv_pipeline_cache *cache,
2437 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2438 const VkAllocationCallbacks *alloc);
2439
2440 VkResult
2441 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2442 struct anv_pipeline_cache *cache,
2443 const VkComputePipelineCreateInfo *info,
2444 struct anv_shader_module *module,
2445 const char *entrypoint,
2446 const VkSpecializationInfo *spec_info);
2447
2448 struct anv_format_plane {
2449 enum isl_format isl_format:16;
2450 struct isl_swizzle swizzle;
2451
2452 /* Whether this plane contains chroma channels */
2453 bool has_chroma;
2454
2455 /* For downscaling of YUV planes */
2456 uint8_t denominator_scales[2];
2457
2458 /* How to map sampled ycbcr planes to a single 4 component element. */
2459 struct isl_swizzle ycbcr_swizzle;
2460 };
2461
2462
2463 struct anv_format {
2464 struct anv_format_plane planes[3];
2465 uint8_t n_planes;
2466 bool can_ycbcr;
2467 };
2468
2469 static inline uint32_t
2470 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2471 VkImageAspectFlags aspect_mask)
2472 {
2473 switch (aspect_mask) {
2474 case VK_IMAGE_ASPECT_COLOR_BIT:
2475 case VK_IMAGE_ASPECT_DEPTH_BIT:
2476 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2477 return 0;
2478 case VK_IMAGE_ASPECT_STENCIL_BIT:
2479 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2480 return 0;
2481 /* Fall-through */
2482 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2483 return 1;
2484 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2485 return 2;
2486 default:
2487 /* Purposefully assert with depth/stencil aspects. */
2488 unreachable("invalid image aspect");
2489 }
2490 }
2491
2492 static inline uint32_t
2493 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
2494 {
2495 uint32_t planes = 0;
2496
2497 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
2498 VK_IMAGE_ASPECT_DEPTH_BIT |
2499 VK_IMAGE_ASPECT_STENCIL_BIT |
2500 VK_IMAGE_ASPECT_PLANE_0_BIT))
2501 planes++;
2502 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT)
2503 planes++;
2504 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT)
2505 planes++;
2506
2507 if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 &&
2508 (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
2509 planes++;
2510
2511 return planes;
2512 }
2513
2514 static inline VkImageAspectFlags
2515 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2516 uint32_t plane)
2517 {
2518 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2519 if (_mesa_bitcount(image_aspects) > 1)
2520 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2521 return VK_IMAGE_ASPECT_COLOR_BIT;
2522 }
2523 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2524 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2525 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2526 return VK_IMAGE_ASPECT_STENCIL_BIT;
2527 }
2528
2529 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2530 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2531
2532 const struct anv_format *
2533 anv_get_format(VkFormat format);
2534
2535 static inline uint32_t
2536 anv_get_format_planes(VkFormat vk_format)
2537 {
2538 const struct anv_format *format = anv_get_format(vk_format);
2539
2540 return format != NULL ? format->n_planes : 0;
2541 }
2542
2543 struct anv_format_plane
2544 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2545 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2546
2547 static inline enum isl_format
2548 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2549 VkImageAspectFlags aspect, VkImageTiling tiling)
2550 {
2551 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2552 }
2553
2554 static inline struct isl_swizzle
2555 anv_swizzle_for_render(struct isl_swizzle swizzle)
2556 {
2557 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2558 * RGB as RGBA for texturing
2559 */
2560 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2561 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2562
2563 /* But it doesn't matter what we render to that channel */
2564 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2565
2566 return swizzle;
2567 }
2568
2569 void
2570 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2571
2572 /**
2573 * Subsurface of an anv_image.
2574 */
2575 struct anv_surface {
2576 /** Valid only if isl_surf::size > 0. */
2577 struct isl_surf isl;
2578
2579 /**
2580 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2581 */
2582 uint32_t offset;
2583 };
2584
2585 struct anv_image {
2586 VkImageType type;
2587 /* The original VkFormat provided by the client. This may not match any
2588 * of the actual surface formats.
2589 */
2590 VkFormat vk_format;
2591 const struct anv_format *format;
2592
2593 VkImageAspectFlags aspects;
2594 VkExtent3D extent;
2595 uint32_t levels;
2596 uint32_t array_size;
2597 uint32_t samples; /**< VkImageCreateInfo::samples */
2598 uint32_t n_planes;
2599 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2600 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2601
2602 /** True if this is needs to be bound to an appropriately tiled BO.
2603 *
2604 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2605 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2606 * we require a dedicated allocation so that we can know to allocate a
2607 * tiled buffer.
2608 */
2609 bool needs_set_tiling;
2610
2611 /**
2612 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2613 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2614 */
2615 uint64_t drm_format_mod;
2616
2617 VkDeviceSize size;
2618 uint32_t alignment;
2619
2620 /* Whether the image is made of several underlying buffer objects rather a
2621 * single one with different offsets.
2622 */
2623 bool disjoint;
2624
2625 /**
2626 * Image subsurfaces
2627 *
2628 * For each foo, anv_image::planes[x].surface is valid if and only if
2629 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2630 * to figure the number associated with a given aspect.
2631 *
2632 * The hardware requires that the depth buffer and stencil buffer be
2633 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2634 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2635 * allocate the depth and stencil buffers as separate surfaces in the same
2636 * bo.
2637 *
2638 * Memory layout :
2639 *
2640 * -----------------------
2641 * | surface0 | /|\
2642 * ----------------------- |
2643 * | shadow surface0 | |
2644 * ----------------------- | Plane 0
2645 * | aux surface0 | |
2646 * ----------------------- |
2647 * | fast clear colors0 | \|/
2648 * -----------------------
2649 * | surface1 | /|\
2650 * ----------------------- |
2651 * | shadow surface1 | |
2652 * ----------------------- | Plane 1
2653 * | aux surface1 | |
2654 * ----------------------- |
2655 * | fast clear colors1 | \|/
2656 * -----------------------
2657 * | ... |
2658 * | |
2659 * -----------------------
2660 */
2661 struct {
2662 /**
2663 * Offset of the entire plane (whenever the image is disjoint this is
2664 * set to 0).
2665 */
2666 uint32_t offset;
2667
2668 VkDeviceSize size;
2669 uint32_t alignment;
2670
2671 struct anv_surface surface;
2672
2673 /**
2674 * A surface which shadows the main surface and may have different
2675 * tiling. This is used for sampling using a tiling that isn't supported
2676 * for other operations.
2677 */
2678 struct anv_surface shadow_surface;
2679
2680 /**
2681 * For color images, this is the aux usage for this image when not used
2682 * as a color attachment.
2683 *
2684 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2685 * image has a HiZ buffer.
2686 */
2687 enum isl_aux_usage aux_usage;
2688
2689 struct anv_surface aux_surface;
2690
2691 /**
2692 * Offset of the fast clear state (used to compute the
2693 * fast_clear_state_offset of the following planes).
2694 */
2695 uint32_t fast_clear_state_offset;
2696
2697 /**
2698 * BO associated with this plane, set when bound.
2699 */
2700 struct anv_address address;
2701
2702 /**
2703 * When destroying the image, also free the bo.
2704 * */
2705 bool bo_is_owned;
2706 } planes[3];
2707 };
2708
2709 /* The ordering of this enum is important */
2710 enum anv_fast_clear_type {
2711 /** Image does not have/support any fast-clear blocks */
2712 ANV_FAST_CLEAR_NONE = 0,
2713 /** Image has/supports fast-clear but only to the default value */
2714 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2715 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2716 ANV_FAST_CLEAR_ANY = 2,
2717 };
2718
2719 /* Returns the number of auxiliary buffer levels attached to an image. */
2720 static inline uint8_t
2721 anv_image_aux_levels(const struct anv_image * const image,
2722 VkImageAspectFlagBits aspect)
2723 {
2724 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2725 return image->planes[plane].aux_surface.isl.size > 0 ?
2726 image->planes[plane].aux_surface.isl.levels : 0;
2727 }
2728
2729 /* Returns the number of auxiliary buffer layers attached to an image. */
2730 static inline uint32_t
2731 anv_image_aux_layers(const struct anv_image * const image,
2732 VkImageAspectFlagBits aspect,
2733 const uint8_t miplevel)
2734 {
2735 assert(image);
2736
2737 /* The miplevel must exist in the main buffer. */
2738 assert(miplevel < image->levels);
2739
2740 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2741 /* There are no layers with auxiliary data because the miplevel has no
2742 * auxiliary data.
2743 */
2744 return 0;
2745 } else {
2746 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2747 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2748 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2749 }
2750 }
2751
2752 static inline struct anv_address
2753 anv_image_get_clear_color_addr(const struct anv_device *device,
2754 const struct anv_image *image,
2755 VkImageAspectFlagBits aspect)
2756 {
2757 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
2758
2759 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2760 return anv_address_add(image->planes[plane].address,
2761 image->planes[plane].fast_clear_state_offset);
2762 }
2763
2764 static inline struct anv_address
2765 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
2766 const struct anv_image *image,
2767 VkImageAspectFlagBits aspect)
2768 {
2769 struct anv_address addr =
2770 anv_image_get_clear_color_addr(device, image, aspect);
2771
2772 const unsigned clear_color_state_size = device->info.gen >= 10 ?
2773 device->isl_dev.ss.clear_color_state_size :
2774 device->isl_dev.ss.clear_value_size;
2775 addr.offset += clear_color_state_size;
2776 return addr;
2777 }
2778
2779 static inline struct anv_address
2780 anv_image_get_compression_state_addr(const struct anv_device *device,
2781 const struct anv_image *image,
2782 VkImageAspectFlagBits aspect,
2783 uint32_t level, uint32_t array_layer)
2784 {
2785 assert(level < anv_image_aux_levels(image, aspect));
2786 assert(array_layer < anv_image_aux_layers(image, aspect, level));
2787 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2788 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
2789
2790 struct anv_address addr =
2791 anv_image_get_fast_clear_type_addr(device, image, aspect);
2792 addr.offset += 4; /* Go past the fast clear type */
2793
2794 if (image->type == VK_IMAGE_TYPE_3D) {
2795 for (uint32_t l = 0; l < level; l++)
2796 addr.offset += anv_minify(image->extent.depth, l) * 4;
2797 } else {
2798 addr.offset += level * image->array_size * 4;
2799 }
2800 addr.offset += array_layer * 4;
2801
2802 return addr;
2803 }
2804
2805 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2806 static inline bool
2807 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2808 const struct anv_image *image)
2809 {
2810 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
2811 return false;
2812
2813 if (devinfo->gen < 8)
2814 return false;
2815
2816 return image->samples == 1;
2817 }
2818
2819 void
2820 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
2821 const struct anv_image *image,
2822 VkImageAspectFlagBits aspect,
2823 enum isl_aux_usage aux_usage,
2824 uint32_t level,
2825 uint32_t base_layer,
2826 uint32_t layer_count);
2827
2828 void
2829 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
2830 const struct anv_image *image,
2831 VkImageAspectFlagBits aspect,
2832 enum isl_aux_usage aux_usage,
2833 enum isl_format format, struct isl_swizzle swizzle,
2834 uint32_t level, uint32_t base_layer, uint32_t layer_count,
2835 VkRect2D area, union isl_color_value clear_color);
2836 void
2837 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
2838 const struct anv_image *image,
2839 VkImageAspectFlags aspects,
2840 enum isl_aux_usage depth_aux_usage,
2841 uint32_t level,
2842 uint32_t base_layer, uint32_t layer_count,
2843 VkRect2D area,
2844 float depth_value, uint8_t stencil_value);
2845 void
2846 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
2847 const struct anv_image *image,
2848 VkImageAspectFlagBits aspect, uint32_t level,
2849 uint32_t base_layer, uint32_t layer_count,
2850 enum isl_aux_op hiz_op);
2851 void
2852 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
2853 const struct anv_image *image,
2854 VkImageAspectFlags aspects,
2855 uint32_t level,
2856 uint32_t base_layer, uint32_t layer_count,
2857 VkRect2D area, uint8_t stencil_value);
2858 void
2859 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
2860 const struct anv_image *image,
2861 VkImageAspectFlagBits aspect,
2862 uint32_t base_layer, uint32_t layer_count,
2863 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
2864 bool predicate);
2865 void
2866 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
2867 const struct anv_image *image,
2868 VkImageAspectFlagBits aspect, uint32_t level,
2869 uint32_t base_layer, uint32_t layer_count,
2870 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
2871 bool predicate);
2872
2873 void
2874 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
2875 const struct anv_image *image,
2876 uint32_t base_level, uint32_t level_count,
2877 uint32_t base_layer, uint32_t layer_count);
2878
2879 enum isl_aux_usage
2880 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2881 const struct anv_image *image,
2882 const VkImageAspectFlagBits aspect,
2883 const VkImageLayout layout);
2884
2885 enum anv_fast_clear_type
2886 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
2887 const struct anv_image * const image,
2888 const VkImageAspectFlagBits aspect,
2889 const VkImageLayout layout);
2890
2891 /* This is defined as a macro so that it works for both
2892 * VkImageSubresourceRange and VkImageSubresourceLayers
2893 */
2894 #define anv_get_layerCount(_image, _range) \
2895 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2896 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2897
2898 static inline uint32_t
2899 anv_get_levelCount(const struct anv_image *image,
2900 const VkImageSubresourceRange *range)
2901 {
2902 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2903 image->levels - range->baseMipLevel : range->levelCount;
2904 }
2905
2906 static inline VkImageAspectFlags
2907 anv_image_expand_aspects(const struct anv_image *image,
2908 VkImageAspectFlags aspects)
2909 {
2910 /* If the underlying image has color plane aspects and
2911 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
2912 * the underlying image. */
2913 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
2914 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
2915 return image->aspects;
2916
2917 return aspects;
2918 }
2919
2920 static inline bool
2921 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
2922 VkImageAspectFlags aspects2)
2923 {
2924 if (aspects1 == aspects2)
2925 return true;
2926
2927 /* Only 1 color aspects are compatibles. */
2928 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2929 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2930 _mesa_bitcount(aspects1) == _mesa_bitcount(aspects2))
2931 return true;
2932
2933 return false;
2934 }
2935
2936 struct anv_image_view {
2937 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2938
2939 VkImageAspectFlags aspect_mask;
2940 VkFormat vk_format;
2941 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2942
2943 unsigned n_planes;
2944 struct {
2945 uint32_t image_plane;
2946
2947 struct isl_view isl;
2948
2949 /**
2950 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2951 * image layout of SHADER_READ_ONLY_OPTIMAL or
2952 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2953 */
2954 struct anv_surface_state optimal_sampler_surface_state;
2955
2956 /**
2957 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2958 * image layout of GENERAL.
2959 */
2960 struct anv_surface_state general_sampler_surface_state;
2961
2962 /**
2963 * RENDER_SURFACE_STATE when using image as a storage image. Separate
2964 * states for write-only and readable, using the real format for
2965 * write-only and the lowered format for readable.
2966 */
2967 struct anv_surface_state storage_surface_state;
2968 struct anv_surface_state writeonly_storage_surface_state;
2969
2970 struct brw_image_param storage_image_param;
2971 } planes[3];
2972 };
2973
2974 enum anv_image_view_state_flags {
2975 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
2976 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
2977 };
2978
2979 void anv_image_fill_surface_state(struct anv_device *device,
2980 const struct anv_image *image,
2981 VkImageAspectFlagBits aspect,
2982 const struct isl_view *view,
2983 isl_surf_usage_flags_t view_usage,
2984 enum isl_aux_usage aux_usage,
2985 const union isl_color_value *clear_color,
2986 enum anv_image_view_state_flags flags,
2987 struct anv_surface_state *state_inout,
2988 struct brw_image_param *image_param_out);
2989
2990 struct anv_image_create_info {
2991 const VkImageCreateInfo *vk_info;
2992
2993 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2994 isl_tiling_flags_t isl_tiling_flags;
2995
2996 /** These flags will be added to any derived from VkImageCreateInfo. */
2997 isl_surf_usage_flags_t isl_extra_usage_flags;
2998
2999 uint32_t stride;
3000 };
3001
3002 VkResult anv_image_create(VkDevice _device,
3003 const struct anv_image_create_info *info,
3004 const VkAllocationCallbacks* alloc,
3005 VkImage *pImage);
3006
3007 #ifdef ANDROID
3008 VkResult anv_image_from_gralloc(VkDevice device_h,
3009 const VkImageCreateInfo *base_info,
3010 const VkNativeBufferANDROID *gralloc_info,
3011 const VkAllocationCallbacks *alloc,
3012 VkImage *pImage);
3013 #endif
3014
3015 const struct anv_surface *
3016 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3017 VkImageAspectFlags aspect_mask);
3018
3019 enum isl_format
3020 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3021
3022 static inline struct VkExtent3D
3023 anv_sanitize_image_extent(const VkImageType imageType,
3024 const struct VkExtent3D imageExtent)
3025 {
3026 switch (imageType) {
3027 case VK_IMAGE_TYPE_1D:
3028 return (VkExtent3D) { imageExtent.width, 1, 1 };
3029 case VK_IMAGE_TYPE_2D:
3030 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3031 case VK_IMAGE_TYPE_3D:
3032 return imageExtent;
3033 default:
3034 unreachable("invalid image type");
3035 }
3036 }
3037
3038 static inline struct VkOffset3D
3039 anv_sanitize_image_offset(const VkImageType imageType,
3040 const struct VkOffset3D imageOffset)
3041 {
3042 switch (imageType) {
3043 case VK_IMAGE_TYPE_1D:
3044 return (VkOffset3D) { imageOffset.x, 0, 0 };
3045 case VK_IMAGE_TYPE_2D:
3046 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3047 case VK_IMAGE_TYPE_3D:
3048 return imageOffset;
3049 default:
3050 unreachable("invalid image type");
3051 }
3052 }
3053
3054
3055 void anv_fill_buffer_surface_state(struct anv_device *device,
3056 struct anv_state state,
3057 enum isl_format format,
3058 struct anv_address address,
3059 uint32_t range, uint32_t stride);
3060
3061 static inline void
3062 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3063 const struct anv_attachment_state *att_state,
3064 const struct anv_image_view *iview)
3065 {
3066 const struct isl_format_layout *view_fmtl =
3067 isl_format_get_layout(iview->planes[0].isl.format);
3068
3069 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3070 if (view_fmtl->channels.c.bits) \
3071 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3072
3073 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3074 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3075 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3076 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3077
3078 #undef COPY_CLEAR_COLOR_CHANNEL
3079 }
3080
3081
3082 struct anv_ycbcr_conversion {
3083 const struct anv_format * format;
3084 VkSamplerYcbcrModelConversion ycbcr_model;
3085 VkSamplerYcbcrRange ycbcr_range;
3086 VkComponentSwizzle mapping[4];
3087 VkChromaLocation chroma_offsets[2];
3088 VkFilter chroma_filter;
3089 bool chroma_reconstruction;
3090 };
3091
3092 struct anv_sampler {
3093 uint32_t state[3][4];
3094 uint32_t n_planes;
3095 struct anv_ycbcr_conversion *conversion;
3096 };
3097
3098 struct anv_framebuffer {
3099 uint32_t width;
3100 uint32_t height;
3101 uint32_t layers;
3102
3103 uint32_t attachment_count;
3104 struct anv_image_view * attachments[0];
3105 };
3106
3107 struct anv_subpass_attachment {
3108 VkImageUsageFlagBits usage;
3109 uint32_t attachment;
3110 VkImageLayout layout;
3111 };
3112
3113 struct anv_subpass {
3114 uint32_t attachment_count;
3115
3116 /**
3117 * A pointer to all attachment references used in this subpass.
3118 * Only valid if ::attachment_count > 0.
3119 */
3120 struct anv_subpass_attachment * attachments;
3121 uint32_t input_count;
3122 struct anv_subpass_attachment * input_attachments;
3123 uint32_t color_count;
3124 struct anv_subpass_attachment * color_attachments;
3125 struct anv_subpass_attachment * resolve_attachments;
3126
3127 struct anv_subpass_attachment depth_stencil_attachment;
3128
3129 uint32_t view_mask;
3130
3131 /** Subpass has a depth/stencil self-dependency */
3132 bool has_ds_self_dep;
3133
3134 /** Subpass has at least one resolve attachment */
3135 bool has_resolve;
3136 };
3137
3138 static inline unsigned
3139 anv_subpass_view_count(const struct anv_subpass *subpass)
3140 {
3141 return MAX2(1, _mesa_bitcount(subpass->view_mask));
3142 }
3143
3144 struct anv_render_pass_attachment {
3145 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3146 * its members individually.
3147 */
3148 VkFormat format;
3149 uint32_t samples;
3150 VkImageUsageFlags usage;
3151 VkAttachmentLoadOp load_op;
3152 VkAttachmentStoreOp store_op;
3153 VkAttachmentLoadOp stencil_load_op;
3154 VkImageLayout initial_layout;
3155 VkImageLayout final_layout;
3156 VkImageLayout first_subpass_layout;
3157
3158 /* The subpass id in which the attachment will be used last. */
3159 uint32_t last_subpass_idx;
3160 };
3161
3162 struct anv_render_pass {
3163 uint32_t attachment_count;
3164 uint32_t subpass_count;
3165 /* An array of subpass_count+1 flushes, one per subpass boundary */
3166 enum anv_pipe_bits * subpass_flushes;
3167 struct anv_render_pass_attachment * attachments;
3168 struct anv_subpass subpasses[0];
3169 };
3170
3171 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3172
3173 struct anv_query_pool {
3174 VkQueryType type;
3175 VkQueryPipelineStatisticFlags pipeline_statistics;
3176 /** Stride between slots, in bytes */
3177 uint32_t stride;
3178 /** Number of slots in this query pool */
3179 uint32_t slots;
3180 struct anv_bo bo;
3181 };
3182
3183 int anv_get_entrypoint_index(const char *name);
3184
3185 bool
3186 anv_entrypoint_is_enabled(int index, uint32_t core_version,
3187 const struct anv_instance_extension_table *instance,
3188 const struct anv_device_extension_table *device);
3189
3190 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3191 const char *name);
3192
3193 void anv_dump_image_to_ppm(struct anv_device *device,
3194 struct anv_image *image, unsigned miplevel,
3195 unsigned array_layer, VkImageAspectFlagBits aspect,
3196 const char *filename);
3197
3198 enum anv_dump_action {
3199 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3200 };
3201
3202 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3203 void anv_dump_finish(void);
3204
3205 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3206 struct anv_framebuffer *fb);
3207
3208 static inline uint32_t
3209 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3210 {
3211 /* This function must be called from within a subpass. */
3212 assert(cmd_state->pass && cmd_state->subpass);
3213
3214 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3215
3216 /* The id of this subpass shouldn't exceed the number of subpasses in this
3217 * render pass minus 1.
3218 */
3219 assert(subpass_id < cmd_state->pass->subpass_count);
3220 return subpass_id;
3221 }
3222
3223 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3224 \
3225 static inline struct __anv_type * \
3226 __anv_type ## _from_handle(__VkType _handle) \
3227 { \
3228 return (struct __anv_type *) _handle; \
3229 } \
3230 \
3231 static inline __VkType \
3232 __anv_type ## _to_handle(struct __anv_type *_obj) \
3233 { \
3234 return (__VkType) _obj; \
3235 }
3236
3237 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3238 \
3239 static inline struct __anv_type * \
3240 __anv_type ## _from_handle(__VkType _handle) \
3241 { \
3242 return (struct __anv_type *)(uintptr_t) _handle; \
3243 } \
3244 \
3245 static inline __VkType \
3246 __anv_type ## _to_handle(struct __anv_type *_obj) \
3247 { \
3248 return (__VkType)(uintptr_t) _obj; \
3249 }
3250
3251 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3252 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3253
3254 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3255 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3256 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3257 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3258 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3259
3260 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3261 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3262 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3263 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3264 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3265 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3266 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
3267 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3268 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3269 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3270 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3271 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3272 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3273 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3274 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3275 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3276 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3277 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3278 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3279 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3280 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3281 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3282 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3283
3284 /* Gen-specific function declarations */
3285 #ifdef genX
3286 # include "anv_genX.h"
3287 #else
3288 # define genX(x) gen7_##x
3289 # include "anv_genX.h"
3290 # undef genX
3291 # define genX(x) gen75_##x
3292 # include "anv_genX.h"
3293 # undef genX
3294 # define genX(x) gen8_##x
3295 # include "anv_genX.h"
3296 # undef genX
3297 # define genX(x) gen9_##x
3298 # include "anv_genX.h"
3299 # undef genX
3300 # define genX(x) gen10_##x
3301 # include "anv_genX.h"
3302 # undef genX
3303 # define genX(x) gen11_##x
3304 # include "anv_genX.h"
3305 # undef genX
3306 #endif
3307
3308 #endif /* ANV_PRIVATE_H */