anv: Drop separate chipset_id fields
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 static inline int32_t
247 align_i32(int32_t v, int32_t a)
248 {
249 assert(a != 0 && a == (a & -a));
250 return (v + a - 1) & ~(a - 1);
251 }
252
253 /** Alignment must be a power of 2. */
254 static inline bool
255 anv_is_aligned(uintmax_t n, uintmax_t a)
256 {
257 assert(a == (a & -a));
258 return (n & (a - 1)) == 0;
259 }
260
261 static inline uint32_t
262 anv_minify(uint32_t n, uint32_t levels)
263 {
264 if (unlikely(n == 0))
265 return 0;
266 else
267 return MAX2(n >> levels, 1);
268 }
269
270 static inline float
271 anv_clamp_f(float f, float min, float max)
272 {
273 assert(min < max);
274
275 if (f > max)
276 return max;
277 else if (f < min)
278 return min;
279 else
280 return f;
281 }
282
283 static inline bool
284 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
285 {
286 if (*inout_mask & clear_mask) {
287 *inout_mask &= ~clear_mask;
288 return true;
289 } else {
290 return false;
291 }
292 }
293
294 static inline union isl_color_value
295 vk_to_isl_color(VkClearColorValue color)
296 {
297 return (union isl_color_value) {
298 .u32 = {
299 color.uint32[0],
300 color.uint32[1],
301 color.uint32[2],
302 color.uint32[3],
303 },
304 };
305 }
306
307 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
308 {
309 uintptr_t mask = (1ull << bits) - 1;
310 *flags = ptr & mask;
311 return (void *) (ptr & ~mask);
312 }
313
314 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
315 {
316 uintptr_t value = (uintptr_t) ptr;
317 uintptr_t mask = (1ull << bits) - 1;
318 return value | (mask & flags);
319 }
320
321 #define for_each_bit(b, dword) \
322 for (uint32_t __dword = (dword); \
323 (b) = __builtin_ffs(__dword) - 1, __dword; \
324 __dword &= ~(1 << (b)))
325
326 #define typed_memcpy(dest, src, count) ({ \
327 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
328 memcpy((dest), (src), (count) * sizeof(*(src))); \
329 })
330
331 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
332 * to be added here in order to utilize mapping in debug/error/perf macros.
333 */
334 #define REPORT_OBJECT_TYPE(o) \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), void*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
428 /* The void expression results in a compile-time error \
429 when assigning the result to something. */ \
430 (void)0)))))))))))))))))))))))))))))))
431
432 /* Whenever we generate an error, pass it through this function. Useful for
433 * debugging, where we can break on it. Only call at error site, not when
434 * propagating errors. Might be useful to plug in a stack trace here.
435 */
436
437 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
438 VkDebugReportObjectTypeEXT type, VkResult error,
439 const char *file, int line, const char *format,
440 va_list args);
441
442 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
443 VkDebugReportObjectTypeEXT type, VkResult error,
444 const char *file, int line, const char *format, ...)
445 anv_printflike(7, 8);
446
447 #ifdef DEBUG
448 #define vk_error(error) __vk_errorf(NULL, NULL,\
449 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
450 error, __FILE__, __LINE__, NULL)
451 #define vk_errorfi(instance, obj, error, format, ...)\
452 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
453 __FILE__, __LINE__, format, ## __VA_ARGS__)
454 #define vk_errorf(device, obj, error, format, ...)\
455 vk_errorfi(anv_device_instance_or_null(device),\
456 obj, error, format, ## __VA_ARGS__)
457 #else
458 #define vk_error(error) error
459 #define vk_errorfi(instance, obj, error, format, ...) error
460 #define vk_errorf(device, obj, error, format, ...) error
461 #endif
462
463 /**
464 * Warn on ignored extension structs.
465 *
466 * The Vulkan spec requires us to ignore unsupported or unknown structs in
467 * a pNext chain. In debug mode, emitting warnings for ignored structs may
468 * help us discover structs that we should not have ignored.
469 *
470 *
471 * From the Vulkan 1.0.38 spec:
472 *
473 * Any component of the implementation (the loader, any enabled layers,
474 * and drivers) must skip over, without processing (other than reading the
475 * sType and pNext members) any chained structures with sType values not
476 * defined by extensions supported by that component.
477 */
478 #define anv_debug_ignored_stype(sType) \
479 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
480
481 void __anv_perf_warn(struct anv_device *device, const void *object,
482 VkDebugReportObjectTypeEXT type, const char *file,
483 int line, const char *format, ...)
484 anv_printflike(6, 7);
485 void anv_loge(const char *format, ...) anv_printflike(1, 2);
486 void anv_loge_v(const char *format, va_list va);
487
488 /**
489 * Print a FINISHME message, including its source location.
490 */
491 #define anv_finishme(format, ...) \
492 do { \
493 static bool reported = false; \
494 if (!reported) { \
495 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
496 ##__VA_ARGS__); \
497 reported = true; \
498 } \
499 } while (0)
500
501 /**
502 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
503 */
504 #define anv_perf_warn(instance, obj, format, ...) \
505 do { \
506 static bool reported = false; \
507 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
508 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
509 format, ##__VA_ARGS__); \
510 reported = true; \
511 } \
512 } while (0)
513
514 /* A non-fatal assert. Useful for debugging. */
515 #ifdef DEBUG
516 #define anv_assert(x) ({ \
517 if (unlikely(!(x))) \
518 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
519 })
520 #else
521 #define anv_assert(x)
522 #endif
523
524 /* A multi-pointer allocator
525 *
526 * When copying data structures from the user (such as a render pass), it's
527 * common to need to allocate data for a bunch of different things. Instead
528 * of doing several allocations and having to handle all of the error checking
529 * that entails, it can be easier to do a single allocation. This struct
530 * helps facilitate that. The intended usage looks like this:
531 *
532 * ANV_MULTIALLOC(ma)
533 * anv_multialloc_add(&ma, &main_ptr, 1);
534 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
535 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
536 *
537 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
538 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
539 */
540 struct anv_multialloc {
541 size_t size;
542 size_t align;
543
544 uint32_t ptr_count;
545 void **ptrs[8];
546 };
547
548 #define ANV_MULTIALLOC_INIT \
549 ((struct anv_multialloc) { 0, })
550
551 #define ANV_MULTIALLOC(_name) \
552 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
553
554 __attribute__((always_inline))
555 static inline void
556 _anv_multialloc_add(struct anv_multialloc *ma,
557 void **ptr, size_t size, size_t align)
558 {
559 size_t offset = align_u64(ma->size, align);
560 ma->size = offset + size;
561 ma->align = MAX2(ma->align, align);
562
563 /* Store the offset in the pointer. */
564 *ptr = (void *)(uintptr_t)offset;
565
566 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
567 ma->ptrs[ma->ptr_count++] = ptr;
568 }
569
570 #define anv_multialloc_add_size(_ma, _ptr, _size) \
571 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
572
573 #define anv_multialloc_add(_ma, _ptr, _count) \
574 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
575
576 __attribute__((always_inline))
577 static inline void *
578 anv_multialloc_alloc(struct anv_multialloc *ma,
579 const VkAllocationCallbacks *alloc,
580 VkSystemAllocationScope scope)
581 {
582 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
583 if (!ptr)
584 return NULL;
585
586 /* Fill out each of the pointers with their final value.
587 *
588 * for (uint32_t i = 0; i < ma->ptr_count; i++)
589 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
590 *
591 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
592 * constant, GCC is incapable of figuring this out and unrolling the loop
593 * so we have to give it a little help.
594 */
595 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
596 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
597 if ((_i) < ma->ptr_count) \
598 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
599 _ANV_MULTIALLOC_UPDATE_POINTER(0);
600 _ANV_MULTIALLOC_UPDATE_POINTER(1);
601 _ANV_MULTIALLOC_UPDATE_POINTER(2);
602 _ANV_MULTIALLOC_UPDATE_POINTER(3);
603 _ANV_MULTIALLOC_UPDATE_POINTER(4);
604 _ANV_MULTIALLOC_UPDATE_POINTER(5);
605 _ANV_MULTIALLOC_UPDATE_POINTER(6);
606 _ANV_MULTIALLOC_UPDATE_POINTER(7);
607 #undef _ANV_MULTIALLOC_UPDATE_POINTER
608
609 return ptr;
610 }
611
612 __attribute__((always_inline))
613 static inline void *
614 anv_multialloc_alloc2(struct anv_multialloc *ma,
615 const VkAllocationCallbacks *parent_alloc,
616 const VkAllocationCallbacks *alloc,
617 VkSystemAllocationScope scope)
618 {
619 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
620 }
621
622 struct anv_bo {
623 uint32_t gem_handle;
624
625 uint32_t refcount;
626
627 /* Index into the current validation list. This is used by the
628 * validation list building alrogithm to track which buffers are already
629 * in the validation list so that we can ensure uniqueness.
630 */
631 uint32_t index;
632
633 /* Index for use with util_sparse_array_free_list */
634 uint32_t free_index;
635
636 /* Last known offset. This value is provided by the kernel when we
637 * execbuf and is used as the presumed offset for the next bunch of
638 * relocations.
639 */
640 uint64_t offset;
641
642 uint64_t size;
643
644 /* Map for internally mapped BOs.
645 *
646 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
647 */
648 void *map;
649
650 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
651 uint32_t flags;
652
653 /** True if this BO may be shared with other processes */
654 bool is_external:1;
655
656 /** True if this BO is a wrapper
657 *
658 * When set to true, none of the fields in this BO are meaningful except
659 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
660 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
661 * is set in the physical device.
662 */
663 bool is_wrapper:1;
664
665 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
666 bool has_fixed_address:1;
667
668 /** True if this BO wraps a host pointer */
669 bool from_host_ptr:1;
670
671 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
672 bool has_client_visible_address:1;
673 };
674
675 static inline struct anv_bo *
676 anv_bo_ref(struct anv_bo *bo)
677 {
678 p_atomic_inc(&bo->refcount);
679 return bo;
680 }
681
682 static inline struct anv_bo *
683 anv_bo_unwrap(struct anv_bo *bo)
684 {
685 while (bo->is_wrapper)
686 bo = bo->map;
687 return bo;
688 }
689
690 /* Represents a lock-free linked list of "free" things. This is used by
691 * both the block pool and the state pools. Unfortunately, in order to
692 * solve the ABA problem, we can't use a single uint32_t head.
693 */
694 union anv_free_list {
695 struct {
696 uint32_t offset;
697
698 /* A simple count that is incremented every time the head changes. */
699 uint32_t count;
700 };
701 /* Make sure it's aligned to 64 bits. This will make atomic operations
702 * faster on 32 bit platforms.
703 */
704 uint64_t u64 __attribute__ ((aligned (8)));
705 };
706
707 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
708
709 struct anv_block_state {
710 union {
711 struct {
712 uint32_t next;
713 uint32_t end;
714 };
715 /* Make sure it's aligned to 64 bits. This will make atomic operations
716 * faster on 32 bit platforms.
717 */
718 uint64_t u64 __attribute__ ((aligned (8)));
719 };
720 };
721
722 #define anv_block_pool_foreach_bo(bo, pool) \
723 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
724 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
725 _pp_bo++)
726
727 #define ANV_MAX_BLOCK_POOL_BOS 20
728
729 struct anv_block_pool {
730 struct anv_device *device;
731 bool use_softpin;
732
733 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
734 * around the actual BO so that we grow the pool after the wrapper BO has
735 * been put in a relocation list. This is only used in the non-softpin
736 * case.
737 */
738 struct anv_bo wrapper_bo;
739
740 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
741 struct anv_bo *bo;
742 uint32_t nbos;
743
744 uint64_t size;
745
746 /* The address where the start of the pool is pinned. The various bos that
747 * are created as the pool grows will have addresses in the range
748 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
749 */
750 uint64_t start_address;
751
752 /* The offset from the start of the bo to the "center" of the block
753 * pool. Pointers to allocated blocks are given by
754 * bo.map + center_bo_offset + offsets.
755 */
756 uint32_t center_bo_offset;
757
758 /* Current memory map of the block pool. This pointer may or may not
759 * point to the actual beginning of the block pool memory. If
760 * anv_block_pool_alloc_back has ever been called, then this pointer
761 * will point to the "center" position of the buffer and all offsets
762 * (negative or positive) given out by the block pool alloc functions
763 * will be valid relative to this pointer.
764 *
765 * In particular, map == bo.map + center_offset
766 *
767 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
768 * since it will handle the softpin case as well, where this points to NULL.
769 */
770 void *map;
771 int fd;
772
773 /**
774 * Array of mmaps and gem handles owned by the block pool, reclaimed when
775 * the block pool is destroyed.
776 */
777 struct u_vector mmap_cleanups;
778
779 struct anv_block_state state;
780
781 struct anv_block_state back_state;
782 };
783
784 /* Block pools are backed by a fixed-size 1GB memfd */
785 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
786
787 /* The center of the block pool is also the middle of the memfd. This may
788 * change in the future if we decide differently for some reason.
789 */
790 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
791
792 static inline uint32_t
793 anv_block_pool_size(struct anv_block_pool *pool)
794 {
795 return pool->state.end + pool->back_state.end;
796 }
797
798 struct anv_state {
799 int32_t offset;
800 uint32_t alloc_size;
801 void *map;
802 uint32_t idx;
803 };
804
805 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
806
807 struct anv_fixed_size_state_pool {
808 union anv_free_list free_list;
809 struct anv_block_state block;
810 };
811
812 #define ANV_MIN_STATE_SIZE_LOG2 6
813 #define ANV_MAX_STATE_SIZE_LOG2 21
814
815 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
816
817 struct anv_free_entry {
818 uint32_t next;
819 struct anv_state state;
820 };
821
822 struct anv_state_table {
823 struct anv_device *device;
824 int fd;
825 struct anv_free_entry *map;
826 uint32_t size;
827 struct anv_block_state state;
828 struct u_vector cleanups;
829 };
830
831 struct anv_state_pool {
832 struct anv_block_pool block_pool;
833
834 struct anv_state_table table;
835
836 /* The size of blocks which will be allocated from the block pool */
837 uint32_t block_size;
838
839 /** Free list for "back" allocations */
840 union anv_free_list back_alloc_free_list;
841
842 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
843 };
844
845 struct anv_state_stream_block;
846
847 struct anv_state_stream {
848 struct anv_state_pool *state_pool;
849
850 /* The size of blocks to allocate from the state pool */
851 uint32_t block_size;
852
853 /* Current block we're allocating from */
854 struct anv_state block;
855
856 /* Offset into the current block at which to allocate the next state */
857 uint32_t next;
858
859 /* List of all blocks allocated from this pool */
860 struct anv_state_stream_block *block_list;
861 };
862
863 /* The block_pool functions exported for testing only. The block pool should
864 * only be used via a state pool (see below).
865 */
866 VkResult anv_block_pool_init(struct anv_block_pool *pool,
867 struct anv_device *device,
868 uint64_t start_address,
869 uint32_t initial_size);
870 void anv_block_pool_finish(struct anv_block_pool *pool);
871 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
872 uint32_t block_size, uint32_t *padding);
873 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
874 uint32_t block_size);
875 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
876
877 VkResult anv_state_pool_init(struct anv_state_pool *pool,
878 struct anv_device *device,
879 uint64_t start_address,
880 uint32_t block_size);
881 void anv_state_pool_finish(struct anv_state_pool *pool);
882 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
883 uint32_t state_size, uint32_t alignment);
884 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
885 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
886 void anv_state_stream_init(struct anv_state_stream *stream,
887 struct anv_state_pool *state_pool,
888 uint32_t block_size);
889 void anv_state_stream_finish(struct anv_state_stream *stream);
890 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
891 uint32_t size, uint32_t alignment);
892
893 VkResult anv_state_table_init(struct anv_state_table *table,
894 struct anv_device *device,
895 uint32_t initial_entries);
896 void anv_state_table_finish(struct anv_state_table *table);
897 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
898 uint32_t count);
899 void anv_free_list_push(union anv_free_list *list,
900 struct anv_state_table *table,
901 uint32_t idx, uint32_t count);
902 struct anv_state* anv_free_list_pop(union anv_free_list *list,
903 struct anv_state_table *table);
904
905
906 static inline struct anv_state *
907 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
908 {
909 return &table->map[idx].state;
910 }
911 /**
912 * Implements a pool of re-usable BOs. The interface is identical to that
913 * of block_pool except that each block is its own BO.
914 */
915 struct anv_bo_pool {
916 struct anv_device *device;
917
918 struct util_sparse_array_free_list free_list[16];
919 };
920
921 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
922 void anv_bo_pool_finish(struct anv_bo_pool *pool);
923 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
924 struct anv_bo **bo_out);
925 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
926
927 struct anv_scratch_pool {
928 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
929 struct anv_bo *bos[16][MESA_SHADER_STAGES];
930 };
931
932 void anv_scratch_pool_init(struct anv_device *device,
933 struct anv_scratch_pool *pool);
934 void anv_scratch_pool_finish(struct anv_device *device,
935 struct anv_scratch_pool *pool);
936 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
937 struct anv_scratch_pool *pool,
938 gl_shader_stage stage,
939 unsigned per_thread_scratch);
940
941 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
942 struct anv_bo_cache {
943 struct util_sparse_array bo_map;
944 pthread_mutex_t mutex;
945 };
946
947 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
948 void anv_bo_cache_finish(struct anv_bo_cache *cache);
949
950 struct anv_memory_type {
951 /* Standard bits passed on to the client */
952 VkMemoryPropertyFlags propertyFlags;
953 uint32_t heapIndex;
954 };
955
956 struct anv_memory_heap {
957 /* Standard bits passed on to the client */
958 VkDeviceSize size;
959 VkMemoryHeapFlags flags;
960
961 /* Driver-internal book-keeping */
962 VkDeviceSize used;
963 };
964
965 struct anv_physical_device {
966 VK_LOADER_DATA _loader_data;
967
968 struct anv_instance * instance;
969 bool no_hw;
970 char path[20];
971 const char * name;
972 struct {
973 uint16_t domain;
974 uint8_t bus;
975 uint8_t device;
976 uint8_t function;
977 } pci_info;
978 struct gen_device_info info;
979 /** Amount of "GPU memory" we want to advertise
980 *
981 * Clearly, this value is bogus since Intel is a UMA architecture. On
982 * gen7 platforms, we are limited by GTT size unless we want to implement
983 * fine-grained tracking and GTT splitting. On Broadwell and above we are
984 * practically unlimited. However, we will never report more than 3/4 of
985 * the total system ram to try and avoid running out of RAM.
986 */
987 bool supports_48bit_addresses;
988 struct brw_compiler * compiler;
989 struct isl_device isl_dev;
990 struct gen_perf_config * perf;
991 int cmd_parser_version;
992 bool has_softpin;
993 bool has_exec_async;
994 bool has_exec_capture;
995 bool has_exec_fence;
996 bool has_syncobj;
997 bool has_syncobj_wait;
998 bool has_context_priority;
999 bool has_context_isolation;
1000 bool has_mem_available;
1001 uint64_t gtt_size;
1002
1003 bool use_softpin;
1004 bool always_use_bindless;
1005
1006 /** True if we can access buffers using A64 messages */
1007 bool has_a64_buffer_access;
1008 /** True if we can use bindless access for images */
1009 bool has_bindless_images;
1010 /** True if we can use bindless access for samplers */
1011 bool has_bindless_samplers;
1012
1013 bool always_flush_cache;
1014
1015 struct anv_device_extension_table supported_extensions;
1016
1017 uint32_t eu_total;
1018 uint32_t subslice_total;
1019
1020 struct {
1021 uint32_t type_count;
1022 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1023 uint32_t heap_count;
1024 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1025 } memory;
1026
1027 uint8_t driver_build_sha1[20];
1028 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1029 uint8_t driver_uuid[VK_UUID_SIZE];
1030 uint8_t device_uuid[VK_UUID_SIZE];
1031
1032 struct disk_cache * disk_cache;
1033
1034 struct wsi_device wsi_device;
1035 int local_fd;
1036 int master_fd;
1037 };
1038
1039 struct anv_app_info {
1040 const char* app_name;
1041 uint32_t app_version;
1042 const char* engine_name;
1043 uint32_t engine_version;
1044 uint32_t api_version;
1045 };
1046
1047 struct anv_instance {
1048 VK_LOADER_DATA _loader_data;
1049
1050 VkAllocationCallbacks alloc;
1051
1052 struct anv_app_info app_info;
1053
1054 struct anv_instance_extension_table enabled_extensions;
1055 struct anv_instance_dispatch_table dispatch;
1056 struct anv_physical_device_dispatch_table physical_device_dispatch;
1057 struct anv_device_dispatch_table device_dispatch;
1058
1059 int physicalDeviceCount;
1060 struct anv_physical_device physicalDevice;
1061
1062 bool pipeline_cache_enabled;
1063
1064 struct vk_debug_report_instance debug_report_callbacks;
1065
1066 struct driOptionCache dri_options;
1067 struct driOptionCache available_dri_options;
1068 };
1069
1070 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1071 void anv_finish_wsi(struct anv_physical_device *physical_device);
1072
1073 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1074 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1075 const char *name);
1076
1077 struct anv_queue_submit {
1078 struct anv_cmd_buffer * cmd_buffer;
1079
1080 uint32_t fence_count;
1081 uint32_t fence_array_length;
1082 struct drm_i915_gem_exec_fence * fences;
1083
1084 uint32_t temporary_semaphore_count;
1085 uint32_t temporary_semaphore_array_length;
1086 struct anv_semaphore_impl * temporary_semaphores;
1087
1088 /* Semaphores to be signaled with a SYNC_FD. */
1089 struct anv_semaphore ** sync_fd_semaphores;
1090 uint32_t sync_fd_semaphore_count;
1091 uint32_t sync_fd_semaphore_array_length;
1092
1093 /* Allocated only with non shareable timelines. */
1094 struct anv_timeline ** wait_timelines;
1095 uint32_t wait_timeline_count;
1096 uint32_t wait_timeline_array_length;
1097 uint64_t * wait_timeline_values;
1098
1099 struct anv_timeline ** signal_timelines;
1100 uint32_t signal_timeline_count;
1101 uint32_t signal_timeline_array_length;
1102 uint64_t * signal_timeline_values;
1103
1104 int in_fence;
1105 bool need_out_fence;
1106 int out_fence;
1107
1108 uint32_t fence_bo_count;
1109 uint32_t fence_bo_array_length;
1110 /* An array of struct anv_bo pointers with lower bit used as a flag to
1111 * signal we will wait on that BO (see anv_(un)pack_ptr).
1112 */
1113 uintptr_t * fence_bos;
1114
1115 const VkAllocationCallbacks * alloc;
1116 VkSystemAllocationScope alloc_scope;
1117
1118 struct anv_bo * simple_bo;
1119 uint32_t simple_bo_size;
1120
1121 struct list_head link;
1122 };
1123
1124 struct anv_queue {
1125 VK_LOADER_DATA _loader_data;
1126
1127 struct anv_device * device;
1128
1129 /*
1130 * A list of struct anv_queue_submit to be submitted to i915.
1131 */
1132 struct list_head queued_submits;
1133
1134 VkDeviceQueueCreateFlags flags;
1135 };
1136
1137 struct anv_pipeline_cache {
1138 struct anv_device * device;
1139 pthread_mutex_t mutex;
1140
1141 struct hash_table * nir_cache;
1142
1143 struct hash_table * cache;
1144 };
1145
1146 struct nir_xfb_info;
1147 struct anv_pipeline_bind_map;
1148
1149 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1150 struct anv_device *device,
1151 bool cache_enabled);
1152 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1153
1154 struct anv_shader_bin *
1155 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1156 const void *key, uint32_t key_size);
1157 struct anv_shader_bin *
1158 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1159 const void *key_data, uint32_t key_size,
1160 const void *kernel_data, uint32_t kernel_size,
1161 const void *constant_data,
1162 uint32_t constant_data_size,
1163 const struct brw_stage_prog_data *prog_data,
1164 uint32_t prog_data_size,
1165 const struct brw_compile_stats *stats,
1166 uint32_t num_stats,
1167 const struct nir_xfb_info *xfb_info,
1168 const struct anv_pipeline_bind_map *bind_map);
1169
1170 struct anv_shader_bin *
1171 anv_device_search_for_kernel(struct anv_device *device,
1172 struct anv_pipeline_cache *cache,
1173 const void *key_data, uint32_t key_size,
1174 bool *user_cache_bit);
1175
1176 struct anv_shader_bin *
1177 anv_device_upload_kernel(struct anv_device *device,
1178 struct anv_pipeline_cache *cache,
1179 const void *key_data, uint32_t key_size,
1180 const void *kernel_data, uint32_t kernel_size,
1181 const void *constant_data,
1182 uint32_t constant_data_size,
1183 const struct brw_stage_prog_data *prog_data,
1184 uint32_t prog_data_size,
1185 const struct brw_compile_stats *stats,
1186 uint32_t num_stats,
1187 const struct nir_xfb_info *xfb_info,
1188 const struct anv_pipeline_bind_map *bind_map);
1189
1190 struct nir_shader;
1191 struct nir_shader_compiler_options;
1192
1193 struct nir_shader *
1194 anv_device_search_for_nir(struct anv_device *device,
1195 struct anv_pipeline_cache *cache,
1196 const struct nir_shader_compiler_options *nir_options,
1197 unsigned char sha1_key[20],
1198 void *mem_ctx);
1199
1200 void
1201 anv_device_upload_nir(struct anv_device *device,
1202 struct anv_pipeline_cache *cache,
1203 const struct nir_shader *nir,
1204 unsigned char sha1_key[20]);
1205
1206 struct anv_device {
1207 VK_LOADER_DATA _loader_data;
1208
1209 VkAllocationCallbacks alloc;
1210
1211 struct anv_physical_device * physical;
1212 bool no_hw;
1213 struct gen_device_info info;
1214 struct isl_device isl_dev;
1215 int context_id;
1216 int fd;
1217 bool can_chain_batches;
1218 bool robust_buffer_access;
1219 struct anv_device_extension_table enabled_extensions;
1220 struct anv_device_dispatch_table dispatch;
1221
1222 pthread_mutex_t vma_mutex;
1223 struct util_vma_heap vma_lo;
1224 struct util_vma_heap vma_cva;
1225 struct util_vma_heap vma_hi;
1226
1227 /** List of all anv_device_memory objects */
1228 struct list_head memory_objects;
1229
1230 struct anv_bo_pool batch_bo_pool;
1231
1232 struct anv_bo_cache bo_cache;
1233
1234 struct anv_state_pool dynamic_state_pool;
1235 struct anv_state_pool instruction_state_pool;
1236 struct anv_state_pool binding_table_pool;
1237 struct anv_state_pool surface_state_pool;
1238
1239 struct anv_bo * workaround_bo;
1240 struct anv_bo * trivial_batch_bo;
1241 struct anv_bo * hiz_clear_bo;
1242
1243 struct anv_pipeline_cache default_pipeline_cache;
1244 struct blorp_context blorp;
1245
1246 struct anv_state border_colors;
1247
1248 struct anv_state slice_hash;
1249
1250 struct anv_queue queue;
1251
1252 struct anv_scratch_pool scratch_pool;
1253
1254 pthread_mutex_t mutex;
1255 pthread_cond_t queue_submit;
1256 int _lost;
1257
1258 struct gen_batch_decode_ctx decoder_ctx;
1259 /*
1260 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1261 * the cmd_buffer's list.
1262 */
1263 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1264
1265 int perf_fd; /* -1 if no opened */
1266 uint64_t perf_metric; /* 0 if unset */
1267
1268 struct gen_aux_map_context *aux_map_ctx;
1269 };
1270
1271 static inline struct anv_instance *
1272 anv_device_instance_or_null(const struct anv_device *device)
1273 {
1274 return device ? device->physical->instance : NULL;
1275 }
1276
1277 static inline struct anv_state_pool *
1278 anv_binding_table_pool(struct anv_device *device)
1279 {
1280 if (device->physical->use_softpin)
1281 return &device->binding_table_pool;
1282 else
1283 return &device->surface_state_pool;
1284 }
1285
1286 static inline struct anv_state
1287 anv_binding_table_pool_alloc(struct anv_device *device) {
1288 if (device->physical->use_softpin)
1289 return anv_state_pool_alloc(&device->binding_table_pool,
1290 device->binding_table_pool.block_size, 0);
1291 else
1292 return anv_state_pool_alloc_back(&device->surface_state_pool);
1293 }
1294
1295 static inline void
1296 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1297 anv_state_pool_free(anv_binding_table_pool(device), state);
1298 }
1299
1300 static inline uint32_t
1301 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1302 {
1303 if (bo->is_external)
1304 return device->isl_dev.mocs.external;
1305 else
1306 return device->isl_dev.mocs.internal;
1307 }
1308
1309 void anv_device_init_blorp(struct anv_device *device);
1310 void anv_device_finish_blorp(struct anv_device *device);
1311
1312 void _anv_device_set_all_queue_lost(struct anv_device *device);
1313 VkResult _anv_device_set_lost(struct anv_device *device,
1314 const char *file, int line,
1315 const char *msg, ...)
1316 anv_printflike(4, 5);
1317 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1318 const char *file, int line,
1319 const char *msg, ...)
1320 anv_printflike(4, 5);
1321 #define anv_device_set_lost(dev, ...) \
1322 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1323 #define anv_queue_set_lost(queue, ...) \
1324 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1325
1326 static inline bool
1327 anv_device_is_lost(struct anv_device *device)
1328 {
1329 return unlikely(p_atomic_read(&device->_lost));
1330 }
1331
1332 VkResult anv_device_query_status(struct anv_device *device);
1333
1334
1335 enum anv_bo_alloc_flags {
1336 /** Specifies that the BO must have a 32-bit address
1337 *
1338 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1339 */
1340 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1341
1342 /** Specifies that the BO may be shared externally */
1343 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1344
1345 /** Specifies that the BO should be mapped */
1346 ANV_BO_ALLOC_MAPPED = (1 << 2),
1347
1348 /** Specifies that the BO should be snooped so we get coherency */
1349 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1350
1351 /** Specifies that the BO should be captured in error states */
1352 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1353
1354 /** Specifies that the BO will have an address assigned by the caller
1355 *
1356 * Such BOs do not exist in any VMA heap.
1357 */
1358 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1359
1360 /** Enables implicit synchronization on the BO
1361 *
1362 * This is the opposite of EXEC_OBJECT_ASYNC.
1363 */
1364 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1365
1366 /** Enables implicit synchronization on the BO
1367 *
1368 * This is equivalent to EXEC_OBJECT_WRITE.
1369 */
1370 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1371
1372 /** Has an address which is visible to the client */
1373 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1374 };
1375
1376 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1377 enum anv_bo_alloc_flags alloc_flags,
1378 uint64_t explicit_address,
1379 struct anv_bo **bo);
1380 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1381 void *host_ptr, uint32_t size,
1382 enum anv_bo_alloc_flags alloc_flags,
1383 uint64_t client_address,
1384 struct anv_bo **bo_out);
1385 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1386 enum anv_bo_alloc_flags alloc_flags,
1387 uint64_t client_address,
1388 struct anv_bo **bo);
1389 VkResult anv_device_export_bo(struct anv_device *device,
1390 struct anv_bo *bo, int *fd_out);
1391 void anv_device_release_bo(struct anv_device *device,
1392 struct anv_bo *bo);
1393
1394 static inline struct anv_bo *
1395 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1396 {
1397 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1398 }
1399
1400 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1401 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1402 int64_t timeout);
1403
1404 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1405 void anv_queue_finish(struct anv_queue *queue);
1406
1407 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1408 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1409 struct anv_batch *batch);
1410
1411 uint64_t anv_gettime_ns(void);
1412 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1413
1414 void* anv_gem_mmap(struct anv_device *device,
1415 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1416 void anv_gem_munmap(void *p, uint64_t size);
1417 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1418 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1419 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1420 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1421 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1422 int anv_gem_execbuffer(struct anv_device *device,
1423 struct drm_i915_gem_execbuffer2 *execbuf);
1424 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1425 uint32_t stride, uint32_t tiling);
1426 int anv_gem_create_context(struct anv_device *device);
1427 bool anv_gem_has_context_priority(int fd);
1428 int anv_gem_destroy_context(struct anv_device *device, int context);
1429 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1430 uint64_t value);
1431 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1432 uint64_t *value);
1433 int anv_gem_get_param(int fd, uint32_t param);
1434 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1435 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1436 int anv_gem_get_aperture(int fd, uint64_t *size);
1437 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1438 uint32_t *active, uint32_t *pending);
1439 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1440 int anv_gem_reg_read(struct anv_device *device,
1441 uint32_t offset, uint64_t *result);
1442 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1443 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1444 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1445 uint32_t read_domains, uint32_t write_domain);
1446 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1447 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1448 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1449 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1450 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1451 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1452 uint32_t handle);
1453 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1454 uint32_t handle, int fd);
1455 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1456 bool anv_gem_supports_syncobj_wait(int fd);
1457 int anv_gem_syncobj_wait(struct anv_device *device,
1458 uint32_t *handles, uint32_t num_handles,
1459 int64_t abs_timeout_ns, bool wait_all);
1460
1461 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
1462 uint64_t client_address);
1463 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1464
1465 struct anv_reloc_list {
1466 uint32_t num_relocs;
1467 uint32_t array_length;
1468 struct drm_i915_gem_relocation_entry * relocs;
1469 struct anv_bo ** reloc_bos;
1470 uint32_t dep_words;
1471 BITSET_WORD * deps;
1472 };
1473
1474 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1475 const VkAllocationCallbacks *alloc);
1476 void anv_reloc_list_finish(struct anv_reloc_list *list,
1477 const VkAllocationCallbacks *alloc);
1478
1479 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1480 const VkAllocationCallbacks *alloc,
1481 uint32_t offset, struct anv_bo *target_bo,
1482 uint32_t delta, uint64_t *address_u64_out);
1483
1484 struct anv_batch_bo {
1485 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1486 struct list_head link;
1487
1488 struct anv_bo * bo;
1489
1490 /* Bytes actually consumed in this batch BO */
1491 uint32_t length;
1492
1493 struct anv_reloc_list relocs;
1494 };
1495
1496 struct anv_batch {
1497 const VkAllocationCallbacks * alloc;
1498
1499 void * start;
1500 void * end;
1501 void * next;
1502
1503 struct anv_reloc_list * relocs;
1504
1505 /* This callback is called (with the associated user data) in the event
1506 * that the batch runs out of space.
1507 */
1508 VkResult (*extend_cb)(struct anv_batch *, void *);
1509 void * user_data;
1510
1511 /**
1512 * Current error status of the command buffer. Used to track inconsistent
1513 * or incomplete command buffer states that are the consequence of run-time
1514 * errors such as out of memory scenarios. We want to track this in the
1515 * batch because the command buffer object is not visible to some parts
1516 * of the driver.
1517 */
1518 VkResult status;
1519 };
1520
1521 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1522 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1523 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1524 void *location, struct anv_bo *bo, uint32_t offset);
1525
1526 static inline VkResult
1527 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1528 {
1529 assert(error != VK_SUCCESS);
1530 if (batch->status == VK_SUCCESS)
1531 batch->status = error;
1532 return batch->status;
1533 }
1534
1535 static inline bool
1536 anv_batch_has_error(struct anv_batch *batch)
1537 {
1538 return batch->status != VK_SUCCESS;
1539 }
1540
1541 struct anv_address {
1542 struct anv_bo *bo;
1543 uint32_t offset;
1544 };
1545
1546 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1547
1548 static inline bool
1549 anv_address_is_null(struct anv_address addr)
1550 {
1551 return addr.bo == NULL && addr.offset == 0;
1552 }
1553
1554 static inline uint64_t
1555 anv_address_physical(struct anv_address addr)
1556 {
1557 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1558 return gen_canonical_address(addr.bo->offset + addr.offset);
1559 else
1560 return gen_canonical_address(addr.offset);
1561 }
1562
1563 static inline struct anv_address
1564 anv_address_add(struct anv_address addr, uint64_t offset)
1565 {
1566 addr.offset += offset;
1567 return addr;
1568 }
1569
1570 static inline void
1571 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1572 {
1573 unsigned reloc_size = 0;
1574 if (device->info.gen >= 8) {
1575 reloc_size = sizeof(uint64_t);
1576 *(uint64_t *)p = gen_canonical_address(v);
1577 } else {
1578 reloc_size = sizeof(uint32_t);
1579 *(uint32_t *)p = v;
1580 }
1581
1582 if (flush && !device->info.has_llc)
1583 gen_flush_range(p, reloc_size);
1584 }
1585
1586 static inline uint64_t
1587 _anv_combine_address(struct anv_batch *batch, void *location,
1588 const struct anv_address address, uint32_t delta)
1589 {
1590 if (address.bo == NULL) {
1591 return address.offset + delta;
1592 } else {
1593 assert(batch->start <= location && location < batch->end);
1594
1595 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1596 }
1597 }
1598
1599 #define __gen_address_type struct anv_address
1600 #define __gen_user_data struct anv_batch
1601 #define __gen_combine_address _anv_combine_address
1602
1603 /* Wrapper macros needed to work around preprocessor argument issues. In
1604 * particular, arguments don't get pre-evaluated if they are concatenated.
1605 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1606 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1607 * We can work around this easily enough with these helpers.
1608 */
1609 #define __anv_cmd_length(cmd) cmd ## _length
1610 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1611 #define __anv_cmd_header(cmd) cmd ## _header
1612 #define __anv_cmd_pack(cmd) cmd ## _pack
1613 #define __anv_reg_num(reg) reg ## _num
1614
1615 #define anv_pack_struct(dst, struc, ...) do { \
1616 struct struc __template = { \
1617 __VA_ARGS__ \
1618 }; \
1619 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1620 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1621 } while (0)
1622
1623 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1624 void *__dst = anv_batch_emit_dwords(batch, n); \
1625 if (__dst) { \
1626 struct cmd __template = { \
1627 __anv_cmd_header(cmd), \
1628 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1629 __VA_ARGS__ \
1630 }; \
1631 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1632 } \
1633 __dst; \
1634 })
1635
1636 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1637 do { \
1638 uint32_t *dw; \
1639 \
1640 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1641 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1642 if (!dw) \
1643 break; \
1644 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1645 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1646 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1647 } while (0)
1648
1649 #define anv_batch_emit(batch, cmd, name) \
1650 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1651 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1652 __builtin_expect(_dst != NULL, 1); \
1653 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1654 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1655 _dst = NULL; \
1656 }))
1657
1658 struct anv_device_memory {
1659 struct list_head link;
1660
1661 struct anv_bo * bo;
1662 struct anv_memory_type * type;
1663 VkDeviceSize map_size;
1664 void * map;
1665
1666 /* If set, we are holding reference to AHardwareBuffer
1667 * which we must release when memory is freed.
1668 */
1669 struct AHardwareBuffer * ahw;
1670
1671 /* If set, this memory comes from a host pointer. */
1672 void * host_ptr;
1673 };
1674
1675 /**
1676 * Header for Vertex URB Entry (VUE)
1677 */
1678 struct anv_vue_header {
1679 uint32_t Reserved;
1680 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1681 uint32_t ViewportIndex;
1682 float PointWidth;
1683 };
1684
1685 /** Struct representing a sampled image descriptor
1686 *
1687 * This descriptor layout is used for sampled images, bare sampler, and
1688 * combined image/sampler descriptors.
1689 */
1690 struct anv_sampled_image_descriptor {
1691 /** Bindless image handle
1692 *
1693 * This is expected to already be shifted such that the 20-bit
1694 * SURFACE_STATE table index is in the top 20 bits.
1695 */
1696 uint32_t image;
1697
1698 /** Bindless sampler handle
1699 *
1700 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1701 * to the dynamic state base address.
1702 */
1703 uint32_t sampler;
1704 };
1705
1706 struct anv_texture_swizzle_descriptor {
1707 /** Texture swizzle
1708 *
1709 * See also nir_intrinsic_channel_select_intel
1710 */
1711 uint8_t swizzle[4];
1712
1713 /** Unused padding to ensure the struct is a multiple of 64 bits */
1714 uint32_t _pad;
1715 };
1716
1717 /** Struct representing a storage image descriptor */
1718 struct anv_storage_image_descriptor {
1719 /** Bindless image handles
1720 *
1721 * These are expected to already be shifted such that the 20-bit
1722 * SURFACE_STATE table index is in the top 20 bits.
1723 */
1724 uint32_t read_write;
1725 uint32_t write_only;
1726 };
1727
1728 /** Struct representing a address/range descriptor
1729 *
1730 * The fields of this struct correspond directly to the data layout of
1731 * nir_address_format_64bit_bounded_global addresses. The last field is the
1732 * offset in the NIR address so it must be zero so that when you load the
1733 * descriptor you get a pointer to the start of the range.
1734 */
1735 struct anv_address_range_descriptor {
1736 uint64_t address;
1737 uint32_t range;
1738 uint32_t zero;
1739 };
1740
1741 enum anv_descriptor_data {
1742 /** The descriptor contains a BTI reference to a surface state */
1743 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1744 /** The descriptor contains a BTI reference to a sampler state */
1745 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1746 /** The descriptor contains an actual buffer view */
1747 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1748 /** The descriptor contains auxiliary image layout data */
1749 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1750 /** The descriptor contains auxiliary image layout data */
1751 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1752 /** anv_address_range_descriptor with a buffer address and range */
1753 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1754 /** Bindless surface handle */
1755 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1756 /** Storage image handles */
1757 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1758 /** Storage image handles */
1759 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1760 };
1761
1762 struct anv_descriptor_set_binding_layout {
1763 #ifndef NDEBUG
1764 /* The type of the descriptors in this binding */
1765 VkDescriptorType type;
1766 #endif
1767
1768 /* Flags provided when this binding was created */
1769 VkDescriptorBindingFlagsEXT flags;
1770
1771 /* Bitfield representing the type of data this descriptor contains */
1772 enum anv_descriptor_data data;
1773
1774 /* Maximum number of YCbCr texture/sampler planes */
1775 uint8_t max_plane_count;
1776
1777 /* Number of array elements in this binding (or size in bytes for inline
1778 * uniform data)
1779 */
1780 uint16_t array_size;
1781
1782 /* Index into the flattend descriptor set */
1783 uint16_t descriptor_index;
1784
1785 /* Index into the dynamic state array for a dynamic buffer */
1786 int16_t dynamic_offset_index;
1787
1788 /* Index into the descriptor set buffer views */
1789 int16_t buffer_view_index;
1790
1791 /* Offset into the descriptor buffer where this descriptor lives */
1792 uint32_t descriptor_offset;
1793
1794 /* Immutable samplers (or NULL if no immutable samplers) */
1795 struct anv_sampler **immutable_samplers;
1796 };
1797
1798 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1799
1800 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1801 VkDescriptorType type);
1802
1803 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1804 const struct anv_descriptor_set_binding_layout *binding,
1805 bool sampler);
1806
1807 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1808 const struct anv_descriptor_set_binding_layout *binding,
1809 bool sampler);
1810
1811 struct anv_descriptor_set_layout {
1812 /* Descriptor set layouts can be destroyed at almost any time */
1813 uint32_t ref_cnt;
1814
1815 /* Number of bindings in this descriptor set */
1816 uint16_t binding_count;
1817
1818 /* Total size of the descriptor set with room for all array entries */
1819 uint16_t size;
1820
1821 /* Shader stages affected by this descriptor set */
1822 uint16_t shader_stages;
1823
1824 /* Number of buffer views in this descriptor set */
1825 uint16_t buffer_view_count;
1826
1827 /* Number of dynamic offsets used by this descriptor set */
1828 uint16_t dynamic_offset_count;
1829
1830 /* For each shader stage, which offsets apply to that stage */
1831 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1832
1833 /* Size of the descriptor buffer for this descriptor set */
1834 uint32_t descriptor_buffer_size;
1835
1836 /* Bindings in this descriptor set */
1837 struct anv_descriptor_set_binding_layout binding[0];
1838 };
1839
1840 static inline void
1841 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1842 {
1843 assert(layout && layout->ref_cnt >= 1);
1844 p_atomic_inc(&layout->ref_cnt);
1845 }
1846
1847 static inline void
1848 anv_descriptor_set_layout_unref(struct anv_device *device,
1849 struct anv_descriptor_set_layout *layout)
1850 {
1851 assert(layout && layout->ref_cnt >= 1);
1852 if (p_atomic_dec_zero(&layout->ref_cnt))
1853 vk_free(&device->alloc, layout);
1854 }
1855
1856 struct anv_descriptor {
1857 VkDescriptorType type;
1858
1859 union {
1860 struct {
1861 VkImageLayout layout;
1862 struct anv_image_view *image_view;
1863 struct anv_sampler *sampler;
1864 };
1865
1866 struct {
1867 struct anv_buffer *buffer;
1868 uint64_t offset;
1869 uint64_t range;
1870 };
1871
1872 struct anv_buffer_view *buffer_view;
1873 };
1874 };
1875
1876 struct anv_descriptor_set {
1877 struct anv_descriptor_pool *pool;
1878 struct anv_descriptor_set_layout *layout;
1879 uint32_t size;
1880
1881 /* State relative to anv_descriptor_pool::bo */
1882 struct anv_state desc_mem;
1883 /* Surface state for the descriptor buffer */
1884 struct anv_state desc_surface_state;
1885
1886 uint32_t buffer_view_count;
1887 struct anv_buffer_view *buffer_views;
1888
1889 /* Link to descriptor pool's desc_sets list . */
1890 struct list_head pool_link;
1891
1892 struct anv_descriptor descriptors[0];
1893 };
1894
1895 struct anv_buffer_view {
1896 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1897 uint64_t range; /**< VkBufferViewCreateInfo::range */
1898
1899 struct anv_address address;
1900
1901 struct anv_state surface_state;
1902 struct anv_state storage_surface_state;
1903 struct anv_state writeonly_storage_surface_state;
1904
1905 struct brw_image_param storage_image_param;
1906 };
1907
1908 struct anv_push_descriptor_set {
1909 struct anv_descriptor_set set;
1910
1911 /* Put this field right behind anv_descriptor_set so it fills up the
1912 * descriptors[0] field. */
1913 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1914
1915 /** True if the descriptor set buffer has been referenced by a draw or
1916 * dispatch command.
1917 */
1918 bool set_used_on_gpu;
1919
1920 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1921 };
1922
1923 struct anv_descriptor_pool {
1924 uint32_t size;
1925 uint32_t next;
1926 uint32_t free_list;
1927
1928 struct anv_bo *bo;
1929 struct util_vma_heap bo_heap;
1930
1931 struct anv_state_stream surface_state_stream;
1932 void *surface_state_free_list;
1933
1934 struct list_head desc_sets;
1935
1936 char data[0];
1937 };
1938
1939 enum anv_descriptor_template_entry_type {
1940 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1941 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1942 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1943 };
1944
1945 struct anv_descriptor_template_entry {
1946 /* The type of descriptor in this entry */
1947 VkDescriptorType type;
1948
1949 /* Binding in the descriptor set */
1950 uint32_t binding;
1951
1952 /* Offset at which to write into the descriptor set binding */
1953 uint32_t array_element;
1954
1955 /* Number of elements to write into the descriptor set binding */
1956 uint32_t array_count;
1957
1958 /* Offset into the user provided data */
1959 size_t offset;
1960
1961 /* Stride between elements into the user provided data */
1962 size_t stride;
1963 };
1964
1965 struct anv_descriptor_update_template {
1966 VkPipelineBindPoint bind_point;
1967
1968 /* The descriptor set this template corresponds to. This value is only
1969 * valid if the template was created with the templateType
1970 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1971 */
1972 uint8_t set;
1973
1974 /* Number of entries in this template */
1975 uint32_t entry_count;
1976
1977 /* Entries of the template */
1978 struct anv_descriptor_template_entry entries[0];
1979 };
1980
1981 size_t
1982 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1983
1984 void
1985 anv_descriptor_set_write_image_view(struct anv_device *device,
1986 struct anv_descriptor_set *set,
1987 const VkDescriptorImageInfo * const info,
1988 VkDescriptorType type,
1989 uint32_t binding,
1990 uint32_t element);
1991
1992 void
1993 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1994 struct anv_descriptor_set *set,
1995 VkDescriptorType type,
1996 struct anv_buffer_view *buffer_view,
1997 uint32_t binding,
1998 uint32_t element);
1999
2000 void
2001 anv_descriptor_set_write_buffer(struct anv_device *device,
2002 struct anv_descriptor_set *set,
2003 struct anv_state_stream *alloc_stream,
2004 VkDescriptorType type,
2005 struct anv_buffer *buffer,
2006 uint32_t binding,
2007 uint32_t element,
2008 VkDeviceSize offset,
2009 VkDeviceSize range);
2010 void
2011 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2012 struct anv_descriptor_set *set,
2013 uint32_t binding,
2014 const void *data,
2015 size_t offset,
2016 size_t size);
2017
2018 void
2019 anv_descriptor_set_write_template(struct anv_device *device,
2020 struct anv_descriptor_set *set,
2021 struct anv_state_stream *alloc_stream,
2022 const struct anv_descriptor_update_template *template,
2023 const void *data);
2024
2025 VkResult
2026 anv_descriptor_set_create(struct anv_device *device,
2027 struct anv_descriptor_pool *pool,
2028 struct anv_descriptor_set_layout *layout,
2029 struct anv_descriptor_set **out_set);
2030
2031 void
2032 anv_descriptor_set_destroy(struct anv_device *device,
2033 struct anv_descriptor_pool *pool,
2034 struct anv_descriptor_set *set);
2035
2036 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2037 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2038 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2039 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2040 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2041 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2042
2043 struct anv_pipeline_binding {
2044 /** Index in the descriptor set
2045 *
2046 * This is a flattened index; the descriptor set layout is already taken
2047 * into account.
2048 */
2049 uint32_t index;
2050
2051 /** The descriptor set this surface corresponds to.
2052 *
2053 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2054 * binding is not a normal descriptor set but something else.
2055 */
2056 uint8_t set;
2057
2058 union {
2059 /** Plane in the binding index for images */
2060 uint8_t plane;
2061
2062 /** Input attachment index (relative to the subpass) */
2063 uint8_t input_attachment_index;
2064
2065 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2066 uint8_t dynamic_offset_index;
2067 };
2068
2069 /** For a storage image, whether it is write-only */
2070 uint8_t write_only;
2071
2072 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2073 * assuming POD zero-initialization.
2074 */
2075 uint8_t pad;
2076 };
2077
2078 struct anv_push_range {
2079 /** Index in the descriptor set */
2080 uint32_t index;
2081
2082 /** Descriptor set index */
2083 uint8_t set;
2084
2085 /** Dynamic offset index (for dynamic UBOs) */
2086 uint8_t dynamic_offset_index;
2087
2088 /** Start offset in units of 32B */
2089 uint8_t start;
2090
2091 /** Range in units of 32B */
2092 uint8_t length;
2093 };
2094
2095 struct anv_pipeline_layout {
2096 struct {
2097 struct anv_descriptor_set_layout *layout;
2098 uint32_t dynamic_offset_start;
2099 } set[MAX_SETS];
2100
2101 uint32_t num_sets;
2102
2103 unsigned char sha1[20];
2104 };
2105
2106 struct anv_buffer {
2107 struct anv_device * device;
2108 VkDeviceSize size;
2109
2110 VkBufferUsageFlags usage;
2111
2112 /* Set when bound */
2113 struct anv_address address;
2114 };
2115
2116 static inline uint64_t
2117 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2118 {
2119 assert(offset <= buffer->size);
2120 if (range == VK_WHOLE_SIZE) {
2121 return buffer->size - offset;
2122 } else {
2123 assert(range + offset >= range);
2124 assert(range + offset <= buffer->size);
2125 return range;
2126 }
2127 }
2128
2129 enum anv_cmd_dirty_bits {
2130 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2131 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2132 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2133 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2134 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2135 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2136 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2137 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2138 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2139 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2140 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2141 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2142 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2143 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2144 };
2145 typedef uint32_t anv_cmd_dirty_mask_t;
2146
2147 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2148 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2149 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2150 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2151 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2152 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2153 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2154 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2155 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2156 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2157 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2158
2159 static inline enum anv_cmd_dirty_bits
2160 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2161 {
2162 switch (vk_state) {
2163 case VK_DYNAMIC_STATE_VIEWPORT:
2164 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2165 case VK_DYNAMIC_STATE_SCISSOR:
2166 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2167 case VK_DYNAMIC_STATE_LINE_WIDTH:
2168 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2169 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2170 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2171 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2172 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2173 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2174 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2175 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2176 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2177 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2178 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2179 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2180 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2181 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2182 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2183 default:
2184 assert(!"Unsupported dynamic state");
2185 return 0;
2186 }
2187 }
2188
2189
2190 enum anv_pipe_bits {
2191 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2192 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2193 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2194 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2195 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2196 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2197 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2198 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2199 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2200 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2201 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2202 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2203
2204 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2205 * a flush has happened but not a CS stall. The next time we do any sort
2206 * of invalidation we need to insert a CS stall at that time. Otherwise,
2207 * we would have to CS stall on every flush which could be bad.
2208 */
2209 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2210
2211 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2212 * target operations related to transfer commands with VkBuffer as
2213 * destination are ongoing. Some operations like copies on the command
2214 * streamer might need to be aware of this to trigger the appropriate stall
2215 * before they can proceed with the copy.
2216 */
2217 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2218 };
2219
2220 #define ANV_PIPE_FLUSH_BITS ( \
2221 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2222 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2223 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2224 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2225
2226 #define ANV_PIPE_STALL_BITS ( \
2227 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2228 ANV_PIPE_DEPTH_STALL_BIT | \
2229 ANV_PIPE_CS_STALL_BIT)
2230
2231 #define ANV_PIPE_INVALIDATE_BITS ( \
2232 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2233 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2234 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2235 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2236 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2237 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2238
2239 static inline enum anv_pipe_bits
2240 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2241 {
2242 enum anv_pipe_bits pipe_bits = 0;
2243
2244 unsigned b;
2245 for_each_bit(b, flags) {
2246 switch ((VkAccessFlagBits)(1 << b)) {
2247 case VK_ACCESS_SHADER_WRITE_BIT:
2248 /* We're transitioning a buffer that was previously used as write
2249 * destination through the data port. To make its content available
2250 * to future operations, flush the data cache.
2251 */
2252 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2253 break;
2254 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2255 /* We're transitioning a buffer that was previously used as render
2256 * target. To make its content available to future operations, flush
2257 * the render target cache.
2258 */
2259 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2260 break;
2261 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2262 /* We're transitioning a buffer that was previously used as depth
2263 * buffer. To make its content available to future operations, flush
2264 * the depth cache.
2265 */
2266 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2267 break;
2268 case VK_ACCESS_TRANSFER_WRITE_BIT:
2269 /* We're transitioning a buffer that was previously used as a
2270 * transfer write destination. Generic write operations include color
2271 * & depth operations as well as buffer operations like :
2272 * - vkCmdClearColorImage()
2273 * - vkCmdClearDepthStencilImage()
2274 * - vkCmdBlitImage()
2275 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2276 *
2277 * Most of these operations are implemented using Blorp which writes
2278 * through the render target, so flush that cache to make it visible
2279 * to future operations. And for depth related operations we also
2280 * need to flush the depth cache.
2281 */
2282 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2283 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2284 break;
2285 case VK_ACCESS_MEMORY_WRITE_BIT:
2286 /* We're transitioning a buffer for generic write operations. Flush
2287 * all the caches.
2288 */
2289 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2290 break;
2291 default:
2292 break; /* Nothing to do */
2293 }
2294 }
2295
2296 return pipe_bits;
2297 }
2298
2299 static inline enum anv_pipe_bits
2300 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2301 {
2302 enum anv_pipe_bits pipe_bits = 0;
2303
2304 unsigned b;
2305 for_each_bit(b, flags) {
2306 switch ((VkAccessFlagBits)(1 << b)) {
2307 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2308 /* Indirect draw commands take a buffer as input that we're going to
2309 * read from the command streamer to load some of the HW registers
2310 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2311 * command streamer stall so that all the cache flushes have
2312 * completed before the command streamer loads from memory.
2313 */
2314 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2315 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2316 * through a vertex buffer, so invalidate that cache.
2317 */
2318 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2319 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2320 * UBO from the buffer, so we need to invalidate constant cache.
2321 */
2322 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2323 break;
2324 case VK_ACCESS_INDEX_READ_BIT:
2325 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2326 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2327 * commands, so we invalidate the VF cache to make sure there is no
2328 * stale data when we start rendering.
2329 */
2330 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2331 break;
2332 case VK_ACCESS_UNIFORM_READ_BIT:
2333 /* We transitioning a buffer to be used as uniform data. Because
2334 * uniform is accessed through the data port & sampler, we need to
2335 * invalidate the texture cache (sampler) & constant cache (data
2336 * port) to avoid stale data.
2337 */
2338 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2339 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2340 break;
2341 case VK_ACCESS_SHADER_READ_BIT:
2342 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2343 case VK_ACCESS_TRANSFER_READ_BIT:
2344 /* Transitioning a buffer to be read through the sampler, so
2345 * invalidate the texture cache, we don't want any stale data.
2346 */
2347 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2348 break;
2349 case VK_ACCESS_MEMORY_READ_BIT:
2350 /* Transitioning a buffer for generic read, invalidate all the
2351 * caches.
2352 */
2353 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2354 break;
2355 case VK_ACCESS_MEMORY_WRITE_BIT:
2356 /* Generic write, make sure all previously written things land in
2357 * memory.
2358 */
2359 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2360 break;
2361 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2362 /* Transitioning a buffer for conditional rendering. We'll load the
2363 * content of this buffer into HW registers using the command
2364 * streamer, so we need to stall the command streamer to make sure
2365 * any in-flight flush operations have completed.
2366 */
2367 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2368 break;
2369 default:
2370 break; /* Nothing to do */
2371 }
2372 }
2373
2374 return pipe_bits;
2375 }
2376
2377 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2378 VK_IMAGE_ASPECT_COLOR_BIT | \
2379 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2380 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2381 VK_IMAGE_ASPECT_PLANE_2_BIT)
2382 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2383 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2384 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2385 VK_IMAGE_ASPECT_PLANE_2_BIT)
2386
2387 struct anv_vertex_binding {
2388 struct anv_buffer * buffer;
2389 VkDeviceSize offset;
2390 };
2391
2392 struct anv_xfb_binding {
2393 struct anv_buffer * buffer;
2394 VkDeviceSize offset;
2395 VkDeviceSize size;
2396 };
2397
2398 struct anv_push_constants {
2399 /** Push constant data provided by the client through vkPushConstants */
2400 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2401
2402 /** Dynamic offsets for dynamic UBOs and SSBOs */
2403 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2404
2405 struct {
2406 /** Base workgroup ID
2407 *
2408 * Used for vkCmdDispatchBase.
2409 */
2410 uint32_t base_work_group_id[3];
2411
2412 /** Subgroup ID
2413 *
2414 * This is never set by software but is implicitly filled out when
2415 * uploading the push constants for compute shaders.
2416 */
2417 uint32_t subgroup_id;
2418
2419 /** Pad out to a multiple of 32 bytes */
2420 uint32_t pad[4];
2421 } cs;
2422 };
2423
2424 struct anv_dynamic_state {
2425 struct {
2426 uint32_t count;
2427 VkViewport viewports[MAX_VIEWPORTS];
2428 } viewport;
2429
2430 struct {
2431 uint32_t count;
2432 VkRect2D scissors[MAX_SCISSORS];
2433 } scissor;
2434
2435 float line_width;
2436
2437 struct {
2438 float bias;
2439 float clamp;
2440 float slope;
2441 } depth_bias;
2442
2443 float blend_constants[4];
2444
2445 struct {
2446 float min;
2447 float max;
2448 } depth_bounds;
2449
2450 struct {
2451 uint32_t front;
2452 uint32_t back;
2453 } stencil_compare_mask;
2454
2455 struct {
2456 uint32_t front;
2457 uint32_t back;
2458 } stencil_write_mask;
2459
2460 struct {
2461 uint32_t front;
2462 uint32_t back;
2463 } stencil_reference;
2464
2465 struct {
2466 uint32_t factor;
2467 uint16_t pattern;
2468 } line_stipple;
2469 };
2470
2471 extern const struct anv_dynamic_state default_dynamic_state;
2472
2473 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2474 const struct anv_dynamic_state *src,
2475 uint32_t copy_mask);
2476
2477 struct anv_surface_state {
2478 struct anv_state state;
2479 /** Address of the surface referred to by this state
2480 *
2481 * This address is relative to the start of the BO.
2482 */
2483 struct anv_address address;
2484 /* Address of the aux surface, if any
2485 *
2486 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2487 *
2488 * With the exception of gen8, the bottom 12 bits of this address' offset
2489 * include extra aux information.
2490 */
2491 struct anv_address aux_address;
2492 /* Address of the clear color, if any
2493 *
2494 * This address is relative to the start of the BO.
2495 */
2496 struct anv_address clear_address;
2497 };
2498
2499 /**
2500 * Attachment state when recording a renderpass instance.
2501 *
2502 * The clear value is valid only if there exists a pending clear.
2503 */
2504 struct anv_attachment_state {
2505 enum isl_aux_usage aux_usage;
2506 enum isl_aux_usage input_aux_usage;
2507 struct anv_surface_state color;
2508 struct anv_surface_state input;
2509
2510 VkImageLayout current_layout;
2511 VkImageLayout current_stencil_layout;
2512 VkImageAspectFlags pending_clear_aspects;
2513 VkImageAspectFlags pending_load_aspects;
2514 bool fast_clear;
2515 VkClearValue clear_value;
2516 bool clear_color_is_zero_one;
2517 bool clear_color_is_zero;
2518
2519 /* When multiview is active, attachments with a renderpass clear
2520 * operation have their respective layers cleared on the first
2521 * subpass that uses them, and only in that subpass. We keep track
2522 * of this using a bitfield to indicate which layers of an attachment
2523 * have not been cleared yet when multiview is active.
2524 */
2525 uint32_t pending_clear_views;
2526 struct anv_image_view * image_view;
2527 };
2528
2529 /** State tracking for vertex buffer flushes
2530 *
2531 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2532 * addresses. If you happen to have two vertex buffers which get placed
2533 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2534 * collisions. In order to solve this problem, we track vertex address ranges
2535 * which are live in the cache and invalidate the cache if one ever exceeds 32
2536 * bits.
2537 */
2538 struct anv_vb_cache_range {
2539 /* Virtual address at which the live vertex buffer cache range starts for
2540 * this vertex buffer index.
2541 */
2542 uint64_t start;
2543
2544 /* Virtual address of the byte after where vertex buffer cache range ends.
2545 * This is exclusive such that end - start is the size of the range.
2546 */
2547 uint64_t end;
2548 };
2549
2550 /** State tracking for particular pipeline bind point
2551 *
2552 * This struct is the base struct for anv_cmd_graphics_state and
2553 * anv_cmd_compute_state. These are used to track state which is bound to a
2554 * particular type of pipeline. Generic state that applies per-stage such as
2555 * binding table offsets and push constants is tracked generically with a
2556 * per-stage array in anv_cmd_state.
2557 */
2558 struct anv_cmd_pipeline_state {
2559 struct anv_pipeline *pipeline;
2560
2561 struct anv_descriptor_set *descriptors[MAX_SETS];
2562 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2563 };
2564
2565 /** State tracking for graphics pipeline
2566 *
2567 * This has anv_cmd_pipeline_state as a base struct to track things which get
2568 * bound to a graphics pipeline. Along with general pipeline bind point state
2569 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2570 * state which is graphics-specific.
2571 */
2572 struct anv_cmd_graphics_state {
2573 struct anv_cmd_pipeline_state base;
2574
2575 anv_cmd_dirty_mask_t dirty;
2576 uint32_t vb_dirty;
2577
2578 struct anv_vb_cache_range ib_bound_range;
2579 struct anv_vb_cache_range ib_dirty_range;
2580 struct anv_vb_cache_range vb_bound_ranges[33];
2581 struct anv_vb_cache_range vb_dirty_ranges[33];
2582
2583 struct anv_dynamic_state dynamic;
2584
2585 struct {
2586 struct anv_buffer *index_buffer;
2587 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2588 uint32_t index_offset;
2589 } gen7;
2590 };
2591
2592 /** State tracking for compute pipeline
2593 *
2594 * This has anv_cmd_pipeline_state as a base struct to track things which get
2595 * bound to a compute pipeline. Along with general pipeline bind point state
2596 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2597 * state which is compute-specific.
2598 */
2599 struct anv_cmd_compute_state {
2600 struct anv_cmd_pipeline_state base;
2601
2602 bool pipeline_dirty;
2603
2604 struct anv_address num_workgroups;
2605 };
2606
2607 /** State required while building cmd buffer */
2608 struct anv_cmd_state {
2609 /* PIPELINE_SELECT.PipelineSelection */
2610 uint32_t current_pipeline;
2611 const struct gen_l3_config * current_l3_config;
2612 uint32_t last_aux_map_state;
2613
2614 struct anv_cmd_graphics_state gfx;
2615 struct anv_cmd_compute_state compute;
2616
2617 enum anv_pipe_bits pending_pipe_bits;
2618 VkShaderStageFlags descriptors_dirty;
2619 VkShaderStageFlags push_constants_dirty;
2620
2621 struct anv_framebuffer * framebuffer;
2622 struct anv_render_pass * pass;
2623 struct anv_subpass * subpass;
2624 VkRect2D render_area;
2625 uint32_t restart_index;
2626 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2627 bool xfb_enabled;
2628 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2629 VkShaderStageFlags push_constant_stages;
2630 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2631 struct anv_state binding_tables[MESA_SHADER_STAGES];
2632 struct anv_state samplers[MESA_SHADER_STAGES];
2633
2634 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2635 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2636 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2637
2638 /**
2639 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2640 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2641 * and before invoking the secondary in ExecuteCommands.
2642 */
2643 bool pma_fix_enabled;
2644
2645 /**
2646 * Whether or not we know for certain that HiZ is enabled for the current
2647 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2648 * enabled or not, this will be false.
2649 */
2650 bool hiz_enabled;
2651
2652 bool conditional_render_enabled;
2653
2654 /**
2655 * Last rendering scale argument provided to
2656 * genX(cmd_buffer_emit_hashing_mode)().
2657 */
2658 unsigned current_hash_scale;
2659
2660 /**
2661 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2662 * valid only when recording a render pass instance.
2663 */
2664 struct anv_attachment_state * attachments;
2665
2666 /**
2667 * Surface states for color render targets. These are stored in a single
2668 * flat array. For depth-stencil attachments, the surface state is simply
2669 * left blank.
2670 */
2671 struct anv_state render_pass_states;
2672
2673 /**
2674 * A null surface state of the right size to match the framebuffer. This
2675 * is one of the states in render_pass_states.
2676 */
2677 struct anv_state null_surface_state;
2678 };
2679
2680 struct anv_cmd_pool {
2681 VkAllocationCallbacks alloc;
2682 struct list_head cmd_buffers;
2683 };
2684
2685 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2686
2687 enum anv_cmd_buffer_exec_mode {
2688 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2689 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2690 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2691 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2692 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2693 };
2694
2695 struct anv_cmd_buffer {
2696 VK_LOADER_DATA _loader_data;
2697
2698 struct anv_device * device;
2699
2700 struct anv_cmd_pool * pool;
2701 struct list_head pool_link;
2702
2703 struct anv_batch batch;
2704
2705 /* Fields required for the actual chain of anv_batch_bo's.
2706 *
2707 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2708 */
2709 struct list_head batch_bos;
2710 enum anv_cmd_buffer_exec_mode exec_mode;
2711
2712 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2713 * referenced by this command buffer
2714 *
2715 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2716 */
2717 struct u_vector seen_bbos;
2718
2719 /* A vector of int32_t's for every block of binding tables.
2720 *
2721 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2722 */
2723 struct u_vector bt_block_states;
2724 struct anv_state bt_next;
2725
2726 struct anv_reloc_list surface_relocs;
2727 /** Last seen surface state block pool center bo offset */
2728 uint32_t last_ss_pool_center;
2729
2730 /* Serial for tracking buffer completion */
2731 uint32_t serial;
2732
2733 /* Stream objects for storing temporary data */
2734 struct anv_state_stream surface_state_stream;
2735 struct anv_state_stream dynamic_state_stream;
2736
2737 VkCommandBufferUsageFlags usage_flags;
2738 VkCommandBufferLevel level;
2739
2740 struct anv_cmd_state state;
2741
2742 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2743 uint64_t intel_perf_marker;
2744 };
2745
2746 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2747 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2748 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2749 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2750 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2751 struct anv_cmd_buffer *secondary);
2752 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2753 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2754 struct anv_cmd_buffer *cmd_buffer,
2755 const VkSemaphore *in_semaphores,
2756 const uint64_t *in_wait_values,
2757 uint32_t num_in_semaphores,
2758 const VkSemaphore *out_semaphores,
2759 const uint64_t *out_signal_values,
2760 uint32_t num_out_semaphores,
2761 VkFence fence);
2762
2763 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2764
2765 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2766 const void *data, uint32_t size, uint32_t alignment);
2767 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2768 uint32_t *a, uint32_t *b,
2769 uint32_t dwords, uint32_t alignment);
2770
2771 struct anv_address
2772 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2773 struct anv_state
2774 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2775 uint32_t entries, uint32_t *state_offset);
2776 struct anv_state
2777 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2778 struct anv_state
2779 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2780 uint32_t size, uint32_t alignment);
2781
2782 VkResult
2783 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2784
2785 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2786 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2787 bool depth_clamp_enable);
2788 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2789
2790 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2791 struct anv_render_pass *pass,
2792 struct anv_framebuffer *framebuffer,
2793 const VkClearValue *clear_values);
2794
2795 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2796
2797 struct anv_state
2798 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2799 gl_shader_stage stage);
2800 struct anv_state
2801 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2802
2803 const struct anv_image_view *
2804 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2805
2806 VkResult
2807 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2808 uint32_t num_entries,
2809 uint32_t *state_offset,
2810 struct anv_state *bt_state);
2811
2812 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2813
2814 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2815
2816 enum anv_fence_type {
2817 ANV_FENCE_TYPE_NONE = 0,
2818 ANV_FENCE_TYPE_BO,
2819 ANV_FENCE_TYPE_WSI_BO,
2820 ANV_FENCE_TYPE_SYNCOBJ,
2821 ANV_FENCE_TYPE_WSI,
2822 };
2823
2824 enum anv_bo_fence_state {
2825 /** Indicates that this is a new (or newly reset fence) */
2826 ANV_BO_FENCE_STATE_RESET,
2827
2828 /** Indicates that this fence has been submitted to the GPU but is still
2829 * (as far as we know) in use by the GPU.
2830 */
2831 ANV_BO_FENCE_STATE_SUBMITTED,
2832
2833 ANV_BO_FENCE_STATE_SIGNALED,
2834 };
2835
2836 struct anv_fence_impl {
2837 enum anv_fence_type type;
2838
2839 union {
2840 /** Fence implementation for BO fences
2841 *
2842 * These fences use a BO and a set of CPU-tracked state flags. The BO
2843 * is added to the object list of the last execbuf call in a QueueSubmit
2844 * and is marked EXEC_WRITE. The state flags track when the BO has been
2845 * submitted to the kernel. We need to do this because Vulkan lets you
2846 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2847 * will say it's idle in this case.
2848 */
2849 struct {
2850 struct anv_bo *bo;
2851 enum anv_bo_fence_state state;
2852 } bo;
2853
2854 /** DRM syncobj handle for syncobj-based fences */
2855 uint32_t syncobj;
2856
2857 /** WSI fence */
2858 struct wsi_fence *fence_wsi;
2859 };
2860 };
2861
2862 struct anv_fence {
2863 /* Permanent fence state. Every fence has some form of permanent state
2864 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2865 * cross-process fences) or it could just be a dummy for use internally.
2866 */
2867 struct anv_fence_impl permanent;
2868
2869 /* Temporary fence state. A fence *may* have temporary state. That state
2870 * is added to the fence by an import operation and is reset back to
2871 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2872 * state cannot be signaled because the fence must already be signaled
2873 * before the temporary state can be exported from the fence in the other
2874 * process and imported here.
2875 */
2876 struct anv_fence_impl temporary;
2877 };
2878
2879 void anv_fence_reset_temporary(struct anv_device *device,
2880 struct anv_fence *fence);
2881
2882 struct anv_event {
2883 uint64_t semaphore;
2884 struct anv_state state;
2885 };
2886
2887 enum anv_semaphore_type {
2888 ANV_SEMAPHORE_TYPE_NONE = 0,
2889 ANV_SEMAPHORE_TYPE_DUMMY,
2890 ANV_SEMAPHORE_TYPE_BO,
2891 ANV_SEMAPHORE_TYPE_WSI_BO,
2892 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2893 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2894 ANV_SEMAPHORE_TYPE_TIMELINE,
2895 };
2896
2897 struct anv_timeline_point {
2898 struct list_head link;
2899
2900 uint64_t serial;
2901
2902 /* Number of waiter on this point, when > 0 the point should not be garbage
2903 * collected.
2904 */
2905 int waiting;
2906
2907 /* BO used for synchronization. */
2908 struct anv_bo *bo;
2909 };
2910
2911 struct anv_timeline {
2912 pthread_mutex_t mutex;
2913 pthread_cond_t cond;
2914
2915 uint64_t highest_past;
2916 uint64_t highest_pending;
2917
2918 struct list_head points;
2919 struct list_head free_points;
2920 };
2921
2922 struct anv_semaphore_impl {
2923 enum anv_semaphore_type type;
2924
2925 union {
2926 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2927 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2928 * object list on any execbuf2 calls for which this semaphore is used as
2929 * a wait or signal fence. When used as a signal fence or when type ==
2930 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2931 */
2932 struct anv_bo *bo;
2933
2934 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2935 * If the semaphore is in the unsignaled state due to either just being
2936 * created or because it has been used for a wait, fd will be -1.
2937 */
2938 int fd;
2939
2940 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2941 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2942 * import so we don't need to bother with a userspace cache.
2943 */
2944 uint32_t syncobj;
2945
2946 /* Non shareable timeline semaphore
2947 *
2948 * Used when kernel don't have support for timeline semaphores.
2949 */
2950 struct anv_timeline timeline;
2951 };
2952 };
2953
2954 struct anv_semaphore {
2955 uint32_t refcount;
2956
2957 /* Permanent semaphore state. Every semaphore has some form of permanent
2958 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2959 * (for cross-process semaphores0 or it could just be a dummy for use
2960 * internally.
2961 */
2962 struct anv_semaphore_impl permanent;
2963
2964 /* Temporary semaphore state. A semaphore *may* have temporary state.
2965 * That state is added to the semaphore by an import operation and is reset
2966 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2967 * semaphore with temporary state cannot be signaled because the semaphore
2968 * must already be signaled before the temporary state can be exported from
2969 * the semaphore in the other process and imported here.
2970 */
2971 struct anv_semaphore_impl temporary;
2972 };
2973
2974 void anv_semaphore_reset_temporary(struct anv_device *device,
2975 struct anv_semaphore *semaphore);
2976
2977 struct anv_shader_module {
2978 unsigned char sha1[20];
2979 uint32_t size;
2980 char data[0];
2981 };
2982
2983 static inline gl_shader_stage
2984 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2985 {
2986 assert(__builtin_popcount(vk_stage) == 1);
2987 return ffs(vk_stage) - 1;
2988 }
2989
2990 static inline VkShaderStageFlagBits
2991 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2992 {
2993 return (1 << mesa_stage);
2994 }
2995
2996 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2997
2998 #define anv_foreach_stage(stage, stage_bits) \
2999 for (gl_shader_stage stage, \
3000 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3001 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3002 __tmp &= ~(1 << (stage)))
3003
3004 struct anv_pipeline_bind_map {
3005 unsigned char surface_sha1[20];
3006 unsigned char sampler_sha1[20];
3007 unsigned char push_sha1[20];
3008
3009 uint32_t surface_count;
3010 uint32_t sampler_count;
3011
3012 struct anv_pipeline_binding * surface_to_descriptor;
3013 struct anv_pipeline_binding * sampler_to_descriptor;
3014
3015 struct anv_push_range push_ranges[4];
3016 };
3017
3018 struct anv_shader_bin_key {
3019 uint32_t size;
3020 uint8_t data[0];
3021 };
3022
3023 struct anv_shader_bin {
3024 uint32_t ref_cnt;
3025
3026 const struct anv_shader_bin_key *key;
3027
3028 struct anv_state kernel;
3029 uint32_t kernel_size;
3030
3031 struct anv_state constant_data;
3032 uint32_t constant_data_size;
3033
3034 const struct brw_stage_prog_data *prog_data;
3035 uint32_t prog_data_size;
3036
3037 struct brw_compile_stats stats[3];
3038 uint32_t num_stats;
3039
3040 struct nir_xfb_info *xfb_info;
3041
3042 struct anv_pipeline_bind_map bind_map;
3043 };
3044
3045 struct anv_shader_bin *
3046 anv_shader_bin_create(struct anv_device *device,
3047 const void *key, uint32_t key_size,
3048 const void *kernel, uint32_t kernel_size,
3049 const void *constant_data, uint32_t constant_data_size,
3050 const struct brw_stage_prog_data *prog_data,
3051 uint32_t prog_data_size, const void *prog_data_param,
3052 const struct brw_compile_stats *stats, uint32_t num_stats,
3053 const struct nir_xfb_info *xfb_info,
3054 const struct anv_pipeline_bind_map *bind_map);
3055
3056 void
3057 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3058
3059 static inline void
3060 anv_shader_bin_ref(struct anv_shader_bin *shader)
3061 {
3062 assert(shader && shader->ref_cnt >= 1);
3063 p_atomic_inc(&shader->ref_cnt);
3064 }
3065
3066 static inline void
3067 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3068 {
3069 assert(shader && shader->ref_cnt >= 1);
3070 if (p_atomic_dec_zero(&shader->ref_cnt))
3071 anv_shader_bin_destroy(device, shader);
3072 }
3073
3074 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3075 #define MAX_PIPELINE_EXECUTABLES 7
3076
3077 struct anv_pipeline_executable {
3078 gl_shader_stage stage;
3079
3080 struct brw_compile_stats stats;
3081
3082 char *nir;
3083 char *disasm;
3084 };
3085
3086 struct anv_pipeline {
3087 struct anv_device * device;
3088 struct anv_batch batch;
3089 uint32_t batch_data[512];
3090 struct anv_reloc_list batch_relocs;
3091 anv_cmd_dirty_mask_t dynamic_state_mask;
3092 struct anv_dynamic_state dynamic_state;
3093
3094 void * mem_ctx;
3095
3096 VkPipelineCreateFlags flags;
3097 struct anv_subpass * subpass;
3098
3099 bool needs_data_cache;
3100
3101 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3102
3103 uint32_t num_executables;
3104 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3105
3106 struct {
3107 const struct gen_l3_config * l3_config;
3108 uint32_t total_size;
3109 } urb;
3110
3111 VkShaderStageFlags active_stages;
3112 struct anv_state blend_state;
3113
3114 uint32_t vb_used;
3115 struct anv_pipeline_vertex_binding {
3116 uint32_t stride;
3117 bool instanced;
3118 uint32_t instance_divisor;
3119 } vb[MAX_VBS];
3120
3121 uint8_t xfb_used;
3122
3123 bool primitive_restart;
3124 uint32_t topology;
3125
3126 uint32_t cs_right_mask;
3127
3128 bool writes_depth;
3129 bool depth_test_enable;
3130 bool writes_stencil;
3131 bool stencil_test_enable;
3132 bool depth_clamp_enable;
3133 bool depth_clip_enable;
3134 bool sample_shading_enable;
3135 bool kill_pixel;
3136 bool depth_bounds_test_enable;
3137
3138 struct {
3139 uint32_t sf[7];
3140 uint32_t depth_stencil_state[3];
3141 } gen7;
3142
3143 struct {
3144 uint32_t sf[4];
3145 uint32_t raster[5];
3146 uint32_t wm_depth_stencil[3];
3147 } gen8;
3148
3149 struct {
3150 uint32_t wm_depth_stencil[4];
3151 } gen9;
3152
3153 uint32_t interface_descriptor_data[8];
3154 };
3155
3156 static inline bool
3157 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3158 gl_shader_stage stage)
3159 {
3160 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3161 }
3162
3163 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3164 static inline const struct brw_##prefix##_prog_data * \
3165 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3166 { \
3167 if (anv_pipeline_has_stage(pipeline, stage)) { \
3168 return (const struct brw_##prefix##_prog_data *) \
3169 pipeline->shaders[stage]->prog_data; \
3170 } else { \
3171 return NULL; \
3172 } \
3173 }
3174
3175 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3176 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3177 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3178 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3179 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3180 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3181
3182 static inline const struct brw_vue_prog_data *
3183 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3184 {
3185 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3186 return &get_gs_prog_data(pipeline)->base;
3187 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3188 return &get_tes_prog_data(pipeline)->base;
3189 else
3190 return &get_vs_prog_data(pipeline)->base;
3191 }
3192
3193 VkResult
3194 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3195 struct anv_pipeline_cache *cache,
3196 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3197 const VkAllocationCallbacks *alloc);
3198
3199 VkResult
3200 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3201 struct anv_pipeline_cache *cache,
3202 const VkComputePipelineCreateInfo *info,
3203 const struct anv_shader_module *module,
3204 const char *entrypoint,
3205 const VkSpecializationInfo *spec_info);
3206
3207 struct anv_format_plane {
3208 enum isl_format isl_format:16;
3209 struct isl_swizzle swizzle;
3210
3211 /* Whether this plane contains chroma channels */
3212 bool has_chroma;
3213
3214 /* For downscaling of YUV planes */
3215 uint8_t denominator_scales[2];
3216
3217 /* How to map sampled ycbcr planes to a single 4 component element. */
3218 struct isl_swizzle ycbcr_swizzle;
3219
3220 /* What aspect is associated to this plane */
3221 VkImageAspectFlags aspect;
3222 };
3223
3224
3225 struct anv_format {
3226 struct anv_format_plane planes[3];
3227 VkFormat vk_format;
3228 uint8_t n_planes;
3229 bool can_ycbcr;
3230 };
3231
3232 static inline uint32_t
3233 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3234 VkImageAspectFlags aspect_mask)
3235 {
3236 switch (aspect_mask) {
3237 case VK_IMAGE_ASPECT_COLOR_BIT:
3238 case VK_IMAGE_ASPECT_DEPTH_BIT:
3239 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3240 return 0;
3241 case VK_IMAGE_ASPECT_STENCIL_BIT:
3242 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3243 return 0;
3244 /* Fall-through */
3245 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3246 return 1;
3247 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3248 return 2;
3249 default:
3250 /* Purposefully assert with depth/stencil aspects. */
3251 unreachable("invalid image aspect");
3252 }
3253 }
3254
3255 static inline VkImageAspectFlags
3256 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3257 uint32_t plane)
3258 {
3259 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3260 if (util_bitcount(image_aspects) > 1)
3261 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3262 return VK_IMAGE_ASPECT_COLOR_BIT;
3263 }
3264 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3265 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3266 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3267 return VK_IMAGE_ASPECT_STENCIL_BIT;
3268 }
3269
3270 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3271 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3272
3273 const struct anv_format *
3274 anv_get_format(VkFormat format);
3275
3276 static inline uint32_t
3277 anv_get_format_planes(VkFormat vk_format)
3278 {
3279 const struct anv_format *format = anv_get_format(vk_format);
3280
3281 return format != NULL ? format->n_planes : 0;
3282 }
3283
3284 struct anv_format_plane
3285 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3286 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3287
3288 static inline enum isl_format
3289 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3290 VkImageAspectFlags aspect, VkImageTiling tiling)
3291 {
3292 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3293 }
3294
3295 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3296 VkImageCreateFlags create_flags,
3297 VkFormat vk_format,
3298 VkImageTiling vk_tiling,
3299 const VkImageFormatListCreateInfoKHR *fmt_list);
3300
3301 static inline struct isl_swizzle
3302 anv_swizzle_for_render(struct isl_swizzle swizzle)
3303 {
3304 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3305 * RGB as RGBA for texturing
3306 */
3307 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3308 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3309
3310 /* But it doesn't matter what we render to that channel */
3311 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3312
3313 return swizzle;
3314 }
3315
3316 void
3317 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3318
3319 /**
3320 * Subsurface of an anv_image.
3321 */
3322 struct anv_surface {
3323 /** Valid only if isl_surf::size_B > 0. */
3324 struct isl_surf isl;
3325
3326 /**
3327 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3328 */
3329 uint32_t offset;
3330 };
3331
3332 struct anv_image {
3333 VkImageType type; /**< VkImageCreateInfo::imageType */
3334 /* The original VkFormat provided by the client. This may not match any
3335 * of the actual surface formats.
3336 */
3337 VkFormat vk_format;
3338 const struct anv_format *format;
3339
3340 VkImageAspectFlags aspects;
3341 VkExtent3D extent;
3342 uint32_t levels;
3343 uint32_t array_size;
3344 uint32_t samples; /**< VkImageCreateInfo::samples */
3345 uint32_t n_planes;
3346 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3347 VkImageUsageFlags stencil_usage;
3348 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3349 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3350
3351 /** True if this is needs to be bound to an appropriately tiled BO.
3352 *
3353 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3354 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3355 * we require a dedicated allocation so that we can know to allocate a
3356 * tiled buffer.
3357 */
3358 bool needs_set_tiling;
3359
3360 /**
3361 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3362 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3363 */
3364 uint64_t drm_format_mod;
3365
3366 VkDeviceSize size;
3367 uint32_t alignment;
3368
3369 /* Whether the image is made of several underlying buffer objects rather a
3370 * single one with different offsets.
3371 */
3372 bool disjoint;
3373
3374 /* All the formats that can be used when creating views of this image
3375 * are CCS_E compatible.
3376 */
3377 bool ccs_e_compatible;
3378
3379 /* Image was created with external format. */
3380 bool external_format;
3381
3382 /**
3383 * Image subsurfaces
3384 *
3385 * For each foo, anv_image::planes[x].surface is valid if and only if
3386 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3387 * to figure the number associated with a given aspect.
3388 *
3389 * The hardware requires that the depth buffer and stencil buffer be
3390 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3391 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3392 * allocate the depth and stencil buffers as separate surfaces in the same
3393 * bo.
3394 *
3395 * Memory layout :
3396 *
3397 * -----------------------
3398 * | surface0 | /|\
3399 * ----------------------- |
3400 * | shadow surface0 | |
3401 * ----------------------- | Plane 0
3402 * | aux surface0 | |
3403 * ----------------------- |
3404 * | fast clear colors0 | \|/
3405 * -----------------------
3406 * | surface1 | /|\
3407 * ----------------------- |
3408 * | shadow surface1 | |
3409 * ----------------------- | Plane 1
3410 * | aux surface1 | |
3411 * ----------------------- |
3412 * | fast clear colors1 | \|/
3413 * -----------------------
3414 * | ... |
3415 * | |
3416 * -----------------------
3417 */
3418 struct {
3419 /**
3420 * Offset of the entire plane (whenever the image is disjoint this is
3421 * set to 0).
3422 */
3423 uint32_t offset;
3424
3425 VkDeviceSize size;
3426 uint32_t alignment;
3427
3428 struct anv_surface surface;
3429
3430 /**
3431 * A surface which shadows the main surface and may have different
3432 * tiling. This is used for sampling using a tiling that isn't supported
3433 * for other operations.
3434 */
3435 struct anv_surface shadow_surface;
3436
3437 /**
3438 * For color images, this is the aux usage for this image when not used
3439 * as a color attachment.
3440 *
3441 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3442 * image has a HiZ buffer.
3443 */
3444 enum isl_aux_usage aux_usage;
3445
3446 struct anv_surface aux_surface;
3447
3448 /**
3449 * Offset of the fast clear state (used to compute the
3450 * fast_clear_state_offset of the following planes).
3451 */
3452 uint32_t fast_clear_state_offset;
3453
3454 /**
3455 * BO associated with this plane, set when bound.
3456 */
3457 struct anv_address address;
3458
3459 /**
3460 * Address of the main surface used to fill the aux map table. This is
3461 * used at destruction of the image since the Vulkan spec does not
3462 * guarantee that the address.bo field we still be valid at destruction.
3463 */
3464 uint64_t aux_map_surface_address;
3465
3466 /**
3467 * When destroying the image, also free the bo.
3468 * */
3469 bool bo_is_owned;
3470 } planes[3];
3471 };
3472
3473 /* The ordering of this enum is important */
3474 enum anv_fast_clear_type {
3475 /** Image does not have/support any fast-clear blocks */
3476 ANV_FAST_CLEAR_NONE = 0,
3477 /** Image has/supports fast-clear but only to the default value */
3478 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3479 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3480 ANV_FAST_CLEAR_ANY = 2,
3481 };
3482
3483 /* Returns the number of auxiliary buffer levels attached to an image. */
3484 static inline uint8_t
3485 anv_image_aux_levels(const struct anv_image * const image,
3486 VkImageAspectFlagBits aspect)
3487 {
3488 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3489
3490 /* The Gen12 CCS aux surface is represented with only one level. */
3491 const uint8_t aux_logical_levels =
3492 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3493 image->planes[plane].surface.isl.levels :
3494 image->planes[plane].aux_surface.isl.levels;
3495
3496 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3497 aux_logical_levels : 0;
3498 }
3499
3500 /* Returns the number of auxiliary buffer layers attached to an image. */
3501 static inline uint32_t
3502 anv_image_aux_layers(const struct anv_image * const image,
3503 VkImageAspectFlagBits aspect,
3504 const uint8_t miplevel)
3505 {
3506 assert(image);
3507
3508 /* The miplevel must exist in the main buffer. */
3509 assert(miplevel < image->levels);
3510
3511 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3512 /* There are no layers with auxiliary data because the miplevel has no
3513 * auxiliary data.
3514 */
3515 return 0;
3516 } else {
3517 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3518
3519 /* The Gen12 CCS aux surface is represented with only one layer. */
3520 const struct isl_extent4d *aux_logical_level0_px =
3521 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3522 &image->planes[plane].surface.isl.logical_level0_px :
3523 &image->planes[plane].aux_surface.isl.logical_level0_px;
3524
3525 return MAX2(aux_logical_level0_px->array_len,
3526 aux_logical_level0_px->depth >> miplevel);
3527 }
3528 }
3529
3530 static inline struct anv_address
3531 anv_image_get_clear_color_addr(const struct anv_device *device,
3532 const struct anv_image *image,
3533 VkImageAspectFlagBits aspect)
3534 {
3535 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3536
3537 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3538 return anv_address_add(image->planes[plane].address,
3539 image->planes[plane].fast_clear_state_offset);
3540 }
3541
3542 static inline struct anv_address
3543 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3544 const struct anv_image *image,
3545 VkImageAspectFlagBits aspect)
3546 {
3547 struct anv_address addr =
3548 anv_image_get_clear_color_addr(device, image, aspect);
3549
3550 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3551 device->isl_dev.ss.clear_color_state_size :
3552 device->isl_dev.ss.clear_value_size;
3553 return anv_address_add(addr, clear_color_state_size);
3554 }
3555
3556 static inline struct anv_address
3557 anv_image_get_compression_state_addr(const struct anv_device *device,
3558 const struct anv_image *image,
3559 VkImageAspectFlagBits aspect,
3560 uint32_t level, uint32_t array_layer)
3561 {
3562 assert(level < anv_image_aux_levels(image, aspect));
3563 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3564 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3565 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3566
3567 struct anv_address addr =
3568 anv_image_get_fast_clear_type_addr(device, image, aspect);
3569 addr.offset += 4; /* Go past the fast clear type */
3570
3571 if (image->type == VK_IMAGE_TYPE_3D) {
3572 for (uint32_t l = 0; l < level; l++)
3573 addr.offset += anv_minify(image->extent.depth, l) * 4;
3574 } else {
3575 addr.offset += level * image->array_size * 4;
3576 }
3577 addr.offset += array_layer * 4;
3578
3579 assert(addr.offset <
3580 image->planes[plane].address.offset + image->planes[plane].size);
3581 return addr;
3582 }
3583
3584 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3585 static inline bool
3586 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3587 const struct anv_image *image)
3588 {
3589 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3590 return false;
3591
3592 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3593 * struct. There's documentation which suggests that this feature actually
3594 * reduces performance on BDW, but it has only been observed to help so
3595 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3596 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3597 */
3598 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3599 return false;
3600
3601 return image->samples == 1;
3602 }
3603
3604 static inline bool
3605 anv_image_plane_uses_aux_map(const struct anv_device *device,
3606 const struct anv_image *image,
3607 uint32_t plane)
3608 {
3609 return device->info.has_aux_map &&
3610 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3611 }
3612
3613 void
3614 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3615 const struct anv_image *image,
3616 VkImageAspectFlagBits aspect,
3617 enum isl_aux_usage aux_usage,
3618 uint32_t level,
3619 uint32_t base_layer,
3620 uint32_t layer_count);
3621
3622 void
3623 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3624 const struct anv_image *image,
3625 VkImageAspectFlagBits aspect,
3626 enum isl_aux_usage aux_usage,
3627 enum isl_format format, struct isl_swizzle swizzle,
3628 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3629 VkRect2D area, union isl_color_value clear_color);
3630 void
3631 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3632 const struct anv_image *image,
3633 VkImageAspectFlags aspects,
3634 enum isl_aux_usage depth_aux_usage,
3635 uint32_t level,
3636 uint32_t base_layer, uint32_t layer_count,
3637 VkRect2D area,
3638 float depth_value, uint8_t stencil_value);
3639 void
3640 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3641 const struct anv_image *src_image,
3642 enum isl_aux_usage src_aux_usage,
3643 uint32_t src_level, uint32_t src_base_layer,
3644 const struct anv_image *dst_image,
3645 enum isl_aux_usage dst_aux_usage,
3646 uint32_t dst_level, uint32_t dst_base_layer,
3647 VkImageAspectFlagBits aspect,
3648 uint32_t src_x, uint32_t src_y,
3649 uint32_t dst_x, uint32_t dst_y,
3650 uint32_t width, uint32_t height,
3651 uint32_t layer_count,
3652 enum blorp_filter filter);
3653 void
3654 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3655 const struct anv_image *image,
3656 VkImageAspectFlagBits aspect, uint32_t level,
3657 uint32_t base_layer, uint32_t layer_count,
3658 enum isl_aux_op hiz_op);
3659 void
3660 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3661 const struct anv_image *image,
3662 VkImageAspectFlags aspects,
3663 uint32_t level,
3664 uint32_t base_layer, uint32_t layer_count,
3665 VkRect2D area, uint8_t stencil_value);
3666 void
3667 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3668 const struct anv_image *image,
3669 enum isl_format format,
3670 VkImageAspectFlagBits aspect,
3671 uint32_t base_layer, uint32_t layer_count,
3672 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3673 bool predicate);
3674 void
3675 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3676 const struct anv_image *image,
3677 enum isl_format format,
3678 VkImageAspectFlagBits aspect, uint32_t level,
3679 uint32_t base_layer, uint32_t layer_count,
3680 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3681 bool predicate);
3682
3683 void
3684 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3685 const struct anv_image *image,
3686 VkImageAspectFlagBits aspect,
3687 uint32_t base_level, uint32_t level_count,
3688 uint32_t base_layer, uint32_t layer_count);
3689
3690 enum isl_aux_usage
3691 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3692 const struct anv_image *image,
3693 const VkImageAspectFlagBits aspect,
3694 const VkImageLayout layout);
3695
3696 enum anv_fast_clear_type
3697 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3698 const struct anv_image * const image,
3699 const VkImageAspectFlagBits aspect,
3700 const VkImageLayout layout);
3701
3702 /* This is defined as a macro so that it works for both
3703 * VkImageSubresourceRange and VkImageSubresourceLayers
3704 */
3705 #define anv_get_layerCount(_image, _range) \
3706 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3707 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3708
3709 static inline uint32_t
3710 anv_get_levelCount(const struct anv_image *image,
3711 const VkImageSubresourceRange *range)
3712 {
3713 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3714 image->levels - range->baseMipLevel : range->levelCount;
3715 }
3716
3717 static inline VkImageAspectFlags
3718 anv_image_expand_aspects(const struct anv_image *image,
3719 VkImageAspectFlags aspects)
3720 {
3721 /* If the underlying image has color plane aspects and
3722 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3723 * the underlying image. */
3724 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3725 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3726 return image->aspects;
3727
3728 return aspects;
3729 }
3730
3731 static inline bool
3732 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3733 VkImageAspectFlags aspects2)
3734 {
3735 if (aspects1 == aspects2)
3736 return true;
3737
3738 /* Only 1 color aspects are compatibles. */
3739 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3740 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3741 util_bitcount(aspects1) == util_bitcount(aspects2))
3742 return true;
3743
3744 return false;
3745 }
3746
3747 struct anv_image_view {
3748 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3749
3750 VkImageAspectFlags aspect_mask;
3751 VkFormat vk_format;
3752 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3753
3754 unsigned n_planes;
3755 struct {
3756 uint32_t image_plane;
3757
3758 struct isl_view isl;
3759
3760 /**
3761 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3762 * image layout of SHADER_READ_ONLY_OPTIMAL or
3763 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3764 */
3765 struct anv_surface_state optimal_sampler_surface_state;
3766
3767 /**
3768 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3769 * image layout of GENERAL.
3770 */
3771 struct anv_surface_state general_sampler_surface_state;
3772
3773 /**
3774 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3775 * states for write-only and readable, using the real format for
3776 * write-only and the lowered format for readable.
3777 */
3778 struct anv_surface_state storage_surface_state;
3779 struct anv_surface_state writeonly_storage_surface_state;
3780
3781 struct brw_image_param storage_image_param;
3782 } planes[3];
3783 };
3784
3785 enum anv_image_view_state_flags {
3786 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3787 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3788 };
3789
3790 void anv_image_fill_surface_state(struct anv_device *device,
3791 const struct anv_image *image,
3792 VkImageAspectFlagBits aspect,
3793 const struct isl_view *view,
3794 isl_surf_usage_flags_t view_usage,
3795 enum isl_aux_usage aux_usage,
3796 const union isl_color_value *clear_color,
3797 enum anv_image_view_state_flags flags,
3798 struct anv_surface_state *state_inout,
3799 struct brw_image_param *image_param_out);
3800
3801 struct anv_image_create_info {
3802 const VkImageCreateInfo *vk_info;
3803
3804 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3805 isl_tiling_flags_t isl_tiling_flags;
3806
3807 /** These flags will be added to any derived from VkImageCreateInfo. */
3808 isl_surf_usage_flags_t isl_extra_usage_flags;
3809
3810 uint32_t stride;
3811 bool external_format;
3812 };
3813
3814 VkResult anv_image_create(VkDevice _device,
3815 const struct anv_image_create_info *info,
3816 const VkAllocationCallbacks* alloc,
3817 VkImage *pImage);
3818
3819 const struct anv_surface *
3820 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3821 VkImageAspectFlags aspect_mask);
3822
3823 enum isl_format
3824 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3825
3826 static inline VkExtent3D
3827 anv_sanitize_image_extent(const VkImageType imageType,
3828 const VkExtent3D imageExtent)
3829 {
3830 switch (imageType) {
3831 case VK_IMAGE_TYPE_1D:
3832 return (VkExtent3D) { imageExtent.width, 1, 1 };
3833 case VK_IMAGE_TYPE_2D:
3834 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3835 case VK_IMAGE_TYPE_3D:
3836 return imageExtent;
3837 default:
3838 unreachable("invalid image type");
3839 }
3840 }
3841
3842 static inline VkOffset3D
3843 anv_sanitize_image_offset(const VkImageType imageType,
3844 const VkOffset3D imageOffset)
3845 {
3846 switch (imageType) {
3847 case VK_IMAGE_TYPE_1D:
3848 return (VkOffset3D) { imageOffset.x, 0, 0 };
3849 case VK_IMAGE_TYPE_2D:
3850 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3851 case VK_IMAGE_TYPE_3D:
3852 return imageOffset;
3853 default:
3854 unreachable("invalid image type");
3855 }
3856 }
3857
3858 VkFormatFeatureFlags
3859 anv_get_image_format_features(const struct gen_device_info *devinfo,
3860 VkFormat vk_format,
3861 const struct anv_format *anv_format,
3862 VkImageTiling vk_tiling);
3863
3864 void anv_fill_buffer_surface_state(struct anv_device *device,
3865 struct anv_state state,
3866 enum isl_format format,
3867 struct anv_address address,
3868 uint32_t range, uint32_t stride);
3869
3870 static inline void
3871 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3872 const struct anv_attachment_state *att_state,
3873 const struct anv_image_view *iview)
3874 {
3875 const struct isl_format_layout *view_fmtl =
3876 isl_format_get_layout(iview->planes[0].isl.format);
3877
3878 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3879 if (view_fmtl->channels.c.bits) \
3880 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3881
3882 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3883 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3884 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3885 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3886
3887 #undef COPY_CLEAR_COLOR_CHANNEL
3888 }
3889
3890
3891 struct anv_ycbcr_conversion {
3892 const struct anv_format * format;
3893 VkSamplerYcbcrModelConversion ycbcr_model;
3894 VkSamplerYcbcrRange ycbcr_range;
3895 VkComponentSwizzle mapping[4];
3896 VkChromaLocation chroma_offsets[2];
3897 VkFilter chroma_filter;
3898 bool chroma_reconstruction;
3899 };
3900
3901 struct anv_sampler {
3902 uint32_t state[3][4];
3903 uint32_t n_planes;
3904 struct anv_ycbcr_conversion *conversion;
3905
3906 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3907 * and with a 32-byte stride for use as bindless samplers.
3908 */
3909 struct anv_state bindless_state;
3910 };
3911
3912 struct anv_framebuffer {
3913 uint32_t width;
3914 uint32_t height;
3915 uint32_t layers;
3916
3917 uint32_t attachment_count;
3918 struct anv_image_view * attachments[0];
3919 };
3920
3921 struct anv_subpass_attachment {
3922 VkImageUsageFlagBits usage;
3923 uint32_t attachment;
3924 VkImageLayout layout;
3925
3926 /* Used only with attachment containing stencil data. */
3927 VkImageLayout stencil_layout;
3928 };
3929
3930 struct anv_subpass {
3931 uint32_t attachment_count;
3932
3933 /**
3934 * A pointer to all attachment references used in this subpass.
3935 * Only valid if ::attachment_count > 0.
3936 */
3937 struct anv_subpass_attachment * attachments;
3938 uint32_t input_count;
3939 struct anv_subpass_attachment * input_attachments;
3940 uint32_t color_count;
3941 struct anv_subpass_attachment * color_attachments;
3942 struct anv_subpass_attachment * resolve_attachments;
3943
3944 struct anv_subpass_attachment * depth_stencil_attachment;
3945 struct anv_subpass_attachment * ds_resolve_attachment;
3946 VkResolveModeFlagBitsKHR depth_resolve_mode;
3947 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3948
3949 uint32_t view_mask;
3950
3951 /** Subpass has a depth/stencil self-dependency */
3952 bool has_ds_self_dep;
3953
3954 /** Subpass has at least one color resolve attachment */
3955 bool has_color_resolve;
3956 };
3957
3958 static inline unsigned
3959 anv_subpass_view_count(const struct anv_subpass *subpass)
3960 {
3961 return MAX2(1, util_bitcount(subpass->view_mask));
3962 }
3963
3964 struct anv_render_pass_attachment {
3965 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3966 * its members individually.
3967 */
3968 VkFormat format;
3969 uint32_t samples;
3970 VkImageUsageFlags usage;
3971 VkAttachmentLoadOp load_op;
3972 VkAttachmentStoreOp store_op;
3973 VkAttachmentLoadOp stencil_load_op;
3974 VkImageLayout initial_layout;
3975 VkImageLayout final_layout;
3976 VkImageLayout first_subpass_layout;
3977
3978 VkImageLayout stencil_initial_layout;
3979 VkImageLayout stencil_final_layout;
3980
3981 /* The subpass id in which the attachment will be used last. */
3982 uint32_t last_subpass_idx;
3983 };
3984
3985 struct anv_render_pass {
3986 uint32_t attachment_count;
3987 uint32_t subpass_count;
3988 /* An array of subpass_count+1 flushes, one per subpass boundary */
3989 enum anv_pipe_bits * subpass_flushes;
3990 struct anv_render_pass_attachment * attachments;
3991 struct anv_subpass subpasses[0];
3992 };
3993
3994 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3995
3996 struct anv_query_pool {
3997 VkQueryType type;
3998 VkQueryPipelineStatisticFlags pipeline_statistics;
3999 /** Stride between slots, in bytes */
4000 uint32_t stride;
4001 /** Number of slots in this query pool */
4002 uint32_t slots;
4003 struct anv_bo * bo;
4004 };
4005
4006 int anv_get_instance_entrypoint_index(const char *name);
4007 int anv_get_device_entrypoint_index(const char *name);
4008 int anv_get_physical_device_entrypoint_index(const char *name);
4009
4010 const char *anv_get_instance_entry_name(int index);
4011 const char *anv_get_physical_device_entry_name(int index);
4012 const char *anv_get_device_entry_name(int index);
4013
4014 bool
4015 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4016 const struct anv_instance_extension_table *instance);
4017 bool
4018 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4019 const struct anv_instance_extension_table *instance);
4020 bool
4021 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4022 const struct anv_instance_extension_table *instance,
4023 const struct anv_device_extension_table *device);
4024
4025 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4026 const char *name);
4027
4028 void anv_dump_image_to_ppm(struct anv_device *device,
4029 struct anv_image *image, unsigned miplevel,
4030 unsigned array_layer, VkImageAspectFlagBits aspect,
4031 const char *filename);
4032
4033 enum anv_dump_action {
4034 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4035 };
4036
4037 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4038 void anv_dump_finish(void);
4039
4040 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4041
4042 static inline uint32_t
4043 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4044 {
4045 /* This function must be called from within a subpass. */
4046 assert(cmd_state->pass && cmd_state->subpass);
4047
4048 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4049
4050 /* The id of this subpass shouldn't exceed the number of subpasses in this
4051 * render pass minus 1.
4052 */
4053 assert(subpass_id < cmd_state->pass->subpass_count);
4054 return subpass_id;
4055 }
4056
4057 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4058 void anv_device_perf_init(struct anv_device *device);
4059
4060 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4061 \
4062 static inline struct __anv_type * \
4063 __anv_type ## _from_handle(__VkType _handle) \
4064 { \
4065 return (struct __anv_type *) _handle; \
4066 } \
4067 \
4068 static inline __VkType \
4069 __anv_type ## _to_handle(struct __anv_type *_obj) \
4070 { \
4071 return (__VkType) _obj; \
4072 }
4073
4074 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4075 \
4076 static inline struct __anv_type * \
4077 __anv_type ## _from_handle(__VkType _handle) \
4078 { \
4079 return (struct __anv_type *)(uintptr_t) _handle; \
4080 } \
4081 \
4082 static inline __VkType \
4083 __anv_type ## _to_handle(struct __anv_type *_obj) \
4084 { \
4085 return (__VkType)(uintptr_t) _obj; \
4086 }
4087
4088 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4089 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4090
4091 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4092 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4093 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4094 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4095 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4096
4097 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4098 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4099 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4100 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4101 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4102 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4103 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4104 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4105 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4106 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4107 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4108 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4109 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4110 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4111 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4112 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4113 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4114 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4115 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4116 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4117 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4118 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4119 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4120
4121 /* Gen-specific function declarations */
4122 #ifdef genX
4123 # include "anv_genX.h"
4124 #else
4125 # define genX(x) gen7_##x
4126 # include "anv_genX.h"
4127 # undef genX
4128 # define genX(x) gen75_##x
4129 # include "anv_genX.h"
4130 # undef genX
4131 # define genX(x) gen8_##x
4132 # include "anv_genX.h"
4133 # undef genX
4134 # define genX(x) gen9_##x
4135 # include "anv_genX.h"
4136 # undef genX
4137 # define genX(x) gen10_##x
4138 # include "anv_genX.h"
4139 # undef genX
4140 # define genX(x) gen11_##x
4141 # include "anv_genX.h"
4142 # undef genX
4143 # define genX(x) gen12_##x
4144 # include "anv_genX.h"
4145 # undef genX
4146 #endif
4147
4148 #endif /* ANV_PRIVATE_H */